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Preface

Professor Sergey Borisovich Stechkin (1920–1995) was a famous Russian mathematician
working in the theory of approximation and the theory of numbers. He was also an ex-
ceptional personality and a brilliant lecturer who for many years gave deep sophisticated
courses on approximation theory at the M.V. Lomonosov Moscow State University and
at the Ural State University. Stechkin was a supervisor of many students who them-
selves became well-known experts in the theory of approximation. In 2010, several of
his former post-graduate students, now distinguished professors, prepared an upgraded
version of the record of Stechkin’s lectures given in 1970–1971.

Exposition of Stechkin’s lectures, published in Russian in 2010 by the Institute of
Mathematics and Mechanics of the Ural Branch of the Russian Academy of Sciences,
immediately became popular.

Without doubt, the English translation of the Lectures would be of great interest
for the international community of analysts working in the theory of approximation.
This opinion was enthusiastically shared by the Editorial Board of the Eurasian Math-
ematical Journal and it was decided to publish the translation as one of the issues of
this journal. During translation some additional editing of the original text was done.
In particular, the list of references was essentially enlarged, and references were given
to most of the statements mentioned in the lecture course without proofs.

V. I. Burenkov, M. Otelbaev, V. A. Sadovnichy
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Preface to the Russian edition

This book emerged from the lecture notes on approximation theory given by Professor
S. B. Stechkin as a special course at the Department of Mechanics and Mathematics
of the M. V. Lomonosov Moscow State University in 1970–1971. All the lectures were
written up by his student T. V. Demina.

Quite understandably, the writeup of a student’s notes did require further adapta-
tion, and this was accomplished recently by Stechkin’s followers and former students.
Lectures 1–4 have been prepared for publication by Yu. N. Subbotin, Lectures 5–7
by S. A. Tel’yakovskii, Lectures 8–10 by V. I. Berdyshev, N. N. Kholschevnikova and
I. G. Tsar’kov, Lectures 11–13 by S. V. Konyagin and I. G. Tsar’kov, Lectures 14, 15
and in part Lecture 16 have been prepared by V. A. Yudin, and Lectures 16–20 by
V. V. Arestov.

Preliminary processing of the original lecture notes (transcription of shorthand
notes, typesetting formulas, correction of obvious misprints, preparation of the figures)
followed by repetitive retyping thereof during editing and coordination has been per-
formed by A. I. Kozko, Yu. V. Malykhin, T. V. Radoslavova, N. N. Kholshchevnikova
in Moscow, and by P. Yu. Glazyrina, M. V. Deikalova, A. A. Koshelev, N. A. Kuklin,
K. S. Tikhanovtseva, V. V. Shevchenko in Ekaterinburg. Especially much labour has
been endured by M. V. Deikalova, Yu. V. Malykhin, and V. V. Shevchenko.

The general editing of the text as a whole has been done by N. I. Chernykh with
much help by S. A. Tel’yakovskii, N. N. Kholshchevnikova, and Yu. V. Malykhin.

Various variants of the special course on approximation theory were delivered by
Stechkin regularly, during almost each of his many years of pedagogical work at the
Moscow and Ural State Universities. A distinctive feature of all Stechkin’s courses, in-
cluding, inter alia, the following lecture notes, is the originality in choosing the material
and its exposition. Students who attended Stechkin’s lectures, mandatory and special
courses, do remember and highly appreciate exceptional skill and artistry in delivering
lectures. The brilliant teaching of Professor Stechkin always enchanted the listeners.

Unfortunately, it is not feasible in any exposition to replicate the style of presentation
in which Professor Stechkin delivered his lectures. So we have not tried to emulate his
style, as any attempt to do so would be futile.

Nevertheless, we hope that this exposition will be of use both for students and
staff. All footnotes were made during preparation and editing of the manuscript for
publication.
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Lecture 1

Interpolation

1.1. Basic concepts

Definition. A metric space R = {X, ̺} is a set X and a real-valued function ̺ on
X × X (or ‘metric’) which satisfies:

1) ̺(x, y) > 0, ρ(x, y) = ρ(y, x) ∀x, y ∈ X;
2) ̺(x, y) = 0 ⇐⇒ x = y;
3) ̺(x, y) 6 ̺(x, z) + ̺(z, y) ∀x, y, z ∈ X.

The starting point of the approximation theory is the concept of the best approxi-

mation, that is, the distance of a given element x ∈ X to a given nonempty subset M
of X,

best approximation E(x) =E(x,M)R = inf
y∈M

̺(x, y) = ̺(x,M) > 0.

The set of all elements of best approximation in M for a given element x is denoted
by Y (x):

y∗ =y∗(x) ∈ Y (x) ⇐⇒
{

1) y∗ ∈ M,

2) ̺(x, y∗) = E(x,M)R.

(elements of the set Y (x) are also called nearest points or best approximants).
The operator x 7→ Y (x) is called the operator of best approximation or the metric

projection of x to M .
Given a point x and a set M , the set Y (x) may be empty, consist of one or more

points.

Example 1.1. Let R = {R2, ̺}, where ̺ is the Euclidean distance on the plane R
2,

and let M be a closed circular disc. It is easily seen that the set Y (x) is a singleton for
any x. If M is the interior of an open circular disc, then Y (x) = ∅ for any x /∈ M . If
M is a circumference and x is its centre, then Y (x) = M .

Definition. A set M is called a set of existence (uniqueness) if, for each x ∈ X, the
set Y (x) is non-empty (empty or a singleton). A set M is called a Chebyshev set if it is
a set of existence and a set of uniqueness, that is, if for each x ∈ X, Y (x) is a singleton.
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y �

x

M

E(x,
M

)

Fig. 1.1

A line in the Euclidean plane serves as an example of a Chebyshev set. The first
significant results on Chebyshev sets were obtained in the theory of approximation of
functions by Chebyshev, one of the founders of this theory. In 1859 he showed that (in
modern terminology) in the space C[0, 1] the subspace Pn of all polynomials of degree
6 n and the set Rn,m of all rational functions

a0 + a1x + . . . + anx
n

b0 + b1x + . . . + bmxm

with fixed n and m are Chebyshev sets.
However, in general, the operator of the best approximation may have unpleasant

peculiarities. Consider the following example.

Example 1.2. Let X = C[a, b], −∞ < a < b < +∞. The norm of a function f ∈
C[a, b] is defined as ‖f‖C = max

x∈[a,b]
|f(x)|, ̺(f, g) = ‖f − g‖C . As M we consider the

set of all constant functions on [a, b]. Clearly, for any f ∈ C[a, b], there exists a unique
approximant c∗ ∈ M (see Fig. 1.2),

c∗ =
(
max
x∈[a,b]

f(x) + min
x∈[a,b]

f(x)
)
/2

x

y

0 a b

c �

y = f(x)

Fig. 1.2

Consequently, the best approximation operator Y (the metric projection), which
assigns to each function f ∈ C[a, b] its element of best approximation c∗ ∈ M , is
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not linear. Indeed, taking f1 and f2 as shown in Fig. 1.3, we have c∗(f1) = c∗(f2) =
c∗(f1 + f2) = h/2, and so Y (f1 + f2) 6= Y (f1) + A(f2).

x

y

0 a b

h/2

h
y = f1(x)

x

y

0 a b

h/2

h
y = f2(x)

x

y

0 a b

h/2

h
y = f1(x) + f2(x)

Fig. 1.3

So, in some function spaces the best approximation operator Y is not linear, and
hence finding E(x) and y∗(x) may be quite difficult. This suggests considering also more
simple methods of approximation, in particular, use is made of various linear methods.

1.2. Linear approximation problem

Let L be a subspace of C[a, b], and let A be a linear operator from C[a, b] to L. This
defines the linear method A of approximation of elements in C[a, b] by means of the
subspace L. For an f the element Af is the approximating element.

Interpolation is the first classical linear method of approximation.

1.3. Lagrange interpolation

Let f ∈ C[a, b] (for the time being, we assume that f is complex-valued).
On [a, b], we consider different points xk, a 6 x0 < x1 < . . . < xn 6 b. The

points {xk} are called interpolation nodes (interpolation points).
Given a set of nodes {xk} and a collection of numbers {yk}, k = 0, 1, . . . , n, the

problem is to construct a polynomial pn(x) = a0 + a1x + . . . + anx
n ∈ Pn such that

pn(xk) = yk, k = 0, 1, . . . , n.
The following natural questions arise:

1) Is the problem solvable?
2) How many solutions it has?

Here in order to determine the coefficients ai, i = 0, 1, . . . , n, we have a system
of linear equations with nonzero Vandermonde determinant. Thus the problem has
a unique solution for any xk and yk. It is possible to explicitly write down the solution.
To do so, for any k = 0, 1, . . . , n, we construct the Lagrange fundamental polynomial
lk(x), corresponding to the kth node this is a polynomial of degree n such that lk(xi) =
δi,k, where δi,k is the Kronecker delta.

It is easily seen that

lk(x) =
(x − x0)(x − x1) · · · (x − xk−1)(x − xk+1) · · · (x − xn)

(xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)
.
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Setting ω(x) =
∏n

k=0(x − xk), we have

ω′(xk) = (xk − x0)(xk − x1) · · · (xk − xk−1)(xk − xk+1) · · · (xk − xn)

and so

lk(x) =
ω(x)

(x − xk)ω′(xk)
.

Then the polynomial

pn(x) = pn

(
x, {yk}, {xk}

)
=

n∑

k=0

yk lk(x)

is the required interpolation polynomial, known as the Lagrange interpolation polyno-

mial.
Consequently, for any function f ∈ C[a, b] and any set of interpolation nodes {xk},

k = 0, 1, . . . , n, there exists a unique polynomial of degree not exceeding n,

pn(x, f) = pn(x, f, {xk}) =
n∑

k=0

f(xk)lk(x), (1.1)

such that
pn(xk, f) = f(xk), k = 0, 1, . . . , n.

This defines the operator Pn : f 7→ pn(x, f) from C[a, b] to C[a, b]. We list briefly
its simplest properties.

1) Given f ∈ Pn, for any set of nodes {xk}, we have pn(x, f) ≡ f(x), that is,
Pn(f) = f .

2) The operator Pn is linear (homogeneous and additive) and bounded:

Pn(c1f1 + c2f2) ≡ c1Pn(f1) + c2Pn(f2), fi ∈ C[a, b], ci ∈ C, i = 1, 2;

also, for any function f ∈ C[a, b],

‖pn(·, f)‖C 6 Ln‖f‖C , where Ln = ‖Pn‖C→C < ∞.

Furthermore, by (1.1),
|pn(x, f)| 6 Ln(x)‖f‖C .

Here Ln(x) =
∑n

k=0 |lk(x)| and Ln = ‖Ln(x)‖C .
We claim that these inequalities are sharp in C[a, b] ≡ C.
Indeed, given a fixed ξ ∈ [a, b], consider a function fξ(x) such that

a) fξ(x) = sign lk(ξ) for x = xk, k = 0, 1, . . . , n,
b) |fξ(x)| 6 1 for x ∈ [a, b],
c) fξ(x) is continuous in x on [a, b].

We have

‖fξ‖C = 1, pn(x, fξ) =
n∑

k=0

fξ(xk)lk(x)
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and in particular,

pn(ξ, fξ) =
n∑

k=0

|lk(ξ)| = Ln(ξ)‖fξ‖C .

Taking for ξ a point x∗ at which Ln(x) attains the maximum on [a, b], we have

pn(x∗, fx∗(·)) = Ln‖fx∗‖C

and hence
‖pn(x, fx∗(·))‖C = Ln‖fx∗‖C .

Consequently, the constant Ln is the norm of the operator Pn : f 7→ pn(x, f):

‖Pn‖C→C = Ln.

Furthermore, for any fixed x ∈ [a, b], Ln(x) is the norm of the functional Px(f) =
pn(x, f) in C[a, b]:

‖Px(f)‖C→C = Ln(x),

because |Px(f)| 6 Ln(x)‖f‖C for any f ∈ C[a, b], and

|Px(fx(·))| = Ln(x)‖fx‖C .

The constant Ln is called the Lebesgue constant, and Ln(x) is known as the Lebesgue

function of the linear method pn(x, f, {xk}) of approximation of functions f in C[a, b] by
Lagrange interpolation polynomials. Clearly, these concepts can be extended to other
linear approximation methods.

The smaller the norm (the Lebesgue constant) of an interpolation method, the better
is the method. For a fixed n, the Lebesgue constant Ln depends on the interpolation
nodes {xk}. If [a, b] = [−1, 1], then it is possible to choose nodes in such a way that
Ln = 2

π
ln n + O(1) as n → +∞; this happens if one takes, as interpolation nodes, the

zeros of the Chebyshev polynomial

Tn+1(x) = cos((n + 1) arccos x).

3) The Cauchy identities.

Property 1) and the formula for the interpolation polynomial, for f(x) ≡ 1, imply
the identity

n∑

k=0

lk(x) ≡ 1,

and, for f(x) = (x − u)j, j = 1, . . . , n, u ∈ C), imply the identities

(x − u)j ≡
n∑

k=0

(xk − u)jlk(x) j = 1, 2, . . . , n;

in particular, for u = x,

n∑

k=0

(xk − x)jlk(x) ≡ 0, j = 1, . . . , n. (1.2)

For {xn} ⊂ [a, b] these identities hold for all x ∈ C.
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1.4. Error of the Lagrange interpolation. The

Lebesgue inequalities

Let {xk}n
k=0 be interpolation nodes, let f ∈ C[a, b], and let pn(x, f) be the corre-

sponding Lagrange interpolation polynomial. We can represent f in the following form

f(x) = pn(x, f) + Rn(x, f),

where Rn(x, f) is the remainder. Clearly, Rn(xk, f) = 0 at the interpolation nodes,
k = 0, . . . , n. Given any fixed x ∈ [a, b], it is required to evaluate Rn(x, f) and evaluate
‖Rn(·, f)‖C[a,b].

It turns out that in order to estimate the remainder in the Lagrange interpolation it
suffices to know Ln(x), Ln and E(f,Pn)C = inf

q∈Pn

‖f −q‖C . More precisely, the following

Lebesgue inequalities hold:

|Rn(x, f)| 6 (Ln(x) + 1)E(f,Pn)C ,

‖Rn(·, f)‖C 6 (Ln + 1)E(f,Pn)C . (1.3)

To prove them, we observe that Pn(x, f) is a linear operator and that Pn(x, q) = q(x)
for all q ∈ Pn. We have

|Rn(x, f)| = |f(x) − pn(x, f)| = |f(x) − q(x) − pn(x, f − q)|

6 |f(x) − q(x)| + Ln(x)‖f − q‖ 6 (Ln(x) + 1)‖f − q‖C , q ∈ Pn.

Hence, taking for q the best approximant to f in Pn, this gives

|Rn(x, f)| 6 (Ln(x) + 1)E(f,Pn)C , x ∈ [a, b],

and hence
‖Rn(·, f)‖C 6 (Ln + 1)E(f,Pn)C .

Similar Lebesgue inequalities also hold for more general linear methods preserving ele-
ments of Pn.

1.5. Cauchy form of the remainder in the Lagrange

interpolation formula

The space C(n+1)[a, b] consists of all continuous functions having continuous deriva-
tives up to the order n + 1 inclusive.

Theorem 1.1. Let f ∈ C(n+1)[a, b]. Then, for any x ∈ [a, b], there exists a point

ξ ∈ (a, b) such that

Rn(x, f) =
f (n+1)(ξ)

(n + 1)!
ω(x) (1.4)

(here ξ = ξ(x, f, {xk}), and n + 1 is the number of interpolation nodes).
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Proof. Clearly, the formula in question holds for x = xk, k = 0, . . . , n (with arbi-
trary ξ). We fix x ∈ [a, b], x 6= xk, and consider the following auxiliary function

F (t) = f(t) − pn(t) − Kω(t),

where pn(t) = pn(t, f, {xk}), K = Rn(x, f)/ω(x), ω(x) 6= 0. We note that F (xk) = 0,
k = 0, . . . , n, and also, F (x) = 0 by the choice of K. Hence, the function F (t) has
zeros at n + 2 different points. By the generalized Rolle’s theorem, there exists a point
ξ ∈ (a, b) such that F (n+1)(ξ) = 0. However, F (n+1)(ξ) = f (n+1)(ξ)−K · (n + 1)!, giving
K = f (n+1)(ξ)/(n + 1)!. Hence, for Rn(x, f) = Kω(x),

Rn(x, f) =
f (n+1)(ξ)

(n + 1)!
ω(x). ¤

Remark (geometrical). The remainder does not necessarily change sign along
with ω(x) at interpolation nodes. The graphs of f(x) and pn(x, f) can touch each
other as shown in Fig. 1.4.

Fig. 1.4

However, there is a simple sufficient condition for the remainder to change sign at
the interpolation nodes. As is seen from (1.4), if f (n+1)(x) preserves sign, then Rn(x, f)
changes sign at the interpolation nodes (and only there).

Let Mn+1(f) = max
x∈[a,b]

f (n+1)(x).

Corollary. We have

‖Rn(·, f)‖C 6
Mn+1(f)

(n + 1)!
‖ω(·)‖C . (1.5)

The question arises: What choice of interpolation nodes minimizes ‖ω(·)‖C? We

claim that this happens if ω is the Chebyshev polynomial1 T̃n+1(x, I) (I = [a, b]).
Indeed, ω(x) = xn+1 + anx

n + . . . + a0, and so

inf ‖ω(·)‖C[a,b] = ‖T̃n+1(·, I)‖C[a,b],

1Properties of Chebyshev polynomials are given in Lecture 2.
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where T̃n+1(·, I) is the Chebyshev polynomial on [a, b] (a monic polynomial of order
n + 1 of least deviation from zero on [a, b]). In particular,

T̃n+1(x, [−1, 1]) = 2−n cos(n + 1) arccos x.

1.6. Haar’s interpolation theorem in R
N

In the above, we considered the one-dimensional interpolation problem on the in-
terval D = [a, b] ⊂ R

1. Now suppose that a set D ⊂ R
N , N > 2.

The problem arises: Is this problem sensible in a multi-dimensional case? Do there
exists real-valued functions f0(x), f1(x), . . . , fn(x), x ∈ D ⊂ R

N (interpolating systems

on D), whose linear combinations are capable of interpolating any family of numbers
{yk}n

k=0 at any disjoint family of nodes {xk}n
k=0 ∈ D?

It is easily verified that interpolating systems consisting of discontinuous functions
exist on any set of the power of the continuum. To see this it suffices to consider a one-
to-one mapping of the interval to this set and consider the resulting functions, which
correspond to the interpolating system 1, x, x2, . . . , xn considered above.

In what follows, we shall show that the interpolation problem for polynomials is
solvable in the complex domain. The following theorem gives an answer to this question
for R

N (see, e.g., [40]).

Theorem 1.2 (Haar). Let N > 1. Suppose that a set D ⊂ R
N has nonempty inte-

rior. If n 6= 0, then on D there are no interpolation systems consisting of real-valued

continuous functions.

Proof. Consider a neighbourhood ∆ ⊂ D of an interior point of D. Suppose that
{xk}n

k=0 ⊂ ∆. If {fk}, k = 0, . . . , n, is an interpolating system, then the system of
equations

n∑

k=0

ckfk(xi) = yi, i = 0, . . . , n,

is solvable for any family of numbers {yk}. Hence det(fk(xi)) 6= 0 for any {xk} ⊂ ∆.
By the assumption, all fk are continuous, and hence the determinant is continuous

as a function of points {xi} in the domain ∆. We leave fixed all the points xk except for
two points, say x0 and x1, and start to continuously map x0 and x1 one to the other (see
Fig. 1.5) in such a way that all n+1 points remain different and lie in ∆. The determinant
is a continuous real-valued function of the points. Swapping two rows of the determinate
makes it to change sign. Hence the determinant vanishes for some intermediate set of
points. However, this is impossible for continuous interpolating systems. ¤

Remark. Continuous interpolating systems fail to exist not only on sets with nonempty
interior, but also on continua (compact connected T2-spaces) with a branching point
(see, e.g., [36, Lemma 12-4]).

As before, we continuously map the points x0, x1 onto to the other (see Fig. 1.6).
The determinant changes sign, and so it must vanish, a contradiction.
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Fig. 1.5

Fig. 1.6

Problem. Which sets K admit continuous interpolating systems?
For m > 2, there is yet no complete answer to this question. For m = 1 there is

the well-known Mairhuber’s theorem (see Lecture 12)2: for any n > 1 a compact set K
must be homeomorphic to a proper subset of the unit circle in R

2 or to the whole circle
(in the last case, if and only if n is even).

2Also known as the Mairhuber–Curtis theorem (see e.g. [2]).



Lecture 2

Remainder of the interpolation.
Chebyshev polynomials.

2.1. Estimates of the remainder

Let {xk}n
k=0 be interpolation nodes on [a, b]. Suppose that a function f has a con-

tinuous derivative of order n + 1 on [a, b]. Let pn(x, f) be the corresponding
Lagrange interpolation polynomial for f , and let Rn(x, f) = f(x)−pn(x, f) be the re-

mainder of the interpolation. In the previous lecture, we have estimated ‖f(·)−pn(·, f)‖C

in terms of the best approximation En(f,Pn)C (see Lebesgue’s inequality (1.3)), and
hence, since En(f,Pn)C 6 ‖f‖C , in terms of ‖f‖C . We also have a bound of ‖Rn(·, f)‖C

in terms of the norm ‖f (n+1)‖C on the interval (see (1.5)). Hence,

‖f(·) − pn(·, f)‖C 6

{
K0‖f‖C ,

Kn+1‖f (n+1)‖C ,

where K0 and Kn+1 are the corresponding constants independent of f . Our purpose is
to find estimates of ‖Rn(·, f)‖C in terms of ‖f (m+1)‖C , that is, to obtain bounds of the
form

‖Rn(·, f)‖C 6 Km+1‖f (m+1)‖C (2.1)

for other orders m of the derivative, where Km+1 = Km+1(n) is independent of f .
Assuming such a bound is valid and taking a function f ∈ Pm with ‖f (m+1)(·)‖C = 0,
it follows that ‖Rn(·, f)‖C = 0, forcing f(x) ≡ pn(x, f). Hence f is a polynomial of
degree at most n. This gives a necessary condition on m for such a bound to hold:
m 6 n. Consequently, it is impossible to evaluate ‖Rn(·, f)‖C in terms of derivatives
of orders higher than n, since the condition f (m+1)(x) ≡ 0, for some m > n, does not
imply f(x) ≡ pn(x, f) (for example, if f is a polynomial of order m > n).

Lemma 2.1. A necessary and sufficient condition for (2.1) to hold is that m 6 n.

Proof. The Lagrange interpolation formula for f is as follows:

pn(x, f) =
n∑

k=0

f(xk)lk(x).

22
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By the Cauchy identity
∑n

k=0 lk(x) ≡ 1, hence

Rn(x, f) = f(x) −
n∑

k=0

f(xk)lk(x) =
n∑

k=0

{f(x) − f(xk)}lk(x).

For f(y) we write Taylor’s formula of order m at a point x with the remainder in the
integral form,

f(y) = f(x) + p(x, y) +
1

m!

∫ y

x

(y − t)mf (m+1)(t)dt,

where f(x) + p(x, y) = qx(y) is the Taylor polynomial of f at x. In particular,

f(xk) = f(x) + qx(xk) +
1

m!

∫ xk

x

(xk − t)mf (m+1)(t)dt,

where

qx(xk) =
m∑

s=1

1

s!
f (s)(x)(xk − x)s

(note that, in general, qx(xk) is not a polynomial in x).
By the Cauchy identity (1.2) we have, for m 6 n,

n∑

k=0

qx(xk)lk(x) =
m∑

s=1

1

s!
f (s)(x)

n∑

k=0

(xk − x)slk(x) ≡ 0,

and hence, substituting f(xk) into the formula for Rn(x, f), this gives

Rn(x, f) = − 1

m!

n∑

k=0

lk(x)

∫ xk

x

(xk − t)mf (m+1)(t)dt =

∫ b

a

Kn,m(x, t, {xk})f (m+1)(t)dt,

Hence, for all m 6 n we have the bound

|Rn(x, f)| 6 ‖f (m+1)(·)‖C

∫ b

a

|Kn,m(x, t, {xk})|dt, x ∈ [a, b],

giving the required inequality (2.1).

2.2. Chebyshev polynomials

The algebraic polynomials

Tn(x) = cos(n arccos x) (n = 0, 1, . . . ), x ∈ [−1, 1]

are called the Chebyshev polynomials (of the first kind). To see that these functions are
indeed polynomials: we take x = cos θ, θ ∈ [0, π]. This gives

Tn(x) = cos(n arccos x) = cos nθ =
einθ + e−inθ

2
=

1

2

{
(cos θ+i sin θ)n+(cos θ−i sin θ)n

}
.
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Hence, for |x| 6 1,

Tn(x) =
1

2
{(x + i

√
1 − x2)n + (x − i

√
1 − x2)n}.

Here, the imaginary parts cancel, and there are no radicals in the real part (see [8,
Ch. 3, § 6]).

Exercise. As a polynomial, the function Tn(x) is defined for all x. Find a similar
expression for |x| > 1.

2.3. Basic properties of Chebyshev polynomials (ex-

pressed by equalities)

2.3.1. Recurrence relation

Note that T0(x) ≡ 1, T1(x) ≡ x. Using the trigonometric equality

cos(n + 1)θ = 2 cos θ cos nθ − cos(n − 1)θ (x = cos θ)

we have the recurrence relation

Tn+1(x) = 2xTn(x) − Tn−1(x) (n = 1, 2, . . . ).

Also,

T ′
n(x) = n sin(n arccos x) · 1√

1 − x2
=

n sin nθ

sin θ
.

From the recurrence relation it follows that the leading coefficient of the polynomial
Tn(x) for n > 1 is 2n−1, and so

Tn(x) = cos(n arccos x) = 2n−1xn + · · · .

All zeros of this polynomial xk = cos 2k−1
2n

π, k = 1, 2, . . . , n, lie in (−1, 1). The extrema
points on [−1, 1] are x̃k = cos kπ

n
, k = 0, 1, . . . , n. We have Tn(x̃k) = (−1)k; also T ′

n(x̃k) =
0 for k 6= 0 and k 6= n, and T ′

n(1) = n2, T ′
n(−1) = (−1)n−1n2. Zeros and extrema points

become more condensed near the ends of [−1, 1] as n increases (see Fig. 2.2).

Fig. 2.1
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2.3.2. Generating function

The generating function of a sequence {An} is the function F whose Taylor coeffi-
cients are An.

We calculate
∑∞

n=0 cos(nθ) tn. This is the real part of the power series

∞∑

n=0

exp (inθ) tn =
1

1 − t exp (iθ)
=

1 − t exp(−iθ)

1 − 2t cos θ + t2
,

and so ∞∑

n=0

cos(nθ) tn =
1 − t cos θ

1 − 2t cos θ + t2
.

Setting here x = cos θ, we find the generating function F (t) for the sequence of Cheby-
shev polynomials:

∞∑

n=0

Tn(x) tn =
1 − tx

1 − 2tx + t2
.

Changing x into −x, we obtain

∞∑

n=0

Tn(−x)tn =
∞∑

n=0

Tn(x)(−t)n

and hence, Tn(−x) = (−1)nTn(x). Of course, this property can also be derived from the
explicit formula for Tn.

Exercise. Use the representation

Tn(x) =
1

2

{
(x +

√
x2 − 1)n + (x −

√
x2 − 1)n

}
, |x| > 1

to find the rate of growth of |Tn(x)| as n → ∞ at points x with |x| > 1.

2.3.3. Differential equation

Chebyshev polynomials Tn satisfy the differential equation (see, e.g., [30, Ch.II, § 4],
[8, Ch. 3, § 6], [27, 1.1.4.2])

(1 − x2)y′′ − xy′ + n2y = 0, n = 0, 1, . . . . (2.2)

Assuming that Tn satisfies (2.2), we shall find the coefficients of the polynomial

Tn(x) =
n∑

k=0

akx
n−k

for n > 2. We have a0 = 2n−1, a1 = a3 = · · · = 0, since Tn(−x) = (−1)nTn(x).
Substituting this into (2.2), we obtain the recurrence relation

a2k = −(n − 2k + 2)(n − 2k + 1)

4k(n − k)
a2k−2.
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Hence,

a2k =
(−1)kn(n − 1) · · · (n − 2k + 1)

4kk!(n − 1) · · · (n − k)
a0 = (−1k)

n

n − k
Ck

n−k2
n−2k−1,

and so

Tn(x) =

[n/2]∑

k=0

a2kx
n−2k.

Remark. Even though a Chebyshev polynomial is majorized by 1 on [−1, 1], its coef-
ficients are fairly large for large n.

2.3.4. Orthogonality

Changing the variable to x = cos θ, 0 6 θ 6 π, it can be shown that

2

π

∫ 1

−1

Tn(x) Tm(x)√
1 − x2

dx = δn,m,

where δn,m is the Kroneker symbol (δn,m = 0 if n 6= m, δn,n = 1).

2.4. Extremal properties of Chebyshev polynomials

2.4.1. The first extremal property

The normalized Chebyshev polynomial T̃n(x) = Tn(x)
2n−1 is a polynomial of least devi-

ation from zero on [−1, 1] among all monic polynomials of degree n (see [21, § 2.2], [38,
Ch. 2], [27, Theorem 1.1.8]).

Theorem 2.1. Let n > 1. If p(x) = xn + an−1x
n−1 + . . . + a0, then

‖p‖C[−1,1] > ‖T̃n‖C[−1,1] = 21−n

with equality if and only if p = T̃n.

Also,

En−1(x
n)C[−1,1] := inf

p∈Pn−1

‖xn − p(x)‖C[−1,1] = 21−n;

and the best approximation En−1(x
n)C[−1,1] is attained only at the polynomial p(x) =

xn − T̃n(x) ∈ Pn−1.

Proof. The basic idea of the proof is in calculating zeros. Suppose there exists a monic
polynomial p ∈ Pn such that

‖p(·)‖C[−1,1] 6 ‖T̃n(·)‖C[−1,1].

The difference rn−1(x) = T̃n(x) − p(x) vanishes on each closed interval, where Tn(x)
varies from ±1 to ∓1, that is, on the intervals [x̃k, x̃k+1], where x̃k = cos kπ

n
, k =
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0, 1, . . . , n. Here we take into account that if rn−1 = 0 at a common end-point of some
two of these intervals, then both T̃ ′

n and p′ also vanish, and hence this is a double point
of the difference rn−1(x), see Fig. 2.3). Hence the degree of the polynomial rn−1 is at
most n − 1, and the number of its zeros (counting multiplicities) is > n. As a result,

rn−1 ≡ 0, p(x) ≡ T̃n(x), whence all the assertions of Theorem 2.1 follow. ¤

Fig. 2.3. Double zero of r3(x).

2.4.2. The second extremal property

Lemma 2.2. Let p ∈ Pn and let ξ ∈ R, |ξ| > 1. Suppose that |p(x)| 6≡ |Tn(x)|·‖p‖C[−1,1].

Then

|p(ξ)| < |Tn(ξ)| · ‖p(·)‖C[−1,1].

The equality at a point ξ outside [−1, 1] is possible only if p(x) ≡ 0 or
|p(x)|

‖p‖C[−1,1]
≡ |Tn(x)|.

Proof. Assume, to the contrary, that there exists ξ 6∈ [−1, 1] such that |p(ξ)| >

|Tn(ξ)|·‖p‖C . The difference q(x) = p(x)
‖p‖C[−1,1]

−Tn(x) is a nontrivial polynomial of degree

at most n, having at most n zeros. Assume, for definiteness, ξ < −1 and p(ξ)
‖p‖C

> Tn(ξ) >

0 (hence n is odd, p(ξ) > 0). We shall count zeros. Clearly, there is a point ξ0 ∈ [ξ,−1]
at which q(ξ0) = 0.
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Fig. 2.4
Further, on [−1, 1] the graph of the polynomial y(x) = p(x)

‖p‖C
lies within the strip

|y| 6 1. Hence, by an argument similar to that used the proof of Theorem 2.1, it follows
that q(x) has n zeros (counting multiplicities) on [−1, 1]. If, in addition, ξ0 < −1 (see
Fig. 2.4), then q(x) ≡ 0 on R. If ξ0 = −1 and q(x) 6= 0 on [ξ,−1), then a more
subtle analysis is required. First, it may happen that ξ0 = −1 is a second order zero,
which is a double root of q. Clearly, neither of these zeros has been counted among the
n considered zeros on [−1, 1], because of the double zeros we have counted only those
which agree with some x̃k = cos kπ

n
, k = 1, 2, . . . , n − 1.

Fig. 2.5

The second case is as follows: q′(ξ0) 6= 0 (ξ0 = −1). In this case q(x) changes sign
from positive to negative at ξ0 = −1, the graph of p(x) in the right semi-neighbourhood
of the point ξ0 lying below the graph of Tn. Hence, in both cases, the interval [−1, x̃n−1]
contains at least two zeros of the polynomial q(x), and the total number of zeros will
not be greater than or equal to n + 1. We again have q(x) ≡ 0 on R, contradicting the
assumption.

The general case (without assuming that ξ < −1 and n is odd) can be reduced to
the one just treated by changing p and Tn to −p, −Tn and (or) Tn(x) to Tn(−x). ¤

Corollary. If ‖pn‖C[−1,1] 6 1, pn ∈ Pn, and |ξ| > 1, then |pn(ξ)| 6 |Tn(ξ)|.

Exercise. Prove that if p ∈ Pn and ‖p(·)‖C[−1,1] 6 1, then |p′(1)| 6 T ′
n(1). The proof

is again based on counting zeros, see Fig. 2.5.

This property explains why Tn are also called comparison polynomials.

Remark. By Lemma 2.2, if [−a, a] ⊃ [−1, 1] and pn ∈ Pn, then

‖p(·)‖C[−a,a] 6 ‖Tn(·)‖C[−a,a] · ‖p(·)‖C[−1,1],

where the equality is possible only if p(x) ≡ 0 or p(x) ≡ ±Tn(x)‖p(·)‖C[−1,1].



Lecture 3

Chebyshev polynomials (continuation).
Applications of interpolation

3.1. V. A. Markov’s theorem

3.1.1. The third extremal property of Chebyshev polynomials

Consider the problem put forward by V. A. Markov. Given fixed m ∈ N and n > m,
find, among all monic polynomials of degree m (the coefficient am = 1), the particular
one of the least deviation from zero on [−1, 1]?

We need the following auxiliary result.

Lemma 3.1 (Lemma on zeros). Let
∑N

k=0 Akx
λk , 0 6 λ0 < λ1 < . . . < λN , be

a polynomial with N + 1 terms, which is not identically zero. Then it has at most

N zeros on (0,∞).

Proof. We apply induction on N . For N = 0, the A0x
λ0 , A0 6= 0, has no zeros

on (0,∞). For N = 1, any nonzero polynomial A0x
λ0 + A1x

λ1 = xλ0(A0 + A1x
λ1−λ0)

has at most one zero on (0,∞). Assume that any polynomial
∑N

k=0 Akx
λk 6≡ 0 with

N + 1 terms has at most N zeros on (0,∞). Then the polynomial

G(x) =
N+1∑

k=0

Akx
λk = xλ0

N+1∑

k=0

Akx
λk−λ0 = xλ0 · F (x)

has the same number of zeros (0,∞) as F (x) =
∑N+1

k=0 Akx
λk−λ0 ; also, it may be assumed

that AN+1 6= 0 (for otherwise G(x) is a polynomial with N +1 terms). But then F ′(x) =
N+1∑
k=1

Bkx
λk−λ0−1 is a nonzero polynomial with N +1 terms (BN+1 = (λN+1−λ0)AN+1 6=

0), which has at most N zeros, by the assumption. By Rolle’s theorem, F (x) also has
at most N + 1 zeros. ¤

Now let us go back to V. A. Markov’s problem.

29
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Let pn ∈ Pn, pn(x) =
∑n

k=0 akx
k, Qm

n = {pn(x) | pn ∈ Pn, am = 1}. It is required
to find p∗n ∈ Pn such that

inf
pn∈Qm

n

‖pn(·)‖C[−1,1] = min
pn∈Qm

n

‖pn(·)‖C[−1,1] = ‖p∗n(·)‖C[−1,1].

This problem may also be considered as a best approximation problem, that is,

inf
pn∈Qm

n

‖pn(·)‖C[−1,1] = inf
q∈Pn, am=0

‖xm − q(x)‖C[−1,1] = E(xm, Lm
n )C[−1,1],

where Lm
n = {p ∈ Pn | am = 0} is the finite-dimensional linear subspace of C[−1, 1],

which, along with Pn, shares the following property: the even or the odd part of any
polynomial in this subspace is again a polynomial in this subspace.

Note that among polynomials with am = 0, which deliver the best approximation
to the monomial xm, there is a polynomial of the same parity as xm.

In fact, let m be an even number, and let pn(x) be a polynomial of best approxi-
mation in this subspace. Then qn(x) = 1

2
{pn(−x) + pn(x)} is also a polynomial in this

subspace, this polynomial is now even, and it approximates the monomial xm not worse
than pn:

‖xm − qn(x)‖C =
∥∥∥

1

2

(
xm − pn(x)

)
+

1

2

(
(−x)m − pn(−x)

)∥∥∥
C

6 ‖xm − pn(x)‖C[−1,1].

Hence, even polynomials deliver best approximation to even functions. A similar con-
clusion can be made for odd functions and odd polynomials. Consequently, if m and n
have different parity, then a polynomial q∗n of best approximation of the same parity
as m has to be of order n − 1, and hence q∗n ≡ q∗n−1.

Consider the following formula for Chebyshev polynomials:

Tn(x) = cos (n arccos x) =
n∑

k=0

An
kx

k.

Theorem 3.1 (Vladimir A. Markov [26]). If m and n have the same parity, then

the нуля polynomial
Tn(x)
An

m
is a polynomial of least deviation from zero among all monic

polynomials of degree n (am = 1, 0 6 m 6 n); the corresponding least deviation is equal

to: ∥∥∥
Tn(·)
An

m

∥∥∥
C[−1,1]

=
1

|An
m|

.

If m and n have opposite parity, then the polynomial
Tn−1(x)

An−1
m

is a polynomial of least

deviation from zero among all monic polynomials of degree n (am = 1, 0 6 m 6 n− 1);
the corresponding least deviation is equal to:

∥∥∥
Tn−1(·)
An−1

m

∥∥∥
C[−1,1]

=
1

|An−1
m | .

Proof. For a proof we need to consider four cases depending on the parities of m
and n. We shall prove Theorem 3.1 only in one case when m and n are even. Thus,
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given an arbitrary monic polynomial pn(x) =
∑n

k=0 akx
k with even n and m, we need

to show that

‖pn(·)‖C[−1,1] >
1

|An
m|

.

Assume, to the contrary, that there exists a polynomial pn such that

‖pn(·)‖C[−1,1]<
1

|An
m|

. (3.1)

The polynomial pn may fail to be even. But then the polynomial 1
2
(pn(x)+pn(−x)) ∈ Qm

n

is even and satisfies inequality (3.1). Hence we assume in the sequel that pn in (3.1) is

an even polynomial, which is different from Tn(x)
An

m
. The Chebyshev polynomial Tn(x) is

also even. The polynomial

Rn(x) =
Tn(x)

An
m

− pn(x) =

n/2∑

k=0

bkx
2k 6≡ 0,

with bm/2 = 0, has at most n/2 = l nonzero coefficients. By Lemma 3.1, the polynomial
Rn(x) 6≡ 0 of l terms has at most l−1 zeros on (0,∞) (and hence on (0, 1)). In our case,
on [0, 1] Tn(x) has precisely n/2 + 1 points x̃k = cos kπ

n
, k = 0, 1, . . . , n

2
, of maximum

deviations; in view of (3.1) at these points Rn(x) has the same sign as Tn(x)
An

m
. Hence,

between these points there are n/2 = l points at which Rn(x) = 0. All these l zeros
of Rn(x) lie in the interval (0, 1). This, however, contradicts the above. Hence, instead

of (3.1), the converse inequality holds, which is equality for pn(x) ≡ Tn(x)
An

m
.

In the remaining cases the analysis is the same. ¤

Remark. In a general setting, a polynomial of least deviation is not unique. For ex-
ample, for n = 2, m = 0 and 0 6 c 6 2, we have

‖1 − cx2‖C[−1,1] = 1 =

∥∥∥∥
T2(x)

A2
0

∥∥∥∥
C[−1,1]

.

Corollary (Estimates for the coefficients of polynomials). Suppose, given a poly-

nomial pn(x) =
∑n

k=0 akx
k, we know its norm ‖pn(·)‖C[−1,1]. Then, if m and n have the

same parity,

|am| 6 |An
m| · ‖pn(·)‖C[−1,1];

if m and n have opposite parity, then

|am| 6 |An−1
m | · ‖pn(·)‖C[−1,1].

Proof. Indeed, if m and n have the same parity and if am 6= 0, we have, by Theo-
rem 3.1, ∥∥∥

pn(·)
am

∥∥∥
C[−1,1]

>
1

|An
m|

,

whence the required inequality follows. For am = 0 this is a trivial inequality. Hence,
the Chebyshev polynomials have the property that their coefficients of the same parity
as the order of the polynomial are the largest possible among the polynomials pn of the
same degree with ‖pn‖C[−1,1] 6 1. ¤
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Exercise. Prove Markov’s theorem for m and n of opposite parity.

Remark. Since am = p
(m)
n (0)

p!
, the inequalities of the corollary can be written as follows

|p(m)
n (0)| 6 m! · |An

m| · ‖pn(·)‖C[−1,1],

|p(m)
n (0)| 6 |T (m)

n (0)| · ‖pn(·)‖C[−1,1] (0 6 m 6 n)

in case m and n have the same parity; also,

|p(m)
n (0)| 6 m! · |An−1

m | · ‖pn(·)‖C[−1,1],

|p(m)
n (0)| 6 |T (m)

n−1(0)| · ‖pn(·)‖C[−1,1] (0 6 m 6 n − 1)

if case m and n have opposite parity.

3.2. Extremal interpolation in the class W n+1

3.2.1. The fourth extremal property of Chebyshev polynomials

Let a 6 x0 < x1 < . . . < xn 6 b be interpolation nodes on [a, b], let f ∈ M ⊂
C(n+1)[a, b], and let pn(x, f) =

∑n
k=0 f(xk)lk(x) be the Lagrange interpolation polyno-

mial. We already know that

Rn(x, f) = f(x) − pn(x, f) =
f (n+1)(ξ)

(n + 1)!
ω(x), (3.2)

where ξ ∈ [a, b] and ω(x) = (x − x0) · · · (x − xn). This being so, given a class of
functions M, how should one select the nodes so as to minimize the remainder term of
the interpolation formula over the whole class?

For the class M, consider the quantity

sup
f∈M

‖Rn(·, f, {xk})‖C[−1,1] = Fn(M, {xk}), (3.3)

assuming [a, b] = [−1, 1]. The problem is how to find the nodes so as to have (3.3) as
small as possible — in other words, we need to estimate

inf
{xk}

Fn(M, {xk}) = Φn(M).

If this is so, we would have, for any f ∈ M, in the extremal nodes,

‖Rn(·, f, {xk})‖C[−1,1] 6 Φn(M).

Note that the problem of finding nodes, for a given function, so that to minimize the
norm ‖f(·) − pn(·, f)‖C[−1,1] is a different problem, which will not be considered here.

As M, we consider the class

W (n+1) = {f∈ Cn+1[−1, 1] : ‖f (n+1)‖C[−1,1]6 1}.
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Let us evaluate

inf
{xk}

sup
f∈W (n+1)

‖Rn(·, f, {xk})‖C[−1,1].

We fix x ∈ [−1, 1]. By equality (3.2) we have

sup
f∈W (n+1)

|Rn(x, f, {xk})| 6
|ω(x)|

(n + 1)!
.

Since there exists a function such that f (n+1)(x) ≡ ±1 (for example, if f is a polynomial
with the leading coefficient ± 1

(n+1)!
), this inequality is equality for any x ∈ [−1, 1]:

sup
f∈W (n+1)

|Rn(x, f, {xk})| =
|ω(x)|

(n + 1)!
.

Hence,

sup
f∈W (n+1)

‖Rn(·, f, {xk})‖C[−1,1] =
‖ω(·)‖C[−1,1]

(n + 1)!
,

with the supremum attended for the same function. As a result, the problem reduces
to finding

inf
{xk}

‖ω(·)‖C[−1,1].

Since ω(x) =
n∏

k=0

(x − xk) = xn+1 + . . . , we have

inf
{xk}

‖ω(·)‖C[−1,1] > inf
xn+1+...

‖pn+1(·)‖C[−1,1] = ‖T̃n+1(·)‖C[−1,1] = 2−n.

In fact, this formula also holds with the equality sign, because the class of ω(x) is
question is the class of all monic polynomials with zeros xk ∈ [−1, 1], k = 0, . . . , n, and

this class contains the normalized Chebyshev polynomial T̃n+1. Hence,

inf
{xk}

sup
f∈W (n+1)

‖Rn(·, f, {xk})‖C[−1,1] =
1

(n + 1)!
· 2−n,

the infimum being attended at the nodes {xk} which are zeros of Tn+1.

Problem. Find

inf
{xk}

sup
f∈W (r)

‖Rn(·, f, {xk})‖C[−1,1]

for all 0 6 r 6 n + 1.

For r = 0 the problem was solved asymptotically; for r = n + 1 the solution was
just given; for the remaining r the problem is open.
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3.3. Interpolation in the complex domain

Let D be a domain of the complex plane C, and let w = f(z) be a complex-valued
function on D. Suppose we are given a collection of points zk ∈ D, k = 0, . . . , n.

We construct a polynomial pn(z, f) so as to have

pn(zk) = f(zk).

The Lagrange interpolation formula also holds in the complex case:

pn(z, f) =
n∑

k=0

f(zk)lk(z), lk(z) =
ω(z)

ω′(zk)(z − zk)
, ω(z) =

n∏

m=0

(z − zm).

Let f be an analytic regular function defined on D (the first derivative f ′ exists
everywhere on D). Suppose that D is a simply connected domain. In order to obtain an
expression for the remainder term, we consider a contour C in D containing inside all

points zk. Inside the contour C, the function f(z)
(
(z−z0) · · · (z−zn)

)−1
has singularities

only at the points z0, . . . , zn, the singularities are either removable (provided f(zk) = 0)
or simple poles, because zk 6= zl for k 6= l. Hence, by the calculus of residues,

1

2πi

∫

C

f(t) dt

(t − z0) · · · (t − zn)

=
n∑

k=0

f(zk)

(zk − z0) · · · (zk − zk−1)(zk − zk+1) · · · (zk − zn)
=

n∑

k=0

f(zk)

ω′(zk)
.

Let z be a fixed point inside the contour C. We set

J(z) =
1

2πi

∫

C

f(t) dt

(t − z)
∏n

k=0(t − zk)
.

Hence,

J(z) =
f(z)∏n

k=0(z − zk)
−

n∑

k=0

f(zk)

(z − zk)ω′(zk)

and so

J(z) · ω(z) = f(z) −
n∑

k=0

f(zk)ω(z)

(z − zk)ω′(zk)

= f(z) − pn(z, f) =Rn(z, f) =
1

2πi

∫

C

ω(z)f(t) dt

(t − z)ω(t)

for any z inside C. We write f(z) as a Cauchy integral

f(z) =
1

2πi

∫

C

ω(t)f(t) dt

(t − z)ω(t)
.

Then

pn(z, f) = f(z) − Rn(z, f) =
1

2πi

∫

C

{ω(t) − ω(z)}f(t)dt

(t − z)ω(t)

is the interpolation polynomial.
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3.4. Simplest applications of the Lagrange interpola-

tion formula

Let f be a function on [a, b]. A question that is often encountered in applications is
to determine the values of functionals and operators on elements f of function spaces.
Of course, in general we can consider only approximate methods.

3.4.1. Evaluation of definite integrals

In what follows, we consider this problem for a simple functional
∫ b

a
f(x) dx. Also,

for the simplest functional — the value of a function at a point — we assume that we
have at our disposal an exact or approximate method of evaluation.

Let f ∈ C[a, b], let pn(x, f) be an interpolation polynomial, let {xk} be interpolation
nodes, and let {f(xk)} be the values of f at the nodes.

Instead of integrating a function, we integrate its Lagrange interpolation polynomial.
We have the following quadrature formula, known as the Cotes formula:

∫ b

a

pn(x, f) dx =
n∑

k=0

f(xk)

∫ b

a

lk(x) dx =
n∑

k=0

Akf(xk) ≈
∫ b

a

f(x) dx, (3.4)

where lk(x) = lk(x; {xi}n
0 ), Ak = Ak(n), {xk}n

k=0 are the nodes of the quadrature for-
mula, and {An

k}n
k=0 are the coefficients of the quadrature formula (or the Cotes coeffi-

cients).

A peculiarity of this quadrature formulas is that it is exact for all polynomials of
degree not exceeding n; that is, if f is a polynomial of degree at most n, then this
formula is exact, with equality on the right.

In order that the quadrature formula (3.4) be exact for any polynomial of degree at
most n, it must be exact for the functions xp, p = 0, 1, . . . , n.

Hence, the Cotes coefficients can be easily calculated:

n∑

k=0

Akx
p
k =

∫ b

a

xpdx (p = 0, 1, . . . , n).

This is a system with Vandermonde determinant; hence all Ak can be determined
uniquely.

Similarly, Lagrange interpolation polynomials can be used for approximate computa-
tion of the values of various functionals. The remainders (or errors) of the corresponding
quadrature formulas can be expressed in terms of the norms of the functionals and the
remainders of the interpolation formulae.

It turns out that cubature formulas can be constructed even when no interpolation
formula is available. For example, for multivariate functions on a cube, there exist no
continuous interpolation systems, but cubature formulas can be constructed exact on
polynomials of a given degree.
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3.4.2. Evaluation of the operator A(f)

A similar technique applies to approximate evaluation of linear operators, provided
we know how to evaluate A(lk)(x). This trick does not work in the case of unbounded
operators. For example, consider the fairly simple differentiation operator, which is ad-
ditive and homogeneous. The problem of restoring f ′(x) from the values of f at a finite
number of points (with no additional information about function f or its derivatives)
makes no sense, because the differentiation operator is unbounded on the class of contin-
uous functions; hence it is not possible to obtain a guaranteed error of an approximate
formula for f ′(x). The differentiation operator can be made continuous on the subspace
C(r)[a, b] ⊂ C[a, b] of r times continuously differentiable functions, r > 2, if we equip
C(r)[a, b] with a Sobolev-type norm, putting

‖f‖ = ‖f‖C[a,b] + ‖f (r)‖C[a,b].

The boundedness of differentiation operators of orders 1, 2, . . . , r − 1 easily follows,
for example, from the Taylor formula with remainder in the Cauchy form and using the
following corollary of the inequality of brothers A. A. and V. A. Markov for algebraic
polynomials pn(x),

‖p(k)
n ‖C[a,b] 6

2k

(b − a)k
n2k‖pn‖C[a,b].

For periodic function and functions defined on the whole R, the boundedness of these
differential operators on spaces C

(r)
2π and C(r)(R) equipped with Sobolev norm follows

from the corresponding Kolmogorov’s inequalities and will be discussed in what follows
(see § 19.4 of Lecture 19 and § 20.1 of Lecture 20).



Lecture 4

Quadrature processes and
interpolation with derivatives

4.1. Quadrature formulas

Given a function space B of functions f defined on [a, b], with the norm ‖f‖, consider
a quadrature formula

L(f) =
n∑

k=1

Akf(xk) (4.1)

for approximate evaluation of some functional. Here and in what follows, Ak = Ak(n,L),
{xk}n

1 is a collection of distinct points of [a, b].
A quadrature formula is a bounded linear functional, provided the value of the

function at a point is a bounded linear (additive and homogeneous) functional. Clearly,
L is a bounded linear functional when B = C[a, b]. As a rule, quadrature formulas are
dealt with in a class of functions coinciding either with the space C[a, b] or with its
subspace B equipped with a different metric; for example, if B = C(r)[a, b] with the
Sobolev norm ‖f‖ = ‖f‖C[a,b] + ‖f (r)‖C[a,b].

Thus we will consider quadrature formulas in spaces in which the value of a function
at a point is a bounded linear functional.

1. Any quadrature formula, as a linear functional, has the norm

‖L‖ = sup
‖f‖61

|L(f)|.

This is its first characteristics. In C[a, b], we have the estimate

‖L‖C 6

n∑

k=1

|Ak|,

the equality holding whenever f ∈ C[a, b] is such that f(xk) = sign Ak. Such a function
always exists (see Fig. 4.1). Hence,

‖L‖C =
n∑

k=1

|Ak|.

37
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0

� 1

1

xk � 1 xk xk+1

Fig. 4.1

An error of magnitude ε in the evaluation of f(xk) incurs an error of magnitude at
most ε

∑n
k=1 |Ak| in the quadrature formula.

2. The second characteristics of a quadrature formula is the region of exactness.
A quadrature formula is a method of evaluating some functional, for example, the
functional

M(f) =

∫ b

a

f(x) dx.

In general, M(f) 6= L(f). However, for any quadrature formula and the corresponding
functional M there exists a set Q such that

M(f) = L(f) ∀f ∈ Q.

This set Q is called the region of exactness of a quadrature formula for M(f).

For any quadrature formula, the set of exactness is nonempty, because it always
contains the zero function); in some cases Q may coincide with the whole space.

Definition. A quadrature formula is said to have precision m if Pm ⊂ Q and Pm+1 6⊂ Q
for some m.

In particular, a quadrature formula has precision m = 0 for M(f) if, for any constant
function c, we have M(c) = L(c) = c ·∑n

k=1 Ak and M(f) 6= ∑n
k=1 Akxk for f(x) ≡ x. If

M(f) =
∫ b

a
f(x) dx, we have M(c) = (b−a)c, and so a necessary and sufficient condition

that a quadrature formula (4.1) have precision m = 0 is that

n∑

k=1

Ak = b − a and
n∑

k=1

Akxk 6= 1

2
(b2 − a2).

The first of this conditions is necessary and sufficient that formula (4.1) for the func-

tional
∫ b

a
f(x) dx have precision m > 0. In the general case, any quadrature formula has

precision at least m, provided it is exact on 1, x, x2, . . . , xm.
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4.2. Quadrature processes and their convergence

A quadrature process is a sequence of quadrature formulas Ln, n ∈ N, for a given
linear functional M(f) on C[a, b] (see [31, Ch. VI]).

Problem. Under what conditions we have, for any function f ∈ C[a, b],

Ln(f) → M(f) (n → ∞)?

This is the weak convergence of functionals. Hence, the sequence {Ln} must be
weakly convergent.

4.2.1. Sufficient conditions for convergence of a quadrature pro-
cess

Theorem 4.1. A sufficient condition for a quadrature process to converge is that :

1) the sequence of the norms of quadrature formulas {Ln} is bounded ;

2) m(n) → ∞ as n → ∞; here, m(n) is the precision of the quadrature formula Ln.

Proof. There is no loss of generality in assuming that m(n) increases with n. Hence
Ln(p) = M(p) for any polynomial p ∈ Pm for m(n) > m; consequently, Ln(p) → M(p)
as n → ∞. Therefore, for any m, the quadrature process converges on Pm and hence on
∪mPm. Further, by the Weierstrass theorem,

⋃
m Pm = C[a, b], and hence the quadrature

process converges on a dense set, the norms ‖Ln‖C being uniformly bounded. As a result,
the quadrature process converges on C[a, b]. ¤

Remark. The Cotes quadrature process (3.4) satisfies condition 2) of Theorem 4.1,
because m(n) = n (see § 3.4.1). Since the quadrature formulas are exact for constant
functions on [a, b], we have

∑n
k=1 Ak = b − a in (3.4). If, in addition, all the Cotes

coefficients Ak = Ak(n) are nonnegative, then the norms of the quadrature process,

n∑

k=1

|Ak| =
n∑

k=1

Ak = b − a,

are bounded and hence the Cotes quadrature process satisfies the hypotheses of Theo-
rem 4.1.

4.2.2. Some quadrature processes and their remainder terms

The Cotes quadrature formula was already used in (3.4) to evaluate the integral

M(f) =
∫ b

a
f(x) dx:

Ln(f) =

∫ b

a

pn(x, f) dx =
n∑

k=0

Akf(xk), Ak = Ak(n);
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here pn(x, f) is the Lagrange interpolation polynomial on the mesh {xk}n
k=0 ⊂ [a, b],

Ak =
∫ b

a
lk(x) dx. This quadrature formula has precision at least n, and also

‖Ln(f)‖ =
n∑

k=1

|Ak|.

Given an f ∈ C(n+1)[a, b], suppose that ‖f (n+1)‖C[a,b] = Mn+1. Then

∣∣∣
∫ b

a

f(x) dx − Ln(f)
∣∣∣ =

∣∣∣
∫ b

a

(f(x) − pn(x, f)) dx
∣∣∣

=
∣∣∣
∫ b

a

f (n+1)(ξ)

(n + 1)!
ω(x) dx

∣∣∣ 6
Mn+1

(n + 1)!

∫ b

a

|ω(x)| dx.

Similar bounds can also be written in terms of Mr for 0 6 r 6 n+1, using estimates (2.1)
for |f(x) − pn(x, f)| via ‖f (r)‖.

4.2.3. Gauss-type quadrature formulas

We already have at our disposal a quadrature formula
∑n

k=0 Akf(xk) to approxi-

mately evaluate the integral
∫ b

a
f(x) dx, which is exact for any f ∈ Pn. The formula

is constructed at the nodes {xk}n
k=0 and has n + 1 coefficients {Ak}n

k=0; hence it is
determined by 2(n + 1) parameters.

Theorem 4.2 (see, e.g., [33]). Let Ln+1 be an (n+1)-dimensional subspace of C[a, b].
Then there exists an (n + 1)-point quadrature formula which is exact for any f ∈ Ln+1.

Proof. Let ϕ0(x), . . . , ϕn(x) be a system of linearly independent functions in Ln+1.
Then there exist points xi, i = 0, . . . , n, such that

det |ϕj(xi)| 6= 0.

This can be proved by induction on n, starting with ϕ0(x) 6≡ 0 on [a, b]. We take the
points {xi}n

i=0 as the nodes of the quadrature formula. Then we have the system of
linear equations for Ak,

n∑

k=0

Akϕj(xk) =

∫ b

a

ϕj(x) dx, j = 0, . . . , n,

which uniquely determines Ak (the determinant of the system is nonzero). The obtained
formula is exact for any f ∈ Ln+1, because f is linearly expressible via ϕk, k = 0, . . . , n,
and since the formula is exact for ϕk. ¤

Problem. Let Lm be an m-dimensional subspace of C[a, b], and let n+1 < m 6 2(n+1).
When there exists an (n + 1)-point quadrature formula that is exact on the whole Lm?

The answer is unknown. For Lm = Pm−1 the problem was solved by Gauss.
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Theorem 4.3 (Gauss; see, e.g., [21, § 2.4]). There exist nodes {x0, x1, . . . , xn} and

coefficients A0, A1, . . . , An such that the quadrature formula is exact for any polynomial

p ∈ P2n+1, that is,
n∑

k=0

Akp(xk) =

∫ b

a

p(x) dx.

Proof. 1) Suppose that we have a quadrature formula which is exact for any p ∈
P2n+1. Consider the polynomial ω(x) = (x−x0) · · · (x−xn) ∈ Pn+1 and take an arbitrary
q ∈ Pn. We claim that ∫ b

a

ω(x)q(x) dx = 0, q ∈ Pn;

in other words, we claim that ω(x) is orthogonal to any polynomial of degree at most n.
Indeed, p(x) = ω(x)q(x) is a polynomial of degree at most 2n+1. By the assumption,

the quadrature formula is exact for p(x); that is,
∫ b

a

ω(x)q(x) dx =
n∑

k=0

Akp(xk) = 0.

Here the sum is zero, because p(xk) = ω(xk)q(xk) = 0 · q(xk) = 0. Hence, the
polynomial ω(x) is orthogonal to any polynomial of degree at most n.

Thus, if there exists a Gauss quadrature formula, then its nodes are roots of a polyno-
mial that is orthogonal to any q of Pn. Such polynomials can be obtained by orthogonal-
izing the system of functions {xk}n+1

k=0 on [a, b] (for example, by using the Gram–Schmidt

process with respect to the inner product (f, g) =
∫ b

a
f(x)g(x)dx). This gives Legendre

polynomials {Pk}. The Legendre polynomial Pn+1 has the required properties: this is
a monic polynomial, is orthogonal to the subspace Pn, its zeros are simple and lie in
[a, b]. The last assertion follows from the following simple observation: assuming that
the polynomial Pn+1 has at most n changes of sign on [a, b], the polynomial q ∈ Pn

vanishes at these points, giving
∣∣∫ b

a
q(x)Pn+1(x) dx

∣∣ =
∫ b

a
|q(x)| |Pn+1(x)| dx > 0.

2) We take the zeros {xk}n
k=0 of the Legendre polynomial Pn+1 as the required

nodes of the sought-for quadrature formula; the polynomial Pn+1 is orthogonal to any
polynomial of degree at most n. Consider the Cotes quadrature formula

∑n
k=0 Akf(xk)

with nodes at {xk}n
k=0; this formula is exact for any q ∈ Pn. We claim that this is

a Gauss-type formula; that is, this formula is exact for polynomials of degree at most
2n + 1.

Let p be any polynomial in P2n+1. By the construction, the polynomial ω(x) =∏n
k=0(x − xk) = Pn+1(x) lies in Pn+1 and coincides with the Legendre polynomial. We

write
p(x) = q(x) · ω(x) + r(x),

where q, r ∈ Pn. Note that p(xk) = r(xk). Since the polynomial ω = Pn+1 is orthogonal
to q and since the formula is exact for r, we have

∫ b

a

p(x) dx =

∫ b

a

q(x)ω(x)dx +

∫ b

a

r(x) dx =

∫ b

a

r(x) dx

=
n∑

k=0

Akr(xk) =
n∑

k=0

Akp(xk),
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and so ∫ b

a

p(x) dx =
n∑

k=0

Akp(xk), p ∈ P2n+1.

Hence, the obtained formula is a Gauss-type formula. ¤

Remark. A Gauss quadrature formula exists for any integer n > 0 (see [33, Theorem
5.9]).

Theorem 4.4. All Cotes coefficients in a Gauss quadrature formula are nonnegative.

Proof. Indeed, for any polynomial p ∈ P2n+1,

n∑

k=0

Akp(xk) =

∫ b

a

p(x) dx; (4.2)

in particular, this formula holds for the square l2k of any Lagrange fundamental polyno-
mial lk with nodes at x0, x1, . . . , xn (the degree of the squared polynomial is at most 2n).
We have l2m(xk) = δkm, and hence, substituting p = l2m in (4.2), it follows that

Ak =

∫ b

a

l2k(x)dx > 0, k = 0, 1, . . . , n,

the result required. ¤

Note that since the quadrature formula is also exact on the constant functions, we
have

n∑

k=0

|Ak| =
n∑

k=0

Ak = b − a.

Hence, the hypotheses of Theorem 4.1 on convergence of a quadrature are satisfied (the
norms are bounded and the precision m = 2n + 1 increases to ∞ as n → ∞). We have
the following result.

Proposition 4.1. For any f ∈ C[a, b], the Gauss quadrature process
∑n

k=0 Ak(n)f(xn
k)

converges to
∫ b

a
f(x) dx.

4.3. Interpolation with derivatives

The general Birkhoff’s interpolation problem is as follows (see, e.g., [27], [25]). Let
f ∈ C(m)[a, b]. Suppose we are given points x1, x2, . . . , xk, and the table of parameters

x1 0 6 r
(1)
0 < r

(1)
1 < . . . < r

(1)
s1 6 m s1 + 1

x2 0 6 r
(2)
0 < r

(2)
1 < . . . < r

(2)
s2 6 m s2 + 1

· · · · ·
· · · · ·
· · · · ·
xk 0 6 r

(k)
0 < r

(k)
1 < . . . < r

(k)
sk 6 m sk + 1
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In total, there are N = s1 + s2 + . . . + sk + k parameters r
(j)
i . It is required to build

a polynomial p ∈ PN−1 such that, for s = 0, 1, . . . , si and i = 1, 2, . . . , k,

p(r
(i)
s )(xi) = f (r

(i)
s )(xi).

Which conditions should be placed on numbers r
(i)
s so that the problem in question

be solvable for any x1, . . . , xk ∈ [a, b]? This is an open problem. In certain cases the
problem is solvable. However, even in some simple cases the problem fails to have
a solution.

Exercise. Construct a table such that the problem would not always be solvable (hint:
take 3–4 points and derivatives of orders not exceeding 2).

4.3.1. Interpolation with multiple nodes

The Birkhof’s problem is solvable in a particular case of interpolation with multi-
ple nodes (see [23]). Given nonnegative integers s1, . . . , sk it is required to construct
a polynomial such that

p(r)(xi) = f (r)(xi), 0 6 r 6 si (i = 1, . . . , k).

Here, N = s1 + s2 + · · · + sk + k, p is a polynomial of degree N − 1, and a function f
is continuously differentiable as many times as necessary.

Theorem 4.5. An interpolation problem with multiple nodes is always uniquely solv-

able.

Proof. The problem being linear, it suffices to show that the corresponding homoge-
neous problem always has a unique (zero) solution in the class of polynomials of degree
N − 1. In other words, if a 6 x1 < x2 < . . . < xk 6 b, then we need to show that if p is
a polynomial such that

p(r)(xi) = 0, 0 6 r 6 si, i = 1, . . . , k,

then p identically vanishes.
In the case in question any point xi, i = 1, . . . , k, is a zero of multiplicity si + 1

of the polynomial p. Hence p(x), which has degree N − 1, must divide the polynomial∏k
i=1(x − xi)

si+1. This, however, is possible only if p ≡ 0. ¤

4.3.2. Hermite interpolation problem

Suppose in an interpolation with multiple nodes we have s1 = s2 = · · · = sn = 1
and

p(xk) = f(xk), p′(xk) = f ′(xk) (k = 1, . . . , n).

Hence N = 2n and so the polynomial p must be of degree 2n − 1. We can write

p(x) =
n∑

k=1

{f(xk)Ak(x) + f ′(xk)Bk(x)},
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where Ak(x) and Bk(x) are fundamental polynomials of Hermite interpolation; that is,
{

Ak(xi) = δi,k,

A′
k(xi) = 0,

{
Bk(xi) = 0,

B′
k(xi) = δi,k,

(4.3)

and Ak, Bk are polynomials of degree at most 2n − 1. Let us find them explicitly.
Let lk(x) be the fundamental Lagrange polynomials corresponding to the same nodes
x1 < x2 < . . . < xn; i.e., lk ∈ Pn−1, lk(xi) = δi,k and

lk(x) =
ω(x)

(x − xk)ω′(xk)
,

where ω(x) =
∏n

k=1(x−xk). Clearly, the polynomials Ak(x) =
{
1−(x−xk)2l

′
k(xk)

}
l2k(x),

Bk(x) = (x − xk) l2k(x) of degree at most 2n − 1 satisfy equalities (4.3).

4.3.3. Remainder of the interpolation problem with multiple
nodes

Suppose, for an interpolation problem with multiple nodes, we are given the table
of parameters x1, . . . , xk, s1, . . . , sk, where s1 + s2 + . . . + sk + k = N . The degree of
the polynomial is N − 1. Let H(x) = H(x, f) be a unique polynomial of multiple
interpolation for a function f . The following result for the remainder term of this
interpolation formula can be proved with the help of Rolle’s theorem.

Theorem 4.6. Let f ∈ C(N)[a, b]. Then, for any x ∈ [a, b], there exists a point ξ ∈ (a, b)
such that

f(x) − H(x, f) =
f (N)(ξ)

N !
Ω(x),

where Ω(x) =
∏k

j=1(x − xj)
sj+1 is a polynomial of degree N .

Proof. For x = xi the formula holds, because Ω(xi) = 0, i = 1, . . . , k. Hence we may
assume that x 6= xi, x ∈ [a, b], i = 1, . . . , k. For the following auxiliary function

ϕ(z) = f(z) − H(z) − f(x) − H(x)

Ω(x)
Ω(z),

we have ϕ(x) = 0, and further, since Ω(r)(xi) = 0 for r = 0, 1, . . . , si, it follows that

ϕ(r)(xi) = 0 (r = 0, 1, . . . , si; i = 1, . . . , k).

Hence ϕ has precisely s1 + . . . + sk + k + 1 = N + 1 zeros (counting multiplicity), and
so by Rolle’s theorem, there exists a point ξ ∈ (a, b) such that ϕ(N)(ξ) = 0, giving

f (N)(ξ) − f(x) − H(x)

Ω(x)
N ! = 0.

¤

Corollary. Let f ∈ C(N)[a, b] and x ∈ [a, b]. Then

|f(x) − H(f, x)| 6
|Ω(x)|

N !
‖f (N)‖C[a,b].



Lecture 5

Fourier series. Fejér sums

5.1. Some elementary results concerning Fourier se-

ries

We shall be concerned with periodic functions of period ω = 2π. Let H2π be some
class of 2π-periodic functions defined on the whole real axis. To every measurable func-
tion f ∈ L2π = L[0, 2π) that is Lebesgue integrable over the primitive period we can
assign its Fourier series

f(x) ∼ a0

2
+

∞∑

k=1

(ak cos kx + bk sin kx) =
∞∑

k=0

Ak(x), (5.1)

where

ak =
1

π

∫ π

−π

f(x) cos kx dx, bk =
1

π

∫ π

−π

f(x) sin kx dx

are the Fourier coefficients of the function f . This is only a formal correspondence, be-
cause for f ∈ L2π the series may fail to converge to f almost everywhere (Kolmogorov’s
example) or in the norm of the space L2π.

Consider the sequence of partial sums of the Fourier series

sn(f) = sn(f, x) =
n∑

k=0

Ak(x) ∈ Tn.

The linear operator Sn acts on the space L2π and maps any function f into an element
of the subspace Tn of trigonometric polynomials of order n:

Sn : L2π −→ Tn, Snf = sn(f).

Let G,H ⊂ L2π be normed linear spaces with norms ‖ · ‖G and ‖ · ‖H . As usual, let

‖Sn‖H→G = sup
‖f‖H61

‖sn(f)‖G

be the norm of Sn as an operator from H to G. In case G = H, we write ‖Sn‖H→H =
‖Sn‖H or simply ‖Sn‖, if no confusion can arise.

45
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According to Bessel’s inequality, ‖sn(f)‖L2 6 ‖f‖L2 for all f ∈ L2
2π, and since

sn(f) = f for f ∈ Tn, we have
‖Sn‖L2 = 1.

Theorem 5.1. If the subset of trigonometric polynomials is dense in H and if the

Lebesgue constants ‖Sn‖H are uniformly bounded, then

sn(f)
H−→ f (n → ∞) ∀ f ∈ H,

i.e.,

‖f − sn(f)‖H → 0 (n → ∞) ∀ f ∈ H.

This fact follows from the pointwise convergence theorem for a sequence of linear
operators in a complete normed linear space X, if:

1) the norms of the operators are uniformly bounded;
2) the sequence of the operators converges on a dense subset Γ of X, then it converges

on X.
Indeed, as Γ we may take the set T = ∪nTn.

Remark. The Lebesgue constants are bounded in any space Lp
2π for 1 < p < ∞,

‖Sn‖Lp 6 Ap.

This result is stated without proof.

Let Ln be the Lebesgue constant in the space C2π of continuous 2π-periodic func-
tions, ‖Sn‖C2π

= Ln.

Theorem 5.2. As n → ∞, we have, in order of magnitude,

Ln ≍ ln n;

that is, there exists constants a and A, 0 < a 6 A < ∞, and a natural number n0 such

that

∀ n > n0 a 6
Ln

ln n
6 A.

In this case, we say that Ln has the order of magnitude ln n. The order relation ‘≍’
(the Hardy symbol) is symmetric, transitive and reflexive.

Proof. 1) We first claim that Ln = O(ln n); we need to show that there exists A
such that Ln 6 A ln n for any n > n0. We apply Dirichlet’s formula for partial sums of
Fourier series,

sn(f, x) =
1

π

∫ π

−π

f(x + t)Dn(t) dt,

where

Dn(t) =
1

2
+

n∑

k=1

cos kt =
sin

(
n + 1

2

)
t

2 sin t
2

is the Dirichlet kernel. The graph of Dn(t) is depicted in Fig. 5.1. If ‖f‖C 6 1 (i.e.,
|f(x)| 6 1 for all x), we have

|sn(f, x)| 6
1

π

∫ π

−π

|Dn(t)| dt.
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y = �
2x

Fig. 5.1.

Since for Dn(t) we have, for some C1 > 0 and any n > 1,

|Dn(t)| 6
1

2
∣∣sin t

2

∣∣ 6
C1

|t| ∀ t, |t| 6 π,

|Dn(t)| 6 n +
1

2
6 C1n ∀ t,

it follows that

|sn(f, x)| 6
1

π

∫ π

−π

|Dn(t)| dt=
2

π

∫ π

0

|Dn(t)| dt

6
2

π
C1

{∫ 1
n

0

n dt +

∫ π

1
n

dt

t

}
6 C2{1 + ln n} 6 A ln n ∀ n > 2,

where A is some absolute constant.
2) Now we claim that Ln > c ln n for some c > 0; that is,

‖Sn‖C = sup
‖f‖C61

‖sn(f)‖C > c ln n,

or, what is the same,

∀ n∈ N ∃ fn ∈ C, ‖fn‖C 6 1 : ‖sn(fn)‖C > c ln n.

It suffices to show that there exists a point x0 ∈ [0, 2π) and functions fn ∈ C2π such
that

‖fn‖C 6 1, |sn(fn, x0)| > c ln n.

We first show that the polynomials

dn(x) =
n∑

k=1

sin kx

k
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are uniformly bounded: there exists B such that |dn(x)| 6 B for all n and x.
Given x > 0, consider a natural number m = m(x) ≍ 1

x
; in other words, we take

0 < x 6 π so that the inequality

A1

x
6 m(x) 6

A2

x

holds with some numbers 0 < A1 < A2 < ∞ independent of x. Hence, for n > m,

|dn(x)| =

∣∣∣∣∣

m∑

k=1

sin kx

k
+

n∑

k=m+1

sin kx

k

∣∣∣∣∣ ≡ |s1 + s2| 6 |s1| + |s2|.

By the choice of m,

|s1| =

∣∣∣∣∣

m∑

k=1

sin kx

k

∣∣∣∣∣ 6

m∑

k=1

kx

k
= mx 6 A2.

To estimate s2, we recall Abel’s inequality (see, e.g., [50, § 2.301]):

if
∣∣

p∑

1

ak

∣∣ 6 A for all p, bk > 0, bk ↓, then
∣∣

n∑

k=m

akbk

∣∣ 6 2Abm.

Also, we use the formula (see, e.g., [45, Ch. 5, § 7])

D̃n(x) =
sin nx

2
· sin (n+1)x

2

sin x
2

for the conjugate Dirichlet kernel D̃n =
∑n

k=1 sin kx. As a result,

∣∣∣
p∑

k=1

sin kx
∣∣∣ 6

C1

|x| , |s2| 6
C1

|x| ·
1

m
6

C1

A1

.

Hence, |s2| are uniformly bounded. Further, if n 6 m(x) (and so n 6 A2

x
), we have

s2 = 0 (here, as usual, it assumed that
∑n

k=m αk = 0 for n < m) and now dn(x) can be
estimated similarly to s1:

|dn(x)| 6 nx < A2.

Hence, for all n and x,
|dn(x)| 6 B,

where B is some absolute constant.
Given a fixed natural n > 2, the Fejér polynomials are defined as follows:

An(x) =
cos x

n − 1
+

cos 2x

n − 2
+ · · · + cos(n − 1)x

1
,

Bn(x) =
cos(n + 1)x

1
+

cos(n + 2)x

2
+ · · · + cos(2n − 1)x

n − 1
.
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Consider the function
fn(x) = An(x) − Bn(x).

We have

sn(fn) = An(x), An(0) =
n−1∑

k=1

1

k
≍ ln n.

Further,

fn(x) =
n−1∑

k=1

{
cos kx

n − k
− cos(n + n − k)x

n − k

}

= 2 sin nx
n−1∑

k=1

sin(n − k)x

n − k
= 2 sin nxdn−1(x),

giving |fn(x)| 6 2B. Hence, fn(x) is a uniformly bounded sequence of functions such

that sn(fn)(0) ≍ ln n. Hence, if f ∗
n(x) = fn(x)

2B
, we have ‖f ∗

n‖ 6 1 and

Ln > ‖sn(f ∗
n)‖C > c ln n.

Consequently, the Lebesgue constants Ln have the order of magnitude ln n. ¤

Thus we have showed that for any n ∈ N there exists a 2π-periodic function fn ∈ C2π,
‖fn‖C 6 1, such that ‖sn(fn)‖C > a ln n. We ask the question: Is it possible that the
function f be independent of n? In other words, is it true that

∃ f ∈ C2π ∃ a > 0 ∀ n > 1 ‖sn(f)‖C > a ln n ?

This assertion fails to hold. Namely, for any function f ∈ C[0, 2π] we have
‖sn(f)‖C = o(ln n) as n → ∞. In its turn, this relation cannot be improved over the
whole class C[0, 2π]. This is a corollary of the following result, which we state without
proof.

Theorem 5.3 (D. E. Men’shov). For every function ϕ such that ϕ(n) = o(ln n)
as n → ∞, there exists a continuous 2π-periodic function f = fϕ such that, for all

sufficiently large n,

‖sn(f)‖C > ϕ(n).

A result similar to Theorem 5.2 also holds in the space L2π:

‖Sn‖L ≍ ln n, n → ∞.

Consequently, in Lp
2π the Lebesgue constants are uniformly bounded and, for any

p ∈ (1,∞), have the order of magnitude ln n both in L2π and in C2π.
The norms of the operator Sn in Lp

2π are depicted in Fig. 5.2 as functions of p.
In general, among all spaces Lp

2π, 1 6 p 6 ∞, the space C2π is the worst and the
space L2

2π is the best from the standpoint of approximation by Fourier sums; also, the
properties of Fourier sums in the space L2π resemble those in C2π, their properties
are slightly better in the former space; the spaces Lp

2π, 1 < p < ∞, are all similar
to L2

2π. In L2π and in C2π the norms of the operators Sn are unbounded, hence there
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p1

1

2

‖sn‖Lp

Fig. 5.2.

exist functions whose Fourier series fail to converge in L2π and in C2π; moreover, their
partial sums are unbounded. In contrast, for any function f ∈ Lp

2π, 1 < p < ∞, its
Fourier series (5.1) converges in Lp

2π to f ; that is, ‖f − Sn(f)‖Lp → 0 as n → ∞.
Taking this into account, for a function f ∈ Lp

2π, 1 < p < ∞, the equality sign ‘=’ is
used in (5.1) instead of the correspondence sign ‘(∼)’.

It is worth pointing out the following celebrated result by Carleson (1966, for p = 2)
and Hunt (1967, for 1 < p < ∞): if f ∈ Lp

2π, 1 < p < ∞, then sn(f, x) → f(x) as
n → ∞ a.e. (see, e.g., [15]).

5.2. Fejér sums

Given a 2π-periodic function f ∈ L2π, the polynomial

σn(f, x) =
1

n + 1

n∑

k=0

sk(f, x) =
1

π

∫ π

−π

f(x + t)Kn(t) dt, (5.2)

is called the Fejér sum; here Kn(t) is the Fejér kernel, which is the arithmetic mean of
the first n Dirichlet kernels.

The following properties Fejér sums can be easily established.

1. Main property. It follows by (5.2) that if f(x) > 0 for all x, then σn(f, x) > 0 for
all x and n, because the Fejér kernels are nonnegative:

Kn(t) =
1

n + 1

n∑

k=0

Dk(t) =
sin2(n + 1) t

2

2(n + 1) sin2 t
2

> 0.

The operators with this property are called positive.
Let K+ = {f(x) > 0} be the cone of all nonnegative functions in C2π (a set K is

a cone if λf ∈ K whenever f ∈ K, λ > 0). Interior points of K+ are strictly positive
functions. Speaking of the cone K+ in Lp

2π, we shall assume that K+ ⊂ Lp and that the
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topology on K+ is induced by the topology of Lp
2π. In Lp

2π, 1 6 p < ∞, the cone K+

has no interior points. In contrast to these spaces, the cone K+ in C2π has nonempty
interior.

2. Fejér sums map the cone of positive functions into itself:

σn(K+) ⊂ K+.

3. Fejér sums preserve constant functions:

σn(A, x) = A.

4. The norm of a Fejér sum in C2π is 1:

‖σn‖C = 1.

Indeed, if ‖f(x)‖C 6 1, we have

∣∣∣∣
1

π

∫ π

−π

f(x + t)Kn(t) dt

∣∣∣∣ 6
1

π

∫ π

−π

Kn(t) dt = 1,

inasmuch as Kn(t) = 1
2

+
∑n

k=1

(
1 − k

n+1

)
cos kt. On the other hand, σn(1, x)≡1, and

hence
‖σn‖C = sup

‖f‖C61

‖σn(f, x)‖C = 1.

A similar result holds in the Lp
2π spaces:

‖σn‖Lp = 1 (1 6 p < ∞).

The proof runs along similar lines.
The following result may be found in advanced calculus books.

Theorem 5.4 (Fejér, 1904; see, e.g., [30, Ch. 8]). For any continuous function f ,

the Fejér sums converge uniformly to f ,

‖σn(f) − f‖C → 0, n → ∞.



Lecture 6

Approximation of continuous functions
by Fourier sums. De la Vallée Poussin
sums

6.1. Approximation by Fourier and Fejér sums in C2π

Let f be a 2π-periodic continuous function, and let sn(f) be the nth partial sum of
the Fourier series of f .

1) According to Theorem 5.2, the norms ‖Sn‖C have the order of magnitude ln n as
n → ∞.

Remark. Actually, a more precise relation holds:

‖Sn‖C =
4

π2
ln n + c + O

(
1

n

)
, n → ∞;

here c is some absolute constant.

2) The Lebesgue inequality

‖f − sn(f)‖C 6 (‖Sn‖C + 1)En(f)C (6.1)

is an important property of approximation by Fourier sums; here En(f)C is the best
approximation of a function f ∈ C2π by trigonometric polynomials of order n.

We mention some other approximative properties of Fourier sums.

3a) Approximative test for uniform convergence of Fourier series. We know that the
Fourier series does not always uniformly converge to a continuous function. What are
sufficient conditions for uniform convergence? From (6.1) it follows that if

En(f)C ln n → 0 (n → ∞),

that is, if

En(f)C = o
( 1

ln n

)
(n → ∞),

then
‖f − sn(f)‖C → 0 (n → ∞).
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The same can be said in general. If En(f)C = ϕ(n), then we know the rate of
approximation of f by its Fourier sums:

‖f − sn(f)‖C = O
(
ϕ(n) ln n

)
(n → ∞).

Consequently, if a function is ‘bad’ from the standpoint of the rate of decay of its best
approximations, then the Fourier partial sums are either poor approximations to f or
even fail to converge; in contrast, for ‘good’ functions they provide good approximations.
Comparing the rate of approximation of two functions, we see that, in general, the
Fourier sums are better approximants to that for which best approximations decrease
more rapidly.

3b) For any function ψ(n) > 0 with any rate of decay, there is a function f ∈ C2π,
which is not a trigonometric polynomial, such that

‖f − sn(f)‖C = O(ψ(n)).

In order to prove this, consider an arbitrary sequence εn ↓ 0, εn = O(ψ(n)), and set
an = εn − εn+1. Hence,

∑∞
k=n ak = εn. Let f(x) =

∑∞
k=1 ak cos kx. We have

‖f − sn(f)‖ 6

∞∑

k=n+1

ak = εn+1,

the result required.
3c) The trigonometric system is dense in C2π. Hence, for any function f ∈ C2π, we

have En(f)C → 0 as n → ∞. Therefore,

‖sn(f)‖C 6 ‖f‖C +
(
‖Sn‖C + 1

)
En(f)C = O(1) + o(ln n) = o(ln n) (n → ∞).

Consequently, for any continuous function the partial Fourier sums grow slower than
ln n, even though the supremum of the norms of the partial Fourier sums over the whole
class of continuous functions has the order of magnitude ln n.

Examine next the same questions for Fejér sums.
1) We have ‖σn‖C = 1, because the operator is positive.
2) Any function f ∈ C2π can be uniformly approximated by the Fejér sums (see,

e.g., [35, Ch. 5, § 5,3], [30, Ch. X, § 5], [27, § 3.1.2]); that is,

‖f − σn(f)‖C → 0 (n → ∞).

3) The Fejér sums, unlike the partial Fourier sums, cannot approximate continuous
functions very rapidly. The following result holds.

Theorem 6.1. For any nonconstant function f ∈ C2π there exists a number c = c(f) >
0 such that

‖f − σn(f)‖C > n−1c(f) for all n;

that is, no nonconstant function C2π can be approximated by Fejér sums with order

better than n−1.
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From this standpoint, the Fejér sums are worse than the Fourier sums: they poorly
approximate good functions.

Proof. Let f(x) 6≡ const and let

f(x) ∼ a0

2
+

∞∑

k=1

Ak(x).

Then there exists k0 > 0 such that Ak0(x) 6≡ 0. Hence either ak0(f) 6= 0 or bk0(f) 6= 0.
Suppose, for definiteness, ak0 6= 0. We have

‖f − σn(f)‖C = max
x

|f(x) − σn(f, x)|

>
1

2π

∫ 2π

0

|f(x) − σn(f, x)| dx >
1

2π

∣∣∣
∫ 2π

0

{f(x) − σn(f, x)} cos k0x dx
∣∣∣ ≡ J.

But σn(f, x) =
∑n

k=0

(
1 − k

n+1

)
Ak, and hence, for n > k0,

J =
1

2

∣∣∣∣
k0

n + 1
ak0

∣∣∣∣ >
1

2(n + 1)
|ak0| >

c(f)

n
.

For n < k0, the sum σn does not contain the term cos k0x, and hence J =
|ak0

(f)|
2

. ¤

Theorem 6.2. There exists a function f ∈ C2π such that

‖f − σn(f)‖C ≍ 1

n
, n → ∞.

Proof. Consider f1(x) = sin x. Hence f1(x) − σn(x, f1) = 1
n+1

sin x, and so

‖f1 − σn(f1)‖C =
1

n + 1
.

So there exist continuous functions for which the order of approximation by Fejér
sums is precisely n−1. ¤

By Theorems 6.1 and 6.2 it follows that no continuous function, except for constant
functions, can be approximated by the nth Fejér means with rate exceeding cn−1; this
bound cannot be improved.

An approximation method with such a property is called saturated. The best possible
rate of approximation of continuous functions with a saturated method is called the
saturation order of this method (in C2π).

Consequently, the saturation order of Fejér sums is n−1 (see, e.g., [7, § 3.6], [24,
Ch. 7, § 4]).

At the same time, from 3b) it follows that the rate of approximation of continuous
functions by the Fourier sums can be arbitrarily high. Hence, the method of partial
Fourier sums is not saturated.

For a saturated method, the class of functions for which the rate of approximation by
this method coincides with the saturation order of this method is called the saturation

class of the method (see [8, Ch. 11, § 2]). A nonsaturated method has empty saturation
class. The saturation class of the Fejér method will be described later.
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6.2. De la Vallée Poussin sums

The de la Vallée Poussin sums work well both for ‘good’ and ‘bad’ functions.
Let f ∈ C[0, 2π], 0 6 m 6 n. The polynomials

σn,m(f) =
1

n − m + 1

n∑

k=m

sk(f)

are called de la Vallée Poussin sums. In particular, σn,0(f) = σn(f) are Fejér sums and
σn,n(f) = sn(f) are Fourier sums.

Approximative properties of de la Vallée Poussin sums for m ≍ n and n − m ≍ n
(that is, when an 6 m 6 An, where a > 0, A < 1) are of special interest.

The de la Vallée Poussin sums can be represented as follows:

σn,m(f) =
n∑

k=0

λ
(n,m)
k Ak(x) (Ak(x) = Ak(x, f) = ak(f) cos kx + bk(f) sin kx);

here λ
(n,m)
k = 1 for k 6 m and λ

(n,m)
k = n−k+1

n−m+1
for m 6 k 6 n.

The de la Vallée Poussin sums and Fejér sums are related as follows (see [30,
Ch. VIII]):

σn,m(f) =
1

n − m + 1

n∑

k=m

sk(f)

=
1

n − m + 1

{
n∑

k=0

sk(f) −
m−1∑

k=0

sk(f)

}
=

n + 1

n − m + 1
σn(f) − m

n − m + 1
σm−1(f).

6.3. Properties of de la Vallée Poussin sums

6.3.1. Norm estimate

Since ‖σn‖C = 1, we have

‖σn,m‖C 6
n + 1

n − m + 1
+

m

n − m + 1
=

n + m + 1

n − m + 1
.

The range
an 6 m 6 An, 0 < a < A < 1, (6.2)

is called the basic range of m. For m 6 An, A < 1, and in particular, for m from the
basic range (6.2),

‖σn,m‖C 6
n + m + 1

n − m + 1
6

n + An + 1

n − An + 1
<

1 + A

1 − A
.

Consequently, in this case the de la Vallée Poussin sums do not degenerate into Fourier
sums; in other words, if m 6 An, A < 1, then the de la Vallée Poussin sums are
uniformly bounded in norm.
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Remark. Actually, more can be said:

‖σn,m‖C =
4

π2
ln

n + m + 1

n − m + 1
+ O(1);

this is Nikol’skii’s theorem (the proof will be given in Lecture 17).

6.3.2. Regularity

An approximation method σ(f, n) is called regular if, for any continuous function f ,

‖f − σ(f, n)‖C → 0 (n → ∞).

The question arises: When does this hold for de la Vallée Poussin sums? A necessary
condition for regularity is that the norms be uniformly bounded and that convergence
be secured on a dense subset. We have

σn,m(cos kx) = λ
(n,m)
k cos kx → cos kx (n → ∞),

because λ
(n,m)
k → 1 as n → ∞, when k and m are fixed. The same can be said for

sines. As a result, the de la Vallée Poussin sums are uniformly convergent on sines and
cosines, and the norms are uniformly bounded, provided there is no degeneration into
Fourier sums—that is, when m 6 An, A < 1.

Hence, for m 6 An, A < 1, the de la Vallée Poussin approximation method is
regular.

Remark. This condition is also necessary. Indeed, if the de la Vallée Poussin method
σn,mn

is regular for some mn, mn < n, then mn < An starting with some n, where
A < 1.

6.3.3. Invariance property

The de la Vallée Poussin approximation method σn,m leaves fixed those function
for which a portion of spectrum, starting with some number exceeding m, is zero —
these are the functions such that ak = bk = 0 for all k > m. Hence, the subspace Tm

of trigonometric polynomials of degree at most m is an invariant subspace for the
method σn,m; that is, σn,m(t) = t for t ∈ Tm.

6.3.4. Lebesgue’s inequality for de la Vallée Poussin sums in C2π

If, for a general linear operator P : f → p(f), we have p(t) = t for all t ∈ Tm, then,
by Lebesgue’s inequality,

‖f − p(f)‖ 6 (‖P‖ + 1)Em(f).

For de la Vallée Poussin sums, the Lebesgue inequality is as follows

‖f − σn,m(f)‖ 6 (‖σn,m‖ + 1)Em(f) 6

(
n + m + 1

n − m + 1
+ 1

)
Em(f) =

2(n + 1)

n − m + 1
Em(f).
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Within the basic range (6.2) of m, we have n − m + 1 > (1 − A)(n + 1), and so

‖f − σn,m(f)‖ 6
2(n + 1)

n − m + 1
Em(f) 6

2(n + 1)

(1 − A)(n + 1)
Em(f) 6

2

1 − A
E[an](f).

For a function f such that E[an](f) 6 REn(f), where R is independent of n, we have

‖f − σn,m(f)‖ 6
2

1 − A
E[an](f) 6

2R

1 − A
En(f),

provided that there is no degeneration into Fourier and Fejér sums.
Hence, under the above conditions on m and f , we have precisely the order of best

approximation.

Problem. Prove that the de la Vallée Poussin method is not saturated, provided that
an 6 m 6 An and 0 < a < A < 1.

For the Fejér method there are no invariant subspaces except for the subspace
of constant functions, and so in this cases Lebesgue’s inequality can only be written
with E0(f):

‖f − σn(f)‖ 6 2E0(f).

However, the following result is valid.

Theorem 6.3 (S. B. Stechkin). The following estimate holds:

‖f − σn(f)‖ 6
c

n + 1

n∑

k=0

Ek(f).

From this theorem, which we state without proof, it follows that if f is a continuous
and nonconstant function and if

∑∞
k=0 Ek(f) < ∞, then

‖f − σn(f)‖ ≍ n−1, n → ∞,

since in this case ‖f − σn(f)‖ > c(f) n−1. This is so, for example, if En(f) = O(n−γ),
γ > 1.

We thus have a sufficient condition ensuring that a function lies in the saturation
class for the Fejér method (we recall, that in this case the saturation class is composed
of the functions that can be approximated by Fejér sums with the rate n−1).

A necessary and sufficient condition that a function lie in the saturation class for
the Fejér method can be expressed in terms of conjugate functions.

We recall that the class Lip α of Hölder-continuous functions consists of functions f
which are such that, for any x′ and x′′,

|f(x′) − f(x′′)| 6 M |x′ − x′′|α,

where 0 < α 6 1 and M is some constant.

Theorem 6.4 (G. Alexits, M. Zamanski, see [7, Ch. 3, § 3.6]). A necessary and

sufficient condition ensuring that a function f lies in the saturation class for the Fejér

method is that f̃ ∈ Lip 1, where f̃ is the conjugate function to f.
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We state this result without proof. The concept of the conjugate function f̃ is easier
to introduce in the case when f(x) is a boundary value of function u(z) that is harmonic
inside the unit disc and which is continuous in the closed disc, z = reix, 0 6 r < 1.
In this case the conjugate function f̃(x) is the boundary value of the function v(z),
z = reix, r → 1, which is defined by the condition u(z) + iv(z) = f(z); here f(z) is
analytic inside the unit disc.

In the general case, the conjugate function to an integrable 2π-periodic function f
is defined as follows:

f̃(x) = lim
ε→+0

1

2π

∫ π

ε

(
f(x − t) − f(x + t)

)
cot

t

2
dt.

The conjugate function f̃ to a summable function f may fail to be summable. If (5.1)

is the Fourier series for f and if f̂ ∈ L2π, then the Fourier series for f̃ is as follows:

f̃(x) ∼
∞∑

k=1

(−bk cos kx + ak sin kx).



Lecture 7

Linear summation methods of Fourier
series in C2π

7.1. Definition of linear summation methods

Methods of approximation by Fourier sums sn, Fejér sums σn, and de la Vallée
Poussin sums σn,m are particular cases of linear summation methods of Fourier series.

Let f ∈ L(−π, π). We extend f to a function on the real line which is periodic with
period 2π, assuming f(x + 2π) = f(x) for all x; the resulting function f ∈ L2π. With
any such a function we associate its Fourier series f(x) ∼ ∑∞

m=0 Am(x).

Definition. Suppose we are given a series of elements Am of a Banach space

∞∑

m=0

Am (7.1)

(no assumptions regarding its convergence is made). Also suppose we are given an
infinite numerical matrix

T = (λ(n)
m ) (m = 0, 1, . . . ; n = 0, 1, . . .).

By using this matrix and series (7.1), we construct the sequence of series

τn =
∞∑

m=0

λ(n)
m Am.

If all these series are convergent, then we say that for series (7.1) a (linear) summation
method T is defined, which transforms series (7.1) in the sequence {τn}:

A
(T )7−→ {τn}.

For the Fourier sums sn, the matrix T is as follows:



1 0 0 0 · · ·
1 1 0 0 · · ·
1 1 1 0 · · ·
· · · · · · · · · · · · · · ·


 ;
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and for the Fejér sums σn, the matrix T has the form



1 0 0 0 · · ·
1 1/2 0 0 · · ·
1 2/3 1/3 0 · · ·
· · · · · · · · · · · · · · ·


 .

It is also easy to write the matrix T for the de la Vallée Poussin sums σn,m. In all

three cases, we have λ
(n)
m = 0 starting from some m, and so τn are finite sums. Matrices

of this type (and the corresponding summation methods) are called row-finite. In these
cases, convergence conditions for the series τn are satisfied.

We shall study row-finite summation methods of Fourier series

f ∼
∞∑

m=0

Am(x) =
a0

2
+

∞∑

m=1

(am cos mx + bm sin mx)

with

T = (λ(n)
m ) (n = 0, 1 . . . ; m = 0, 1, . . . ,M(n)).

In this case, for each function f we associate the sequence of trigonometric polyno-
mials

τn(f, x) =

M(n)∑

m=0

λ(n)
m Am(x).

Approximation theory is concerned, inter alia, with the deviation in approximating
a function f by polynomials τn(f, x); in particular, as n → ∞.

Consider the following analogue of the Dirichlet integral for an arbitrary summation
method

τn(f, x) =
1

π

∫ π

−π

Kn(t)f(x + t) dt;

here

Kn(t) =
λ

(n)
0

2
+

M(n)∑

m=1

λ(n)
m cos mt

is the corresponding kernel of the summation method. This sequence of kernels deter-
mines the summation method. In C2π we consider the linear operator

Tn : f(x) 7→ τn(f, x),

Regarding Tn as an operator from C2π to C2π, we claim that

‖Tn‖C = sup
‖f‖C61

max
x

|τn(f, x)| =
1

π

∫ π

−π

|Kn(t)| dt.

Indeed, the inequality

‖Tn‖C = sup
‖f‖C61

max
x

∣∣∣∣
1

π

∫ π

−π

Kn(t)f(x + t) dt

∣∣∣∣ 6
1

π

∫ π

−π

|Kn(t)| dt
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t

y

0 �� �

1

� 1

f(t) Kn(t)

sign Kn(t)

Fig. 7.1

is straightforward. To prove the equality, it suffices to take for f continuous functions
which are L2π-close to sign Kn(t) (it presents no difficulties to construct such an f , since
Kn is a trigonometric polynomial; see Fig. 7.1).

The question arises: When a linear summation method of Fourier series is regular?
In other words, under what conditions the following holds

∀ f ∈ C ‖τn(f, x) − f(x)‖C → 0 (n → ∞)?

If this is so, the summation method is called regular or Fourier-regular.

The following result is a criterion for a linear summation method of Fourier series
to be regular.

Theorem 7.1. Let T be a row-finite matrix. A necessary and sufficient condition en-

suring that a linear summation method of Fourier series generated by the matrix T is

regular, is that

1) the estimate

‖Tn‖C 6 M

holds for some M and all n;

2) Tn(cos kx)
C−→ cos kx, Tn(sin kx)

C−→ sin kx as n → ∞ uniformly in x for any k.

Indeed, this is a criterion for convergence of linear operators: the norms are uniformly
bounded and convergence is secured on a dense subset (in this case, on the set of all
trigonometric polynomials).

Condition 2) can be rewritten as follows:

Tn(cos mx) = λ(n)
m cos mx → cos mx (n → ∞),

Tn(sin mx) = λ(n)
m sin mx → sin mx (n → ∞);

consequently, condition 2) is satisfied if and only if λ
(n)
m → 1 as n → ∞ for any fixed m.

Condition 2) is always an easily verifiable condition.
As regards Condition 1), we have

‖Tn‖C =
1

π
‖Kn‖L =

1

π

∫ π

−π

|Kn(t)| dt,
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and so, we need to be able to estimate ‖Kn‖L.

Assume that the coefficients λ
(n)
m are generated by a function ϕ; that is, λ

(n)
m =

ϕ(m/n) (see Fig. 7.2).

u1k
n

ϕ(u)

Fig. 7.2

We have, for M(n) = n,

Kn(t) =
ϕ(0)

2
+

n∑

m=1

ϕ
(m

n

)
cos mt = n

{ϕ(0)

2
· 1

n
+

n∑

m=1

ϕ
(m

n

)
cos

(
n · mt

n

)
· 1

n

}
.

The term in brackets is the Riemann integral sum for the integral

∫ 1

0

ϕ(u) cos(n · ut) du;

it can be shown that if ϕ is sufficiently smooth, then the corresponding quadrature
formula converges. Changing variable to nt = y, this gives

‖Tn‖C ≈ 2

π

∫ π

0

∣∣∣∣
∫ 1

0

ϕ(u) cos(u · nt) du

∣∣∣∣ n dt =
2

π

∫ nπ

0

∣∣∣∣
∫ 1

0

ϕ(u) cos uy du

∣∣∣∣ dy.

If the integral
2

π

∫ ∞

0

∣∣∣∣
∫ 1

0

ϕ(u) cos uy du

∣∣∣∣ dy

converges, then the norms ‖Tn‖C are bounded. It can be shown that if the integral
diverges, then the method is irregular.

Remark. The formula obtained is a fairly precise approximate formula for ‖Tn‖C .

The regular methods are by no means the only interesting methods — the method
of Fourier sums in not regular. At the lack of regularity, the growth of the norms ‖Tn‖C

should be investigated.
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7.2. Approximation by linear summation methods of

Fourier series of classes of functions

Let K be a compact class of functions in C2π or a class that can be compactified
by suitable normalization (for example, the class of functions with |f ′(x)| 6 1 is not
compact, but it becomes compact with the normalization f(0) = 0 and taking closure).

Given a row-finite summation method of Fourier series Tn : f(x) → τn(x, f), con-
sider

sup
f∈K

‖f − τn(f)‖C .

Let K = W r be the class of 2π-periodic functions with continuous rth derivative,
|f (r)(x)| 6 1, and let τn = sn.

We state the following result without proof.

Theorem 7.2 (A. N. Kolmogorov, see e.g. [17, § 27]). For any r,

sup
f∈W r

‖f − sn(f)‖C = n−r
{ 4

π2
ln n + O(1)

}
, n → ∞.

For a compact class K we may consider the classes Lip α (0 < α 6 1), H[ω], W r,
or A(q). Here, the class H[ω] is defined, for a given modulus of continuity ω, as consisting
of all functions f such that ω(f, δ) 6 Mω(δ) with some absolute constant M ; A(q) is
the class of 2π-periodic functions f that are analytic in the strip of width 2q parallel
to the real axis and which are such that |f(x ± iq)| 6 1.

Estimating the error of approximation of a class K by a linear method τn is some-
what simpler if K is a class of integral transforms, which consists of the functions
representable by the formula

f(x) =
a0

2
+

1

π

∫ π

−π

K(t)ϕ(x + t) dt (ϕ ⊥ 1, i.e., a0(ϕ) = 0)

with some kernel K(t).
The classes W r, r > 0, are good from this point of view because they consist of

functions representable as integral transforms. In this case, taking the Favard kernel
Dr(t) =

∑∞
k=1 k−r cos

(
kt + rπ

2

)
for K(t), we have

f(x) =
a0

2
+

1

π

∫ π

−π

Dr(t)f
(r)(x + t) dt.

To represent the whole class W r (including noninteger r), considering an arbitrary
continuous function ϕ instead of the derivative f (r), we obtain the class

W r =
{

f(x) =
a0

2
+

1

π

∫ π

−π

Dr(t)ϕ(x + t) dt : |ϕ(t)| 6 1, ϕ ⊥ 1
}

.

A similar representation (with suitable kernel K(t)) also holds for functions of the
class A(q) and for some other classes.
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For such classes, we have

f(x) =
a0

2
+

1

π

∫ π

−π

K(t)ϕ(x + t) dt,

and so

τn(f, x) =
a0λ

(n)
0

2
+

1

π

∫ π

−π

τn(K, t)ϕ(x + t) dt.

If λ
(n)
0 = 1, we have

f(x) − τn(f, x) =
1

π

∫ π

−π

{K(t) − τn(K, t)}ϕ(x + t) dt.

Since ϕ ⊥ 1, i.e., 1
π

∫ π

−π
ϕ(x − t) dt = 0, we can subtract from the kernel of this

convolution any constant function, giving

f(x) − τn(f, x) =
1

π

∫ π

−π

{K(t) − τn(K, t) − c}ϕ(x + t) dt.

Hence,

sup ‖f(x) − τn(f, x)‖C 6 inf
c

sup
|ϕ|61

∣∣∣
1

π

∫ π

−π

{K(t) − τn(K, t) − c}ϕ(x + t) dt
∣∣∣

6 inf
c

{ 1

π

∫ π

−π

|K(t) − τn(K, t) − c| dt
}

= E0(K − τn(K))L2π
.

In fact, the inequality here becomes an equality for a wide class of kernels K.
For the classes Lip α and H[ω], the problem is more difficult, because these classes

are not representable with the help of integral transforms.
This problem has been examined for a broad class of summation methods τn and

classes K (not only for the ones representable with the help of integral transforms).

7.3. Interpolation processes

Suppose we are given a matrix of nodes (x
(n)
k ), k = 0, 1, . . . , n, n ∈ N, on the

fundamental interval [a, b]. For any function f ∈ C[a, b] and any n it is possible to

construct the Lagrange polynomial pn(f, x, (x
(n)
k )) interpolating f at the nodes x

(n)
k .

This defines the linear operator Pn : f 7→ pn(f, x, (x
(n)
k )). In this case we say that an

interpolation process is defined.
Consider the problem: Does there exist a regular interpolation process? In other

words, does there exists a matrix of nodes such that

∀ f ∈ C ‖f − pn(f)‖C → 0 (n → ∞).

Theorem 7.3 (G. Faber, see e.g. [47, § 8.1.2]). For any matrix, the process in

question is irregular :

∀ (x
(n)
k ) ‖Pn‖C → ∞ (n → ∞).
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We shall prove a stronger result.

Theorem 7.4. For any matrix of modes (x
(n)
k )n

k=0 and n ∈ N,

‖Pn‖C > C ln n,

where Pn : f 7→ pn(f, x, (xn
k)n

k=0) and C > 0 is independent of n.

Lemma 7.1 (on trigonometric polynomials). For any n points θk, 0 6 θ1 < θ2 <
. . . < θn 6 π, there exists an even polynomial tn−1(θ) = a0/2 +

∑n−1
k=1 ak cos kθ, such

that

|tn−1(θk)| 6 1, k = 1, . . . , n, and ‖tn−1‖C > a ln n,

where a is some constant.

Proof. We proceed to build such a polynomial. For the Fejér polynomials

An(θ) =
cos θ

n − 1
+ . . . +

cos(n − 1)θ

1
,

Bn(θ) =
cos(n + 1)θ

1
+ . . . +

cos θ(2n − 1)

n − 1
,

it was proved (see the proof of Theorem 5.2) that, for any n,

‖An(θ) − Bn(θ)‖C 6 M

and |An(0)| ≍ ln n as n → ∞.
Given fixed θ1, . . . , θn, consider the Lagrange fundamental polynomials Ck(θ) of

order n − 1 for the trigonometric interpolation process:

Ck(θ) =

∏
i6=k

(cos θ − cos θi)

∏
i6=k

(cos θk − cos θi)
.

Hence Ck(θi) = δk,i.
We set

u(θ) = An(2θ) −
n∑

k=1

{Bn(θk + θ) + Bn(θk − θ)}Ck(θ).

This is a trigonometric polynomial of order at most 3n.
It is easily verified that a0(u) = π−1

∫ π

−π
u(θ) dθ = 0. Hence there exists a point α

such that u(α) = 0. We fix such α, and construct an even trigonometric polynomial of
order at most n − 1,

tn−1(θ) = {An(θ + α) + An(θ − α)} −
n∑

k=1

{Bn(θk + α) + Bn(θk − α)}Ck(θ).

We have

tn−1(θk) = {An(θk + α) + An(θk − α)} − {Bn(θk + α) + Bn(θk − α)}.
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Hence, |tn−1(θk)| 6 2‖An − Bn‖C6 2M , and so

tn−1(α) = u(α) + An(0) = An(0) ≍ ln n (n → ∞),

that is, for tn−1 we have, for some positive a,

‖tn−1‖C > a ln n.

It remains to divide tn(θ) by 2M , in order to have |tn−1(θk)| 6 1. ¤

Prove of Theorem 7.4. We estimate the norm of the operator Pn−1.
Since the theorem is concerned with interpolation by an algebraic polynomial with

nodes {xk} on [a, b], we ‘transplant’ the even trigonometric polynomial τn(θ) built in
the lemma to the inteval [a, b] by changing variable to x = a+b

2
+ b−a

2
cos θ. Then corre-

sponding to the points {xk} on [a, b] there are points {yk}, −1 6 yk 6 1,

xk =
a + b

2
+

b − a

2
yk

and points θk, 0 6 θk 6 π, at which yk = cos θk.
As a result, we obtain an algebraic polynomial p∗n−1(x) such that

|p∗n−1(xk)| 6 1 (k = 1, 2, . . . , n), a 6 xn < xn−1 < . . . < x1 6 b,

‖p∗n−1‖C[a,b] > a ln n.

Since there exists a continuous function fn on [a, b] such that fn(xk) = pn−1(xk),
‖fn‖C[a,b] 6 1, we have

‖Pn−1‖C→C = sup
‖f‖C61

‖pn−1(x, f, {xk}n
k=0)‖C > ‖p∗n−1‖C .

¤

Remark. A Gaussian quadrature process converges for any f ∈ C[a, b]:

∫ b

a

f(x) dx −
n∑

k=1

Akf(xk) → 0 (n → ∞).

However, if at the same nodes we construct the interpolation process, then it will
not converge for some function f . Nevertheless,

∫ b

a

pn−1(f, x) dx →
∫ b

a

f(x) dx (n → ∞).

There are no convergent interpolation processes, but there are convergent quadrature
processes (say, a Gaussian process).



Lecture 8

Best approximation in normed linear
spaces

8.1. Preliminaries from the theory of normed linear

spaces

A normed linear space X = (L, ‖ · ‖) is a linear space L over R or C equipped with
a real-valued function (the norm) ‖ · ‖ : L → [0,∞) satisfying the following conditions
(the axioms of a normed linear space):

1) ‖λx‖ = |λ| · ‖x‖, λ ∈ R, x ∈ L;
2) ‖x‖ = 0 ⇒ x = θ (θ = θX ≡ 0 is the zero of the space X);
3) ‖x + y‖ 6 ‖x‖ + ‖y‖, x, y ∈ L.

If the function ‖·‖ satisfies only the axioms 1) and 3) and there may exist a nonzero
element x for which ‖x‖ = 0 then ‖ · ‖ is called a seminorm.

Given an arbitrary linear set (system) L, we recall the following linear (algebraic)
concepts.

8.1.1. Linear dependence and independence

The concept of linear independence is important for linear n-dimensional spaces over
R or C. A finite set of elements x1, . . . , xn of L is called linearly dependent if there exist
numbers {ck}n

k=1, not all zero, such that
n∑

k=1

ckxk = 0;

otherwise the system is linearly independent.
The maximal number of linearly independent elements of a space L, if finite, is

called its dimension. A space L has infinite dimension if, for any natural number n,
there exists a linearly independent system M ⊂ L of cardinality n (M# = n).

A finite set M is said to be linearly independent if, for any natural number n not
exceeding the cardinality of M and any family x1, . . . , xn of distinct elements of M ,
these n elements are linearly independent. A set is said to be linearly independent,
provided that any its finite nonempty subset is linearly independent.
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8.1.2. Algebraic basis

Let L1 ⊂ L be a linear subsystem of L. A subset M of L1 is called an algebraic basis (or

Hamel basis) for L1 if, firstly, it consists of linearly independent elements, and secondly,
if, for any x ∈ L1, x 6= 0, there exists a number n and distinct elements x1, . . . , xn ∈ M
such that x =

∑n
k=1 ckxk, where not all ck are zero. From this definition it follows that

if, in addition, x =
∑m

k=1 dkyk for some family of elements y1, . . . , ym ∈ M , then the
set of those {xk} and {yk} with nonzero ck and dk can be obtained from each other by
permutation, the coefficients of equal elements being equal.

Any linear system L always has an algebraic basis.
Indeed, let

x1, . . . , xn, . . . , xωj
, . . .

be a well ordering of L. An element x is said to be expressible in terms of a subset A ⊂ L
if x is a linear combination of a finite subset of A. We remove x1 and all the elements
expressible in terms of x1; if the ensuing set is nonempty, we denote its first element
by x̃2 and remove from it all the elements that are linearly expressible in terms of x1

and x̃2. Continuing this reduction process inductively (in general case, by transfinite
induction, if L is not a finite or countable set), we obtain the system x1, x̃2, x̃3, . . . (finite,
countable or transfinite), which is clearly a basis for the linear system L.

This being so, any linear set has an algebraic basis, and any element of L is uniquely
expressible (up to zero coefficients) in terms of a finite number of basis elements.

8.1.3. Bases in normed linear spaces

Now let X = (L, ‖ · ‖) be a normed linear space. We already know that any linear
space always has an algebraic basis. For normed linear spaces, however, we shall need
another type of a basis.

A subset M of a normed linear space X is called a basis for X if, for any element x
of X, there is a unique system of numbers {ck} such that

x =
∞∑

k=1

ckxk, xk ∈ M ;

the equality means that limn→∞
∥∥x − ∑n

k=1 ckxk

∥∥ = 0.
Here a basis need not be countable; nevertheless, for any x there is at most countable

family of elements xk ∈ M such that x =
∑∞

k=1 ckxk.
It is known that any basis for an infinite-dimensional separable normed linear

space (a space having a countable dense subset) is always countable. In this case,
x =

∑∞
k=1 ckxk; i.e., any x is representable by the series involving all elements of the

basis, with some ck possibly zero. A basis x1, x2, . . . is said to be unconditional if the
sum of the series (which is the limit of partial sums

∑n
k=1 ckxk) is independent of any

rearrangement of terms. If the last property is not assumed to hold, a basis is called
a Schauder basis.

Does every separable Banach space have a basis?1

1This problem was solved in the negative by Per Enflo [11] in 1972; see also [10, Ch. 5].
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Ciesielski proved that any classical separable Banach space (for example, C, Lp (p >
1), C(r)) admits a basis.

8.1.4. Convexity

A subset M of L is called convex if it contains the closed interval [x, y] that joins any
two point x, y of M . The closed interval between a pair of points x, y is, by definition,
tx + (1 − t)y, t ∈ [0, 1]. A set M is nonconvex whenever there are two points of M
such that the interval between them is not contained in M .

There is a marked difference between the classes of convex sets in finite- and infinite-
dimensional spaces. For example, every infinite-dimensional Banach space is the union
of two disjoint dense convex subsets.

8.1.5. Convex hull

Let L be a linear space and let M ⊂ L. Consider all possible subsets V of L that
contain M . A convex hull (written conv M) of M is defined as follows

conv M =
⋂

V ⊃M

V.

Clearly, M ⊂ conv M . The convex hull always exists, because V = L ⊃ M.

Exercise. Prove that a set M is convex if and only M coincides with its convex hull.

Let us visualize the general form of the convex hull of a set M .
Given any finite subset Mn = {x1, . . . , xn} of M , consider its convex hull conv Mn.

This is a simplex of dimension n− 1, provided that x1, . . . , xn are linearly independent.
Let us prove that ⋃

Mn⊂M

conv Mn = conv M.

Indeed, suppose that x, y ∈ ⋃
Mn⊂M conv Mn. Then x lies in some simplex conv Mn, and

y belongs to some simplex conv Mm. Hence both x and y lie in the simplex conv M ′,
where M ′ = Mn

⋃
Mm. We have [x, y] ⊂ conv M ′ ⊂ ⋃

Mn⊂M conv Mn, and hence⋃
conv Mn is convex. Clearly, this set is contained in any convex set V that contains M ,

and is the intersection of such sets.

Corollary. The smallest convex set containing M is given by

⋃

Mn⊂M

conv Mn.

Remark. If x1, . . . , xn ⊂ M , then conv Mn coincides with the set

{
x =

n∑

k=1

ckxk : ck > 0,
n∑

k=1

ck = 1
}

.
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8.2. Characteristics of normed linear spaces

8.2.1. Separability

An important massiveness features of a space is the smallest cardinality of a dense
subset of the space. A space containing a countable dense subset is called separable.
A nonempty space is called nonseparable if it fails to contain a countable dense subset.
Separability is the first feature to be tested for a space.

8.2.2. Completeness

A space is complete if every Cauchy sequence (fundamental sequence) converges to
an element of this space. A complete normed linear space is called a Banach space (or
a B-space).

8.2.3. Reflexivity

Given a Banach space X, by X∗ we denote its dual space, that the space of all
continuous linear functionals on X; the second dual of X is denoted by X∗∗.

The canonical embedding of X into X∗∗ is defined, for any x ∈ X, by

Fx(f) = f(x), f ∈ X∗,

so that
∀ x ∈ X x 7→ Fx ∈ X∗∗.

A space is reflexive if the canonical embedding of X into X∗∗ is onto: X ≡ X∗∗; in
this case any functional F ∈ X∗∗ coincides with some functional Fx on X∗.

If a space is reflexive, then X and X∗∗ are structured in the same way (they are
isometrically isomorphic). The converse is not true: there is a separable Banach space
which is linearly isometric to its second dual but is not reflexive (see, for example, [28,
§ 1.11]).

In a reflexive space bounded sequence contains a weakly convergent subsequence.

8.2.4. Structure of the unit ball

Strict convexity. A space is called strictly convex (or rotund) if its unit ball is
strictly convex, that is, the boundary of the unit ball contains no open line segment.

Exercise. A (Euclidean) circle is a strictly convex set, while a square is not. Clearly, if
a space is not strictly convex, then there exists a hyperplane that touches the unit ball
at more than one point.

Extreme points. Let M ⊂ X, x ∈ M .
A point x ∈ M is called nonextreme point of M , if x ∈ (a, b) for some points

a, b ∈ M . Otherwise x is called an extreme point.
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Let O1 be the unit ball, and S1 be the unit sphere, its boundary.

The following result is valid (Straszewicz’s theorem, see e.g. [49, Theorem 2.6.21]).

Theorem 8.1. The unit ball O1 of a finite-dimensional Banach space is the closed

convex hull of its extreme points.

We state this fact without proof. However, Straszewicz’s theorem may fail to hold
in the general case: there are Banach spaces with no extreme points on the unit ball.

Exercise. Prove that the unit ball O1 of L[0, 1] has no extreme points. Prove that the
unit ball O1 of C[0, 1] has exactly two extreme points.

Smoothness. A space is smooth if at each point of the unit sphere S1 there is a unique
supporting functional (i.e., a unique supporting hyperplane of the unit ball). The defini-
tion of a supporting hyperplane will be given later. Otherwise, the space is nonsmooth.

8.2.5. Compact sets

A compact set is a set in which every sequence has a subsequence which is convergent
to a point of the set. Compact sets are always closed.

8.3. Fundamental spaces

The space C = C(Q,X) is the space of continuous functions from a compact set Q
into a Banach spaces X. Classical cases are X = R or X = C.

1. The space C(Q,X) is complete.

2. For some Q and X the space C(Q,X) is separable, while for some is not. If Q is
a closed interval and X = R, then C(Q,X) is separable.

3. If Q is infinite, then C is nonreflexive; in particular, C[0, 1] is nonreflexive.

4. For any Q and X the space C(Q,X) is neither strictly convex nor smooth.

The space Lp, 1 6 p < ∞.

Suppose we are given a space Q equipped with measure µ (a countably additive
nonnegative function of measurable subsets of Q). Let f be a function from Q to R

or C with finite integral
∫

Q
|f(x)| dµ, let Lµ be the class of all such functions, and let∫

Q
|f(x)| dµ = ≀≀f ≀≀ be the seminorm. In order to obtain a Banach space, we quotient

out the space Lµ,

Lµ/ {f : ≀≀f ≀≀ = 0},

thereby identifying the functions that differ only on nullsets. This gives us a complete
space, which we henceforth denote by Lµ.

Whether Lµ is separable or not depends both on Q and on µ: if µ is the Lebesgue
measure on Q ⊂ R

n, then the space Lµ = L1
µ(Q) = L(Q) is separable.
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The space Lp
µ is defined similarly; here one should take the seminorm

≀≀f ≀≀ =

(∫

Q

|f(x)|p dµ

)1/p

.

We shall use the same symbol to denote both a function f and the corresponding
equivalence class, and so ≀≀ f ≀≀ = ‖f‖Lp

µ
is a norm.

For p = 2 the space L2
µ is a Hilbert space with the inner product defined by (f, g) =∫

Q
fg dµ over the field of real numbers, and by (f, g) =

∫
Q

f g dµ over the field of complex

numbers. The space L2
µ is complete with respect to the norm ‖f‖L2 =

√
(f, f).

We recall that in the spaces Lp, Lq, for 1
p

+ 1
q

= 1, 1 < p, q < ∞, the Hölder
inequality ∣∣∣∣

∫ b

a

f(x)g(x) dx

∣∣∣∣ 6 ‖f‖Lp[a,b]‖g‖Lq [a,b]

for f ∈ Lp[a, b], g ∈ Lq[a, b] is, for real-valued f and g, an equality if and only if
f(x)g(x) > 0 a.e. and if |f(x)|p is a.e. proportional to |g(x)|q.
Exercise. Examine this problem for functions from Lp

µ(Q) and Lq
µ(Q).



Lecture 9

General linear approximation
problems

9.1. Convexity of Lp-spaces

We continue to consider Lp-spaces, 1 6 p < ∞. For p = 2, the space L2 is a Hilbert
space. Throughout this lecture we assume that µ is the Lebesgue measure.

We state the following result without proof.

Theorem 9.1. A necessary and sufficient condition that a complete normed space H
be a Hilbert space is that all its finite-dimensional subspaces be Euclidean (including the

original space, if it is finite-dimensional).

Corollary. In a Hilbert space the planar Euclidean geometry holds.

Example 9.1. The well-known property of a parallelogram is that the sums of the
squares of the diagonals is equal to twice the sum of the squares of the sides; i.e.,

‖x + y‖2 + ‖x − y‖2 = 2(‖x‖2 + ‖y‖2)

(the parallelogram law). In courses of functional analysis it is proved that this property
characterizes the Hilbert spaces.

For p 6= 2, 1 < p < ∞, the space Lp is not a Hilbert space (of course, if its dimension
exceeds 1), but is always strictly convex and reflexive.

The norm of any Banach spaces satisfies the triangle inequality

‖x + y‖ 6 ‖x‖ + ‖y‖.

In Lp, this transformes into

{∫

Q

|x + y|p dt

}1/p

6

{∫

Q

|x|p dt

}1/p

+

{∫

Q

|y|p dt

}1/p

,

which is the conventional Minkowski’s inequality. The inequality here becomes equality
(in the real case) if and only if x and y are positively proportional; i.e., when αx = βy

73
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for some α, β > 0, α2 + β2 > 0 (this is equivalent to saying that x and y do not lie on
one ray emanating from the origin).

Spaces with this property are called strictly normed ; this property is equivalent to
the strict convexity.

So, the space Lp is strictly convex for any 1 < p < ∞. The space L1 is not strictly
convex. To substantiate this claim, we need to find two elements x and y of L1[0, 1] with
satisfy Minkowski’s inequality with equality and such that x and y are not positively
proportional. It suffices to consider

x(t) =





1, t ∈ [0, 1/2)

0, t ∈ [1/2, 1]
, y(t) =





0, t ∈ [0, 1/2)

1, t ∈ [1/2, 1]
.

Figure 9.1 gives another pair of such x and y.

1/2 1

x(t)

1/2 1

y(t)

Fig. 9.1

This example can be easily extended to all Lµ-spaces.

9.2. Uniform convexity

Given the unit ball O1 of a Banach space, we draw a hyperplane at a distance h < 1
from the origin, obtaining thereby the slice l of the ball O1 (see Fig. 9.2). Let d(l) be
the diameter of the slice. Сonsider lim

h→1
d(l). In a Euclidean space, we have d(l) → 0 as

h → 1.

A space is called uniformly convex if the diameter of the slice d(l) tends to zero as
h → 1 uniformly over all hyperplanes (over all slices). Clearly, a uniformly convex space
is always strictly convex.

The following result is valid (see, for example [29], [34]). We state it without proof.

Theorem 9.2 (Milman–Pettis1.). Any uniformly convex space is reflexive.

1Translator’s note: Stechkin attributes this result to J.A. Clarkson, which does not seem to be the
case. It was indeed Clarskon [4] who introduced the notion of uniform convexity and proved that the
Lp-spaces (1 < p < ∞) are uniformly convex. But it was only Milman [29] and Pettis [34], who proved
the result stated. See historical comments on p. 208 of [9].
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h

1

l

d(l) → 0

h → 0

l

d(l) → 2

h → 0
1

1

Fig. 9.2

That the space Lp, 1 < p < ∞, is uniformly convexity is clear. Hence any space Lp,
1 < p < ∞, is reflexive. The space L1 is nonreflexive except for degenerate cases when
the measure is concentrated at a finite number of points.

9.3. General linear approximation problems

Statement of the problem. Let X be a Banach space and let L be a proper
(closed) subspace of X (L 6= X).

Consider the problem of best approximation of an element x ∈ X by elements y of
the subspace L:

inf
y∈L

‖x − y‖X = E(x, L)X .

9.3.1. Uniqueness problem

For any x ∈ X, we consider the set Y (x) (possibly empty)

Y (x) = {y∗ ∈ L : ‖x − y∗‖X = E(x, L)X};

this is the set (or a polytope) of best approximations from L to x (the metric projection).
We thus have the mapping

x 7→ Y (x) ⊂ L.

Consider the following problem. Under which conditions on X we have card Y (x) 6 1
for any element x of X and any subspace L of X? In other words, in which X any element
x of X has at most one element of best approximation from an arbitrary subspace L
of X?

Definition. If, for any subspace L and any element x ∈ X, there is at most one element
of best approximation from L, we shall say that X has the uniqueness property (U).

Theorem 9.3. A Banach space has the uniqueness property (U) if and only if its strictly

convex.



76

Proof. Sufficiency. Given a strictly convex space X, assume that the property (U)
fails. Then there exist L ⊂ X, x ∈ X and y1, y2 ∈ L such that

{y1, y2} ⊂ YL(x), y1 6= y2.

We have
inf
y∈L

‖x − y‖ = ‖x − y1‖ = ‖x − y2‖ = E(x, L)X > 0.

Consider the point y = (y1 + y2)/2 and find the distance from x to y:

‖x − y‖ =
∥∥∥

1

2
(x − y1) +

1

2
(x − y2)

∥∥∥.

The point x − y is the midpoint of the interval [x − y1, x − y2], whose ends lie on the
sphere S of radius ρ = E(x, L)X . The space being strictly convex, the point x − y lies
strictly inside the ball Oρ, and so ‖x − (x − y)‖ < ρ. We thus have

E(x, L)X 6 ‖x − y‖ =
∥∥∥

1

2
(x − y1) +

1

2
(x − y2)

∥∥∥ < ‖x − y1‖ = ‖x − y2‖ = E(x, L)X ,

a contradiction.
Necessity. Given a space X with the property (U), we need to prove that X is

strictly convex. Assuming the contrary, we can find a hyperplane L, lying at a distance
of 1 from the origin θX , and which is such that it touches the unit ball in at least two
points s1, s2. We translate the hyperplane L by the vector x, so that L transforms into
the hyperplane L1 ∋ θX , and s1 7→ y1, s2 7→ y2.

L

L1

s1 s2

y1 y2

�

x0

Fig. 9.3

Consider the point x0 (see Fig. 9.3). It has at least two elements of best approxima-
tion y1 and y2 from L1. This gives a contradiction, and the theorem follows. ¤

Remark. We showed in fact that [y1, y2] ⊂ Y (x) whenever y1, y2 ∈ Y (x); i.e.,

E(x, L) = ‖x − y1‖ = ‖x − y2‖.

Indeed, any element y from [y1, y2] can be written in the form y = ty1 + (1 − t)y2

for some t ∈ [0, 1]. Then

E(x, L) 6 ‖x−y‖ = ‖t(x−y1)+(1−t)(x−y2)‖ 6 t‖x−y1‖+(1−t)‖x−y2‖ = E(x, L).
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Corollary. The set of best approximation is always convex (and hence, for a strictly

convex space, it is either empty or consists of one element).

Among the classical spaces only C and L1 are not strictly convex, hence they fail to
have the uniqueness property. The spaces Lp, 1 < p < ∞, are strictly convex and hence
have the uniqueness property.

Generally, all the subspaces of a space X split into two classes: those satisfying and
those failing to satisfy the uniqueness property.

9.3.2. Existence problem

If, for any x ∈ X, there is at least one element of best approximation to x from any
subspace L of X, then X will be said to have the existence property (E).

A hyperplane L1 is said to touch the unit sphere S1 = {z ∈ X : ‖z‖ = 1} if there
is an element y ∈ S1 such that infx∈L1 ‖x − y‖ = 0. We note that touching the sphere
does not imply that a point of tangency must exist.

Theorem 9.4 (James; see, e.g., [6, p. 63], [28]). A Banach space is reflexive if and

only if any supporting hyperplane of the unit sphere has (at least one) point of tangency

or, what is the same, any hyperplane Lx = {y : f(y) = f(x)} has a point of tangency

with the sphere SE = {z : ‖z‖ = E(x, L)} for any f ∈ X∗\{0}, where L is the subspace

{y : f(y) = 0}.

Hence, a space X is reflexive if and only if, for any f ∈ X∗ \ {0}, there is a point
x ∈ X such that ‖x‖ = 1 and |f(x)| = ‖f‖ (i.e., the functional attains its norm at the
element x).

Example 9.2. In C[0, 1], consider the functional f(x) =
∫ 1

0
sign sin 2πt · x(t) dt. The

norm of this functional

‖f‖ =

∫ 1

0

| sign sin 2πt| dt = 1

is not attained on C, because the function x(t) = sign sin 2πt does not lie in C[0, 1]. In
this example there is no point of tangency of the hyperplane f(x) = 1 with the unit
sphere S1 in C[0, 1] (it is easily seen that if x(t) ∈ C[0, 1], ‖x‖C = 1, then |f(x)| < 1).

Theorem 9.5. A Banach space has the property (E) if and only if it is reflexive.

Proof. 1) Suppose that X is nonreflexive. Then, by James’s theorem, there is a hy-
perplane {f(x) = 1}, ‖f‖ = 1, which has no points of tangency with the unit sphere.
Consider the subspace L = {y : f(y) = 0}. Then, any element x with f(x) 6= 0 has no
elements of best approximation in L (if it were such a one, a translation would produce
a point of tangency with the hyperplane Lx.

2) Suppose that X is reflexive. We need to prove that it satisfies the property (E).
First of all, we observe that if {xn} ∈ L and xn

w→ x (xn converges weakly to x), then
x ∈ L and

‖x‖ 6 d = lim
n→∞

‖xn‖.
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Now let L be an arbitrary subspace and x be an arbitrary element of X, x 6∈ L.
Let Od+εn

= Od+εn
(x) be the closed ball, with centre x and radius d + εn, where

d = E(x, L) and εn ↓ 0. The sets Kn = Od+εn

⋂
L constitute a nested family {Kn}

of nonempty bounded closed sets. In a reflexive space, such a nested sequence has
a nonempty intersection.

Indeed, let xn ∈ Kn, ‖x − xn‖ → d. The sequence {x − xn} is weakly compact,
and so it has a subsequence {x− xnk

} which converges weakly to some element x− x0,
x0 ∈

⋂
Kn. Hence, x0 ∈ L and ‖x − x0‖ 6 d. Since d = E(x, L), the inequality cannot

be strict, so ‖x − x0‖ = d, therefore x0 is an element of best approximation. ¤

Corollary. Any finite-dimensional subspace is a set of existence.

Remark. Any boundedly compact set (a set whose intersection with each closed ball
Od(x) is compact) is a set of existence.

Example 9.3. (of a finite parameter family which fails to be boundedly compact).
In C[0, 1] consider the set of rational functions of the form R1 = a

b+ct
∈ C[0, 1]. The

family R1 depends on three parameters a, b, c. This set is noncompact in C[0, 1]: the
sequence {1/(1 + ct)} converges to 0 on (0, 1] as c → 0, and at the point t = 0 it is
equal to 1.

The space Lp, 1 < p < ∞, is both reflexive and strictly convex. Hence in Lp,
1 < p < ∞, any subspace has both the (U)- and (E)-properties.

Such subspaces of (simultaneous) existence and uniqueness are called Chebyshev

subspaces.



Lecture 10

Criterion for best approximation
in L

p. Stability

10.1. Criterion for an element of best approximation

in Lp

Let H be a Hilbert space. In courses of functional analysis it is proved that y∗ is an
element of best approximation to an element x in a subspace M of H if and only if

(x − y∗, y) = 0 ∀ y ∈ M.

If H = L2(Q), this condition can be rewritten as follows:

∫

Q

(x − y∗)y dt = 0 ∀ y ∈ M.

This formula is the special case of a more general theorem, which gives a necessary
and sufficient condition for an element of best approximation in Lp, p > 1.

Theorem 10.1 ([47, 2.8.25], [42, Theorem 1.11]). Let M be a subspace of Lp(Q),
1 < p < ∞, and let x ∈ Lp(Q). A necessary and sufficient condition that y∗ be an

element of best approximation in M to x in Lp(Q) is that

∫

Q

|x − y∗|p−1 sign(x − y∗)y dt = 0 ∀ y ∈ M. (10.1)

Proof. Necessity. Suppose that condition (10.1) is not satisfied. Then there exists
a point y ∈ M such that

∫

Q

|x − y∗|p−1 sign(x − y∗)y dt 6= 0.

We claim that in this case y∗ is not an element of best approximation. Let

Φ(α) = ‖x − y∗ − αy‖p ≡ ‖x − y∗ − αy‖p
Lp(Q) =

∫

Q

|x − y∗ − αy|p dt.
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Since p > 1, this is a differentiable function of α, and hence, by the theorem on differ-
entiation with respect to a parameter under the integral sign,

Φ′(α) = −p

∫

Q

|x − y∗ − αy|p−1 sign(x − y∗ − αy)y dt.

For α = 0, we have Φ′(α)|α=0 6= 0, and hence α = 0 is not a minimum. Hence for some α
the deviation ‖x − y∗ − αy‖ can be made smaller than ‖x − y∗‖, and so y∗ is not an
element of best approximation, a contradiction.

Sufficiency. By (10.1) and using Hölder’s inequality, we have, for each y ∈ M ,
∫

Q

|x − y∗|p dt =

∫

Q

|x − y∗|p−1(x − y∗) sign(x − y∗) dt

=

∫

Q

|x − y∗|p−1(x − y) sign(x − y∗) dt 6

∫

Q

|x − y∗|p−1|x − y| dt

6

{∫

Q

|x − y∗|p dt

}1/q

·
{∫

Q

|x − y|p dt

}1/p

,
1

p
+

1

q
= 1.

It can be assumed that
∫

Q
|x − y∗|p dt 6= 0 (for otherwise y∗ is an element of best

approximation, as required). We have

{∫

Q

|x − y∗|p dt

}1/p

6

{∫

Q

|x − y|p dt

}1/p

;

i.e., for each y ∈ M , ‖x − y∗‖ 6 ‖x − y‖, and so ‖x − y∗‖ = E(x,M), as claimed.

Remark. For p = 1 condition (10.1) assumes the form
∫

Q

sign(x − y∗)y dt = 0, ∀ y ∈ M ; (10.2)

this is a sufficient condition for y∗ to be an element of best approximation to x (the
proof is the same). Moreover, if a priori is known that x(t) − y∗(t) 6= 0 a.e. on Q,
then condition (10.2) is also necessary (because in this case, for α = 0, the derivative
d

dα
|x − y∗ − αy|

∣∣
α=0

= −y sign(x − y∗) exists a.e.).
However, in the general case this is only a sufficient condition. A detailed account

is given in [42, Ch. I, § 1.5] (see also [22]).

10.2. Best approximation in Lp

Example 10.1. Let us consider the special case in which M = {c} is the one-
dimensional subspace of constant functions.

Let p = 2 and Q = [a, b]. In this case condition (10.1) can be written

∫ b

a

{x(t) − c∗} dt = 0;
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a b

c �

x(t)

equal areas

Fig. 10.1

i.e., the areas above and below the line x(t) = c∗ are equal.

For p = 1, condition (10.1) becomes

∫ b

a

sign{x(t) − c∗} dt = 0 (10.3)

or, in the case when L1[a, b] is a space with measure µ,

µ(E+) − µ(E−) = 0, (10.4)

where E+ (E−) is the set on which the difference x(t)− c∗ is positive (negative, respec-
tively), and µ is a measure.

An example can be easily constructed to illustrate the lack of unicity of best ap-
proximation in L1 (see Fig. 10.2), where [a, b] = [0, 1], x(t) = 1 if 0 6 t < 1/2, x(t) = 0
if 1/2 6 t 6 1.

1/2 10

1

c �

c �

Fig. 10.2 (c∗ ∈ [0, 1])

In this case, any constant function c∗ ∈ [0, 1] is an element of best approximation.
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As we have already pointed out, for p = 1 condition (10.1) is only sufficient for
an element of best approximation. Examples can be constructed to show that condi-
tion (10.4) may fail for a constant function of best approximation in L1 (see Fig. 10.3
for the Lebesgue measure), where [a, b] = [0, 1], x(t) = 1− 4t if 0 6 t < 1/8, x(t) = 1/2
if 1/8 6 t < 3/4 and x(t) = 2(1 − t) if 3/4 6 t 6 1 and c∗ = 1/2.

1/8 3/40

1/2

1

1

c �

E+ E�

Fig. 10.3 (here c∗ = 1/2)

If µ{t ∈ [a, b] : x(t) − y∗(t) = 0} = 0, then it is legitimate to differentiate under the
integral sign, and so violation of condition (10.4) means that y∗ is not an element of
best approximation from M to x.

Let X be a Banach space and M be a subspace of X. The best approximation
problem consists in finding, for any x ∈ X, a point y∗ ∈ M such that

‖x − y∗‖X 6 ‖x − y∗ − h‖ ∀ h ∈ M.

Hence the functional

Φ(h) = ‖x − y∗ − h‖

must have a minimum at h = θ. If Φ(h) is differentiable, then a necessary condition
for a minimum is that the differential of Φ(h) should vanish at h = θ. Or else, suppose
that h is fixed. Then the functional

Fh(t) = ‖x − y∗ − th‖, t ∈ (−1, 1),

must have a minimum at t = 0 for each h ∈ M ; i.e., D‖x − y∗ − h‖|h=θ = 0, and so
condition (10.1) simply means that the differential vanishes.

The functional Φ is convex, and so if Φ is differentiable, then the condition that the
differential of Φ(h) = ‖x − y∗ − h‖ be zero on the subspace M at h = θ is necessary
and sufficient for y∗ to be an element of best approximation.
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10.3. Stability

Consider the problem of continuous dependence of a solution of the best approxi-
mation problem on initial conditions.

Let X be a Banach space and let M ⊂ X be a subset of existence, y(x) be an element
of best approximation in M to x ∈ X, and E(x,M)X be the best approximation of x.
Then E(x,M)X = Φ(x) is a functional of x.

Since

E(x,M)−E(x′,M) = ‖x−y(x)‖−‖x′−y(x′)‖ 6 ‖x−y(x′)‖−‖x′−y(x′)‖ 6 ‖x−x′‖,

it follows that the best approximation E(x,M) continuously (and even uniformly con-

tinuously) depends on x.

Exercise. Prove the above bound without assuming that M is a set of existence.

Now assume that y(x) and y(x′) are unique elements of best approximation in M
to x and x′, respectively. Suppose that x and x′ are close to each other. Does this imply
that y(x) and y(x′) are close? In general this is not so, because the function y(x) may
not continuously depend on x. But there is one important case in which y(x) is always
continuous.

Suppose that M is boundedly compact (its intersection with any closed ball is com-
pact). A boundedly compact set is always a set of existence: for any x the set of best
approximations Y (x) in M to x is nonempty. We are interested in continuity of the
mapping

x 7→ Y (x) ⊂ M, x ∈ X.

Let Yε be the ε-neighbourhood of Y (x) in M ; i.e., Yε = {y ∈ M : ρ(y, Y (x)) < ε}. We
fix some element x ∈ X. Let us see how Yε is related to Y .

We clearly have Y =
⋂

ε>0 Yε. Let d = E(x,M). Consider the set

Z(ε) = Z(ε, x) = {z ∈ M : ‖x − z‖ 6 d + ε}

(see Fig. 10.4). We have the following result for boundedly compact sets M .

Proposition 10.1. For each ε > 0 there exists ε1 > 0 such that Z(ε1) ⊂ Yε.

Proof. To prove this result, we observe that {Z(ε1)}ε1 is a nested family of compact
subsets such that

⋂
ε1>0 Z(ε1) = Y (x). Then, by the property of compact sets, for any

neighbourhood Yε of the set Y (x), all Z(ε1) lie in Yε for all ε1 6 ε0, as claimed. ¤

This result fails in general without assuming that the sets be boundedly compact.
In particular, if there is a unique element of best approximation to x in a boundedly

compact set M , then all ‘good’ points z ∈ M (i.e., points at which ‖x − z‖ is almost
identical to E(x,M)) lie in some small neighbourhood of the best approximant to x.

Theorem 10.2 (on stability). Let X be a Banach space and let M be a boundedly

compact subset of X. Suppose that x ∈ X has a unique element of best approximation

y∗ ∈ M . Then, if {xn} is a sequence converging to x and if {yn} is a sequence in M
such that ‖xn − yn‖ → ‖x − y∗‖, then yn → y∗.
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x

d

ε

M

Y (x)

Z(ε, x)

Fig. 10.4

Proof. Indeed, for any δ > 0 and all sufficiently large n, we have

‖x − yn‖ 6 ‖x − xn‖ + ‖xn − yn‖ 6 ‖x − y∗‖ + δ,

i.e., yn ∈ Z(δ). By Proposition 10.1, for any ε > 0 there exists a sufficiently small δ
such that Z(δ) ⊂ Yε. So ‖yn − y∗‖ 6 ε for all sufficiently large n, and so yn → y∗. ¤

Since E(x,M) is continuous, we have the following result.

Corollary (see, e.g., [42, p. 390]). Let M be a boundedly compact subset of X such

that any x ∈ X has a unique element of best approximation y(x) in M (i.e., M is

a boundedly compact Chebyshev set). Then y(x) is a continuous function of x on X.

Moreover, the function y(x) is uniformly continuous on every compact subset of X.

In the space C = C[0, 1] we approximate by functions in the set

{x ∈ C : ‖x′‖ 6 1, x(0) = 0}.

Is the function y(x) continuous? In which Banach spaces the metric projection x 7→ y(x)
onto any subspace M is uniformly continuous?

Let H be a Hilbert space, M be a subspace of H, x ∈ X. An element y(x) is an
element of best approximation to x if and only if

(x − y(x), y(x)) = 0 ∀ y ∈ M.

Hence
‖x − y(x)‖2 + ‖y(x)‖2 = ‖x‖2

and so
‖y(x)‖ 6 ‖x‖.
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The metric projection onto a subspace is linear in H, and hence

‖y(x) − y(x′)‖ = ‖y(x − x′)‖ 6 ‖x − x′‖;

i.e., the metric projection onto a subspace is uniformly continuous in a Hilbert space
and so is a bounded linear operator.

Remark. In general (and as a rule, if a space is not a Hilbert space), the metric
projection fails to be linear. For example, we approximate the functions

f1(t) =

{
1 − 2t, 0 6 t < 1/2,

0, 1/2 6 t 6 1,
f2(t) = f1(1 − t), (f1 + f2)(t) = 2|t − 1/2|

by constant functions in C[−1, 1] (see Fig. 10.5) .

1/2 1

1

c �

f1

1/2 1

1

c �

f2

1/2 1

1

c �

f1 + f2

Fig. 10.5

We have in this setting: 1
2

= c∗(f1) = c∗(f2) = c∗(f1 + f2) 6= c∗(f1) + c∗(f2) = 1.
The metric projection onto subspaces is linear only in Hilbert spaces (and in some

degenerate cases).

Theorem 10.3. Let M be a subspace of a uniformly convex space X. Then M is

a subspace of uniqueness and the metric projection y(x) onto M depends uniformly

continuously on x on any closed bounded set.

Proof. Since a uniformly convex space is strictly convex, the first assertion follows
by Theorem 9.3. Applying the triangle inequality, we have, for arbitrary points x and x′

that have nearest in points M ,

‖x − y(x′)‖ 6 ‖x′ − y(x′)‖ + ‖x − x′‖ 6 ‖x′ − y(x)‖ + ‖x − x′‖ 6

6 ‖x − y(x)‖ + ‖x − x′‖ + ‖x − x′‖ = ‖x − y(x)‖ + 2‖x − x′‖,
i.e., if x′ is close to x, then ‖y(x′) − x‖ is close to ‖x − y(x)‖ uniformly in x and x′.
Hence, y(x′) ∈ Z(2‖x − x′‖, x). The space X being uniformly convex, the distance
between y(x) and y(x′) decreases uniformly with decreasing ‖x−x′‖, provided that the
norms are uniformly bounded. ¤
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The spaces Lp, 1 < p < ∞, are uniformly convex, and hence in Lp, 1 < p < ∞, the
metric projection y(x) onto a subspace is uniformly continuous on any closed bounded
subset.

In a Hilbert space we have already pointed out that the metric projection onto
a subspace is uniformly continuous on the whole space.

The following example shows that in C[a, b] the metric projection onto a subspace
may fail to be uniformly continuous (and may even be discontinuous [43]).

Example 10.2. Consider approximation by functions a+ bx = p(x) in C[0, 1]. For any

ε > 0, we built functions f, f̃ ∈ C[0, 1] such that ‖f − f̃‖C 6 ε, but ‖p∗(f)−p∗(f̃)‖> 1.
This means that the metric projection p(f) is not uniformly continuous. An example to
illustrate this situation is constructed with the help of the so-called ‘lightning’ function
(see Fig. 10.6). Here, f̃(ε) = 1 + ε, f̃(−ε) = 1 − ε, f(−1) = f̃(−1) = 0, f(1) = f̃(1) =

0, f(0) = f̃(0) = −1, f(ε) = f(−ε) = 1, f̃(−ε) = 1 − ε, f̃(ε) = 1 + ε are the vertices

of the broken lines given by the graphs of f(x) and f̃(x).

� 1 10� ε ε

1 + ε

1 � ε

1

� 1

f f̃

Fig. 10.6

From the Chebyshev alternation theorem (which will be proved later) it follows that

p∗(f) ≡ 0 is an element of best approximation to f and p∗(f̃) = x is an element of

best approximation to f̃ . In this example we have Chebyshev alternants of the required
length.
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Example 10.3. In C[0, 1] we approximate by rational functions of the form

M =
{ a

b + cx

}

Let us show that in this case the best approximation operator is discontinuous.
Indeed, using the classical Chebyshev’s Equioscillation Theorem (see e.g. [5], [45,

Ch. 7], [37]), for each r > 0 one can construct a continuous function fr for which
(1 + rx)−1 is the rational function of least deviation (as seen from the Chebyshev
alternants at three points) and which is such that fr(x) ⇉ f . We have: the rational
function of best approximation to f is identically zero, while (1+ rx)−1 6⇉ 0 as r → ∞.
The function R(x), which is the limit for the this fraction, is discontinuous on [0, 1]: we
have R(0) = 1, R(x) = 0, 0 < x 6 1.



Lecture 11

Approximative compactness.
Approximation in C

11.1. Continuity of the metric projection

Let X be a metric space, M ⊂ X, and let Y (x) be the set of points of best approx-
imation (metric projection) to a point x ∈ X in the set M . If M is a Chebyshev set
(i.e., for any x its element of best approximation from M exists and is unique) and if,
in addition, M is boundedly compact, then metric projection

x 7→ Y (x) = {y(x)}

is continuous (see the corollary on p. 84).
Let X be a Banach space and M ⊂ X. A subset M of X is called approximatively

compact if, for each x ∈ X, any minimizing sequence {yn} of elements in M (i.e., such
that ‖x−yn‖ → E(x,M)X as n → ∞) contains a subsequence convergent to an element
of M .

If a set M is approximatively compact and if the metric projection Y (x) consists of
one point, then any minimizing sequence {yn} converges to this point. Any approxima-
tively compact set is always closed.

Example 1. The unit sphere S1 = {x : ‖x‖ = 1} of an infinite-dimensional Hilbert
space H is not approximatively compact, while the set M = S1

⋃
{0} is approximatively

compact.

Let us establish some properties of approximatively compact sets.

1. If M is approximatively compact, then Y (x) 6= ∅ for all x ∈ X.

2. For any x ∈ X the metric projection Y (x) of x onto an approximatively compact
set M is always compact, because any sequence from Y (x) is minimizing and,
hence contains a convergent subsequence.

Theorem 11.1 (I. Singer [41], [42, p. 390]). Let M be an approximatively compact

set. Suppose that a point x0 has a unique element of best approximation y(x0). Then

the metric projection Y (x) is continuous at x0 (i.e., yn → y(x0) as n → ∞) for any

sequence {xn} converging to x0 and any point yn nearest to xn).
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Proof. Indeed, suppose that a sequence {xn} converges to x0. Consider an arbitrary
yn ∈ Y (xn). Then {yn} is a minimizing sequence for x0, because we have

‖x0 − yn‖ = ‖x0 − xn + xn − yn‖ 6 ‖x0 − xn‖ + ‖xn − yn‖

= ‖x0 − xn‖ + E(xn,M) → E(x0,M)

as n → ∞. Hence yn → y(x0) as n → ∞. ¤

Corollary. If M is an approximatively compact Chebyshev set, then the metric projec-

tion y(x) onto M is continuous at any point of X.

Remark. It is worth pointing out one more important case when the metric projection
Y (x) is continuous. Let X be a Banach space and M be a hyperplane. There is no loss
of generality in assuming that 0 ∈ M . Suppose we are given a point x0 ∈ X \ M . In
this case, any element x ∈ X is uniquely representable as

x = y + αx0, y ∈ M, α ∈ R.

It follows that Y (x) = y + αY (x0). Hence if some x0 /∈ M has a unique element of best
approximation Y (x0) in M , then any x ∈ X has a unique element of best approximation
Y (x) in M , which depends continuously on x. Here the continuity follows since the
metric projection in this case is linear:

Y (αx1 + βx2) = αY (x1) + βY (x2), ‖Y (x)‖ 6 2‖x‖.

There are examples of trivial Chebyshev sets which are approximatively compact.
Consider, for example, the whole space or a singleton.

Remark. There is a nonreflexive nonseparable infinite-dimensional Banach space which
fails to have a nontrivial Chebyshev subspace (A. L. Garkavi [13], see also [43, § 3.2]).

Problem. Prove or disprove that every separable Banach space of dimension exceed-
ing 1 contains nontrivial Chebyshev subspaces?

In C[0, 1] there are nontrivial Chebyshev subspaces (for example, the subspace of
constant functions). The space L[0, 1] also contains nontrivial Chebyshev subspaces.

Example 2. Consider the space L(0, 1) and equip it with the norm ‖f‖ =
∫ 1

0
|f(t)| dt.

Let

M =
{
ϕ ∈ L(0, 1) : ϕ(t) = 0 ∀ t ∈ [0, 1/2]

}
.

In Fig. 11.1, ϕ∗ is a unique element of best approximation to f ∈ L(0, 1).

Problem. Prove that any finite-dimensional normed linear space contains a nontrivial
Chebyshev hypersubspace.

Remark. Actually much more can be said. Any n-dimensional normed linear space
contains a Chebyshev subspace of any dimension not exceeding n (V. A. Zalgaller [48]).
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1/2 1

Fig. 11.1

11.2. Approximation in the space C2π

Finding an element of best approximation may present some challenge. This there-
fore suggests the problem of evaluating the best approximation E(f,M) (the distance
of f to M). Usually E(f,M) can be bounded from above E(f,M) 6 ‖f −ϕ‖ with some
appropriate function ϕ ∈ M .

We give some examples by considering the subset M = Tn consisting of trigonometric
polynomials of degree at most n in the space C2π of continuous 2π-periodic functions.

1. Let f ∈ C2π and let
∞∑

k=0

Ak(x) be its Fourier series, where

A0(x) =
a0

2
, Ak(x) = ak cos kx + bk sin kx.

The best mean-square approximation is known to be realized by the partial sum
sn of the Fourier series,

∞∑

k=n+1

(a2
k + b2

k) =
1

π

∫ π

−π

(f − sn)2 dx 6
1

π

∫ π

−π

(f − tn)2 dx 6 2‖f − tn‖2
C ,

where tn ∈ Tn is an arbitrary trigonometric polynomial. Hence,

E(f, Tn)C >
1√
2

( ∞∑

k=n+1

a2
k + b2

k

)1/2

.

2. For the de la Vallée Poussin sums σ2n,n(x), we have, by the Lebesgue inequality,

E(f, T2n)C 6 ‖σ2n,n(x) − f‖C 6
2(2n + 1)

2n − n + 1
E(f, Tn)C 6 4E(f, Tn)C .

Hence, if we know approximation of a function by the de la Vallée Poussin sums
(and this is a fairly simple problem, because σ2n,n is a linear operator), then it is
possible to estimate the best approximation from above and below.
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3. For Fourier sums, we have the estimate

‖f − sn‖C 6

{
4

π2
ln n + O(1)

}
E(f, Tn)C .

11.3. Approximation by rational functions

Let Rm,n = Rm,n[a, b] be the set of all algebraic rational functions R(x) =
P (x)/Q(x), deg P 6 m, deg Q 6 n, which are supposed to be defined everywhere
on [a, b].

Given a function f ∈ C[a, b], we approximate it by rational functions R ∈ Rm,n. Let
us evaluate the best approximation

inf
R∈Rm,n

‖f − R‖C = ρm,n(f).

We assume that the fraction is irreducible and that

deg P = m − µ, deg Q = n − ν.

Suppose that R is continuous on [a, b]; i.e., the poles of R do not lie on [a, b]. Let a 6 x1 <
x2 < . . . < xN 6 b and let f(xk)−R(xk) = λk (k = 1, . . . , N). If sign λk ·sign λk+1 = −1,
k = 1, . . . , N − 1 (the signs of λk alternate), then the finite sequence {xk} will be said
to form the de la Vallée Poussin’s alternant of length N for the difference f − R (see
Fig. 11.2 with N = 5).

Theorem 11.2 (de la Vallée Poussin). Suppose that f − R has the de la Vallée

Poussin’s alternant of length N = m+n−min{µ, ν}+2. Then ρ =: ρm,n(f) > min
k

|λk|.

6 �

Fig. 11.2

Proof. Assume, to the contrary, that there exists a rational function r = p/q ∈ Rm,n

such that
‖r − f‖C < min

k
|λk|.

Consider the difference R(x) − r(x) at the points x = xk:

R(xk) − r(xk) = R(xk) − f(xk) + f(xk) − r(xk) = −λk + (f(xk) − r(xk)).
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We clearly have

sign(R(xk) − r(xk)) = sign(R(xk) − f(xk)) = − sign λk.

Let ∆(x) = R(x) − r(x). Then the values of ∆(x) alternate at the points xk. Hence
∆ has at least N − 1 zeros between these points. But

∆(x) = R(x) − r(x) =
P (x)

Q(x)
− p(x)

q(x)
=

Pq − Qp

Qq
,

where deg Pq 6 m − µ + n, deg Qp 6 m + n − ν. Since, by the hypothesis

N − 1 = m + n − min(µ, ν) + 1 > m + n − min(µ, ν),

the number N − 1 of zeros in the denominator exceeds its degree, a contradiction. ¤

11.4. Chebyshev systems

A system (ϕ) of functions ϕ1(x), . . . , ϕn(x) in C[a, b] is called a Chebyshev system

(or a Chebyshev system of order n) on the interval [a, b] if, for any distinct points
x1, x2, . . . , xn ∈ [a, b], the determinant D(x1, . . . , xn) = det(ϕi(xk)) does not vanish.

In particular, for n = 1 the function ϕ1 does not vanish on [a, b]; i.e., it is of constant
sign.

Similarly one can define a Chebyshev system in the space C(K) on an arbitrary
compact set K.

Here are some properties of Chebyshev systems.
1. Chebyshev systems are precisely interpolating systems in the sense that the La-

grange interpolation problem is always uniquely solvable.
We recall that the Lagrange interpolation problem consists in finding, for a given

system of knots {xk} and values {yk}, a polynomial ϕ(x) =
∑n

i=1 aiϕi(x) such that∑n
i=1 aiϕi(xk) = yk, k = 1, . . . , n.
2. Any Chebyshev system on an interval is linearly independent, inasmuch as any

nontrivial polynomial in a Chebyshev system of order n has at most n − 1 zeros.

Exercise. Any Chebyshev system on [a, b] is a fortiori a Chebyshev system on any
proper subinterval of [a, b]. Prove that the converse is not true.

3. The determinant

D(ξ) = D(ξ0, ξ1, . . . , ξn−1) =

∣∣∣∣∣∣∣∣

ϕ1(ξ) ϕ2(ξ) . . . ϕn(ξ)
ϕ1(ξ1) . . . . . . ϕn(ξ1)

. . . . . . . . . . . .
ϕ1(ξn−1) . . . . . . ϕn(ξn−1)

∣∣∣∣∣∣∣∣

is of constant sign on the set M = {ξ : ξ0 < . . . < ξn−1}. This is because the function
D(ξ) is continuous and has no zeros on M and since, for any ξ, ξ′ ∈ M, the n-tuple ξ
can be continuously transformed in the n-tuple ξ′ within M.

4. Given an arbitrary set Σ = {ξi}i=1,...,n−1 ⊂ [a, b], ξ1 < . . . < ξn−1, there exists
a polynomial ϕ in a Chebyshev system on this interval which such that, firstly, its set of
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zeros coincides with Σ, and secondly, ϕ changes sign at the zeros. It suffices to consider
ϕ(x) = AD(x, ξ1, . . . , ξn−1). Let A = 1, σ = signD(ξ), ξ ∈ M, i ∈ {1, . . . , n − 1}, a <
ξi < b, and let x′, x′′ be points sufficiently close to ξi and such that x′ < ξi < x′′. Then
ϕ(x′) = (−1)i−1D(ξ1, . . . , ξi−1, x

′, ξi, . . . , ξn−1). Since (ξ1, . . . , ξi−1, x
′, ξi, . . . , ξn−1) ∈ M,

we have sign ϕ(x′) = (−1)i−1σ. Similarly, sign ϕ(x′′) = (−1)iσ. Hence ϕ changes sign
at xi.

5. There exists a polynomial in a Chebyshev system on [a, b] such that it has constant
sign on this interval (being strictly positive or negative).

In contrast to the case of algebraic polynomials (with respect to the system
1, x, . . . , xn−1), assertion 5) is far from being trivial in the general setting. First,
we build a polynomial P0(x) which is nonnegative on [a, b]. To do so we can take

for P0(x) the uniform limit of the convergent sequence of polynomials ± ϕ(x)
‖ϕ‖C[a,b]

as

ξ = (ξ1, . . . , ξn−1) → (a, a, . . . , a).
With the appropriately chosen sign, the pre-limiting polynomials are all positive on

(ξn−1, b], and hence, P0(x) is nonnegative on [a, b]. Let x1, . . . , xr be the zeros of the
polynomial P0. Then r 6 n − 1. Let xr+1, . . . , xn be arbitrary distinct points different
from x1, . . . , xr. Since (ϕ) is an interpolating system, there exists a polynomial Q with
respect to this system such that Q(x1) = . . . = Q(xn) = 1. Let M = ‖Q‖C[a,b]. We take
ε > 0 so as to have Q(x) > 0 for all i = 1, . . . , n and all x such that |x − xi| < ε.
Consider the set

E = {x ∈ [a, b] : ∃ i = 1, . . . , n − 1 |x − xi| < ε}.

Then δ := minx∈[a,b]\E P0(x) > 0. Let P (x) = P0(x) + δ
2M

Q(x). We claim that P (x) > 0
for all x ∈ [a, b]. If fact, we have P0(x) > 0 and Q(x) > 0 for x ∈ E. If x ∈ [a, b] \ E,
then P0(x) > δ, δ

2M
Q(x) > − δ

2
.

11.5. Approximation of continuous functions by poly-

nomials with respect to a Chebyshev system

Theorem 11.3 (see e.g. [7, Theorem 1.1]). Any nonChebyhsev system (ϕ) consist-

ing of n continuous linearly independent functions generates a nonChebyshev subspace;

i.e., there exists a function f which has at least two polynomials ϕ∗
1 and ϕ∗

2 of best

approximation with respect to this system.

Proof. There exist points x1 < x2 < . . . < xn on [a, b] such that det(ϕi(xk)) = 0;
i.e., the rows and columns of the determinant are linearly dependent. Hence there exist
ci, not all zeros, such that

n∑

i=1

ciϕi(xk) = 0, k = 1, . . . , n, (11.1)

and there exist dk, not all zeros, such that

n∑

k=1

dkϕi(xk) = 0, i = 1, . . . , n. (11.2)



94

Hence, for any polynomial ϕ =
n∑

i=1

aiϕi we have

n∑

k=1

dkϕ(xk) = 0, k = 1, . . . , n. (11.3)

Let the function f be defined as follows: f(xk) = sign dk for k = 1, . . . , n (assuming
that sign 0 = 0), f is linear on the intervals [xk, xk+1] and is constant on the intervals
[a, x1] and [xn, b]. By the construction, ‖f‖C = 1.

From (11.3) it follows that, for any polynomial ϕ, there exists a number k such that
dk 6= 0 and dkϕ(xk) 6 0. Hence ‖f − ϕ‖C > |f(xk) − ϕ(xk)| > 1 = ‖f − 0‖C ; i.e., the
zero function is a polynomial of best approximation in the system (ϕ) for the function f
just constructed.

By (11.1), there exists a polynomial ϕ0(x) 6≡ 0 such that ϕ0(xk) = 0, k = 1, . . . , n.
We set

fε(x) = f(x) · (1 − |εϕ0(x)|),
where ε > 0 is such that ‖εϕ0‖C < 1. For this function we have fε(xk) = sign dk,
‖fε‖C = 1, and now, by the same argument as for f , it follows that the zero function is
its polynomial of best approximation. In addition, for any point x ∈ [a, b], we have

|fε(x) + εϕ0(x)| 6 |f(x)| · (1 − |εϕ0(x)|) + |εϕ0(x)| 6 (1 − |εϕ0(x)|) + |εϕ0(x)| = 1,

and hence −εϕ0 is also a polynomial of best approximation to fε.
Thus, fε has at least two polynomials of best approximation, and hence (ϕ) generates

a non-Chebyshev subspace. ¤

Remark. A similar assertion can also be proved if we replace the interval [a, b] by
an arbitrary compact set K.



Lecture 12

Chebyshev systems. Haar’s theorem

12.1. Chebyshev subspaces of C(K)

We are concerned with approximation of real-valued functions by finite-dimensional
subspaces in the C-metric.

Let f ∈ C[a, b] and let Ln ⊂ C[a, b] be the subspace generated by a system of linearly
independent functions (ϕ) = {ϕ1, . . . , ϕn}. Our purpose is to find a polynomial ϕ∗(f)
of best approximation in the system (ϕ) (i.e., a polynomial that minimizes E(f, Ln)C).
Above we have shown that if (ϕ) is not a Chebyshev system, then there exists an element
C[a, b] for which there are at least two polynomials of best approximation.

Problem. On which compact sets K there are vector-valued Chebyshev systems with
values in R

m?

For m = 1 there is the well-known Mairhuber’s theorem1: the space C(K) on a com-
pact Hausdorff space K contains a Chebyshev subspace of dimension n + 1, n > 1, if
and only if K is homeomorphic to a subset of the unit circle in R

2. Moreover, K can
be homeomorphic to the entire circle if and only if n is even.

Theorem 12.1 (Haar; see e.g. [36], [42, p. 215]). Let K be a compact set. A linearly

independent system (ϕ) generates a Chebyshev subspace in C(K) if and only if (ϕ) is

a Chebyshev system on K.

Proof. The necessity has been addressed in the previous lecture: namely, it was
proved (for K = [a, b]) that if a system is not Chebyshev then there exists a function
having at least two polynomials of best approximation.

Sufficiency. Suppose that (ϕ) = {ϕ1, . . . , ϕn} is a Chebyshev system of function. We
claim that it is a system of uniqueness. The system (ϕ) being linearly independent, the
cardinality of K is at least n. If card K = n, then the span of (ϕ) coincides with C(K),
and hence it is a Chebyshev set.

Let f ∈ C(K) and let ϕ(x) =
∑n

k=1 akϕk(x) (x ∈ K) be an arbitrary polynomial
in a given system of functions. Consider the set of points of maximal deviation of f
from ϕ:

M(f, ϕ) = {x ∈ K : ‖f − ϕ‖C = |f(x) − ϕ(x)|}.
1Also known as the Mairhuber–Curtis theorem (see e.g. [2]).

95
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Since K is compact and since f , ϕ are continuous functions, this set is nonempty.
Now let ϕ∗ be a polynomial of best approximation to f ; i.e., ‖ϕ∗ − f‖ = E(f, Ln)C .

We need the following auxiliary result.

Proposition 12.1. Let f ∈ C(K) and let ϕ∗ be a polynomial of best approximation

to f in a Chebyshev system of order n. Then the set M(f, ϕ∗) cannot be too small,

namely

card M(f, ϕ∗) > n + 1.

Proof. Assume the contrary. Suppose that, for some f and ϕ, we have card M(f, ϕ) 6

n. In particular, f /∈ Ln, En(f, Ln)C > 0. We claim that such a polynomial ϕ is not
a polynomial of best approximation. To do so we need to build a polynomial h ∈ (ϕ)
such that the deviation of f from ϕ + εh is smaller than that from ϕ,

‖f − (ϕ + εh)‖ < ‖f − ϕ‖,
for some ε > 0. Let M(f, ϕ) be composed of the points x1, . . . , xn (the same argument
applies if the number of points {xk} is smaller than n). Since (ϕ) is an interpolating
system, there exists a polynomial h such that, for all xk,

h(xk) = f(xk) − ϕ(xk)(6= 0).

We surround the points xk by neighbourhoods Uk on which the functions h and f − ϕ
are of constant sign. Hence |f − ϕ − εh| < ‖f − ϕ‖ in Uk for small ε > 0. Outside the
union of the Uk, we have |f − ϕ| < ‖f − ϕ‖C , and so |f − ϕ − εh| < ‖f − ϕ‖C for all
sufficiently small ε. ¤

We now return to the proof of Haar’s theorem. Assume, to the contrary, that there
is a function f ∈ C(K) having two polynomials ϕ∗

1 and ϕ∗
2 of best approximation:

‖f − ϕ∗
1‖ = ‖f − ϕ∗

2‖ = E(f, Ln)C = E.

Then, since the set of polynomials of best approximation is convex, we have ‖f−ϕ‖ = E
with ϕ = tϕ∗

1 + (1 − t)ϕ∗
2 for any t ∈ [0, 1]. In particular, for t = 1

2
, the polynomial

ϕ̃ = 1
2
ϕ∗

1 + 1
2
ϕ∗

2 is a polynomial of best approximation, and hence, by Proposition 12.1,
there exist points xk, k = 1, 2, . . . , n + 1, at which

‖f − ϕ̃‖ = |f(xk) − ϕ̃(xk)| = E.

For ϕ∗
1 and ϕ∗

2, we have

|f(xk) − ϕ∗
1(xk)| = E, |f(xk) − ϕ∗

2(xk)| = E

at these points, where the sign of the differences must be the same, i.e.,

f(xk) − ϕ∗
1(xk) = f(xk) − ϕ∗

2(xk) = ±E.

Consequently,

h(xk) = ϕ∗
1(xk) − ϕ∗

2(xk) = (f(xk) − ϕ∗
2(xk)) − (f(xk) − ϕ∗

1(xk)) = 0,

k = 1, . . . , n + 1, for the polynomial h = ϕ∗
1 − ϕ∗

2, which is not identical zero by the
assumption. Hence, a nonzero polynomial in the Chebyshev system has n + 1 zeros,
which cannot be true. Hence, h ≡ 0, a contradiction. ¤
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Remark. The condition card M(f, ϕ∗) > n+1 for a polynomial ϕ∗ of best approxima-
tion is necessary but not sufficient.

Example 3. In C[0, 1] we approximate by constant functions. Let n = 1. Then we have
ϕ∗ = 1

2
for a constant function of best approximation (see Fig. 12.1)

card M(f, ϕ) > n + 1 = 2.

1

1

1/2 ϕ � = 1/2

ϕ

Fig. 12.1

For any constant function ϕ < 1
2

there is a continuum of points of maximal deviation,
and so this function does not deliver the best approximation.

12.2. Chebyshev’s theorem

Let f be a continuous function on [a, b], let (ϕ) be a Chebyshev system, and let
ϕ =

∑n
k=1 akϕk(x) be a polynomial in this system.

Consider the set M = M(f, ϕ) of the points of maximum deviation.
The set M(f, ϕ) is said to have a Chebyshev (n + 1)-point alternant if there exist

points x1, x2, . . . , xn+1 in M such that
1) a 6 x1 < x2 < . . . < xn+1 6 b,
2) the signs of the differences f(xk) − ϕ(xk) alternate (k = 1, 2, . . . , n + 1).

Theorem 12.2 (Chebyshev; see e.g. [8, Ch 3, § 5]). A necessary and sufficient

condition for a polynomial ϕ in a Chebyshev system of order n on a closed interval to

be a polynomial of least deviation from f is that the set of points of maximal deviation

M(f, ϕ) contains an alternant consisting of at least n + 1 points.

Proof. Necessity. Assume that M(f, ϕ) does not contain an (n + 1)-point alternant.
We claim that then there exists a polynomial with smaller deviation.
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Let M(f, ϕ) = M+

⋃
M−, where

M+ = {x ∈ M(f, ϕ) : f(x) − ϕ(x) > 0}, M− = {x ∈ M(f, ϕ) : f(x) − ϕ(x) < 0}.

We can also assume that M+ 6= ∅ and M− 6= ∅, for otherwise there exists a polynomial
ϕ(x) − εP+(x) with smaller deviation, where P+(x) > 0 on [a, b], ε > 0 for M+ 6= ∅,
ε < 0 for M− 6= ∅, and |ε| is a sufficiently small number. That a polynomial P+(x) in
a Chebyshev system exists was proved earlier. Let η1 = min{x : x ∈ M(f, ϕ)}. There is
no loss of generality in assuming that η1 ∈ M+. We set

η2 = min{x > η1 : x ∈ M−}, η3 = min{x > η2 : x ∈ M+},

and so on. This gives a system of points η1 < . . . < ηk; by the assumption, we have
1 < k 6 n. Further, let

ζ1 = max{x ∈ M+ : x < η2}, ζ2 = max{x ∈ M− : x < η3}, . . . ,

ζk = max{x ∈ M} (ζk > ηk).

Finally, consider an arbitrary point ξi ∈ (ζi, ηi+1), i = 1, . . . , k − 1. Surround the
intervals [ηi, ζi], i = 1, . . . , k, by intervals (ai, bi) not containing the points ξi (see
Fig. 12.2). In the case η1 = a and/or ζk = b, we take the intervals [a, b1) and (ak, b]
instead of (a1, b1) and (ak, bk). By the above, if k = n, then there exists a polynomial
h(x) = ±D(x; ξ1, . . . , ξn−1), which changes sign at the points ξ1, . . . , ξn−1.

( � 1 �2

)
�1

(
� 2 = �2

)
�2

(
� 3 = �3

)
�3

( � 4 �4
)

Fig. 12.2

By choosing the sign in the formula for h(x) appropriately, one may assume that
h(x) > 0 on the intervals (a2i−1, b2i−1) and that h(x) < 0 on the intervals (a2i, b2i). If
k < n, then we put the missing distinct points of {ξi}n−1

i=k on the interval (ξ1, a2) in
case there are an even number of them, and take ξn−1 = a for a < η1 or ξn−1 = b
for ζk < b if n − k is odd; we accommodate the remaining points of {ξi}n−2

i=k on the
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f � ϕ

f � ϕ1

Fig. 12.3

interval (ξ1, a2). Clearly, the polynomial h(x) constructed from these points preserves
the property sign h(x) = sign(f(x) − ϕ(x)) for x ∈ (ai, bi)

⋂
M , (i = 1, 2, . . . , k), which

was already proved for k = n.

It remains to construct the same polynomial in the remaining case, when n − k is
odd and η1 = a, ζk = b. In this case, on the already chosen points {ξk}n−2

k=1 we build two
polynomials ha(x) and hb(x), which vanish at these points and at the points x = a and
x = b, respectively. Taking h = ha + hb we again obtain a polynomial with the required
properties. Proceeding precisely as in the last part of the proof of Proposition 12.1, it
follows that ‖f − ϕ − εh‖ < ‖f − ϕ‖ for small ε > 0.

Sufficiency. Assume there is an (n + 1)-point alternant. We claim that in this case
ϕ is a polynomial of least deviation from the function f . Assume the contrary. Then
there exists another polynomial ϕ1 of smaller deviation to f . Then the difference ϕ1−ϕ
alternates at the points of alternant (see Fig. 12.3). Hence ϕ1 −ϕ has n zeros, which is
impossible. ¤

Remark. In case when a Chebyshev system is made up of polynomials of degree 6 n,
a necessary and sufficient condition that a polynomial pn be a polynomial of least
deviation to a function f if that M(f, pn) should contain an (n + 2)-point alternant.

12.3. De la Vallée Poussin’s alternant

Let (ϕ) = {ϕk(x)}n
k=1 be a Chebyshev system of continuous functions on the interval

[a, b], let f ∈ C[a, b], and let F ⊂ [a, b]. We set

E(f, (ϕ), F ) = inf ‖f − ϕ‖C(F ),

where the infimum is taken over polynomials ϕ in the system (ϕ). It is worth noting
that Chebyshev’s theorem is also valid for the restriction of f to a set F containing at
least n + 1 points, namely: a necessary and sufficient condition that a polynomial ϕ be

a polynomial of best approximation to f on F is that the difference f − ϕ have an at

least (n + 1)-point Chebyshev alternant on this set.
Further let F = Fn+1 be an (n + 1)-point de la Vallée Poussin’s alternant; i.e., Fn+1

is a finite subsequence {xk} of [a, b], x1 < . . . < xn+1, which is such that

f(xk) − ϕF (xk) = (−1)kσλk
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for some polynomial ϕF , where σ ∈ {1,−1}, λk > 0, k = 1, . . . , n + 1.
Let us consider the deviation of the polynomial from a function f defined on such

a set Fn+1 ⊂ [a, b]. We clearly have

E(f, (ϕ), [a, b]) > E(f, (ϕ), Fn+1).

Since ϕF is a polynomial in the system (ϕ), it may be assumed that on Fn+1 we
approximate the function f , f(xk) = (−1)kλk. Having this in mind, we shall try to
calculate E(f, (ϕ), Fk+1) explicitly.

Taking ϕ(x) =
∑n

i=1 aiϕi(x), we require that

f(xk) − ϕ(xk) = (−1)kρ, k = 1, . . . , n + 1

on Fn+1. This is a linear system of equations in the coefficients ai, i = 1, . . . , n, and in
the unknown deviation ρ; so we have n + 1 equations with n + 1 unknowns:

(−1)kλk = (−1)kρ +
n∑

i=1

aiϕi(xk).

Let us find ρ. The determinant of this system∣∣∣∣∣∣∣∣∣

−1 ϕ1(x1) . . . ϕn(x1)
1 . . . . . . . . .
...

(−1)n+1 ϕ1(xn+1) . . . ϕn(xn+1)

∣∣∣∣∣∣∣∣∣

= −
n+1∑

k=1

D(x1, . . . , xk−1, xk+1, . . . , xn+1)

does not vanish, since we assume that x1 < x2 < . . . < xn+1, and hence all the determi-
nants under the summation sign must have the same sign. Indeed, one can transform
from one determinant to another by changing the system of knots {xk} continuously,
the determinant being nonzero. The deviation E(f, (ϕ), Fn+1) = ρ is given by

ρ =
n+1∑

k=1

λkD(x1, . . . , xk−1, xk+1, . . . , xn+1)
/ n+1∑

k=1

D(x1, . . . , xk−1, xk+1, . . . , xn+1).

Changing if necessary the sign of the numerator and denominator, it is found that ρ is
some average of the numbers λk with positive weights. Hence, we have the following
estimate for the de la Vallée Poussin’s alternant Fn+1:

E(f, (ϕ), [a, b]) > ρ > min
k

λk,

where λk = |f(xk) − ϕF (xk)|, xk ∈ Fn+1, k = 1, 2, . . . , n.

Theorem 12.3 (decomposition theorem). We have

E(f, (ϕ), [a, b]) = sup
Fn+1

E(f, (ϕ), Fn+1) = E(f, (ϕ), F ∗
n+1),

where F ∗
n+1 is a Chebyshev alternant for the function f on [a, b].

Proof. Clearly, the first term is majorized by the second term. We prove the converse
inequality. As Fn+1 we take F ∗

n+1 = {x∗
1, . . . , x

∗
n+1}, which is a Chebyshev alternant

for the polynomial of best approximation on the whole interval. Then the function
cannot be better approximated on this set than on the entire interval, because by
Chebyshev’s Equioscillation Theorem theorem the polynomials of best approximation
coincide on [a, b] and on F ∗

n+1, whence the theorem. ¤



Lecture 13

Uniqueness theorems

13.1. Chebyshev rank of a subspace

Let M be a finite-dimensional subspace of a Banach space X and x ∈ X. As before,
Y (x) is the set of elements of best approximation in M to x. This is a closed convex
set.

Given a fixed y0 ∈ Y (x), consider the set {y − y0}, y ∈ Y (x) (the metric projection
onto Y ). The number r(x) of linearly independent elements of the set {y−y0}, y ∈ Y (x),
is called the dimension of the set of elements of best approximation. It is clear that

0 6 r(x) 6 n = dim M.

For Chebyshev subspaces, r(x) = 0 for any x ∈ X. This is a characterizing property of
Chebyshev subspaces.

Consider the following numerical characteristics of a given subspace M :

sup
x∈X

r(x) = max
x∈X

r(x) = R(M).

Clearly, 0 6 R(M) 6 n. The number R(M) is called the Chebyshev rank of the sub-
space M . For Chebyshev subspaces, we have R(M) = 0.

The infimum infx∈X r(x) is always zero (and is attained on x ∈ M), and so there is
no need to consider this characteristic of a subspace.

It turns out that C[a, b] admits subspaces of any Chebyshev rank.
In L[a, b] we encounter a different situation. In 1964, A. L. Garkavi proved that

in a nonatomic Lµ[a, b] the rank of any finite-dimensional subspace coincides with its
dimension.

Sometimes it is also advantageous to study the Chebyshev rank of a subspace M
of X not with respect to the whole space X, but relative to some subset M of X; in
general, M is not a subspace.

The quantity

sup
x∈M

r(x) = R(M,M)X 6 R(M)X

is called the Chebyshev rank of a subspace M with respect to the subset M of the
space X.
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In the classical spaces C and L, one can construct M and M such that

R(M,M)X < R(M,X).

For example, if in L[a, b] we take M = C[a, b], then there are finite-dimensional Cheby-
shev subspaces with respect to M (Jackson’s theorem, to be proved).

13.2. Periodic case

Let C2π be the space of 2π-periodic continuous functions. However, in this setting,
the algebraic polynomials are not good at all for the purpose of approximation. Instead
one may speak about approximating such functions by trigonometric polynomials of
order n:

tn(x) = a0 +
n∑

k=0

(ak cos kx + bk sin kx).

When counting zeros correctly (on [0, 2π)), this is a Chebyshev subspace of order 2n+1,
and an analogue of Chebyshev’s theorem is valid: a trigonometric polynomial of order n
is a polynomial of best approximation to a given function if and only if there is a (2n+2)-
point Chebyshev alternant for its deviation with the function 2n+2 (on any semi-interval
of the form [α, α + 2π); existence of an alternant is independent of the choice of α).

13.3. Lacunary trigonometric series

The results in this subsection are given without proofs.
Suppose we are given two series

a0 +
∞∑

k=1

(ank
cos nkx + bnk

sin nkx). (13.1)

We assume that 1 6 n1 < n2 < . . . < nk < . . .. Lacunary trigonometric series are series
in which the terms that differ from zero are ‘sufficiently sparse’.

Hadamard lacunary series: there exists λ > 1 such that

nk+1/nk > λ > 1 ∀ k,

i.e., nk increase at least as rapidly as a geometric progression with ratio λ > 1:

nk+1 > λnk, nk > λk−1n1 > λk−1.

Lacunary trigonometric series have a number of properties not shared by standard
trigonometric series.

Let f ∈ C2π. Suppose that its Fourier series has form (13.1) and is lacunary in

the sense of Hadamard, nk+1/nk > λ > 1. Then it converges uniformly (and even

absolutely) to f (A. N. Kolmogorov, 1924 and S. Sidon, 1927, respectively).



103

Suppose that ρk =
√

a2
nk

+ b2
nk

. If f is a continuous function with the Fourier se-
ries (13.1), then

∞∑

k=0

ρk 6 C(λ)‖f‖C

and, if λ > 1 is fixed, then

‖f‖C ≍
∞∑

k=0

ρk. (13.2)

Exercise. Consider, for f in question, the symmetric difference operator with step 2h

∆hf(x) = f(x + h) − f(x − h) = 2
∞∑

k=1

sin nkh(−ank
sin nkx + bnk

cos nkx).

Apply (13.2) to estimate the norm ‖∆hf‖C and the modulus of continuity ω(f, δ) =
sup|h|6δ ‖∆hf‖C in terms of the Fourier coefficients of f .

13.4. Best approximation of functions representable

by lacunary series

Consider the Weierstrass series
∞∑

k=1

ak cos bkx,

where b ∈ N, b > 1, 0 < a < 1. With appropriate a and b this series is converges
uniformly and absolutely to the Weierstrass function f ∈ C2π, which is nowhere differ-
entiable.

Theorem 13.1 (S. N. Bernstein). If b is odd, then, for any n,

sn(x) =
∑

k: bk6n

ak cos bkx

is a trigonometric polynomial that best approximates f in the uniform norm among all

polynomials of degree at most n.

Proof. We have f(x)−sn(x) =
∑

bk>n

ak cos bkx. For x = 0 this function has a maximum

‖f − sn‖ =
∑

bk>n

ak =
∞∑

k=k0

ak, (13.3)

where bk0 > n > bk0−1. Let us find how many times the maximum is attained. For
bk > n, each of the functions ak cos bkx has period 2π

bk0
. At the point x = π

bk0
, they all

equal to −1 (b is odd), and hence,

f
( π

bk0

)
− sn

( π

bk0

)
= −‖f − sn‖.

Thus, on [0, 2π) the difference f − sn has Chebyshev alternant of cardinality 2bk0 >

2n + 2. Hence, sn is a polynomial of least deviation from f . ¤



104

Remark. For the sine series, we have

f(x) − sn(x) =
∑

bk>n

ak sin bkx

and so formula (13.3) fails. If we add π/bk0 to x, then the sine terms will all change
signs, and even though formula (13.3) does not hold, we still have a 2bk0-point Chebyshev
alternant on [0, 2π), and so the theorem also remains valid in this case.

Theorem 13.2 (S. B. Stechkin). Suppose that a function f ∈ C2π is expandable in

a lacunary Fourier series (13.1), nk+1

nk
> λ > 1. Then En(f)C ≍ ∑

nk>n

ρk; more precisely,

C(λ)
∑

nk>n

ρk 6 En(f)C 6 C1(λ)
∑

nk>n

ρk,

where the numbers C(λ), C1(λ) depend only on λ, 0 < C(λ) 6 C1(λ) < ∞.

Proof. Let us note one property of the Fourier coefficients. Since cos kx is orthogonal
to any trigonometric polynomial tn of order n, n < k, we have

ak =
1

π

∫ 2π

0

f(x) cos kx dx =
1

π

∫ 2π

0

{f − t∗n} cos kx dx,

where t∗n is the polynomial of least deviation from f in the uniform norm. Hence

|ak| 6 En(f)C · 4

π
, k > n.

Similarly, for bk, we have

|bk| 6 En(f)C · 4

π
, k > n.

We also note that if
∑

Ank
is a lacunary series with λ > 1, then between n and 2n

there are a limited number of terms which depend only on λ (or order ln 2/ ln λ).
Consider the difference f − σ2n,n, where σ2n,n = 1

n+1

∑2n
k=n sk are de la Vallée

Poussin’s sums (see Lecture 6). We already know that ‖f − σ2n,n‖ 6 4En(f)C . Let
us find out by how much the de la Vallée Poussin’s sum sn differs for any series with
terms Ak(x). We have (see Fig. 13.1).

1

n 2n + 1

�
(n)
k

Fig. 13.1
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σ2n,n − sn =
1

n

2n∑

k=n+1

sk − sn =
2n∑

k=0

λ
(n)
k Ak(x) −

n∑

k=0

Ak(x) =
2n∑

k=n+1

λ
(n)
k Ak(x),

hence, as in the sum
2n∑

k=n+1

for a lacunary series, the number of terms depends only

on λ,

|σ2n,n − sn| 6

2n∑

k=n+1

|Ak(x)| 6 C(λ)En(f)C .

Hence,

En(f)C 6 ‖f − sn‖ 6 ‖f − σ2n,n‖ + ‖σ2n,n − sn‖ 6 C1(λ)En(f)C ;

and so, for lacunary series, if λ > 1, then we have ‖f − sn‖ ≍ En(f)C .
Applying Sidon’s theorem and inequality (13.2) to f−sn, this establishes the relation

En(f)C ≍ ∑
nk>n

ρk, which holds for any function having a lacunary Fourier series with

λ > 1. ¤

Example 4. A function, for which the Fourier sums give the best order of approxima-
tion, can be constructed in the following way:

f =
∞∑

n=1

an cos nx,

∣∣∣∣
an+1

an

∣∣∣∣ < q < 1.

We have

‖σ2n,n − sn‖ 6

2n∑

k=n+1

|ak| 6 C(q)|an+1| 6 C(q)En(f)C .

Since ‖f − σ2n,n‖ 6 4En(f)C , it follows that

‖f − sn‖ 6 ‖f − σ2n,n‖ + ‖σ2n,n − sn‖ 6 4En(f)C + C(q)En(f)C = C1(q)En(f)C .

Remark. For multivariate functions this problem is very difficult.

13.5. Approximation of function by finite-dimensional

subspaces in L[a, b]

Let L = L[a, b] be the space of Lebesgue integrable functions on [a, b].
We already know that the one-dimensional subspace consisting of constant functions

is not a Chebyshev subspace in L (see the example on p. 81).

Exercise. Prove that in L[a, b] there are no finite-dimensional Chebyshev subspaces
(except the trivial ones); see e.g. [12], [16].

The space C[a, b] of continuous functions on [a, b] is a dense linear manifold in L.
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Theorem 13.3 (D. Jackson, see e.g. [47, p. 38]). Let (ϕ) = {ϕ1, ϕ2, . . . , ϕn} be

a Chebyshev system of continuous functions [a, b], and let Ln be the linear hull of (ϕ).
Then the polynomial ϕ∗ ∈ Ln of best approximation in the L-norm is unique for any

function f ∈ C[a, b], ‖f − ϕ∗‖L = E(f, Ln)L.

We first need several auxiliary results.

Lemma 13.1. If ψ1, ψ2 are polynomials of best approximation for a function f ∈ C[a, b]
in the space L[a, b], then (f(x) − ψ1(x))(f(x) − ψ2(x)) > 0 for any point x ∈ [a, b].

Proof. Let ψ1 and ψ2 be polynomials of least deviation from f . Then ψ = (ψ1+ψ2)/2
is also a polynomial of least deviation form f , and so

∫ b

a

|f − ψ| dt =
1

2

{∫ b

a

|f − ψ1| dt +

∫ b

a

|f − ψ2| dt
}

,

hence, ∫ b

a

|f − ψ1 + f − ψ2| dt =

∫ b

a

|f − ψ1| dt +

∫ b

a

|f − ψ2| dt.

For continuous functions the last equality is satisfied if and only if the differences f −ψ1

and f − ψ2 have the same signs. ¤

Lemma 13.2. Let ψ1, ψ2 be distinct polynomials of least deviation for f ∈ C[a, b]
in L[a, b] with respect to a Chebyshev system (ϕ). Also let α ∈ (0, 1), ϕα(t) = αψ1(t) +
(1 − α)ψ2(t). Then the difference f − ψα has at most (n − 1) zeros.

Proof. Let f(t)−ϕα(t) = 0. By Lemma 13.1, f(t)−ψ1(t) = f(t)−ψ2(t) = 0. Hence
any zero of the function f − ϕα is also a zero of ψ1 − ψ2. But the last function has at
most (n − 1), because (ϕ) is a Chebyshev system. ¤

Lemma 13.3. Let (ϕ) = {ϕ1, ϕ2, . . . , ϕn} be a Chebyshev system on [a, b]. Let ϕ(t) =∑n
k=1 akϕk(t) be polynomials in this system such that ‖ϕ‖L =

∫ b

a
|ϕ(t)| dt = D for some

D. Then, for any measurable subset E of [a, b],

J(E) =

∫

E

|ϕ(t)| dt 6 KD mes E,

where K depends only on (ϕ).

Proof. Since
∫ b

a
|ϕ(t)| dt is a continuous function of ak, k = 1, . . . , n, it attains its

minimum on the sphere
∑n

k=1 a2
k = 1. But this minimum cannot be zero, because (ϕ) is

a Chebyshev system. Hence,
∫ b

a

|ϕ(t)| dt > C > 0 ∀ (a1, . . . , an) :
∑

a2
k = 1.

Now if l =
(∑n

k=1 a2
k

)1/2 6= 0 and if
∫ b

a
|ϕ(t)| dt = D, it follows that

∫ b

a
|ϕ(t)|

l
dt > C > 0;

i.e., D =
∫ b

a
|ϕ(t)| dt > Cl. Hence |ak| 6 l 6 D

C
. Using this bound, we have

∫

E

|ϕ(t)| dt 6

n∑

k=1

|ak|
∫

E

|ϕk(t)| dt 6 KD mes E,

where K is some constant depending only on ϕ1, ϕ2, . . . , ϕn. ¤
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Proof of Jackson’s theorem. It is required to show that if f ∈ C[a, b] and if
{ϕ1(t), . . . , ϕn(t)} is a Chebyshev system, then the polynomial ϕ(t) =

∑n
k=1 akϕk(t)

of least L-deviation from f is unique.
By Lemma 13.2, if R(t) = f(t) − ϕ(t) has at least n changes of sign, then ϕ is

a unique polynomial of least deviation from f .
We assume that there exist two polynomials ψ1 and ψ2 of least deviation from f .

Let R(t) = f(t) − ϕα(t), where ϕα(t) is an arbitrary polynomial of the form

ϕα(t) = αψ1(t) + (1 − α)ψ2(t), α ∈ [0, 1].

We claim that the difference R(t) vanishes on a set of positive measure, which is inde-
pendent of α. This will give us a contradiction with Lemma 13.2.

We renumber the points of sign change of the difference R(t) as follows:

a < t1 < . . . < tq < b, q 6 n − 1.

If necessary, we enlarge this family to n − 1 points on [b − δ, b], where b − δ > tq:

t1 < . . . < tq < tq+1 < . . . < tn−1 < b.

Since (ϕ) is a Chebyshev system, we have, by what was proved in Section 13.4, that
there exists a polynomial F (t) in this system vanishing exactly at those n − 1 points,
at which it changes sign. It may be assumed that ‖F‖C = 1. This can be achieved by

taking F (t) = F̃ (t)/‖F̃‖C or F (t) = −F̃ (t)/‖F̃‖C , where

F̃ (t) =

∣∣∣∣∣∣∣∣

ϕ1(t) . . . ϕn(t)
ϕ1(t1) . . . ϕn(t1)

. . . . . . . . .
ϕ1(tn−1) . . . ϕn(tn−1)

∣∣∣∣∣∣∣∣
.

The sign of F (t) is chosen so as to have sign F (t) = sign R(t) on [a, b− δ] (see Fig. 13.2)

a bt1 tq

b � �

F (t)

R(t)

F (t)

R(t)

Fig. 13.2
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Consider the difference R(t) − εF (t), ε > 0, and define three sets on [a, b]:

r : |R(t)| > ε, sign R = sign F,

s : |R(t)| 6 ε, sign R = sign F,

u : sign R(t) 6= sign F.

By the construction of F , we have u ⊂ [b − δ, b] and R(t) − εF (t) = f(t) − ϕ̃(t), where
ϕ̃ is some polynomial in the system (ϕ). Hence,

∫ b

a

|R(t) − εF (t)| dt >

∫ b

a

|R(t)| dt,

inasmuch as
∫ b

a
|R(t)| dt = E(f, (ϕ))L. We further have

∫

r

|R(t) − εF (t)| dt =

∫

r

|R(t)| dt − ε

∫

r

|F (t)| dt,

because sign R(t) = sign F (t) and |R(t)| > ε, |F (t)| 6 1 for t ∈ r; also,
∫

s

|R(t) − εF (t)| dt 6

∫

s

|R(t)| dt + ε

∫

s

|F (t)| dt.

It follows that
∫ b

a

|R(t)| dt 6

∫ b

a

|R(t) − εF (t)| dt =

∫

r

+

∫

s

+

∫

u

6

∫

r

|R(t)| dt − ε

∫

r

|F (t)| dt +

∫

s

|R(t)| dt + ε

∫

s

|F (t)| dt +

∫

u

|R(t)| dt + ε

∫

u

|F (t)| dt

=

∫ b

a

|R(t)| dt − ε

∫

r

|F (t)| dt + ε

∫

s∪u

|F (t)| dt,

and so, ∫

r

|F (t)| dt 6

∫

s∪u

|F (t)| dt.

Adding
∫

s∪u
|F (t)| dt to the both sides of this inequality and using Lemma 13.3, this

gives

D =

∫ b

a

|F (t)| dt 6 2

∫

s∪u

|F (t)| dt 6 2KD mes(s ∪ u), K = K
(
(ϕ)

)
.

Hence mes(s∪u) > c > 0, where c is independent of D. Taking δ < c/2, it is found that
mes s > c/2 > 0, but for ε → 0 the set s converges to the set on which the difference
R(t) = 0. Hence, for any α ∈ [0, 1], the difference Rα = f(t)−ϕα(t) vanishes on the set
sα, mes sα > c/2 > 0. But this contradicts Lemma 13.2. ¤

Exercise. Where in the course of the proof we used continuity of the functions ϕk

and f?

Remark. The measure in the proof of the theorem was the Lebesgue measure. Note
that the argument just given does not work for arbitrary measures.



Lecture 14

Jackson’s theorem

14.1. Approximation in L2(a, b)

Throughout this lecture we assume that X = L2
2π and that En(x)L2 is the best

approximation in L2
2π of a function x ∈ L2

2π by the subspace Tn (of dimension 2n + 1)
of all trigonometric polynomials tn with respect to the system

1, cos t, sin t, cos 2t, sin 2t, . . . .

This is a complete system in L2
2π. This means

∀ x ∈ L2
2π : En(x) −→ 0 (n → ∞).

Given a fucntion x ∈ L2
2π, consider its Fourier series

x(t) ∼ a0

2
+

∞∑

k=1

(ak cos kt + bk sin kt).

We set

sn(t) =
a0

2
+

n∑

k=1

(ak cos kt + bk sin kt).

By Parseval’s formula,

E2
n(x)L2 = ‖x(t) − sn(t)‖2

L2 =
∞∑

k=n+1

(a2
k + b2

k).

14.2. Bernstein’s inequality

Given any trigonometric polynomial of degree n, we have (see e.g. [21, Ch. 3])

‖t′n‖L2 6 n‖tn‖L2 .

Indeed,

‖t′n‖2
L2 =

n∑

k=1

k2(a2
k + b2

k) 6 n2
(a2

0

2
+

n∑

k=1

(a2
k + b2

k)
)

= n2‖tn‖2
L2 .
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14.3. Moduli of oscillation and continuity

We set ∆hx(t) = x(t + h
2
) − x(t − h

2
). Then the quantity

‖∆hx‖L2 = κ(h, x)

is called the modulus of oscillation of a function x with step h (in L2
2π), and the quantity

sup
|h|6δ

κ(h, x) = ω(δ, x)L2

is called the modulus of continuity of x (in L2
2π).

Remark. The modulus of continuity may cannot decrease too rapidly. If κ(h, x) = o(h)
as h → 0; i.e., ‖∆hx/h‖L2 → 0 as h → 0, then its L2-derivative vanishes almost
everywhere, and so x = const .

We set
∆k

hx(t) = ∆k−1
h (∆hx(t)),

∥∥∆k
hx

∥∥
L2 = κk(h, x).

Then the quantity
sup
|h|6δ

κk(h, x) = ωk(δ, x)L2

is called the modulus of continuity of order k.

14.4. Jackson’s theorem in L2
2π

Theorem 14.1 (Jackson’s inequality; see [45, Part II, § 9], [47]). Let x ∈ L2
2π.

Then

1) En(x)L2 6 Cω
(

π
n
, x

)
L2 ;

2) En(x)L2 6 Ckωk

(
π
n
, x

)
L2, k ∈ N;

where C, Ck are absolute constants.

Proof. We have

E2
n(x)L2 =

∞∑

k=n+1

(a2
k + b2

k), ∆hx(t) ∼
∞∑

k=1

(
2 sin

kh

2

)
(−ak sin kt + bk cos kt),

and hence

κ
2(h, x) = 4

∞∑

k=1

sin2 k
h

2
(a2

k + b2
k).

But
1

δn

∫ δn

0

sin2 k
h

2
dh > c > 0 k > n, δn =

π

n
,

and so
1

δn

∫ δn

0

∞∑

k=1

sin2 k
h

2
(a2

k + b2
k) dh > c

∞∑

k=n+1

(a2
k + b2

k).
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As a result,
∞∑

k=n+1

(a2
k + b2

k) 6 c1
1

δn

∫ δn

0

∞∑

k=1

sin2 k
h

2
(a2

k + b2
k) dh

= c2
1

δn

∫ δn

0

κ
2(h, x) dh 6 c2ω(δn, x)L2 . ¤

The proof of the second assertion of Theorem 14.1 follows the same lines, because

∆k
hx(t) ∼

∞∑

l=1

(
2 sin

lh

2

)k(
al cos

(
lx +

kπ

2

)
+ bl sin

(
lx +

kπ

2

))
.

Corollary. Let x be an absolutely continuous function with the derivative in L2
2π. Then

∥∥∥
∆hx(t)

h

∥∥∥
L2

6 K

and hence En(x) = O(n−1), because κ(h, x) 6 Kh. Therefore ω(δ, x)L2 6 Kδ.

14.5. Converse theorem

Theorem 14.2. For any n ∈ N and any function x ∈ L2
2π

ω2
(π

n
, x

)
L2

6
C

n2

n∑

k=1

kE2
k−1(x)L2 ,

where C = 2π2.

Proof. We split ‖∆hx‖2 into two sums

‖∆hx(t)‖2
L2 =

n−1∑

k=1

(
2 sin

kh

2

)2

(a2
k + b2

k) +
∞∑

k=n

(
2 sin

kh

2

)2

(a2
k + b2

k) = I1 + I2,

and evaluate these sums using the inequalities | sin x| 6 |x|, | sin x| 6 1, x ∈ R. We have

I1 6 h2

n−1∑

k=1

k2(a2
k + b2

k), I2 6 4
∞∑

k=n

(a2
k + b2

k),

and hence, for

ω2
(π

n
, x

)
L2

= sup
|h|6π

n

‖∆hx‖2
L2

we have

ω2
(π

n
, x

)
L2

6
π2

n2

n−1∑

k=1

k2(a2
k + b2

k) + 4E2
n−1(x).
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Applying the Abel transform, this gives

n−1∑

k=1

k2(a2
k + b2

k) 6

n−1∑

k=1

(2k − 1)E2
k−1(x)−(n − 1)2E2

n−1(x).

Therefore,

ω2
(π

n
, x

)
L2

6
π2

n2

n−1∑

k=1

(2k − 1)E2
k−1(x)−π2

n2
(n − 1)2E2

n−1(x) + 4E2
n−1(x),

whence the result of Theorem 14.2 is apparent. ¤



Lecture 15

Differentiability and approximation
in L2

15.1. Proof of the second Jackson’s theorem in L2

Let f ∈ L2
2π, f(t) = a0/2+

∑∞
k=1(ak cos kt+bk sin kt), where the equality sign means

that the left- and right-hand sides coincide as elements of L2
2π (here the series converges

in L2
2π and its sum lies in L2

2π).

We proceed to give a definition of the derivative that takes into account the structure
of L2

2π. Clearly,

∆hf

h
∈ L2

2π, h > 0,

∆hf(t)

h
=

∞∑

k=1

2 sin kh/2

h
(−ak sin kt + bk cos kt).

If there exists a function ϕ ∈ L2
2π such that

lim
L2

h→0

∆hf

h
= ϕ,

i.e., if
∥∥∥

∆hf

h
− ϕ

∥∥∥
L2

→ 0 (h → 0),

then f will be said to be L2-differentiable with the derivative ϕ, which will be also
denoted by f ′ (f ′ = ϕ). We note that if a function f ∈ L2

2π is absolutely continuous,
then the ordinary derivative, which exists almost everywhere, can be taken for the
L2-derivative f ′, provided it is square integrable.

If the L2-derivative f ′ exists, then term-by-term differentiations of the series for the
function f is justified, because ak(ϕ) = lim

h→0
ak(∆hf/h) = kbk, and similarly, bk(ϕ) =

−kak, since the Fourier series for ϕ can be obtained by formally differentiating the
Fourier series for f under the summation sign.
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Similarly to f ′, we define the L2-derivatives of the second and other orders. So, if
there exists the L2-derivative f (r), then we have in L2

2π

f (r)(t) =
∞∑

k=1

kr
{

ak cos
(
kt +

rπ

2

)
+ bk sin

(
kt +

rπ

2

)}
,

∥∥f (r)
∥∥2

L2
2π

=
∞∑

k=1

k2r(a2
k + b2

k) =
∞∑

k=1

k2rρ2
k, ρ2

k = a2
k + b2

k.

Consider the difference

f(t) − sn(t, f) =
∞∑

k=n+1

Ak(t), Ak(t) = Ak(t, f) = ak cos kt + bk sin kt.

We have

E2
n(f)L2 = ‖f − sn‖2

L2
2π

=
∞∑

k=n+1

ρ2
k,

E2
n(f (r))L2

2π
=

∞∑

k=n+1

k2rρ2
k > (n + 1)2r

∞∑

k=n+1

ρ2
k = (n + 1)2rE2

n(f)L2
2π

,

that is,

En(f)L2
2π

6
1

(n + 1)r
En(f (r))L2

2π
(15.1)

or

‖f − sn‖L2
2π

6
1

(n + 1)r
‖f (r) − s(r)

n ‖L2
2π

.

We rewrite the last inequality in a different form, taking into account that

{ϕ ⊥ tn ∀ tn ∈ τn} ⇐⇒ sn(ϕ) ≡ 0.

Hence, if ϕ ⊥ tn, we have the following inequality (known as the Favard or Bohr–Favard
inequality)

‖ϕ‖L2 6
1

(n + 1)r
‖ϕ(r)‖L2 ; (15.2)

in other words, if the spectrum of a function lies sufficiently far from zero, then the L2
2π-

norm of the function is sufficiently small compared with the L2-norm of the derivative.

Remark. In other metrics, where the best approximation is normally not delivered by
Fourier sums, inequalities (15.1) and (15.2) are not related.

We have earlier proved Bernstein’s inequality, from which it follows that

‖t(r)n ‖L2 6 nr‖tn‖L2 ; (15.3)

i.e., inequality (15.3) holds for the functions whose spectrum is separated from the
infinity.
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Inequality (15.3) becomes equality if and only if

tn(t) = An(t) = an cos nt + bn sin nt;

also, the Bohr–Favard’s inequality becomes equality if and only if ϕ = An+1(t).
When speaking about derivatives f (r) of order r, we shall assume for the remainder

of this lecture, that they are taken in the L2-sense or assume that f (r−1) is absolutely
continuous and f (r) ∈ L2

2π.
By Jackson’s inequality,

En(f (r))L2 6 Cω
(π

n
, f (r)

)
L2

.

This establishes the second Jackson’s inequality, which gives an estimate of the best
approximation for an r times differentiable function:

En(f)L2 6
C

(n + 1)r
ω
(π

n
, f (r)

)
L2

.

Using the bound

En(f (r))L2 6 Ckωk

(π

n
, f (r)

)
L2

,

we have the following inequality for r times differentiable functions

En(f)L2 6
Ck

(n + 1)r
ωk

(π

n
, f (r)

)
L2

.

Suppose that f has the derivative f (r) and that tn(t) = α0

2
+

∑n
k=1 (αk cos kt +

βk sin kt) is an approximating polynomial. We estimate the difference ‖f (r) − t
(r)
n ‖ via

‖f − tn‖ and f (r). We have

‖f − tn‖2
L2 =

(a0 − α0)
2

2
+

n∑

k=1

{(ak − αk)
2 + (bk − βk)

2} +
∞∑

k=n+1

(a2
k + b2

k),

‖f (r) − t(r)n ‖2
L2 =

n∑

k=1

k2r{(ak − αk)
2 + (bk − βk)

2} +
∞∑

k=n+1

k2rρ2
k

6 n2r‖f − tn‖2
L2 + E2

n(f (r))L2 6

(
nr‖f − tn‖L2 + En(f (r))L2

)2

,

and hence
‖f (r) − t(r)n ‖L2 6 nr‖f − tn‖L2 + En(f (r))L2 . (15.4)

Remark. Inequality (15.4) can be extended to other metrics Lp
2π (1 < p < ∞).

Consider now the case when a polynomial gives a good approximation to a function
lying in L2

2π; by this we mean that it provides approximation which is best in order:

‖f − tn‖L2 6 AEn(f)L2 . (15.5)

Hence, by Favard’s inequality,

‖f − tn‖L2 6
A

(n + 1)r
En(f (r))L2
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and so, by (15.4),
‖f (r) − t(r)n ‖L2 6 (A + 1)rEn(f (r))L2 , (15.6)

i.e., the derivative of a well approximating polynomial also gives the best possible order
of approximation to the derivative of the function.

15.2. Differential properties of functions and proper-

ties of approximating polynomials

From (15.6) it follows that if a polynomials from some class provides a good approx-
imation (in the above sense) to an r times differentiable function, then its derivatives
of order r are uniformly bounded:

‖t(r)n ‖L2 6 Cr‖f (r)‖L2 ;

here the constant Cr = Cr(A) depends only on r and of the constant A occurring in
inequality (15.5). For the best approximation polynomials sn = sn(f) (in L2

2π) one can

take Cr = 1, because in view of the equality s
(r)
n (f) ≡ sn(f (r)) and Parseval’s formula,

‖s(r)
n ‖L2 6 ‖f (r)‖L2 ,

the bound being uniform in n. In spaces Lp
2π, 1 < p < ∞, the norms of partial Fourier

sums for the best approximation polynomials t∗n = t∗n(f) are bounded in Lp
2π, and hence

‖t∗(r)n ‖Lp 6 Cr‖f (r)‖Lp .

Let ω(δ, f)L2 be the modulus of continuity of f . What can be said about ω(δ, sn)L2?
We have

‖∆hsn(f)‖2
L2 = 4

n∑

k=1

sin2 kh

2
(a2

k + b2
k)= ‖sn(∆hf)‖2

L2 .

Hence
‖∆hsn‖L2 6 ‖∆hf‖L2 ,

and so, for any n ∈ N,
ω(δ, sn)L2 6 ω(δ, f)L2 ;

in other words, the best approximation polynomial has the same differential properties,
uniformly in n, as the function.

Similarly, for any n, given an r times continuously L2-differentiable function, we
have

ω(δ, s(r)
n )L2 6 ω(δ, f (r))L2 .

For a polynomial tn ∈ Tn, consider ‖∆htn‖2
L2 , ‖∆r

htn‖2
L2 , ‖t(r)n ‖2

L2 . For the finite
difference, the following bound in terms of derivatives is valid:

‖∆r
htn‖L2 6 |h|r‖t(r)n ‖L2 . (15.7)

Exercise. Prove this estimate. (Hint: Write tn in terms of the repeated integral of t
(r)
n .)
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Now let us estimate the derivative in terms of finite differences. We have

‖∆r
htn‖2

L2 = 22r

n∑

k=1

sin2r kh

2
ρ2

k, ‖t(r)n ‖2
L2 =

n∑

k=1

k2rρ2
k,

where ρ2
k = a2

k(tn) + b2
k(tn). We note that this readily establishes (15.7). Our purpose is

to obtain an inequality of the form

‖t(r)n ‖L2 6 cn(h)‖∆r
htn‖L2 .

To do so it suffices to find a constant cn(h) such that

k2r
6 22r sin2r kh

2
c2
n(h) ∀ k = 1, . . . , n

or
k

2
6 c̃n(h)

∣∣∣sin
kh

2

∣∣∣ ∀ k = 1, . . . , n,

where

c̃n(h) = max
k=1,2,...,n

k/2

| sin kh/2| .

In order that c̃n(h) be finite the quantity
∣∣sin kh

2

∣∣ must be positive for any k. Hence, one

must have k|h|
2

< π; i.e., |h| < 2π
n

. Since the function sin x
x

is decreasing on the interval

[0, π], we have, for k|h|
2

< π,

∣∣∣
sin kh/2

kh/2

∣∣∣ =
sin kh/2

kh/2
>

sin nh/2

nh/2

(
k = 1, 2, . . . , n; h 6

2π

n

)
.

Hence, for k|h|
2

< π,

max
k=1,...,n

k/2

| sin kh/2| = c̃n(h) =
n

2| sin nh/2| .

The behaviour of the function c̃n(h), 0 < h < 2π
n

, is depicted in Fig. 15.1. As a result,

‖t(r)n ‖L2 6

( n

2 sin n|h|/2
)r∥∥∥∆

(r)
h tn

∥∥∥
L2

,

provided that |h| < 2π
n

. This is Stechkin’s inequality (see [44], [21, Ch. III], [8, Ch. 4]).
In particular, for h = π/n,

‖t(r)n ‖L2 6

(n

2

)r∥∥∥∆r
htn

∥∥∥
L2

and since ∥∥∆r
htn

∥∥
L2 6 2r‖tn‖L2 ,

this is a generalization of Bernstein’s inequality of Sec. 14.2.



118

0

1

h

hc̃n(h)

sin nh
2

2�
n

Fig. 15.1 The graph of the function hc̃n(h).

15.3. Differential properties of approximating polyno-

mials

Given a function f ∈ L2
2π, suppose that we know its modulus of continuity ω(δ, f)

in L2
2π. Let tn be a well-approximating polynomial in the sense that

‖f − tn‖L2 6 Aω
(π

n
, f

)
L2

(15.8)

(the fact that such polynomials exist follows by Jackson’s inequality).
We shall be concerned with ω(δ, tn) = ω(δ, tn)L2 . We have

‖∆htn‖L2 6 ‖∆hf‖L2 +‖∆h(f − tn)‖L2 6 ω(h, f)+2‖f − tn‖L2 6 ω(h, f)+2Aω
(π

n
, f

)
.

Suppose that h > π/n. Then

‖∆htn‖L2 6 (2A + 1)ω(h, f),

because ω
(

π
n

)
6 ω(h) as h > π/n.

If h = π/n, we have

‖∆π
n
tn‖L2 6 (2A + 1)ω

(π

n
, f

)
.

Let us estimate the norm of the derivative. By Stechkin’s inequality,

‖t′n‖L2 6
n

2
‖∆π

n
tn‖L2 6

1

2
nω

(π

n
, f

)
= o(n),

whereas Bernstein’s inequality only gives

‖t′n‖L2 6 n‖tn‖L2 = O(n).
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Now let us estimate ‖∆htn‖L2 for all h, 0 < h < π/n. First we prove the inequality

ω(λδ, f) 6 (λ + 1)ω(δ, f).

If k is integer, then we have

∆khf =
k−1∑

ν=0

∆hf
(
t + νh +

1 − k

2
h
)

and so
ω(kδ, f) 6 kω(δ, f).

If now k 6 λ < k + 1, then

ω(λδ, f) 6 ω
(
(k + 1)δ, f

)
6 (k + 1)ω(δ, f) 6 (λ + 1)ω(δ, f).

Hence, for 0 < h < π/n,

‖∆htn‖L2 6 h‖t′n‖L2 6
1

2
nh ω

(π

n
, f

)
=

=
1

2
nh ω

( π

nh
· h, f

)
6

1

2
nh

( π

nh
+ 1

)
ω(h, f) 6 πω(h, f).

Consequently, for any h > 0,

‖∆htn‖L2 6 Cω(h, f)L2 ,

and so
ω(h, tn)L2 6 Cω(h, f)L2 ,

where C = max{2A + 1, π} depends only on the constant A of (15.8) and is indepen-
dent of both n and h. In other words, differential properties of the well-approximating
polynomials are the same, uniformly in n, as the differential properties of the functions.

Similarly, one can prove that

ωk(h, tn)L2 6 Ckωk(h, f)L2 , Ck = Ck(A).

Clearly, the converse assertion also holds, inasmuch as

∆hf = ∆h(f − tn) + ∆n(tn) and ‖f − tn‖L2 6 Aω
(π

n
, f

)
.

As a result, in order that polynomials tn(t) (n ∈ N) with a given modulus of
continuity ω(δ) (i.e., ω(δ, tn)L2 6 ω(δ)) give good approximation, uniform in n, to
a function f in the sense of estimate (15.8) is it is necessary and sufficient that the
function itself have the same modulus of continuity (or more precisely, ω(δ, f)L2 6

C(ω(δ)).



Lecture 16

Jackson’s inequality in L2 with exact
constant. Norms of de la Vallée
Poussin sums

16.1. Chernykh’s theorem

Above we have proved the Jackson’s inequality in L2
2π:

En(f)L2 6 Cω
(π

n
, f

)
L2

.

This inequality can be strengthened, because the proof also applies to En−1(f)L2 .
Namely,

En−1(f)L2 6 Cω
(π

n
, f

)
L2

.

We shall be concerned with the following problem.

Problem. What is the best possible constant C for which Jackson’s inequality remains
valid for all n?

So, we are interested the following extremal problems

sup
f∈L2

f 6≡const

En−1(f)L2

ω
(

π
n
, f

)
L2

= Cn and sup
n

Cn = C.

If f ≡ const, we have En−1(f)L2 = 0, ω(π
n
, f)L2 = 0, and so the inequality in question

holds with any constant.

It appears that Cn is independent of n, Cn = C = 1√
2
, and the final form of Jackson’s

inequality in L2
2π is as follows:

Theorem 16.1 (N. I. Chernykh). For any f ∈ L2
2π, f 6≡ const, and any n ∈ N

En−1(f)L2<
1√
2

ω
(π

n
, f

)
L2

.
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Here the constant 1/
√

2 is exact1; i.e., it cannot be decreased, even though the inequality

becomes equality only for f ≡ const.

However, it is possible to build another functional, which is smaller than ω(π
n
, f), but

is such that the estimate for En−1(f) in terms of this functional still holds. It is given
by Chernykh’s theorem, from which Jackson’s inequality with exact constant follows as
a corollary.

Theorem 16.2 (N. I. Chernykh). For any f ∈ L2
2π and any n ∈ N,

E2
n−1(f)L2 6

n

4

∫ π
n

0

‖∆tf‖2
L2 sin nt dt = Jn; (16.1)

here the inequality becomes equality only for functions f ∈ L2
2π of the form

α0 +
∞∑

k=1

(
αk cos(2k + 1)nx + βk sin(2k + 1)nx

)
.

Likewise ω(π
n
, f), Jn is also a structural characterization of a function. Clearly,

Jackson’s inequality (with constant C = 1/
√

2) is a corollary to Theorem 16.2. Indeed,

ω(h, f) = sup
|t|6h

‖∆tf‖L2 = sup
06t6h

‖∆tf‖L2 > ‖∆tf‖L2 .

Hence,

Jn 6
n

4
ω2

(π

n
, f

) ∫ π
n

0

sin nt dt =
1

2
ω2

(π

n
, f

)
,

i.e., Jackson’s inequality can be put in the form

En−1(f)L2 6
1√
2

ω
(π

n
, f

)
.

We shall find out later when the equality holds.

Proof of Theorem 16.2. As usual, let ρ2
k = a2

k + b2
k, k = 1, . . .. Then

E2
n−1(f)L2 =

∞∑

k=n

ρ2
k (16.2)

and

‖∆tf‖2
L2 = 4

∞∑

k=1

sin2 kt

2
ρ2

k = 2
∞∑

k=1

ρ2
k(1 − cos kt)

> 2
∞∑

k=n

ρ2
k(1 − cos kt) = 2E2

n−1(f)L2 − 2
∞∑

k=n

ρ2
k cos kt.

1 Later it was proved in 1979 by V.V. Arestov and N. I. Chernykh that the factor π/n also cannot
be decreased without increasing the multiple 2−1/2 of ω.
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Hence

E2
n−1(f)L2 6

1

2
‖∆tf‖2

L2 +
∞∑

k=n

ρ2
k cos kt. (16.3)

Multiplying both parts of inequality (16.3) by sin t and integrating from 0 to π
n

gives

E2
n−1(f)L2

∫ π
n

0

sin nt dt =
2

n
E2

n−1(f)L2

6
1

2

∫ π
n

0

‖∆tf‖2
L2 sin nt dt +

∫ π
n

0

∞∑

k=n

ρ2
k cos kt sin nt dt.

The series in the last integral converging absolutely and uniformly, the change of inte-
gration and summation is permissible, and so

2

n
E2

n−1(f)L2 6
1

2

∫ π
n

0

‖∆tf‖2
L2 sin nt dt +

∞∑

k=n

ρ2
k

∫ π
n

0

cos kt sin nt dt, k > n.

Let us evaluate the integrals under the summation sign:

∫ π
n

0

cos kt sin nt dt =

{
0, k = n

2n
n2−k2 cos2 kπ

2n
, k > n

}
6 0 (k > n). (16.4)

Hence,
∞∑

k=n

ρ2
k

∫ π
n

0

cos kt sin nt 6 0 (16.5)

and
2

n
E2

n−1(f)L2 6
1

2

∫ π
n

0

‖∆tf‖2
L2 sin nt dt.

This proves inequality (16.1).

Let us find out when inequality (16.1) becomes equality. This happens if the equality
holds in all the computations given. Let us check all these places.

1) Since
∫ π

n

0
cos kt sin nt dt > 0, 1 6 k < n, the condition

n−1∑

k=1

ρ2
k

∫ π
n

0

cos kt sin nt dt = 0

(see (16.2) and (16.4)) means that ρk = 0 for all k, k < n, except for k = 0.
2) Inequalities (16.4) and (16.5) become equalities only if ρk = 0 for all k 6= (2m +

1)n.
Hence the inequality in Theorem 16.2 is equality if and only if the function f has

the Fourier series of the form

a0

2
+

∞∑

k=0

a(2k+1)n cos(2k + 1)nx + b(2k+1)n sin(2k + 1)nx.
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These functions are periodic with period 2π
n

.
Let us now explore the case when the inequalities

E2
n−1(f)L2 6

n

4

∫ π
n

0

‖∆tf‖2
L2 sin nt dt 6

1

2
ω2

(π

n
, f

)

reduce to equalities, or what is the same, when Jackson’s inequality in Theorem 16.1
becomes equality. The equality holds if and only if, for all t, 0 6 t 6 π

n
, we have

‖∆tf‖2
L2 = ω

(π

n
, f

)
.

Since ‖∆tf‖2
L2 → 0 as t → 0, it follows that

‖∆tf‖2
L2 = ω

(π

n
, f

)
= 0,

i.e., ‖∆tf‖2
L2 = 0. Hence ρk = 0 for all k > 0, but this means that f ≡ const.

We have already proved that

sup
f∈L2

f 6≡const

En−1(f)L2

ω
(

π
n
, f

) 6
1√
2
.

We claim that this inequality reduces to equality. Consider the 2π-periodic function
defined by fε(x) = 1 if 0 6 x 6 ε and fε(x) = 0 if ε < x < 2π (ε < π). The average
value of fε(x) over (0, 2π) is equal to ε

2π
.

To find E2
0(fε) we have

E2
0(fε) =

1

π

∫ 2π

0

(
fε(x) − ε

2π

)2

dx =
ε

π

(
1 − ε

2π

)
.

We now find an upper bound for ω2(π, fε). For any t, we have

‖∆tfε‖2 =
1

π

∫ 2π

0

[fε(x + t) − fε(x)]2dx 6
1

π

∫ 2π

0

[f 2
ε (x + t) + f 2

ε (x)]dx =
2ε

π
.

Letting ε → 0+, this gives

E2
0(fε)

ω2(fε, π)
>

1 − ε/2π

2
→ 1

2
. (16.6)

This establishes that the constant in Theorem 16.1 is exact for n = 1. Given an
arbitrary n ∈ N, n > 2, we consider the periodization of fε:

fε,n(x) =
1

n

n−1∑

k=0

fε

(
x − 2πk

n

)
, ε <

π

n
.

Since this function is 2π
n

-periodic, the supports of the terms are disjoint, and fε,n = 1
n
fε

on [0, 2π
n

), we have

1

2
a0(fε,n) =

1

2
a0(fε) =

ε

2π
,

E2
n−1(fε,n) =

n

π

∫ 2π/n

0

(
fεn(x) − ε

2π

)2

dx =
ε

nπ

(
1 − εn

2π

)
.
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A similar estimate can be obtained for the modulus of continuity. For any t,

‖∆tfε,n‖2
L2 6

2ε

nπ
,

which again leads us to an estimate of form (16.6) for n > 2. ¤

Remark 16.1. A complete space H of 2π-periodic summable functions f , which is
invariant under translations by any h ∈ R, and in which the norm satisfies the following
properties

‖f(x + h)‖H = ‖f(x)‖H , ∀ h ∈ (−∞,∞),

‖∆tf‖H → 0 as t → 0 ∀ f ∈ H

is called a uniform space.
It is readily verified that such a space contains, as a dense subset, the class of

trigonometric polynomials (but not necessarily all ones); also, Jackson’s inequality

En−1(f)H 6 Cω
(π

n
, f

)
H

holds for best approximations from polynomials from the subspace Tn∩H, provided this
subspace is nonempty. The assertion regarding trigonometric polynomials in H follows
from the definition of a uniform space.

Problem. Stechkin’s conjecture: if C = 1√
2

and if H is a uniform function space of

sufficiently large dimension (> 3), then H is a Hilbert space.

Problem. Does the inequality

Ep
n−1(f)Lp 6

∫ π
n

0

‖∆tf‖p
Lpϕn(t) dt, p > 1

hold for some ϕn such that
∫ π

n

0
ϕn(t)dt < C, where C > 0 is independent of n?

As a corollary to this inequality we would have the Jackson’s inequality for Lp
2π.

For differentiable 2π-periodic functions the following inequality holds:

En−1(f)L2 6
1

nk
En−1(f

(k))L2 .

Hence, by the Jackson’s inequality in the form of Chernykh,

En−1(f)L2 6
1

nk
En−1(f

(k))L2 6
1√
2

ω
(

π
n
, f (k)

)
L2

nk
.

Consequently, the following result is a corollary to Theorem 16.1.

Corollary. If a function f ∈ C2π has the absolutely continuous derivative of order k−1
and if f (k) ∈ L2

2π, then

En−1(f)L2 6
1√
2
· 1

nk
ω
(π

n
, f (k)

)
L2

.
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This can be put in a different form:

sup
f : f(k)∈L2

f(k) 6≡const

En(f)L2nk

ω
(

π
n
, f (k)

)
L2

6
1√
2

.

Problem. In the inequality

En−1(f)L2 6 Ckωk

(π

n
, f

)
L2

the exact constant is known only for k = 1. For the remaining k, the exact constant Ck

is not yet calculated.

Problem. For functions of m variables defined on the torus T
m it is not clear how to

formulate the corresponding problems: in this form

En(f)L2(Tm) 6 Cmω
(π

n
, f

)
L2(Tm)

or most likely in this way

En(f)L2(Tm) 6 Cmω
(γm

n
, f

)
L2(Tm)

?

It is required to find2 the order of the rate of growth for γm as m → ∞.

To all these problems the variational methods can be applied, and in fact, they are
variational problems.

16.2. Norms of de la Vallée Poussin sums. Nikol’skii’s

theorem

In this section we shall be concerned with best approximation of 2π-periodic func-
tions (i.e., functions in the space C = C2π) by trigonometric polynomials with respect
to the norm ‖f‖C = max{|f(x)| : x ∈ (−∞,∞)}.

Given f ∈ C = C2π, consider the de la Vallée Poussin sums3

1

p + 1

n∑

k=n−p

sk(f) = σn,p(f); (16.7)

here p is an integer, 0 6 p 6 n. This is a linear operator from C into C. Let us examine
its norm ‖σn,p‖C→C =: Ln,p.

2 V. Yudin has proved in 1981 this inequality with the exact constant 1/
√

2 for the best approxima-
tion by trigonometric polynomials with the spectrum in the disc of radius n with the smallest possible
(as was later proved by D. Gorbachev) constant γm for Cm = 1/

√
2.

3 Under the notation of Lecture 6, the de la Vallée Poussin’s means, as defined here and in Lecture 17,
would be denoted by σn,n−p. This has to be taken into account when employing the results of Lecture 6.
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Theorem 16.3 (Nikol’skii [32], see also [19]). Let 0 6 p 6 n. Then

Ln,p =
4

π2
ln

n

p + 1
+ O(1).

Remark. If p = 0, then σn,0 = sn, and so we arrive at the standard asymptotic
formula for the Lebesgue constants for Fourier sums. If c n 6 p 6 n, 0 < c < 1, then
Ln,p = O(1). The norms Ln,p increase if and only if p = o(n), and in this case, the
formula is asymptotical.

Lemma 16.1. For r > 1, we have
∫ π

0

| sin rt|
t

dt =
2

π
ln r + O(1). (16.8)

Proof. We write

∫ π

0

| sin rt|
t

dt =

k0∑

k=0

∫ (k+1)π
r

kπ
r

| sin rt|
t

dt +

∫ π

(k0+1)π
r

| sin rt|
t

dt,

where a nonnegative integer k0 is chosen from the condition k0 + 1 6 r < k0 + 2, or
what is the same, (k0+1)π

r
6 π < (k0+2)π

r
. The last integral is bounded for r > 1:

∫ π

(k0+1)π
r

| sin rt|
t

dt = O(1).

Changing variables, we obtain

k0∑

k=0

∫ (k+1)π
r

kπ
r

| sin rt|
t

dt =

k0∑

k=0

∫ π
r

0

| sin rt|
t + kπ

r

dt =

∫ π
r

0

sin rt ·
k0∑

k=0

1

t + kπ
r

dt.

Here the term with k = 0 is independent of r:
∫ π

r

0

sin rt

t
dt =

∫ π

0

sin t

t
dt = O(1).

For the remaining terms, we have

r

π

k0∑

k=1

1

k + 1
6

k0∑

k=1

1

t + kπ
r

6
r

π

k0∑

k=1

1

k
.

As a corollary, we obtain

k0∑

k=1

1

t + kπ
r

=
r

π

k0∑

k=1

1

k
+ O(r), t ∈

[
0,

π

r

]
.

Since k0 = r + O(1), it follows that

∫ π
r

0

sin rt

k0∑

k=0

1

t + kπ
r

dt =
2

π

k0∑

k=1

1

k
+ O(1) =

2

π
ln k0 + O(1) =

2

π
ln r + O(1).

Thus relation (16.8) follows. ¤

This result will be employed in the next lecture to prove Nikol’skii’s theorem 16.3.



Lecture 17

Norms of de la Vallée Poussin’s sums
(continuation)

17.1. Proof of Nikol’skii’s theorem

Our aim is to prove Nikol’skii’s theorem 16.3. We use the following representation
of the de la Vallée Poussin sums σn,p in terms of Fejer sums σn:

σn,p(f) =
1

p + 1

n∑

k=n−p

sk(f) =
n + 1

p + 1
σn(f) − n − p

p + 1
σn−p−1(f);

for p = n we assume that σn−p−1(f) = σ−1(f) ≡ 0. For Fejer sums, we have the following
integral representation (see Sec. 5.2)

σn(f) = σn,n(f) =
1

2π(n + 1)

∫ 2π

0

f(x + t)

(
sin n+1

2
t

sin t
2

)2

dt.

As a result, for the de la Vallée Poussin sums, we have the representation

σn,p(f) =
1

2π(p + 1)

∫ 2π

0

f(x + t)

{(
sin n+1

2
t

sin t
2

)2

−
(

sin n−p
2

t

sin t
2

)2
}

dt

=
1

π(p + 1)

∫ 2π

0

f(x + t)
sin 2n+1−p

2
t · sin p+1

2
t

2 sin2 t
2

dt,

and so

σn,p(f) =

∫ 2π

0

f(x + t)K(t) dt, where K(t) =
1

π(p + 1)
· sin 2n+1−p

2
t · sin p+1

2
t

2 sin2 t
2

.

Consequently, the de la Vallée Poussin sum is a convolution operator with continuous
kernel K. In the space C, the norm of this operator is calculated as follows:

‖σn,p‖ = ‖σn,p‖C
C =

∫ 2π

0

|K(t)| dt.
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Since the kernel K is even, we have

‖σn,p‖ = 2

∫ π

0

|K(t)| dt =
2

π(p + 1)

∫ π

0

∣∣∣
sin 2n+1−p

2
t · sin p+1

2
t

2 sin2 t
2

∣∣∣ dt.

As a result, our problem reduces to examining this integral. Let

m =
p + 1

2
, r =

2n + 1 − p

p + 1
.

It follows that m > 1
2
, r > 1. We note that rm = 2n+1−p

2
. In these notation, we have

‖σn,p‖ =
1

πm

∫ π

0

|sin rmt · sin mt|
2 sin2 t

2

dt.

Since
1

sin2 t
2

− 4

t2
= O(1), 0 < t 6 π,

and since the numerator of the expression under the integral sign is bounded, we have

‖σn,p‖ =
2

πm

∫ π

0

| sin rmt · sin mt|
t2

dt + O

(
1

m

)

=
2

πm

∫ π

0

| sin rmt · sin mt|
t2

dt + O(1).

Changing this variable t to u = mt, the last expression takes the form

2

π

∫ πm

0

| sin ru · sin u|
u2

du + O(1).

Since
∫ ∞

π
u−2 du < ∞,

2

π

∫ πm

0

| sin ru · sin u|
u2

du =
2

π

∫ π

0

| sin ru · sin u|
u2

du + O(1).

Further, since
sin u

u2
− 1

u
= O(1), u ∈ (0, π],

it follows that

‖σn,p‖ =
2

π

∫ π

0

| sin ru · sin u|
u2

du + O(1) =
2

π

∫ π

0

| sin ru|
u

du + O(1),

and hence, by Lemma 16.1,

‖σn,p‖ =
4

π2
ln r + O(1).

Since 0 6 p 6 n, we have n + 1 6 2n + 1− p 6 2n + 1. As a result, 2n + 1− p ≍ n and

ln(2n + 1 − p) = ln n + O(1).

Finally, for de la Vallée Poussin sums, we have

‖σn,p‖ =
4

π2
ln

n

p + 1
+ O(1). ¤
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Remark. Let H be a uniform space (see Remark 16.1). In this case, for all f ∈ H,

‖σn,p(f)‖H =

∥∥∥∥
∫ 2π

0

f(x + t)K(t) dt

∥∥∥∥
H

6

∫ 2π

0

|K(t)|‖f(x + t)‖H dt = ‖f‖H

∫ 2π

0

|K(t)| dt ∀ f ∈ H,

and so

‖σn,p‖H = ‖σn,p‖H→H 6

∫ 2π

0

|K(t)| dt = ‖σn,p‖C .

This is why the case of space C is of particular importance.

Corollary. For 1 6 q < ∞,

‖σn,p‖Lq
= ‖σn,p‖Lq→Lq

6
4

π2
ln

n

p + 1
+ O(1). (17.1)

For q = 1 this inequality is in fact an equality, and for 1 < q < ∞ this bound holds,
but is not exact.

17.2. Application of de la Vallée Poussin sums to ap-

proximation of continuous functions

For a natural number k, let C(k) = C
(k)
2π be the class of k times continuously differ-

entiable (on the whole real axis) 2π-periodic functions.

Problem. Given a function f ∈ C(k) and a trigonometric polynomial tn, the norm of
the difference ‖f − tn‖C is known. How to evaluate ‖f (k) − t

(k)
n ‖C?

The following theorem gives one of the possible answers.

Theorem 17.1 (on the differentiation of approximating polynomials). There

exists a constant Ak such that the inequality

‖f (k) − t(k)
n ‖C 6 Ak

{
nk‖f − tn‖C + En(f (k))C

}

holds for every function f ∈ C
(k)
2π and every trigonometric polynomial tn.

Corollary. Given f ∈ C
(k)
2π suppose that nk‖f − tn‖C → 0 as n → ∞. Then ‖f (k) −

t
(k)
n ‖C → 0 as n → ∞.

The mere condition ‖f − tn‖C = o(n−k) is not sufficient to ensure that f ∈ C(k).

Remark. These assertions also hold in the spaces Lp = Lp
2π, 1 6 p < ∞, because

the proof of Theorem 17.1 depends only on the properties of the de la Vallée Poussin
sums, property (17.1), and Bernstein’s inequality (which in the case of C2π can be
strengthened as follows).
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Lemma 17.1 (generalized Bernstein’s inequality (Stechkin [44], see also [8,
Ch. 4, § 12])). Let tn be a trigonometric polynomial of order n. Then

‖t′n‖C 6
n

2 sin nh
2

‖∆htn‖C , 0 < h <
2π

n
,

and, as a corollary,

‖t(k)
n ‖C 6

( n

2 sin nh
2

)k

‖∆k
htn‖C , k ∈ N.

Putting h = π/n in these inequalities and taking into account that ‖∆kf(x)‖C 6

2k‖f‖C , we arrive at the classical Bernstein’s inequality

‖t′n‖C 6
n

2
‖∆π

n
tn‖C 6 n‖tn‖C ; (17.2)

and, as a corollary,
‖t(k)

n ‖C 6 nk‖tn‖C .

Proof of Lemma 17.1. Let x0 be a point at which the maximum of |t′n| is attained.
For definiteness, we assume that t′n(x0) > 0. Let

M1 = max |t′n(x)| = t′n(x0)

and let
ϕn(x) = ϕn(x, tn) = M1 cos n(x − x0)

be the comparison function.

Fig. 17.1

Consider the interval [x0− π
n
, x0 + π

n
] = I, which is one of the smallest periods of ϕn.

Let us prove that (see Fig. 17.1)

ϕn(x) 6 t′n(x) ∀ x ∈ [x0 − π/n, x0 + π/n] = I.
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Fig. 17.2

We proceed by reduction ad absurdum. Suppose there is a point x′ ∈ I at which t′n(x′) <
ϕn(x′). Then, besides x0, there is at least one more zero x′′ of the function t′n − ϕn in
the interval I (see Fig. 17.2).

Let us count the zeros of the difference t′n − ϕn. We consider the intervals on which
cos n(x − x0) changes once from −1 to 1. On each of these intervals, the graph of ϕn

intersects the graph of t′n; also, if these graphs are met at an extremal point of ϕn, then
this point is a double root of the difference t′n − ϕn. Taking into account multiplicities,
the graph of the polynomial ϕn(x) = M1 cos n(x−x0) intersects the graph of t′n at least
as many times as cos n(x − x0) changes from −1 to 1. Hence, there are 2n − 2 zeros
of the difference t′n − ϕn outside the main interval (provided that this difference does
not vanish at the end points of I); moreover, on I there are two more zeros: one at the
point x0 (a double zero) and the other at the point x′′ ∈ int I (by the assumption). As
a result, under the additional assumption, there are at least 2n−2+2+1 = (2n+1) zeros
(counting multiplicity) of the difference t′n − ϕn on the period. Clearly, if x′′ coincides
with one of the end points of the interval I or if the function t′n − ϕn vanishes at both
its end points, then the total number of its zeros over the period does not decrease.
However, t′n − ϕn is a (nonzero) trigonometric polynomial of order n, and so may not
have that many zeros (over the period). This gives a contradiction which shows that

M1 cos n(x − x0) 6 t′n(x) ∀ x ∈
[
x0 −

π

n
, x0 +

π

n

]
.

Integrating this inequality in x over [x0 − h
2
, x0 + h

2
] ⊂ I for 0 < h < 2π

n
, we get

M1

∫ x0+h
2

x0−h
2

cos n(x − x0) dx =
M1

n
2 sin

nh

2

6

∫ x0+h
2

x0−h
2

t′n(x) dx = tn

(
x0 +

h

2

)
− tn

(
x0 −

h

2

)
6 ‖∆htn‖C

and, since M1 = ‖t′n‖C , Lemma 17.1 is proved for k = 1. Now suppose that, for 0 <
h < 2π

n
,

‖t(k−1)
n ‖ 6

(
n

2 sin nh
2

)k−1

‖∆k−1
h tn‖C .
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Hence, by what has been just proved,

‖t(k)
n ‖C 6

n

2 sin nh′

2

‖∆h′t(k−1)
n ‖C =

(
n

2 sin nh′

2

)
‖(∆h′tn)(k−1)‖C

6

(
n

2 sin nh′

2

) ( n

2 sin nh

)k−1

‖∆k−1
h (∆h′tn)‖,

for 0 < h′ < 2π
n

. Taking h′ = h ∈
(
0, 2π

n

)
, we have the result stated.

Proof of Theorem 17.1. We represent f − tn as follows

f − tn = f − σn+p,p(f) − (tn − σn+p,p(f)).

Differentiating k times, this gives

f (k) − t(k)
n = f (k) − σn+p,p(f

(k)) − (tn − σn+p,p(f))(k),

and hence

‖f (k) − t(k)
n ‖C 6 ‖f (k) − σn+p,p(f

(k))‖C + ‖(tn − σn+p,p(f))(k)‖C .

Applying Lebesgue’s inequality (for the de la Vallée Poussin’s method), we have

‖f (k) − σn+p,p(f
(k))‖C 6 (‖σn+p,p‖C

C + 1)En(f (k))C .

Further, applying Bernstein’s and Lebesgue’s inequality, this gives

‖(tn − σn+p,p(f))(k)‖C 6 (n + p)k‖tn − σn+p,p(f)‖C

6 (n + p)k(‖f − tn‖C + ‖f − σn+p,p(f)‖C)

6 (n + p)k
{
‖f − tn‖C + (‖σn+p,p‖C

C + 1)‖f − tn‖C

}

= (‖σn+p,p‖C
C + 2)(n + p)k‖f − tn‖C .

Consequently, we have

‖f (k) − t(k)
n ‖C 6 (‖σn+p,p‖C + 2)

{
(n + p)k‖f − tn‖C + En(f (k))C

}
. (17.3)

We put here p = n. By Nikol’skii’s theorem, the norms ‖σ2n,n‖ are bounded in n.
Hence, by (17.3),

‖f (k) − t(k)
n ‖C 6 Ak

{
nk‖f − tn‖C + En(f (k))C

}
. ¤

Remark. From the proof we have Ak = O(2k). One can also prove that Ak = O(ln(k +
1)) by suitably choosing the parameter p. Using (17.3) and Nikol’skii’s theorem, we
obtain

‖f (k) − t(k)
n ‖C 6

{
4

π2
ln

n + p

p + 1
+ O(1)

} (
n + p

n

)k (
nk‖f − tn‖C + En(f (k))C

)
.
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By varying p = p(n) we make the quantity

{
4

π2
ln

n + p

p + 1
+ O(1)

} (
n + p

n

)k

(17.4)

as small as possible. Consider three cases.
The case k 6 n. Let p be an integer such that n

k
− 1 6 p 6 n

k
. Then

(
n + p

n

)k

6

(
1 +

n/k

n

)k

=

(
1 +

1

k

)k

6 e,

n + p

p + 1
=

n − 1

p + 1
+ 1 6 k

n − 1

n
+ 1 < k + 1.

For this specification of the parameter p quantity (17.4) is of order O(ln(k + 1)), which
gives Ak = O(ln(k + 1)).

The case k > n. We set p = 0. In this case we have, for quantity (17.4),

4

π2
ln(n + 1) + O(1) 6

4

π2
ln(k + 1) + O(1) = O(ln(k + 1)).

Consequently, in either case,

Ak = O(ln(k + 1)).

Problem. Prove that this order of Ak is sharp.

Remark. We have proved Bernstein’s inequality (17.2) in the space C2π. Furthermore,
it also holds in any uniform space (see [39], and also [8]). Hence Theorem 17.1 on the
differentiation of approximating polynomials holds not only in C but also in any uniform
space (see the remark in Section 17.1).



Lecture 18

Approximation of functions
represented by integral transforms

18.1. Approximation of functions in the space L2π

We first consider the problem of best approximation of functions in the space L =
L2π equipped with the norm ‖f‖L = 1

π

∫ 2π

0
|f(t)|dt, by trigonometric polynomials

tn−1(x) =
α0

2
+

n−1∑

k=1

(αk cos kx + βk sin kx)

of order n − 1, n > 1.

Theorem 18.1. Let f ∈ L2π. Then the following assertions hold:

1) Let t∗n−1 be a trigonometric polynomial and let R = f − t∗n−1. Suppose that the

function sign R is orthogonal to the subspace Tn−1; i.e.,

sign R ⊥ tn−1 ∀ tn−1 ∈ Tn−1, (18.1)

then t∗n−1 is a polynomial of best approximation to f in L2π.

2) If t∗n−1 is a polynomial of best approximation to the function f and if the difference

f − t∗n−1 is different from zero a.e., then the orthogonality condition (18.1) holds.

Proof. Suppose that orthogonality condition (18.1) is satisfied for a trigonometric
polynomial t∗n−1; i.e., the function sign R is orthogonal to any polynomial of order n−1.
Then, for any polynomial tn−1 ∈ Tn−1,

‖f − t∗n−1‖L =
1

π

∫ 2π

0

|f(x) − t∗n−1(x)| dx =
1

π

∫ 2π

0

(f(x) − t∗n−1(x)) sign R(x) dx

=
1

π

∫ 2π

0

(
(f(x) − tn−1(x)) + (tn−1(x) − t∗n−1(x))

)
sign R(x) dx

=
1

π

∫ 2π

0

(f(x) − tn−1(x)) sign R(x) dx 6
1

π

∫ 2π

0

|f(x) − tn−1(x)| dx = ‖f − tn−1‖L.

Hence t∗n−1 is a polynomial of best approximation from Tn−1 to the function f in L2π.
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Now let t∗n−1 be a polynomial of best approximation to f . Suppose that t∗n−1 6= f
a.e. Given an arbitrary polynomial tn−1 of order n − 1, consider the function

Φ(λ) = ‖f − (t∗n−1 − λtn−1)‖L =
1

π

∫ 2π

0

|f(x) − t∗n−1(x) + λtn−1(x))| dx

of a real variable λ. We claim that the function Φ is differentiable at the point λ = 0
and calculate the derivative Φ′(0).

For real numbers a 6= 0 and b, the function ϕ(λ) = |a + λb| of variable λ is differen-
tiable at the point λ = 0. Also, ϕ′(0) = b sign a and

∣∣∣∣
|a + λb| − |a|

λ

∣∣∣∣ 6 |b|, λ 6= 0.

Applying Lebesgue’s Dominated Convergence Theorem, it is easily seen that the func-
tion Φ is differentiable at λ = 0, and

Φ′(0) =
1

π

∫ 2π

0

tn−1(x) sign(f(x) − t∗n−1(x)) dx.

Since t∗n−1 is an extremal polynomial, the function Φ attains its minimum at λ = 0.
Hence Φ′(0) = 0, and so orthogonality property (18.1) holds. ¤

Note that if condition (18.1) holds, then

En−1(f)L =
1

π

∫ 2π

0

(f(x) − t∗n−1(x)) sign R(x) dx =
1

π

∫ 2π

0

f(x) sign R(x) dx

and, finally,

En−1(f)L =
1

π

∫ 2π

0

f(x)h∗(x) dx, (18.2)

where h∗ = sign R. In this setting, the function h∗ is such that ‖h∗‖L∞ 6 1 and h∗ ⊥ tn−1

for any polynomial tn−1.

Theorem 18.2. Let f ∈ L2π. Then

En−1(f)L >
1

π

∫ 2π

0

f(x)h(x) dx (18.3)

for any function h ∈ L∞
2π such that

‖h‖L∞ 6 1 and h ⊥ tn−1 ∀ tn−1 ∈ Tn−1.

Proof. Let t∗n−1 be a polynomial of best approximation to f in L. Since h is orthogonal
to any polynomial of order n − 1,

1

π

∫ 2π

0

f(x)h(x) dx =
1

π

∫ 2π

0

(f(x) − t∗n−1(x))h(x) dx

6
1

π

∫ 2π

0

|f(x) − t∗n−1(x)| dx = En−1(f)L. ¤
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Corollary 1. Let t∗n−1 be a polynomial of best L2π-approximation to a function f .

Suppose that the h∗ = sign(f − t∗n−1) satisfies orthogonality condition (18.1). Then

En−1(f)L =
1

π

∫ 2π

0

f(x)h∗(x) dx

= max

{
1

π

∫ 2π

0

f(x)h(x) dx : h ∈ L∞
2π, ‖h‖L∞ 6 1; h ⊥ tn−1 ∀ tn−1 ∈ Tn−1

}
.

Corollary 2. Let a polynomial t∗n−1 be such that the difference f − t∗n−1 6= 0 a.e. and

that the function h∗ = sign(f − t∗n−1) is orthogonal to any polynomial of order n − 1.
Then t∗n−1 is a polynomial of best L2π-approximation to f , and inequality (18.3) becomes

equality if and only if h = h∗.

Considering any function h ∈ L∞
2π such that

‖h‖L∞ 6 1 and h ⊥ tn−1 ∀ tn−1 ∈ Tn−1

and using (18.3) we obtain a lower bound for En−1(f)L. We carefully pick a function h.
Suppose that h has period ω = 2π

n
and that

∫ π

−π
h(x) dx = 0. Then the Fourier series of

such a function is as follows

h(x) ∼
∞∑

k=1

αnk cos nkx + βnk sin nkx;

consequently, the only candidates for nonzero coefficients are those whose indices mul-
tiply n. In particular,

h ⊥ tn−1 ∀ tn−1 ∈ Tn−1.

Hence, as h in (18.3) we may take any such function (satisfying, in addition, the con-
dition ‖h‖L∞ 6 1).

Let h(x) = sign sin(nx + α). This function satisfies all the above properties: its
period ω is 2π

n
, 1

π

∫ π

−π
h(x) dx = 0, and ‖h‖L∞ 6 1. Hence,

En−1(f)L >
1

π

∫ π

−π

f(x) sign sin(nx + α) dx ∀ α ∈ (−∞,∞). (18.4)

Consider the cases α = 0 and α = π
2
. The expansion

sign sin x =
4

π

∞∑

k=0

sin(2k + 1)x

2k + 1

is well known. Hence,

sign sin nx =
4

π

∞∑

k=0

sin(2k + 1)nx

2k + 1
. (18.5′)

Similarly,

sign cos x = sign sin
(
x +

π

2

)
=

4

π

∞∑

k=0

(−1)k cos(2k + 1)x

2k + 1
,
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sign cos nx =
4

π

∞∑

k=0

(−1)k cos(2k + 1)nx

2k + 1
. (18.5′′)

Using (18.4), we have, for any function f ∈ L (respectively, for α = 0 and α = π
2
),

En−1(f)L >
4

π

∞∑

k=0

b(2k+1)n

2k + 1
, (18.6)

En−1(f)L >
4

π

∞∑

k=0

(−1)ka(2k+1)n

2k + 1
; (18.7)

here a(2k+1)n and b(2k+1)n the corresponding Fourier coefficients of f . Note that if α = π,
then h(x) = − sign sin nx, and if α = 3

2
π, then h(x) = − sign cos nx. Hence, the similar

estimates hold:

En−1(f)L > − 4

π

∞∑

k=0

b(2k+1)n

2k + 1
, (18.6′)

En−1(f)L > − 4

π

∞∑

k=0

(−1)ka(2k+1)n

2k + 1
. (18.7′)

The question arises: When the last four inequalities become equalities? Let t∗n−1 be
a polynomial of best approximation to the function f . We have f(x)− t∗n−1(x) 6= 0 a.e.
on x ∈ (−π, π). The equality in (18.6) is possible only if (a.e.)

sign(f − t∗n−1) = sign sin nx; (18.8)

the equality in (18.7) is possible only if

sign(f − t∗n−1) = sign cos nx. (18.9)

Similarly, (18.6′) and (18.7′) become equalities if, respectively,

sign(f − t∗n−1) = − sign sin nx, (18.8′)

sign(f − t∗n−1) = − sign cos nx. (18.9′)

Assume that the function f is continuous on the interval (−π, π). Then it follows by
(18.9) and (18.9′) that the difference f − t∗n−1 changes sign only at those points at which
cos nx vanishes; hence t∗n−1 interpolates f at the zeros of cos nx. Similarly, it follows by
(18.8) and (18.8′) that t∗n−1 interpolates f at the zeros of sin nx. These interpolation
conditions are necessary conditions (for a continuous function) for inequalities (18.7),
(18.7′), (18.6), (18.6′) respectively, to become equalities. Moreover, sometimes these
conditions are also sufficient. Indeed, if a polynomial tn−1 interpolates the function f
(for example, only at the zeros of cos nx) and if the difference f −tn−1 changes sign only
at these zeros and nowhere else, then (18.7) (or (18.7′), respectively), becomes equality,
and hence t∗n−1 is a polynomial of best L2π-approximation to f . In these cases,

En−1(f)L =
4

π

∣∣∣∣∣

∞∑

k=0

b(2k+1)n

2k + 1

∣∣∣∣∣ , (18.6′′)
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En−1(f)L =
4

π

∣∣∣∣∣

∞∑

k=0

(−1)ka(2k+1)n

2k + 1

∣∣∣∣∣ . (18.7′′)

Hence, we have at our disposal a way of obtaining a polynomial of best L2π-
approximation to f ∈ C2π. Namely, we take h(x) = sign sin nx or h(x) = sign cos nx
according to whether if f is odd or even (in other cases, we consider the function
sign sin(nx + α) and try to choose the parameter α appropriately). Hence we construct
a polynomial that interpolates f at the zeros of sin nx or cos nx, respectively. If the
signs of the difference satisfy corresponding conditions (18.8), (18.8′), (18.9) or (18.9′),
then the construction of a polynomial of best approximation is complete. Hence the
problem of constructing a polynomial of best L2π-approximation reduces to testing the
sign of f − t∗n−1. If the sign-test-operation is skipped, then (18.7), (18.7′) and (18.6)
or (18.6′) give a lower bound for En−1(f)L.

18.2. Approximation of classes of functions in C2π

A function K ∈ L2π will be referred to as an integrable kernel. Consider the class
M = MK of functions which are represented as integral transforms with this kernel —
these are functions of the form

f(x) = c +
1

π

∫ 2π

0

K(t)ϕ(x + t) dt, (18.10)

where ϕ is an arbitrary 2π-periodic function in the space L∞ = L∞
2π, ‖ϕ‖L∞ 6 1, and

c = c(f) is a real constant. Any function from the class M is continuous and 2π-periodic.
The quantity

sup
f∈M

min
tn−1∈Tn−1

‖f − tn−1‖C = En−1(MK)C

is the best approximation of the class M in C2π by trigonometric polynomials of or-
der n − 1.

For any trigonometric polynomial t̃n−1, the function

tn−1(x) = c +
1

π

∫ 2π

0

t̃n−1(t)ϕ(x + t) dt

is also a trigonometric polynomial of order n − 1. For a suitable c = c(f), we have

|f(x) − tn−1(x)| =

∣∣∣∣
1

π

∫ 2π

0

{K(t) − t̃n−1(t)}ϕ(x + t) dt

∣∣∣∣ 6
1

π

∫ 2π

0

|K(t) − t̃n−1(t)| dt,

and hence

‖f − tn−1‖C 6
1

π

∫ 2π

0

|K − t̃n−1| dt ∀ t̃n−1 ∈ Tn−1.

Therefore,

En−1(f)C 6 En−1(K)L ∀ f ∈ MK .
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Consequently, the following inequality holds:

sup
f∈MK

En−1(f)C 6 En−1(K)L. (18.11)

Here the inequality becomes equality holds for a wide class of kernels K; below we shall
verify this in an important special case.

The above argument applies to any uniform space H of 2π-periodic functions. In
this case, we again have

‖f − tn−1‖H =

∥∥∥∥
1

π

∫ 2π

0

{K(t) − t̃n−1(t)}ϕ(x + t) dt

∥∥∥∥
H

6
1

π

∫ 2π

0

|K(t) − t̃n−1(t)| ‖ϕ(· + t)‖H dt =
1

π

∫ 2π

0

|K(t) − t̃n−1(t)| dt · ‖ϕ‖H ,

and hence
En−1(f)H 6 En−1(K)L · ‖ϕ‖H .

Let MK,H be the class of functions in H of the form (18.10) with ϕ ∈ H and
‖ϕ‖H 6 1. Тогда получим

sup
f∈MK,H

En−1(f)H 6 En−1(K)L.

In general the inequality is strict.

18.3. Approximation in the mean of Bernoulli kernels

by trigonometric polynomials

Now we consider the class W
(r)
1 , r > 1, of functions f ∈ C2π whose derivative f (r−1)

of order r − 1 is a 1-Lipschitz function; that is,

|f (r−1)(x′) − f (r−1)(x′′)| 6 |x′ − x′′| ∀ x′, x′′ ∈ [0, 2π].

A function f ∈ W
(r)
1 has the derivative f (r) of order r a.e.; also |f (r)(x)| 6 1 a.e., and

∫ 2π

0

f (r)(x) dx = 0,

that is, the mean value of the derivative f (r) over the period is zero. A function f ∈ W
(r)
1

has the following integral representation

f(x) =
a0

2
+

1

π

∫ π

−π

Kr(t)f
(r)(x + t) dt; (18.12)

here a0

2
= 1

2π

∫ 2π

0
f(x) dx is the mean value of f , and

Kr(t) =
∞∑

n=1

cos
(
nt + rπ

2

)

nr
. (18.13)
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The function Kr is known as the Bernoulli kernel.
For r = 1, we have

K1(t) = −
∞∑

n=1

sin nt

n
=

t − π

2
, t ∈ (0, 2π).

For r > 1, the kernel Kr can be found by integrating the kernel Kr−1, when a con-
stant is chosen in such a way that the mean value is zero:

1

2π

∫ 2π

0

Kr(t)dt = 0.

In Section 18.2 we have proved, for a function f ∈ W
(r)
1 ,

En−1(f)C 6 En−1(Kr)L.

Let us find the best approximation En−1(Kr)L. Instead of Kr, it is convenient to work
with the function

Kr(t + π) =
∞∑

n=1

(−1)n cos
(
nt + rπ

2

)

nr
,

which we again denote by Kr. Due to 2π-periodicity, this does not change the best
approximation. In this notation we have

K1(t) =
t

2
, t ∈ (−π, π).

The function Kr is odd or even according to whether r is odd or even.
For the kernels Kr, we construct interpolation polynomials Un−1 with the nodes at

zeros of sin nx, of cos nx respectively, according to whether the number r is odd, even
respectively. Now our task is to prove that the difference R = Kr − Un−1 changes sign
only at the interpolation points. For r = 1 the function K1 has discontinuities at the
points (2k + 1)π; these points should be looked at as points of changes of sign of the
difference R. For r = 2s + 1, s > 0, the points ±π are also additional interpolation
points.

Lemma 18.1. For the difference R = Kr −Un−1 of the kernel Kr and the interpolation

polynomial Un−1, the following holds:

sign(Kr(t) − Un−1(t)) = ± sign sin nt, t ∈ (−π, π), if r is odd;

sign(Kr(t) − Un−1(t)) = ± sign cos nt, t ∈ (−π, π), if r is even.

Proof. The difference R = Kr − Un−1 on (−π, π) has (2n − 1) zeros for odd r and
2n zeros for even r. It suffices to verify that all these zeros are simple and that there are
no other zeros. To show this, it suffices in turn to show that, for odd r, the difference
R = Kr − Vn−1 has on (−π, π) at most (2n − 1) zeros (counting multiplicities) for
an arbitrary odd trigonometric polynomial Vn−1 of order n − 1, and for odd r and
even polynomial Vn−1, the difference R = Kr − Vn−1 has on (−π, π) at most 2n zeros
(counting multiplicities). We proceed by induction on r > 1.
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1. Let r = 1. We claim that the difference R = K1 − Vn−1 of the kernel K1 (which
is odd in this case) and an odd trigonometric polynomial Vn−1 has at most (2n − 1)
zeros on (−π, π) (counting multiplicities). Assume the contrary. The derivative of the
difference

R′(t) =
1

2
− V ′

n−1(t) =
1

2
−

n−1∑

k=1

αk cos kt, t ∈ (−π, π)

is a (nonzero) polynomial in cosines of order n − 1. Such a polynomial has at most
(2n − 2) zeros on (−π, π). If on (−π, π) the difference R would have at least 2n zeros,
then by Rolle’s theorem, the derivative R′ would have (2n−1) zeros, which is impossible.
This contradiction shows that R = Kr − Vn−1 has at most (2n − 1) zeros on (−π, π).

2. Let r = 2. Both the kernel K2 and the polynomial Vn−1 are even. We claim that the
difference R = K2 −Vn−1 has at most 2n zeros on (−π, π). We have R′ = K ′

2(t)−V ′
n−1,

where V ′
n−1 is an odd polynomial of order n − 1. By the above, this difference has at

most (2n − 1) zeros on (−π, π). Hence, R has at most 2n zeros.
3. We claim that if r > 1 then the required property of zeros is satisfied for r−1, then

it also holds for r. Let r > 1 be odd, r = 2s + 1, s > 1. Then both K2s+1 and Vn−1 are
odd, and hence both K2s+1 and Vn−1 vanish at the points ±π. But then the difference
R = K2s+1 −Vn−1 also vanishes at these points, R(±π) = 0. We claim that the number
of zeros m on (−π, π) of the difference R is at most 2n− 1. Since R(±π) = 0, it follows
by Rolle’s theorem, that the derivative R′ has m+1 zeros on (−π, π). By the inductive
assumption, R′ = Kr−1−V ′

n−1 has at most 2n zeros on (−π, π). Hence R = K2s+1−Vn−1

has at most 2n − 1 zeros.
If r = 2s is even, then R′ = K2s−1 − V ′

n−1 is an odd function, which by the above
has at most (2n − 1) zeros. By Rolle’s theorem, R has at most 2n zeros. ¤

Now we can write down a polynomial of best approximation in the mean to the
Bernoulli kernel (18.13) by trigonometric polynomials.

Theorem 18.3. A sufficient condition for a polynomial Un−1 of order n − 1 to be

a polynomial of best L-approximation to Kr is that Un−1 interpolates the kernel Kr at

the zeros of sin nx or cos nx according to whether r is odd or even. Moreover,

En−1(f)L = ‖Kr − Un−1‖L =
Mr

nr
, (18.14)

where

Mr =
4

π

∞∑

k=0

(−1)(r+1)k

(2k + 1)r+1
. (18.15)

Proof. The fact that a polynomial Un−1 is extremal was proved above. Further,
applying (18.6′′), (18.7′′), (18.5′), and (18.5′′), and using expansion (18.13), it follows
that

En−1(f)L =

∣∣∣∣
1

π

∫ π

−π

Kr(t) sign sin nt dt

∣∣∣∣ =
4

π

∞∑

k=0

1

nr(2k + 1)r+1
, r is odd,

En−1(f)L =

∣∣∣∣
1

π

∫ π

−π

Kr(t) sign cos nt dt

∣∣∣∣ =
4

π

∞∑

k=0

(−1)k

nr(2k + 1)r+1
, r is even. ¤



Lecture 19

Favard’s theorem and its applications

19.1. Favard’s Theorem on approximation of differen-

tiable functions

In the last lecture we discussed the problem of approximation by trigonometric
polynomials of functions which are represented by integral transforms with kernels
K ∈ L2π. In this connection, we were interested in finding the best approximation

En−1(K)L = min
tn−1

‖K − tn−1‖L = ‖K − t∗n−1‖L

of a kernel K by trigonometric polynomials in L2π. It frequently happens that a poly-
nomial of best approximation is the one which interpolates the kernel K at equidistant
nodes spaced at π

n
. In particular, this holds for the Bernoulli kernel Kr, which gives an

integral representation of r times differentiable functions—in particular, of functions of
the class W

(r)
1 :

f(x) =
a0

2
+

1

π

∫ 2π

0

Kr(t)ϕ(x + t) dt;

here ϕ = f (r). In this case, as we have shown in Theorem 18.3,

En−1(K)L = ‖Kr − t∗n−1‖L =
Mr

nr
,

where Mr are constants defined by (18.15).

Our purposes in this lecture are as follows:
1) given a function f ∈ C

(r)
2π , to evaluate the best approximation En−1(f)C by means

of trigonometric polynomials of order n − 1;
2) to calculate

sup
W

(r)
1

En−1(f)C = En−1(W
(r)
1 )C .

Clearly, if the latter problem is solved, then, for any function f ∈ C(r),

En−1(f)C 6 En−1(W
(r)
1 )C · ‖f (r)‖C .
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Let t∗n−1 be a polynomial of best approximation in the mean to kernel Kr. Then

∫ 2π

0

{Kr(θ) − t∗n−1(θ)}ϕ(x + θ) dθ = f(x) − tn−1(x), (19.1)

where tn−1 is some trigonometric polynomial of order n − 1. Hence,

En−1(f)C 6 ‖f − tn−1‖C 6

∫ 2π

0

|Kr(t) − t∗n−1(t)| dt · ‖f (r)‖C , (19.2)

giving the bound
En−1(W

(r)
1 )C 6 En−1(K)L. (19.3)

Actually equality holds, and the following result is valid (see, e.g., [8, Ch. 7, § 4], [24,
Ch. 8, § 3]).

Theorem 19.1 (Favard). For any n > 1, r > 1,

En−1(W
(r)
1 )C = En−1(Kr)L.

Proof. In view of (19.3), to prove Theorem 19.1 it suffices to show that

En−1(W
(r)
1 )C > En−1(Kr)L.

To do so we construct a function f ∗ ∈ W
(r)
1 such that En−1(f

∗)C = En−1(Kr)L. Let t∗n−1

be a polynomial of best approximation in the mean to Kr in (19.1). We claim that the

function ϕ∗ = sign(Kr − t∗n−1) is the derivative of order r > 1 of some function in W
(r)
1 .

A necessary and sufficient condition for a bounded, measurable and 2π-periodic
function ϕ to be the derivative of order r > 1 of some function in W (r) is that the
function ϕ have a zero mean value. In our case, sign(Kr − t∗n−1) = sign sin(nx + α)

for an appropriate α, and hence
∫ 2π

0
sign{Kr − t∗n−1} dx = 0. Therefore, the function

ϕ∗ = sign(Kr − t∗n−1) is the derivative of order r of some function f ∗ ∈ W
(r)
1 ; this

function can be recovered as follows (see (18.12)) keeping in mind the convention about
the symbol Kr)

f ∗(x) =

∫ 2π

0

Kr(θ − π) ϕ∗(x + θ) dθ.

For the function ϕ∗(x) = sign sin(nx + α), we have

f ∗
(
x +

π

n

)
= −f ∗(x), x ∈ (−∞,∞);

hence the function f ∗ has a Chebyshev 2n-alternant on [0, 2π). Consequently, a poly-
nomial of best uniform approximation to the function f ∗ vanishes identically, and so

En−1(f
∗)C = ‖f ∗‖C =

∫ 2π

0

|Kr(t) − t∗n−1(t)| dt = En−1(Kr)L.

Hence, En−1(W
(r)
1 )C = En−1(Kr)L, the result of Theorem 19.1. ¤



144

We have thus proved that

En−1(W
(r)
1 )C = En−1(Kr)L = n−rMr.

The constants Mr were first calculated by Jean Favard and hence are known as Favard
constants. We have

M2 =
π

8
6 Mr 6 M1 =

π

2
, r > 1; lim

r→+∞
Mr =

4

π
.

Given any function f ∈ C
(r)
2π , we can now write

En−1(f)C 6
Mr

nr
‖f (r)‖C . (19.4)

This inequality is known as the Favard or Bohr–Favard inequality .

Applying the Favard inequality to the function f − tn−1, where tn−1 is an arbitrary
polynomial of order n − 1, we get

En−1(f)C 6
Mr

nr
‖f (r) − t

(r)
n−1‖C .

The quantity ‖f (r)− t
(r)
n−1‖ in general exceeds En−1(f

(r))C for any tn−1, because t
(r)
n−1 has

a zero mean value. Choosing a best possible t
(r)
n−1, we can evaluate ‖f (r) − t

(r)
n−1‖C only

via 2En−1(f
(r))C , because the constant term of the polynomial of best approximation

to the derivative f (r) has a bound of the form En−1(f
(r))C . Note that more accurate

estimates allow us to eliminate the extra factor 2.

Indeed, for any function f ∈ C
(r)
2π and any trigonometric polynomial τn−1, the fol-

lowing representation holds

f(x) − tn−1(x) =

∫ 2π

0

{Kr(t) − t∗n−1}{ϕ(x + t) − τn−1(x + t)} dt, ϕ = f (r),

in which tn−1 is the trigonometric polynomial of order n − 1 defined by the polyno-
mial τn−1. Choosing for τn−1 the polynomial of best uniform approximation to the
function ϕ = f (r) in C2π, we obtain a polynomial tn−1 such that

‖f − tn−1‖C 6
Mr

nr
En−1(f

(r))C .

Therefore,

En−1(f)C 6
Mr

nr
En−1(f

(r))C . (19.5)

Inequality (19.5) also holds for other (classical) spaces, but the constant Mr is not
sharp in any of the spaces Lp

2π (1 6 p < ∞).

We next proceed to examine applications of the Favard inequality.
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19.2. Extension of Bernstein’s inequality to differen-

tiable functions

Let f ∈ C
(r)
2π . We want to evaluate the norm ‖f (r)‖C via ‖f‖C .

For f = tn, Bernstein’s inequality

‖f (r)‖C 6 nr‖f‖C

holds; this inequality becomes an equality, in particular, for the functions f(x) = sin nx.
For f 6= tn, Bernstein’s inequality does not hold. However, the following result can

be proved.

Theorem 19.2. For r > 1 and for functions f ∈ C
(r)
2π , the following generalized Bern-

stein’s inequality holds:

‖f (r)‖C 6 nr‖f‖C + ArEn(f (r))C ; (19.6)

here Ar > 0 depends only on r.

If r is fixed and n → ∞, then En(f (r))C → 0 and ArEn(f (r))C is small for large n.
We first prove a theorem on simultaneous approximation of function and its deriva-

tives, which appears to be interesting in itself.

Theorem 19.3. Let tn = t∗(f) be a polynomial of best approximation to f ∈ C
(r)
2π , r ∈

N. Then

‖f (k) − t(k)
n ‖C 6 CrEn(f (k))C k = 1, 2, . . . , r (19.7)

where Cr > 0 depends only on r.

Proof. To obtain Theorem 19.3 we consider the de la Vallée Poussin sum σ(f) =
σn+p,n(f), where p = [n

r
]. Using Bernstein’s, Lebesgue’s and Favard’s inequalities and

applying Nikol’skii’s theorem, we have, for 0 6 k 6 r,

‖f (k) − t(k)
n ‖C 6 ‖f (k) − σ(f)(k)‖C + ‖(σ(f) − tn)(k)‖C

6 ‖f (k) − σ(f)(k)‖C + (n + p)k‖σ(f) − tn‖C

= ‖f (k) − σ(f (k))‖C + (n + p)k‖σ(f − tn)‖C

6 (‖σ‖ + 1)En(f (k))C + (n + p)k‖σ‖En(f)C

6 (‖σ‖ + 1)
{

En(f (k))C + (n + p)kEn(f)C

}

6 (‖σ‖ + 1)
{

En(f (k))C + Mk

(n + p

n + 1

)k

En(f (k))
}

,

where ‖σ‖ = ‖σn+p,n‖. Since p 6 n
r
, 0 6 k 6 r and Mk 6 π

2
, it follows that

‖f (k) − t(k)
n ‖C 6 A

(
‖σ‖ + 1

)
E(f (k))C ,

where A is an absolute constant. Also, under the assumptions made,

‖σ‖ = O

(
ln

n + p

n + 1

)
= O(ln(r + 1)).
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Hence, for tn = t∗n(f) the following bound holds

‖f (k) − t(k)
n ‖C 6 O

(
ln(r + 1)

)
En(f (k))C ,

with an absolute constant in the O-symbol. ¤

Proof of Theorem 19.2. Assume that a polynomial tn gives the simultaneous ap-
proximation of both the function and its derivatives; more precisely, assume that prop-
erty (19.7) is satisfied for tn. Then, using (19.7), Bernstein’s and Favard’s inequalities,
it follows that

‖f (r)‖C 6 ‖f (r) − t(r)n ‖C + ‖t(r)n ‖C

6 CrEn(f (r))C + nr‖tn‖C

6 CrEn(f (r))C + nr‖f‖C + nr‖f − tn‖C

6 nr‖f‖C + CrEn(f (r))C + nrCrEn(f)C

6 nr‖f‖C + (1 + Mr)CrEn(f (r))C ,

where Mr is the Favard constant. ¤

19.3. Application of Favard’s inequality to estimating

the norm of integrals

Theorem 19.4. Suppose that f ∈ C
(r)
2π is orthogonal to any polynomial tn−1 ∈ Tn−1. In

other words, the spectrum of f begins at value n. Then

‖f‖C 6
Mr

nr
‖f (r)‖C .

Proof. Indeed, since f ⊥ tn−1 for any tn−1 ∈ Tn−1 it follows that f (r) ⊥ tn−1. Hence

f(x) =
1

π

∫ 2π

0

{Kr(t) − t∗n−1(t)}f (r)(x + t) dt,

whence follows the inequality stated. ¤

19.4. Kolmogorov’s inequality

Given a function f ∈ C(r), we compare the norms ‖f‖C , ‖f (k)‖C , ‖f (n)‖C (0 < k <
n). The following result holds (see, e.g., [20, § 2.5.], [8, Theorem 7.1]).

Theorem 19.5 (Kolmogorov’s inequality). For any 0 < k < n, there exists con-

stants Kn,k such that

‖f (k)‖C 6 Kn,k‖f‖
n−k

n

C · ‖f (n)‖
k
n

C ∀ f ∈ C
(n)
2π .

Remark. The constants Kn,k are uniformly bounded with respect to n and k.
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Proof. Consider the de la Vallée Poussin sums σ = σm,p(f) of a function f ∈ C
(n)
2π ,

see (16.7). We have

‖f (k)‖C 6 ‖f (k) − σ(f)(k)‖C + ‖σ(k)(f)‖C .

Applying Lebesgue’s inequality for the de la Vallée Poussin sums and using Favard’s
inequality for the kth derivative, it is found that

‖f (k) − σ(k)(f)‖C = ‖f (k) − σ(f (k))‖C 6 (‖σ‖ + 1)Em−p(f
(k))C

6 (‖σ‖ + 1)
Mn−k

(m − p + 1)n−k
‖f (n)‖C , ‖σ‖ = ‖σ‖C

C .

By Bernstein’s inequality,

‖σ(k)(f)‖C 6 mk‖σ(f)‖C 6 mk‖σ‖ · ‖f‖C ,

and hence

‖f (k)‖C 6 (‖σ‖ + 1)Mn−k

{
1

(m − p + 1)n−k
‖f (n)‖C + mk‖f‖C

}
.

To appropriately choose the parameter m (assuming, for example, that p 6 m
2
), we

need in essence to minimize the quantity

min
X

(
X−(n−k)‖f (n)‖C + Xk‖f‖C

)
.

Since the first summand decreases and the second one increases, it is convenient to
choose X from the condition

X−(n−k)‖f (n)‖C = Xk‖f‖C ,

and so it is natural to take m to be equal to

X =

(‖f (n)‖C

‖f‖C

) 1
n

.

With m so chosen, if we take p = m
2
, then the result follows. But m (and p as well)

must be integer. Hence, we take m defined by the condition m 6 X 6 m + 1. If X < 1,
we set m = 0, p = 0. If X > 1, then, for example, for p = [m

2
], we have the required

order. So, finally,

‖f (k)‖C 6 Kn,k‖f‖
n−k

n

C · ‖f (n)‖
k
n

C ,

the result stated. ¤



Lecture 20

Kolmogorov’s inequality.
Approximation by smooth functions.
The Steklov function. Jackson’s
inequality

20.1. The second proof of Kolmogorov’s inequality

In Lecture 19 we proved Kolmogorov’s inequality relating the norms of the deriva-
tives of differentiable periodic functions. More precisely, we proved following result
(Theorem 19.5).

For any 0 < k < n, there exists a constant Kn,k such that

‖f (k)‖C 6 Kn,k‖f‖
n−k

n

C · ‖f (n)‖
k
n

C , f ∈ C
(n)
2π . (20.1)

For k = 0 and k = n this inequality also holds with constant 1.

Our purpose here is to derive inequality (20.1) from the generalized Bernstein’s

inequality (19.6). We replace n by l. Let 0 < k < l. Given a function f ∈ C
(k)
2π , we have,

by the generalized Bernstein’s inequality (Theorem 19.2),

‖f (k)‖C 6 nk‖f‖C + AkEn(f (k))C . (20.2)

This inequality was originally proved only for natural n. However, since f (k) ⊥ const,
this inequality also holds for n = 0. Applying Favard’s inequality (19.4) to f (k), we have

En(f (k))C 6
Ml−k

(n + 1)l−k
‖f (l)‖C ,

where Ml−k are Favard’s constants; by the above, Ml−k 6 π/2. Hence, by (20.2),

‖f (k)‖C 6 nk‖f‖C + C ′
k

‖f (l)‖C

(n + 1)l−k
∀ n = 0, 1, . . . (20.3)

148
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Given a real parameter h > 0, choose a nonnegative integer n so as to have 1
n+1

< h 6 1
n

for 0 < h 6 1 and n = 0 for h > 1. Then, by (20.3),

‖f (k)‖C 6 h−k‖f‖C + C ′
kh

l−k‖f (l)‖ ∀ h > 0

and
‖f (k)‖C 6 Ck(h

−k‖f‖C + hl−k‖f (l)‖C) ∀ h > 0, (20.4)

where Ck = max{1, C ′
k}. We choose h so that the right-hand side of the last inequality

attains the smallest possible value or is close to it.
In this setting, it is frequently advantageous to use the following approach, which

we shall refer to as the least value principle for a sum of functions. Assume that u is
a decreasing and v is an increasing function on some interval I. What is the minimum
value (on I) of the sum u + v. Let h be a point of I at which u(h) = v(h) (if any).
The inequality inf{u(t) + v(t) : t ∈ I} 6 u(h) + v(h) (see Fig. 20.1) holds in general.
However, it frequently happens that u(h) + v(h) is either fairly close to or sometimes
even coincides with the minimum value of the sum u + v on I. Hence, sometimes it
suffices to substitute the smallest value of the sum by u(h) + v(h). This is the idea
underlying the least value principle.

Fig. 20.1

The term h−k on the right of (20.4) decreases, and hl−k increases. According to the
above principle, we take a point h = h so as to have (h)−k‖f‖C = (h)l−k‖f (l)‖C . Hence,

h =

( ‖f‖C

‖f (l)‖C

) 1
l

.

Substituting this value h to (20.4), we arrive at Kolmogorov’s inequality,

‖f (k)‖C 6 2Ck‖f‖
l−k

l

C ‖f (l)‖
k
l

C .

We have obtained the result of the theorem with constant independent of n: Kn,k 6 πAk.
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Remark. 1) The same argument applies to give in any uniform space of 2π-periodic
functions (see Remark 16.1), because the generalized Bernstein’s inequality also holds
for these spaces. In particular, this inequality holds in Lp

2π (see, e.g., [14, Theorem 6.4],
[8, Ch. 5]).

2) Inequality (20.1) also holds for functions defined on the entire line.

3) The significance of Kolmogorov’s inequality is as follows: if both a function and
its highest derivative f (l) lie in some space, then all its intermediate derivatives also lie
in this space.

4) The sharp value of Kn,k in Kolmogorov’s inequality (20.1) is equal to

Fn−k/(Fn)
n−k

k , where Fr is the Favard constant defined by (18.15) (see [18]).

5) Kolmogorov’s inequality gives the solution of the following problem. Given num-
bers Ml > 0 and M0 > 0, consider all l times differentiable functions f such that

‖f‖C = M0, ‖f (l)‖C = Ml.

The question is as follows: What is the range of ‖f (k)‖C , and in particular, what is the
value of Mk = max ‖f (k)‖C? This range for Mk is described by Kolmogorov’s inequality.

20.2. Term by term differentiation of sequences of

functions

Consider the following problem. Suppose we are given a sequence of periodic k times
differentiable functions {fn} converging uniformly to a function f (fn ⇉ f). When the

limit function is k times differentiable and f
(k)
n ⇉ f (k)?

Suppose that the derivatives of some order l > k all exist and are uniformly bounded:
‖f (l)

n ‖C 6 A, n > 1. Kolmogorov’s inequality for fn − fm is as follows:

‖f (k)
n − f (k)

m ‖C 6 K‖fn − fm‖
k
l

C · (2A)
l−k

l ;

the last inequality showing that the sequence of derivatives {f (k)
n } is a Cauchy sequence.

Hence {f (k)
n } converges to some function ϕ. But then, by the theorem on uniform

convergence of differentiable functions, the function f is k times differentiable, and
ϕ = f (k).

It follows that the differentiation of order k, 0 < k < l, is well-defined on the class of
l times differentiable functions, whose derivative order l are uniformly bounded; more
precisely, the differentiation operator of order k is continuous. This means that the
differentiation operator is stable on this class: a minor error in the original function f
should cause only a small error in calculating the derivatives f (k) (0 < k < l) under

a suitable method of their recovering from f̃(x)(≈ f(x)).

Let f ∈ C
(l)
2π and let tn be some trigonometric polynomial. Applying Kolmogorov’s

inequality to f − tn, gives

‖f (k) − t(k)
n ‖C 6 K‖f − tn‖

k
l

C · ‖f (l) − t(l)n ‖
l−k

l

C ,
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whence it follows that if both a function and its highest derivative are well approximable
by a trigonometric polynomial and its highest derivative, then the intermediate deriva-
tives are also well approximable by the corresponding derivatives of the polynomial.

Taking the Fourier sums for tn, we obtain the bound

‖f (k) − s(k)
n ‖C 6 K1‖f − sn‖

k
l

C ·
(
ln(n + 1)En(f (l))

) l−k
l , n > 1,

which relates approximations of the derivative and the function by Fourier sums.
We note that, in Kolmogorov’s inequality (20.1) in the space C2π, one cannot substi-

tute best approximations for norms: in the space C2π a polynomial of best approximation
of the derivative may not be the derivative of the polynomial of best approximation to
the function. However, such a change is possible in L2.

Considerable research has been devoted to the inequalities

‖f (k)‖Lq 6 K‖f‖α
Lp · ‖f (l)‖β

Lr , (20.5)

where k, l are integers, 0 6 k < l, Lp = Lp(I) and I is the whole line or half-line.
These inequalities are more general than (20.1) (for an overview, consult the surveys [1]
and [46]).

Multiplicative inequality (20.5) is equivalent to the family of additive inequalities

‖f (k)‖Lq 6 A‖f‖Lp + B‖f (l)‖Lr (20.6)

with arbitrary A > 0 and appropriately chosen B > 0.
For the case of a finite interval I inequality (20.5) does not hold (say, for f(x) = xl−1)

and inequality (20.6) holds only for 0 < A∗ 6 A < ∞ with appropriate B. Some
inequalities of type (20.6) with sharp constants were obtained in [3].

20.3. Jackson’s inequality

20.3.1. Intermediate approximations (approximations by
smooth functions)

Any periodic continuous function can be approximated to any desired degree of
accuracy by smooth functions—in particular, by the Fejer sums:

∀ f ∈ C2π ∀ ε > 0 ∃ n : ‖f − σn(f)‖C < ε.

We specialize the normalization parameters. Let l be a natural number and let
M > 0. Consider the class C(l)(M) of all l times continuously differentiable 2π-periodic
functions ϕ with ‖ϕ(l)‖C 6 M . The class C(l)(M) (with fixed M) is not suitable for
approximation of arbitrary functions to any desired degree of accuracy. The following
problem arises.

Problem. Find
inf

ϕ∈C(l)(M)
‖f − ϕ‖C = E(f, C(l)(M)).

This problem is infinite-dimensional and nonlinear.
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20.3.2. On smoothing of functions

For l = 1, 2, the classical solution of the smoothing problem can be given with the
help of Steklov functions to be defined later.

Given h > 0, we average the function f∈ C2π over an interval of length h with centre
at the point x. As a result, we obtain the function

fh(x) =
1

h

∫ h
2

−h
2

f(x + t) dt, (20.7)

known as the Steklov function. The smoothed function (20.7) is known to be continu-
ously differentiable, and also

f ′
h(x) =

1

h

{
f

(
x +

h

2

)
− f

(
x − h

2

)}
.

We also have ‖f ′
h‖C 6 2

h
‖f‖C and

‖f − fh‖C 6
1

h

∫ h
2

−h
2

‖f(x) − f(x + t)‖C dt 6
2

h

∫ h
2

0

ω(f, t) dt 6 ω

(
f,

h

2

)
.

Hence, the Steklov function approximates the initial function and is continuously differ-
entiable. However, with good accuracy of approximation the derivative f ′

h is in general
fairly large.

Given a real number M > 0, we find a parameter h so that M = 2
h
‖f‖C ; in other

words, h = 2‖f‖C

M
. As a result, we have the following theorem on approximation by

Steklov functions.

Theorem 20.1. For any function f ∈ C2π and any constant M > 0, there exists

a continuously differentiable function ϕ, ‖ϕ′‖C 6 M , such that

‖f − ϕ‖C 6 ω

(
f,

‖f‖C

M

)
.

A similar analysis applies to the case l = 2. Consider the second order difference

∆2
t f(x) = f(x + t) − 2f(x) + f(x − t).

Integrating twice, we get

1

h2

∫ h

0

∫ t1

0

∆2
t f(x) dt dt1 = ϕh(x) − f(x), (20.8)

where

ϕh(x) =
1

h2

∫ h

0

∫ t1

0

(f(x + t) + f(x − t)) dt dt1. (20.9)

Making the change of variables x+ t = u in the fist and x− t = u in the second integral,
we obtain

ϕh(x) =
1

h2

∫ h

0

∫ x+t1

x−t1

f(u) du dt1.
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This function is differentiable in x, and

ϕ′
h(x) =

1

h2

∫ h

0

(f(x + t1) − f(x − t1)) dt1 =
1

h2

(∫ x+h

x

f(v) dv −
∫ x

x−h

f(v) dv

)
.

This expression is again differentiable, and hence the function ϕh is twice differentiable,
and

ϕ′′
h(x) =

1

h2
(f(x + h) − 2f(x) + f(x − h)) . (20.10)

Hence, the function ϕh is twice continuously differentiable, and in view of (20.10)
and (20.8), has the following properties:

‖ϕ′′
h‖C 6

1

h2
‖∆2

hf‖C 6
4

h2
‖f‖C , ‖f − ϕh‖C 6

1

2
ω2(h, f). (20.11)

20.3.3. Jackson’s inequality in C2π

Having the smoothing procedure and Favard’s inequality at our disposal allows us
to evaluate the best approximation of an arbitrary function in terms of its smoothness
properties.

Theorem 20.2 (D. Jackson (see, e.g., [45, Part II, Ch. 6], [14, Ch. 14]). For any

k > 0 there exists a constant Ck such that, for any f ∈ C(k),

En(f)C 6
Ck

(n + 1)k
ω2

(
1

n
, f (k)

)
.

Proof. By Favard’s inequality (19.5),

En(f)C 6
Mk

(n + 1)k
En(f (k))C ;

now it suffices to estimate En(f (k))C . Consider the function ϕ defined in (20.9) for the
derivative f (k) and parameter h = 1

n
. Hence, by (20.11),

‖ϕ′′‖C 6 n2
∥∥∥∆2

1
n

f (k)
∥∥∥

C
6 n2ω2

( 1

n
, f (k)

)

and so, by Favard’s inequality (19.4),

En(ϕ)C 6
M2

(n + 1)2
n2ω2

( 1

n
, f (k)

)
.

We have

En(f (k))C 6 En(f (k) − ϕ)C + En(ϕ)C 6 ‖f (k) − ϕ‖C + En(ϕ)C ,

and hence, by (20.11),

En(f (k))C 6

(
1

2
+ M2

)
ω2

( 1

n
, f (k)

)
. ¤

For k = 0 this gives Jackson’s inequality for nondifferentiable functions:

En(f)C 6 Cω2

(
1

n
, f

)
.

Remark. The proof just given can be carried out in any uniform space.
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27. G. Mastroianni, G.V. Milovanović, Interpolation processes Basic theory and applications, Springer,
Berlin, 2008.

28. R. Megginson, An introduction to Banach space theory, Springer, Berlin, 1998.

29. D. P. Milman, On some criteria for the regularity of spaces of the type (B), Dokl. Akad. Nauk
SSSR (N.S.) 20 (1938), 243–246.

30. I. P. Natanson, Constructive function theory, I, Frederic Ungar, New York, 1964.

31. I. P. Natanson, Constructive function theory, III, Frederic Ungar, New York, 1965.
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