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Abstract. In this paper, we introduce a new semistability condition for quiver bun-
dles which generalizes both the notion found by �Alvarez-C�onsul and by the author.
We construct moduli spaces for the semistable bundles, applying Geometric Invariant
Theory.

1 Introduction

Let (X,OX(1)) be a polarized projective manifold over the complex numbers, Q =
(V,A, t, h) a quiver and G = (Ga, a ∈ A) a tuple of locally free sheaves on X. A
representation of Q is a tuple (Ev, v ∈ V, ϕa, a ∈ A) in which Ev is a coherent OX-
module, v ∈ V , and ϕa : Ga⊗Et(a) −→ Eh(a) is a homomorphism of OX-modules, a ∈ A.
There is the obvious notion of an isomorphism of representations of Q. We would like
to investigate the problem of classifying representations of Q up to isomorphism where
the Hilbert polynomials of the participating sheaves are �xed. We will follow the path
of de�ning semistability of representations and then constructing the moduli spaces
with Geometric Invariant Theory.

This problem has already been considered before. A general semistability concept
for quiver bundles was �rst discussed in the paper [2]. (Of course, some important
examples such as Higgs bundles and holomorphic triples had been known before.) In
that paper, semistable quiver bundles were related to solutions of certain di�erential
equations and, by means of dimensional reduction, to semistable vector bundles on �ag
manifolds. The notion of semistability discussed in that paper is naturally a notion
of slope semistability. If one is interested in constructing reasonable moduli spaces
for quiver bundles with Geometric Invariant Theory, slope semistability is the right
answer only in the case of curves. On higher dimensional manifolds, one should recur
to aGieseker type notion of semistability. In [13], the author introduced such a notion
for quiver bundles and constructed the moduli spaces. More recently, �Alvarez-C�onsul
generalized in [1] his work with King [3] to quiver bundles and obtained another notion
of semistability. As one would expect, it agrees with the one of the author in the case
of curves but seems to be genuinely di�erent on higher dimensional manifolds. �Alvarez-
C�onsul asks in [1] for a common generalization of the two semistability concepts. In
this note, we provide such a generalization (in a rather straightforward manner). It
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turns out that the Geometric Invariant Theory construction given in [13] can be slightly
modi�ed to work also for the more general semistability concept. In this paper, we will
also take the opportunity to �ll in many details of the computations left out in [13].

The author thinks that this is a phenomenon worth studying: In the case of curves,
semistability for principal bundles with extra structures is reasonably well understood.
It can be derived from some basic principles (see [14]), it agrees in all known examples
with the one coming from gauge theory ([4], [5], [11]) and can usually be explained
in terms of line bundles on the moduli stack (e.g., [8]). As the example of quiver
bundles shows, this understanding seems to be less thorough on higher dimensional
base manifolds. Thus, it may be worthwhile investigating this topic a little more.
Furthermore, variants of quiver representations on Calabi�Yau threefolds appear in
Pandharipande�Thomas theory [15].

We �x

• a tuple P = (Pv, v ∈ V ) of Hilbert polynomials,

• an integer t ≥ 0,

• a tuple κ = (κv, v ∈ V ) of positive integral polynomials of degree exactly t,

• a positive rational polynomial δ of degree at most t+ dim(X)− 1,

• and a tuple η = (ηv, v ∈ V ) of rational numbers, subject to the condition
∑

v∈V ηv·
rv = 0. Here, rv is the rank determined by the Hilbert polynomial Pv, v ∈ V .

Furthermore, we de�ne

• χv := ηv · δ, v ∈ V , χ = (χv, v ∈ V ),

• σv as the leading coe�cient of κv, v ∈ V , σ = (σv, v ∈ V ).

For a tuple F = (Fv, v ∈ V ) of coherent sheaves on X, we set

Pκ,χ(F ) :=
∑
v∈V

(
κv · P (Fv)− χv · rk(Fv)

)
and

rkσ(F ) :=
∑
v∈V

σv · rk(Fv).

A representation (Ev, v ∈ V, ϕa, a ∈ A) with P (Ev) = Pv, v ∈ V , is then called
(semi)stable, if a) the sheaves Ev, v ∈ V , are torsion free and b) for any collection of
saturated subsheaves Fv ⊂ Ev, v ∈ V ,1 not all trivial and not all equal to Ev, such that
ϕa(Ga ⊗Ft(a)) ⊂ Fh(a) for all arrows a ∈ A, one has

Pκ,χ(Fv, v ∈ V )

rkσ(Fv, v ∈ V )
(�)

Pκ,χ(Ev, v ∈ V )

rkσ(Ev, v ∈ V )
.

The notation �(�)" means that �≺" is used for de�ning �stable" and ��" for de�n-
ing �semistable", and �≺" and ��" refer to the lexicographic ordering of polynomials.

1i.e., Ev/Fv is again torsion free, v ∈ V
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Finally, (Ev, v ∈ V, ϕa, a ∈ A) is called polystable, if it is a direct sum of stable repre-
sentations (E i

v , v ∈ V, ϕi
a, a ∈ A), i = 1, ..., s, with

Pκ,χ(E i
v , v ∈ V )

rkσ(E i
v , v ∈ V )

=
Pκ,χ(E j

v , v ∈ V )

rkσ(E j
v , v ∈ V )

, for all i, j = 1, ..., s.

Remark. The above notion of semistability generalizes both the notion discussed in
[13] and the notion introduced by �Alvarez-C�onsul [1]. To recover the former notion we
set t = 0, and for the latter notion we set ηv = 0, v ∈ V .

The main result of this paper is the following

Main Theorem. i) There is a quasi-projective moduli space D := D(Q,G )ss
P/κ/η/δ for

polystable representations (Ev, v ∈ V, ϕa, a ∈ A) with P (Ev) = Pv, v ∈ V . The points
corresponding to stable representations form an open subset D s.

ii) There are a vector space D and a projective morphism H : D −→ D, the gener-
alized Hitchin map.

Conventions

We will freely use the terminology of the paper [13]. For a vector bundle E on a
scheme Y , we let P(E ) := Proj (S ym?(E )) be Grothendieck's projectivization and
P (E ) := P(E ∨). We write the vertex set as V = { v1, ..., vt }.

2 Decorated Tuples of Sheaves

Following the strategy of [13], we will �rst deal with a much more general classi-

�cation problem concerning decorated tuples of sheaves.

The moduli functors of semistable decorated V -split sheaves

For our considerations, we �x the same parameters as in the introduction. In addition,
we �x positive integers a, b and non-negative integers c, m. Recall that the parameters
comprise the polynomials

κv(x) = σv · xt + lower order terms, v ∈ V.

For a tuple F = (Fv, v ∈ V ) of coherent OX-modules, called a V -split sheaf, we de�ne

F total :=
⊕
v∈V

F⊕σv

and
F a,b,c :=

(
(F total)⊗a

)⊕b ⊗ det(F total)⊗−c.

A decorated tuple of type (P , a, b, c,m) is a tuple (E , ϕ) which consists of a torsion-
free V -split sheaf E = (Ev, v ∈ V ) with P (Ev) = Pv, v ∈ V , and a non-zero homomor-
phism

ϕ : E a,b,c −→ OX(m).
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Next, we de�ne semistability. The test objects are weighted �ltrations (E •, α•) of
E , i.e., E • is a tuple (E 1, ...,E s) of V -split sheaves E i = (E v

i , v ∈ V ), i = 1, ..., s, such
that

E v
• : 0 ⊆ E v

1 ⊆ · · · ⊆ E v
s ⊆ Ev

is a �ltration of Ev by saturated subsheaves where equalities are allowed, v ∈ V , such
that

E total
• : 0 ( E total

1 ( · · · ( E total
s ( E total

is a �ltration in which all inclusions are strict, and α• = (α1, ..., αs) is a tuple of positive
rational numbers.

Given a V -split sheaf E = (Ev, v ∈ V ) and a weighted �ltration (E •, α•) of E , we
set

Mκ,χ(E •, α•) :=
s∑

i=1

αi ·
(
Pκ,χ(E ) · rkσ(E i)− Pκ,χ(E i) · rkσ(E )

)
.

We also introduce

R :=
∑
v∈V

σv ·Rv, Ri := rk(E total
i ), i = 1, ..., s,

and we let the vector γ = (γ1, ..., γs+1) consist of the integers occurring in the vector

s∑
i=1

αi · (Ri −R, ..., Ri −R︸ ︷︷ ︸
Ri×

, Ri, ..., Ri︸ ︷︷ ︸
(R−Ri)×

)

in increasing order. If we are also given a decoration ϕ : E a,b,c −→ OX(m), we de�ne
the quantity

µ(E •, α•, ϕ) := − min
(i1,...,ia)∈

{ 1,...,s+1 }×a

{
γi1 + · · ·+ γia |ϕ|(E total

i1
⊗···⊗E total

ia
)⊕b 6= 0

}
. (2.1)

A decorated V -split sheaf (E , ϕ) is called (κ, η, δ)-(semi)stable or just (semi)stable, if
for every weighted �ltration (E •, α•) of E

Mκ,χ(E •, α•) + δ · µ(E •, α•, ϕ)(�)0.

Remark 2.1. i) Let i0 = (i01, ..., i
0
a) ∈ { 1, ..., s + 1 }×a be an index tuple which gives

the minimum in (2.1). Let

νi(i
0) := #

{
k = 1, ..., a | i0k ≤ i

}
, i = 1, ..., s.

Then,

µ(E •, α•, ϕ) =
s∑

i=1

αi · (νi(i
0) ·R− a ·Ri). (2.2)
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ii) Since
∑

v∈V χv · rv ≡ 0, we may write

Mκ,χ(E •, α•) = rkσ(E ) ·
s∑

i=1

αi ·
(∑

v∈V

χv · rk(E v
i )

)
+

+
s∑

i=1

αi ·

((∑
v∈V

κv · P (Ev)

)
· rkσ(E i)−

(∑
v∈V

κv · P (E v
i )

)
· rkσ(E )

)
︸ ︷︷ ︸

=: Mκ(E •, α•)

.

Finally, we de�ne the functors

M
(κ,η,δ)-(s)s
P/a/b/c/m : SchC −→ Sets

S 7−→


Equivalence classes of families of decorated

(κ, η, δ)-(semi)stable V -split sheaves of
type (P , a, b, c,m) parameterized by S

 .

Theorem 2.1. i) There exist a projective scheme M := M
(κ,η,δ)-(s)s
P/a/b/c/m and a natu-

ral transformation ϑ : M
(κ,η,δ)-(s)s
P/a/b/c/m −→ hM , such that for any other scheme M ′ and

any other natural transformation ϑ′ : M
(κ,η,δ)-(s)s
P/a/b/c/m −→ hM ′, there is a unique morphism

ζ : M −→ M ′ with ϑ′ = hζ ◦ ϑ.
ii) The space M contains an open subscheme M s which is a coarse moduli scheme

for the functor M
(κ,η,δ)-(s)s
P/a/b/c/m.

Boundedness

We �rst have to prove that the semistable objects move in bounded families. For this,
we write

δ =
1

(dim(X)− 1)!
· δ · xt+dim(X)−1 + lower order terms,

κv = σv · xt + τv · xt−1 + lower order terms

and

λv :=
deg(X)

dim(X)
· τv − ηv · δ, v ∈ V, λ = (λv, v ∈ V ).

Recall that the Hirzebruch�Riemann�Roch theorem ([9], Theorem 21.1.1) gives the
formula

P (F ) =
deg(X)

dim(X)!
· rk(F ) · xdim(X) +

+
1

(dim(X)− 1)!
·
(

deg(F ) +
c1(X) · c1(OX(1))dim(X)−1

2
· rk(F )

)
+lower order terms

for a coherent OX-module F on X. Of course, deg(X) = c1(OX(1))dim(X) and
deg(F ) = c1(F )·c1(OX(1))dim(X)−1. With this formula, we see that, for a V -split sheaf
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E and a weighted �ltration (E •, α•) of E , the coe�cient of xt+dim(X) in Mκ,χ(E •, α•) is

zero and the one of xt+dim(X)−1 is

1

(dim(X)− 1)!
· Lσ,λ(E •, α•)

with

Lσ,λ(E •, α•) =
s∑

i=1

αi ·
(
degσ,λ(E ) · rkσ(E i)− degσ,λ(E i) · rkσ(E )

)
(2.3)

and
degσ,λ(F ) :=

∑
v∈V

(
σv · deg(Fv) + λv · rk(Fv)

)
, F a V -split sheaf.

Remark 2.2. Observing the remark at the bottom of page 28 in [13] about the condition∑
v∈V ηv ·rv = 0, we see that the notions of slope semistability one gets from the concepts

of Gieseker semistability in [1], [13] and this paper are all the same.

Proposition 2.1. The set of isomorphism classes of OX-modules E ′, such that there
exist a (κ, η, δ)-semistable decorated V -split sheaf (E , ϕ) of type (P , a, b, c,m) and a
vertex v ∈ V with E ′ ∼= Ev is bounded.

Proof. The stated condition on E ′ leaves only �nitely many options for the Hilbert
polynomial of E ′ and implies that E ′ is torsion free. By Maruyama's boundedness
theorem ([10], Theorem 3.3.7), it su�ces to bound the slope of saturated subsheaves
of E ′.

So, let (E , ϕ) be a (κ, η, δ)-semistable decorated V -split sheaf of type (P , a, b, c,m),
v0 ∈ V a vertex and F ⊂ Ev0 a saturated subsheaf. We choose the weighted �ltration
(E •, (1)) with E 1 = (Fv, v ∈ V ) the tuple with Fv = 0 for v 6= v0 and Fv0 = F . By
(2.3), we have

Lσ,λ(E •, α•) = degσ,λ(E ) · σv0 · rk(F )−
(
σv0 · deg(F ) + λv0 · rk(F )

)
· rkσ(E v).

The semistability condition yields the estimate

deg(F )

rk(F )
≤

degσ,λ(E )

rkσ(E v)
+
λv0

σv0

+
δ

σv0 · rk(F ) · rkσ(E v)
· µ(E •, α•, ϕ).

Formula (2.2) gives
µ(E •, α•, ϕ) ≤ a · (R− 1).

Altogether, we obtain an upper bound on µ(F ) which depends only on the input
data.

3 Proof of Theorem 2.1

Now, we basically take over the construction of [13]. We need to make some small

changes in the construction of the parameter space and have to be careful how

to modify the linearization parameters.
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The parameter space

We let Av, v ∈ V , be the union of those components of Pic(X) which contain line
bundles of the form det(Ev) for a semistable decorated V -split sheaf (E , ϕ) of type
(P , a, b, c,m). We also set A := Xv∈V Av. By the usual boundedness arguments, we can
�nd an l0, such that for all l ≥ l0, all semistable decorated V -split sheaves (E , ϕ) of
type (P , a, b, c,m), all v ∈ V , all [L ] ∈ Av, and all N =

⊗
v∈V L ⊗σv

v with [Lv] ∈ Av,
v ∈ V ,

• Ev(l) is globally generated and H i(Ev(l)) = 0 for all i > 0,

• L (rv · l) is globally generated and H i(L (rv · l)) = 0 for all i > 0,

• N ⊗c(a · l) is globally generated and H i(N ⊗c(a · l)) = 0 for all i > 0.

We �x such an l, and set pv := Pv(l), v ∈ V , and p :=
∑

v∈V κv(l) · pv. Moreover,
we choose a vector space Wv of dimension pv and let Q0

v be the quasi-projective quot
scheme parameterizing quotients q : Wv⊗OX(−l) −→ F with F a torsion free coherent
OX-module with Hilbert polynomial Pv and H

0(q(l)) an isomorphism, v ∈ V . Let Ev

be the universal quotient on Q0
v×X, v ∈ V . With the universal quotients, we construct

sheaves on (Xv∈V Q0
v)×X:

Etotal :=
⊕
v∈V

π?
Q0

v×X

(
E⊕σv

v

)
and Ẽtotal :=

⊕
v∈V

π?
Q0

v×X

(
E⊕κv(l)

v

)
.

De�ne

M :=
⊕
v∈V

W⊕σv
v and M̃ :=

⊕
v∈V

W⊕κv(l)
v .

Next, we set

P := P

((
(M⊗a)⊕b

)∨ ⊗ π(Xv∈V Q0
v)?

(
det(Etotal)⊗c ⊗ π?

X

(
OX(a · l)

)))
.

This is a projective bundle over Xv∈V Q0
v, and the parameter space M is constructed in

the usual way as a closed subscheme of P. In particular, it is projective over Xv∈V Q0
v.

Furthermore, M comes with an action of the reductive group (Xv∈V GL(Wv))/C?, C?

being diagonally embedded. For l � 0, we certainly have κv(l) ≥ σv, v ∈ V , so that
we may �x surjections

M⊕κv(l)
v −→M⊕σv

v ,

yielding a surjection

M̃ −→M

of (Xv∈V GL(Wv))-modules. Using this surjection, we may construct M as a
((Xv∈V GL(Wv))/C?)-invariant subscheme of

P̃ := P

((
(M̃⊗a)⊕b

)∨ ⊗ π(Xv∈V Q0
v)?

(
det(Etotal)⊗c ⊗ π?

X

(
OX(a · l)

)))
.
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We de�ne

G̃ :=
(

X
v∈V

GL(Wv)
)
∩ SL(M̃)

=
{

(h1, ..., ht) ∈ X
v∈V

GL(Wv)
∣∣ det(h1)

κv1 (l) · · · · · det(ht)
κvt (l) = 1

}
.

The group G̃ maps with �nite kernel onto (Xv∈V GL(Wv))/C?, so that we may restrict

our attention to the action of G̃.

The linearization of the above group action will be induced via a Gieseker morphism
to some other scheme. For this, we �x Poincar�e line bundles Pv over Av ×X, v ∈ V ,
and set

Gv := P

(( rv∧
Wv

)∨
⊗ πAv?

(
Pv ⊗ π?

X

(
OX(rv · l)

)))
.

Choosing Pv appropriately, we may assume that OGv(1) is very ample for all v ∈ V .
On A×X, we get the line bundle

P :=
⊗
v∈V

π?
Av×X

(
P⊗σv

v

)
.

Then, we de�ne

P̃′ := P

((
(M̃⊗a)⊕b

)∨ ⊗ πA?

(
P⊗c ⊗ π?

X

(
OX(a · l)

)))
as a projective bundle over A. Again, OeP′(1) can be assumed to be ample. We now

have a G̃-equivariant and injective morphism

Γ : M −→ P̃′ × X
v∈V

Gv.

For given % ∈ Z>0, and ϑv ∈ Z>0, v ∈ V , there is a natural linearization of the
G̃-action on P̃′ × Xv∈V Gv in the ample line bundle O(%, ϑv, v ∈ V ). This may be
altered by any character of Xv∈V GL(Wv). Let r :=

∑
v∈V κv(l) · rv, d := δ(l),

χ̃v(l) := χv(l)− p

r
· κv(l) +

p

R
· σv + d · a

r
· κv(l)− d · a

R
· σv,

xv := − χ̃v(l)

d
, x′v :=

rv · xv

pv

,

ε :=
p− a · d
r · d

, εv := κv(l)− xv

ε
= κv(l) +

r · χ̃v(l)

p− a · d
,

and

x′′v := ε · κv(l) ·
(
r

p
− rv

pv

)
, v ∈ V.
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Remark 3.1. i) The quantities ε and εv, v ∈ V , are functions in l. Since p = P (l) is
a positive polynomial of degree t+ dimX and both δ and χv are polynomials of degree
at most t+ dimX − 1, it is clear that ε will be positive for l� 0. Next we study

r · χ̃v(l) = r · χv(l)− (p− a · d) · κv(l) + (p− a · d) · r
R
· σv. (3.1)

The polynomial r · χv(l) has degree at most 2t+ dim(X)− 1, the leading coe�cient of
r/R is 1, so that the degree of −(p − a · d) · κv(l) + (p − a · d) · (r/R) · σv is at most
2t + dim(X) − 1. Thus, the polynomial in (3.1) has degree at most 2t + dim(X) − 1.
Therefore, the expression

r · χ̃v(l)

p− a · d
grows at most like a polynomial of degree t− 1. This means that εv will be positive for
l� 0. So, the line bundle in which the action will be linearized will really be ample.

ii) Note that∑
v∈V

pv · x′v =
∑
v∈V

rv · xv = −1

d
·
(∑

v∈V

rv · χv(l)

)
− p− a · d

d · r
· r +

p− a · d
d ·R

·R = 0.

Now, we choose % ∈ Z>0 and ϑv ∈ Z>0, such that

ϑv

%
= ε · εv, v ∈ V.

We modify the linearization of the G̃-action on Xv∈V Gv in O(ϑv, v ∈ V ) by a character,
such that C?t = C? · idWv1

× · · · × C? · idWvt
acts via (zv, v ∈ V ) 7−→

∏
v∈V z

pv ·ev
v with

ev := % · (x′v + x′′v), v ∈ V.

Note that this character is just the restriction of the character

(m1, ...,mt) 7−→ det(m1)
ev1 · · · · · det(mt)

evt

of Xv∈V GL(Wv) to the center Z . We work with the resulting linearization of the

G̃-action on P̃′ × Xv∈V Gv in O(%, ϑv, v ∈ V ).

A weight formula

Let (Ev, v ∈ V ) be a V -split sheaf, l ∈ N, Wv a vector space of dimension P (Ev)(l) and
qv : Wv ⊗ OX −→ Ev(l) a generically surjective homomorphism, v ∈ V . Suppose also

that we are given a tuple ((Ŵ v
• , γ

v), v ∈ V ) of weighted �ltrations of the Wv, v ∈ V ,

Ŵ v
• : 0 ( Ŵ v

1 ( · · · ( Ŵ v
sv

( Wv,

γv = (γv
1 , ..., γ

v
sv+1),

and �ltrations
Ê v
• : 0 ⊆ Ê v

1 ⊆ · · · ⊆ Ê v
sv
⊆ Ev, v ∈ V,
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such that qv(Ŵv ⊗ OX) generically generates Ê v
i (l), i = 1, ..., sv, v ∈ V .

Furthermore, we �x a tuple (Kv, v ∈ V ) of positive integers and set, for a V -split
sheaf (Fv, v ∈ V ),

F̃ total :=
⊕
v∈V

F⊕Kv
v .

Then, by the formalism described in [13], Section 3.2, we get a weighted �ltration
(W •, γ•), γ• = (γ1, ..., γs), of the V -split vector space (Wv, v ∈ V ) which, in turn, gives
a �ltration

W̃ total
• : 0 ( W̃ total

1 ( · · · ( W̃ total
s ⊆ W̃ total.

Suppose �nally that we are given a �ltration

Ẽ total
• : 0 ⊆ Ẽ total

1 ⊆ · · · ⊆ Ẽ total
s ⊆ Ẽ total

in which some of the inclusions may be equaltities, such that the image of W̃ total
i ⊗OX

under the homomorphism W̃ total ⊗ OX −→ Ẽ total(l) generically agrees with Ẽ total
i (l),

i = 1, ..., s+ 1.2

Proposition 3.1. In the situation explained above, the following identity holds true

s∑
i=1

γi+1 − γi

P (Ẽ total)(l)
·

(
P (Ẽ total)(l) · rk(Ẽ total

i )− rk(Ẽ total) ·
(∑

v∈V

Kv · dimC(Ŵ v
i )

))
=
∑
v∈V

Kv ·
( sv∑

i=1

γv
i+1 − γv

i

P (Ev)(l)
·
(
P (Ev)(l) · rk(Ê v

i )− rk(Ev) · dimC(Ŵ v
i )
))

−
∑
v∈V

Kv ·
(

rk(Ev)

P (Ev)(l)
− rk(Ẽ total)

P (Ẽ total)(l)

)
·
(sv+1∑

i=1

γv
i ·
(

dimC(Ŵ v
i )− dimC(Ŵ v

i−1)
))

.

Proof. By our assumption, the maps

qv : Wv ⊗ OX −→ Ev(l),

qv|cW v
i ⊗OX

: Ŵ v
i ⊗ OX −→ Ê v

i (l)

are generically surjective, i = 1, ..., sv, v ∈ V . Thus, we restrict them to a general point
of X and apply [13], Proposition 3.2.2.

2This may constructed as follows: Given i ∈ { 1, ..., s + 1 }, set

sv(i) := max
{

j ∈ { 1, ..., sv + 1 } | γv
j ≤ γi

}
, v ∈ V,

and

Ẽ total
i :=

⊕
v∈V

sv(i)⊕
j=1

E v,⊕Kv

j .
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GIT-Semistability implies semistability

Letm = (qv : Wv⊗OX(−l) −→ Ev, v ∈ V, ϕ) be a point in the parameter space M, such
that Γ (m) is (semi)stable with respect to the chosen linearization in O(%, ϑv, v ∈ V ).
We look at a weighted �ltration (E •, α•) of (Ev, v ∈ V ), such that

E v
i (l) is generically generated by H0

(
E v

i (l)
)
, i = 1, ..., sv, v ∈ V.

De�ne γ = (γ1, ..., γs+1) by the conditions

γi+1 − γi

p
= αi, i = 1, ..., s,

and, setting Ẽ total
i :=

⊕
v∈V E v,⊕κv(l)

i , i = 1, ..., s+ 1,

s+1∑
i=1

γi ·
(
h0
(
Ẽ total

i (l)
)
− h0

(
Ẽ total

i−1 (l)
))

= 0.

Then, we obtain a weighted �ltration (E •, γ•) and, thus, weighted �ltrations (Ê v
• , γ

v
•)

of the Ev, v ∈ V (see [13], Section 3.2). Next, we choose bases wv = (wv
1 , ..., w

v
pv

) of the
Wv with

〈wv
1 , ..., w

v
h0( bE v

i (l))
〉 = H0

(
Ê v

i (l)
)
, i = 1, ..., sv, v ∈ V,

and set
γ̃v :=

(
γv

1 , ..., γ
v
1︸ ︷︷ ︸

h0( bE v
1 (l))×

, ..., γv
sv+1, ..., γ

v
sv+1︸ ︷︷ ︸

(pv−h0( bE v
sv (l)))×

)
.

This yields the one parameter subgroup

λ :=
(
λ(wv1 , γ̃v1), ..., λ(wvt , γ̃vt)

)
of G̃. Now, with Γ (m) = ([m′], [mv], v ∈ V ),

µ
(
λ, Γ (m)

)
%

= µ
(
λ, [m′]

)
+ ε · A+B,

A :=
∑
v∈V

εv · µ
(
λ, [mv]

)
−

−
∑
v∈V

κv(l) ·
(
rv

pv

− r

p

)
·
(sv+1∑

i=1

γv
i ·
(
h0
(
Ê v

i (l)
)
− h0

(
Ê v

i−1(l)
)))

,

B :=
∑
v∈V

(
x′v ·

sv+1∑
i=1

γv
i ·
(
h0
(
Ê v

i (l)
)
− h0

(
Ê v

i−1(l)
)))

.

Observe

sv+1∑
i=1

γv
i ·
(
h0
(
Ê v

i (l)
)
− h0

(
Ê v

i−1(l)
))

= γv
sv+1 · pv −

sv∑
i=1

(
γv

i+1 − γv
i

)
· h0
(
Ê v

i (l)
)
.



A remark on semistability of quiver bundles 121

Next,

µ
(
λ, [mv]

)
=

sv∑
i=1

γv
i+1 − γv

i

pv

·
(
pv · rk(Ê v

i )− h0
(
Ê v

i (l)
)
· rv

)
.

Thus, for v ∈ V ,

ε · εv · µ
(
λ, [mv]

)
− x′v ·

sv∑
i=1

(
γv

i+1 − γv
i

)
· h0
(
Ê v

i (l)
)

+ x′v · γv
sv+1 · pv

=
sv∑

i=1

γv
i+1 − γv

i

pv

·
(
ε · εv ·

(
pv · rk(Ê v

i )− h0
(
Ê v

i (l)
)
· rv

)
− x′v · pv · h0

(
Ê v

i (l)
))

+x′v · γv
sv+1 · pv

=
sv∑

i=1

γv
i+1 − γv

i

pv

·
(
ε · εv ·

(
pv · rk(Ê v

i )− h0
(
Ê v

i (l)
)
· rv

)
− xv · rv · h0

(
Ê v

i (l)
))

+xv · γv
sv+1 · rv

=
sv∑

i=1

γv
i+1 − γv

i

pv

·
(
ε · κv(l) ·

(
pv · rk(Ê v

i )− h0
(
Ê v

i (l)
)
· rv

)
− xv · pv · rk(Ê v

i )

)
+xv · γv

sv+1 · rv

= ε · κv(l) ·
sv∑

i=1

(
γv

i+1 − γv
i

pv

·
(
pv · rk(Ê v

i )− h0
(
Ê v

i (l)
)
· rv

))
−

−
sv∑

i=1

(
xv · (γv

i+1 − γv
i ) · rk(Ê v

i )
)

+ xv · γv
sv+1 · rv

= ε · κv(l) ·
sv∑

i=1

(
γv

i+1 − γv
i

pv

·
(
pv · rk(Ê v

i )− h0
(
Ê v

i (l)
)
· rv

))
+

+
sv+1∑
i=1

xv · γv
i ·
(
rk(Ê v

i )− rk(Ê v
i−1)
)
.

By de�nition,

∑
v∈V

xv·

(
sv+1∑
i=1

γv
i ·
(
rk(Ê v

i )− rk(Ê v
i )
))

=
s+1∑
i=1

γi·

((∑
v∈V

xv · rk(E v
i )

)
−
(∑

v∈V

xv · rk(E v
i−1)

))
.

Since rk(E v
s+1) = rv, v ∈ V , and

∑
v∈V xv · rv = 0, by Remark 3.1, ii), we may rewrite

this quantity as

−
s∑

i=1

(γi+1 − γi) ·
(∑

v∈V

xv · rk(E v
i )

)
= −p ·

s∑
i=1

αi ·
(∑

v∈V

xv · rk(E v
i )

)
.
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Using Proposition 3.1, with Kv = κv(l), v ∈ V , we discover that ε · A+B equals

ε ·
s∑

i=1

αi ·
(
p · rk(Ẽ total

i )− h0
(
Ẽ total

i (l)
)
· r
)
− p ·

s∑
i=1

αi ·
(∑

v∈V

xv · rk(E v
i )

)

=
s∑

i=1

αi ·
(
p2 · rk(Ẽ total

i )

r · d
− p · a · rk(Ẽ total

i )

r
−
p · h0

(
Ẽ total

i (l)
)

d
+ (3.2)

+a · h0
(
Ẽ total

i (l)
))

− p ·
s∑

i=1

αi ·
(∑

v∈V

xv · rk(E v
i )

)
.

Theorem 3.1. The set of isomorphism classes of torsion free sheaves E ′, such that
there exist an l ∈ N, a point m = (qv : Wv⊗OX(−l) −→ Ev, v ∈ V, ϕ) in the parameter
space M,3 such that Γ (m) is semistable with respect to the chosen linearization in
O(%, ϑv, v ∈ V ), and an index v0 ∈ V with E ′ ∼= Ev0 is bounded.

Proof. The proof is similar to the one of Proposition 2.3.5.12 in [14]. Pick a vertex

v0, let F be a saturated subsheaf of Ev0 and F̃ the saturated subsheaf of Ev0 that is
generically generated by H0(F (l)). Note that

H0
(
F̃ (l)

)
= H0

(
F (l)

)
. (3.3)

We de�ne the weighted �ltration (E •, α•) with s = 1, α• = (1) and

E v
1 :=

{
Ev, if v 6= v0

F̃ , if v = v0
.

We also set
F total = F⊕κv0 (l) ⊕

⊕
v 6=v0

E ⊕κv(l)
v

and �nd the exact sequence

0 −−−→ H0
(
F total(l)

)
−−−→ H0

(
Ẽ total(l)

)
−−−→ H0(Q(l)

)⊕κv0 (l) (3.4)

for the sheaf Q := Ev0/F . We estimate

µ
(
λ, [m′]

)
≤ a ·

(
p− h0

(
Ẽ total

1 (l)
))
.

Using this, equation (3.2),

C :=
∑
v∈V

χ̃(l) · rk(E v
1 )

and semistability of Γ (m), we �nd the inequality

0 ≤ p2 · rk(Ẽ total
1 )

r · d
− p · a · rk(Ẽ total

1 )

r
−
p · h0

(
Ẽ total

1 (l)
)

d
+ a · p− p · C

d
.

3Which depends on l!
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For large l, we may assume that p ≥ a · d. With rk(Ẽ total
1 ) ≤ rk(F total), this yields the

estimate

0 ≤ p2 · rk(F total)

r · d
− p · a · rk(F total)

r
−
p · h0

(
F total(l)

)
d

+ a · p− p · C
d
.

After multiplication by r · d/p, this inequality transforms into

p · rk(F total)− r · h0
(
F total(l)

)
+ d · a ·

(
r − rk(F total)

)
− r · C ≥ 0.

By (3.4), we have h0(F total(l)) ≥ p− κv0(l) · h0(Q(l)), so that

r · κv0(l) · h0
(
Q(l)

)
− p · κv0(l) · rk(Q) + d · a · κv0(l) · rk(Q)− r · C ≥ 0

and �nally
h0
(
Q(l)

)
rk(Q)

≥ p

r
− a · d

r
+

C

κv0(l) · rk(Q)
.

The right hand is a rational function of degree4 dim(X) in l which takes positive values
for l� 0. Asymptotically, it looks like

deg(X)

dim(X)!
· ldim(X) +

+
ldim(X)−1

(dim(X)− 1)!
·

degσ,λ(E )

R
+ l − a · δ

R
+

∑
v∈V

ηv · δ · rk(E v
1 )

σv0 · rk(Q)
+

deg(TX)

2

 +

+ lower order terms.

We may easily �nd a constant C ′ which depends only on the input data with∑
v∈V

ηv · δ · rk(E v
1 )

σv0 · rk(Q)
≥ C ′.

Now, we assume that Q is the minimal destabilizing quotient of Ev0 . This is a
semistable sheaf. Then, we may apply the LePotier�Simpson estimate ([10], Corollary
3.3.3) to it:

deg(X)

dim(X)!
·
[
µ(Q)

deg(X)
+ l +

rk(Q)− 1

2

]dim(X)

+

≥
h0
(
Q(l)

)
rk(Q)

.

We see that for large l, a lower estimate for µmin(Ev0) = µ(Q) which depends only on
the input data must be satis�ed. Therefore, Ev0 belongs to some bounded family.

In order to show that a GIT-semistable point in the parameter space corresponds
to a semistable V -split sheaf, we have to reformulate semistability. This will be done
in the following lemmas and Theorem 3.2.

4i.e., degree of the numerator minus degree of the denominator
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Lemma 3.1. Let Sv be a bounded family of torsion free sheaves with Hilbert polynomial
Pv, v ∈ V . There, there is a constant A ∈ N, such that a decorated V -split sheaf (E , ϕ)
of type (P , a, b, c,m) with [Ev] ∈ Sv, v ∈ V , is (κ, η, δ)-(semi)stable, if and only if
it satis�es the (semi)stability condition for all weighted �ltrations (E •, α•) in which
α = (α1, ..., αs) is a vector of integers, such that αi ≤ A, i = 1, ..., s.

Proof. We refer to [12], Theorem 3.3, [6], Lemma 3.4.4, or [14], page 153.

Lemma 3.2. Let (E , ϕ) be a decorated V -split sheaf (E , ϕ) of type (P , a, b, c,m) and
(E •, α•) a weighted �ltration of E . Write

{ 1, ..., s } = { i1, ..., is1 } t { j1, ..., js2 }

and de�ne the weighted �ltrations (E 1
•, α

1
•) and (E 2

•, α
2
•) by

E 1
• = (E i1

, ...,E is1
), α1

• = (αi1 , ..., αis1
)

and

E 2
• = (E j1

, ...,E js2
), α2

• = (αj1 , ..., αjs2
).

Then, one has

Mκ,χ(E •, α•) = Mκ,χ(E 1
•, α

1
•) +Mκ,χ(E 2

•, α
2
•)

and

µ(E •, α•, ϕ) ≥ µ(E 1
•, α

1
•, ϕ)− a · (R− 1) ·

s2∑
g=1

αjg .

Proof. The equality is immediate from the de�nitions, the inequality follows as Lemma
1.8, ii), in [12] or Lemma 3.4.5 in [6].

Lemma 3.3. Let Sv be a bounded family of torsion free sheaves with Hilbert polynomial
Pv, v ∈ V , A, C > 0 constants and (E , ϕ) a decorated V -split sheaf of type (P , a, b, c,m)
with [Ev] ∈ Sv, v ∈ V . Then, there is a constant C ′, such that the following holds for
every weighted �ltration (E , α•): If α• = (α1, ..., αs) consists of positive integers with
αi ≤ A, i = 1, ..., s, and if there are an index i0 ∈ { 1, ..., s } and a vertex v0 ∈ V , such
that

µ(E v0
i0

) < C ′,

then

Mκ,χ(E •, α•) > C · xt+dim(X)−1.

Proof. This is trivial, because the boundedness assumption implies that there is a
constant C ′′ which depends only on P , such that

µ(F ) ≤ C ′′

for every vertex v ∈ V and every saturated subsheaf F ⊂ Ev, and there are only
�nitely many possibilities for α•.
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Theorem 3.2. Let Sv be a bounded family of torsion free sheaves with Hilbert poly-
nomial Pv, v ∈ V . Then, there is a natural number l0, such that for every l ≥ l0 and
every decorated V -split sheaf (E , ϕ) of type (P , a, b, c,m) with [Ev] ∈ Sv, v ∈ V , the
following holds true: If

Mκ,χ(E •, α•)(l) + δ(l) · µ(E •, α•, ϕ)(≥)0 (3.5)

holds for every weighted �ltration (E •, α•) of E , such that

E v
i (l) is globally generated and hj

(
E v

i (l)
)

= 0, j > 0, i = 1, ..., s, v ∈ V,

then (E , ϕ) is (κ, η, δ)-(semi)stable.

Proof. We �rst invoke Lemma 3.1. With the constant A from that lemma, we de�ne

C := a · A · (R− 1)2 · δ + 1

(dim(X)− 1)!
.

Next, we apply Lemma 3.3. It gives a certain constant C ′. We introduce two sets S′

and S′′ of isomorphy classes of sheaves on X: The isomorphy class [F ] of a coherent
sheaf F on X belongs to S′, if and only if µ(F ) < C ′, and to S′′, if and only if
µ(F ) ≥ C ′ and there are an index v ∈ V and a torsion free coherent OX-module E
with [E ] ∈ Sv, such that F is isomorphic to a saturated subsheaf of E . By [10],
Lemma 1.7.9, the set S′′ is bounded.

Let (E •, α•) be a weighted �ltration of E , such that α• = (α1, ..., αs) is a vector of
integers with αi ≤ A, i = 1, ..., s. De�ne

{ i1, ..., is1 } :=
{
i ∈ { 1, ..., s }

∣∣ ∀v ∈ V : [E v
i ] ∈ S′′

}
and

{ j1, ..., js2 } :=
{
i ∈ { 1, ..., s }

∣∣ ∃v ∈ V : [E v
i ] ∈ S′

}
.

Using Lemma 3.2 and 3.3, we �nd

Mκ,χ(E •, α•) + δ · µ(E •, α•, ϕ)

≥Mκ,χ(E 1
•, α

1
•) + δ · µ(E 1

•, α
1
•, ϕ) +Mκ,χ(E 2

•, α
2
•)− δ · a · (R− 1) ·

s2∑
g=1

αjg

≥Mκ,χ(E 1
•, α

1
•) + δ · µ(E 1

•, α
1
•, ϕ) +Mκ,χ(E 2

•, α
2
•)− C · xt+dim(X)−1

≥Mκ,χ(E 1
•, α

1
•) + δ · µ(E 1

•, α
1
•, ϕ).

We see that it is enough to check the (semi)stability condition for weighted �ltra-
tions (E •, α•), such that α• = (α1, ..., αs) is a vector of integers with αi ≤ A, i = 1, ..., s,
and [E i

v ] ∈ S′′, v ∈ V , i = 1, ..., s. Since there are only �nitely many options for α•,
there are only �nitely many possible values of µ(E •, α•, ϕ). In addition, the fact that
S′′ is a bounded family implies that there only �nitely many possible polynomials of
the form

Mκ,χ(E •, α•) + δ · µ(E •, α•, ϕ)
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for a weighted �ltration (E •, α•) with the stated properties. So, there is a natural
number l0, such that, for l ≥ l0, a polynomial of the above �nite list is positive or
non-negative in the lexicographic ordering of polynomials, if and only if its value at l
is positive or non-negative, respectively.

Theorem 3.3. There exists an l0 ∈ N, such that the following holds true: If l ≥ l0 and
m = (qv : Wv ⊗ OX(−l) −→ Ev, v ∈ V, ϕ) is a point in the parameter space M, such
that Γ (m) is (semi)stable with respect to the chosen linearization in O(%, ϑv, v ∈ V ),
then (E , ϕ) is (κ, η, δ)-(semi)stable.

Proof. We apply the criterion of Theorem 3.2. Let (E •, α•) be a weighted �ltration of
E , such that

E v
i (l) is globally generated and hj

(
E v

i (l)
)

= 0, j > 0, i = 1, ..., s, v ∈ V.
We continue the computations started before Theorem 3.1. In order to conclude, we
have to compute µ(λ, [m′]). Under the identi�cation of M̃ with the space H0(Ẽ total(l)),
we de�ne

gri(M̃) := H0
((

Ẽ total
i /Ẽ total

i−1

)
(l)
)
, i = 1, ..., s+ 1.

The basis m of M̃ induced by the bases wv for the Wv, v ∈ V , yields a natural
isomorphism

M̃ ∼=
s+1⊕
i=1

gri(M̃).

For an index tuple ι ∈ Ja := { 1, ..., s + 1 }×a, we de�ne M̃ι := grι1(M̃) ⊗ · · · ⊗
grιa(M̃), and for k ∈ { 1, ..., b }, we let M̃k

ι be M̃ι embedded into the k-th copy of

M̃⊗a in (M̃⊗a)⊕b. If we denote P (Ẽ total
i (l)) = h0(Ẽ total

i (l)) by mi, i = 1, ..., s, then

λ =
∑s

i=1 αi · λ(m, γ(mi)
p

) as a one parameter subgroup of SL(M̃). Therefore,

µ(λ, [m′]) = −min

{ s∑
i=1

αi ·
(
a ·mi − νi(ι) · p

) ∣∣∣ k = 1, ..., b, ι ∈ Ja : M̃k
ι 6⊂ ker(m′)

}
.

Here,
νi(ι) = #

{
ιi ≤ i | ι = (ι1, ..., ιa), i = 1, ..., a

}
. (3.6)

Let ι0 ∈ Ja be an index which realizes the precise value of µ(λ, [m′]). Then, by (3.2),
we �nd

s∑
i=1

αi ·
(
p2 · rk(Ẽ total

i )

r · d
− p · a · rk(Ẽ total

i )

r
−
p · P

(
Ẽ total

i (l)
)

d

)
+

+ p ·
s∑

i=1

αi · νi(ι0)− p ·
s∑

i=1

αi ·
(∑

v∈V

(
xv · rk(Ẽ v

i )
))

as the value for µ(λ, Γ (m))/%. We multiply this by r · d/p and get
s∑

i=1

αi ·
(
p · rk(Ẽ total

i )− r · P
(
Ẽ total

i (l)
))

+

+d ·
( s∑

i=1

αi ·
(
νi(ι0) · r − a · rk(Ẽ total

i )
))

+ r ·
s∑

i=1

αi ·
(∑

v∈V

χ̃v(l) · rk(E v
i )

)
.
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In the next step, we plug in the de�nition of χv(l), v ∈ V . This leads to the expression:

s∑
i=1

αi ·
(
p · r

R
· rkσ(E i)− r · P

(
Ẽ total

i (l)
))

+

+d ·

(
s∑

i=1

αi ·
(
νi(ι0) · r − a · r

R
· rkσ(E i)

))
+ r ·

s∑
i=1

αi ·
(∑

v∈V

χv(l) · rk(E v
i )

)
.

We multiply this by R/r and �nd

s∑
i=1

αi ·
(
p · rkσ(E i)−R · P

(
Ẽ total

i (l)
))

+

+d ·
( s∑

i=1

αi ·
(
νi(ι0) ·R− a · rkσ(E i)

))
+R ·

s∑
i=1

αi ·
(∑

v∈V

χv(l) · rk(E v
i )

)
.

This can be rewritten as

Mκ,χ(E •, α•)(l) + δ(l) ·
( s∑

i=1

αi ·
(
νi(ι0) ·R− a · rkσ(E i)

))
.

As in [14], page 156, one veri�es that

µ
(
E•, α, ϕ

)
≥

s∑
i=1

αi ·
(
νi(ι0) ·R− a · rkσ(E i)

)
,

so that µ(λ, Γ (m)) (≥) 0 implies Inequality (3.5).

Semistability implies GIT-semistability

We now address the converse direction to Theorem 3.3, i.e., the following statement:

Theorem 3.4. There is an l0 ∈ N, such that, for every l ≥ l0, the following state-
ment holds true: Let m = (qv : Wv ⊗ OX(−l) −→ Ev, v ∈ V, ϕ) be a point in the
parameter space M, such that (E , ϕ) is a (semi)stable decorated V -split sheaf (E , ϕ)
of type (P , a, b, c,m). Then, the point Γ (m) is (semi)stable with respect to the chosen
linearization in O(%, ϑv, v ∈ V ).

Apart from some subtleties, we will follow the previous calculations. Let λ : C? −→
G̃ be a one parameter subgroup. We write λ as a tuple (λv, v ∈ V ) where λv is a
one parameter subgroup of GL(Wv), v ∈ V . Then, λv induces a weighted �ltration

(Ŵ v
• , γ

v
•) of Wv, v ∈ V . The condition that λ be a one parameter subgroup of SL(M̃)

translates into the condition that

∑
v∈V

κv(l) ·
sv+1∑
i=1

γv
i ·
(
dim(Ŵ v

i )− dim(Ŵ v
i−1)
)

= 0.
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We de�ne Ê v
i as the saturated subsheaf of Ev that is generically generated by qv(Ŵ v

i ⊗
OX(−l)), i = 1, ..., sv, v ∈ V .

For the point Γ (m) = ([m′], [mv], v ∈ V ), we �nd that

µ
(
λ, Γ (m)

)
%

= µ
(
λ, [m′]

)
+ ε · A+B

with

A :=
∑
v∈V

εv · µ
(
λ, [mv]

)
−

−
∑
v∈V

κv(l) ·
(
rv

pv

− r

p

)
·
(sv+1∑

i=1

γv
i ·
(

dim
(
Ŵ v

i

)
− dim

(
Ŵ v

i−1

)))
,

B :=
∑
v∈V

(
x′v ·

sv+1∑
i=1

γv
i ·
(

dim
(
Ŵ v

i

)
− dim

(
Ŵ v

i−1

)))
.

As before, we write

sv+1∑
i=1

γv
i ·
(

dim
(
Ŵ v

i

)
− dim

(
Ŵ v

i−1

))
= γv

sv+1 · pv −
sv∑

i=1

(
γv

i+1 − γv
i

)
· dim

(
Ŵ v

i

)
.

Moreover, the following holds true

µ
(
λ, [mv]

)
=

sv∑
i=1

γv
i+1 − γv

i

pv

·
(
pv · rk(Ê v

i )− dim
(
Ŵ v

i

)
· rv

)
.

For v ∈ V , we now compute

ε · εv · µ
(
λ, [mv]

)
− x′v ·

sv∑
i=1

(
γv

i+1 − γv
i

)
· dim

(
Ŵ v

i

)
+ x′v · γv

sv+1 · pv

=
sv∑

i=1

γv
i+1 − γv

i

pv

·
(
ε · εv ·

(
pv · rk(Ê v

i )− dim
(
Ŵ v

i

)
· rv

)
− x′v · pv · dim

(
Ŵ v

i

))
+x′v · γv

sv+1 · pv

=
sv∑

i=1

γv
i+1 − γv

i

pv

·
(
ε · εv ·

(
pv · rk(Ê v

i )− dim
(
Ŵ v

i

)
· rv

)
− xv · rv · dim

(
Ŵ v

i

))
+xv · γv

sv+1 · rv

=
sv∑

i=1

γv
i+1 − γv

i

pv

·
(
ε · κv(l) ·

(
pv · rk(Ê v

i )− dim
(
Ŵ v

i

)
· rv

)
− xv · pv · rk(Ê v

i )

)
+xv · γv

sv+1 · rv

= ε · κv(l) ·
sv∑

i=1

(
γv

i+1 − γv
i

pv

·
(
pv · rk(Ê v

i )− dim
(
Ŵ v

i

)
· rv

))
+

+
sv+1∑
i=1

xv · γv
i ·
(
rk(Ê v

i )− rk(Ê v
i−1)
)
.
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Via the isomorphism

H0
(
qv(l)

)
: Wv −→ H0

(
Ev(l)

)
,

we may view Ŵ v
i as a subspace of H0(Ê v

i (l)), i = 1, ..., sv, v ∈ V . In particular, the
above computations show that, for v ∈ V ,

ε · εv · µ
(
λ, [mv]

)
+

sv+1∑
i=1

xv · γv
i ·
(
rk(Ê v

i )− rk(Ê v
i−1)
)

≥ ε · κv(l) ·
sv∑

i=1

(
γv

i+1 − γv
i

pv

·
(
pv · rk(Ê v

i )− h0
(
Ê v

i (l)
)
· rv

))
+

+
sv+1∑
i=1

xv · γv
i ·
(
rk(Ê v

i )− rk(Ê v
i−1)
)
.

Let the �ltration

Ẽ total
• : 0 ⊆ Ẽ total

1 ⊆ · · · ⊆ Ẽ total
s ⊆ Ẽ total

be constructed as described in the footnote on page 119 and set

Ẽ v
i := Ê v

sv(i), v ∈ V,

so that

Ẽ total
i =

⊕
v∈V

Ẽ v,⊕κv(l)
i , i = 1, ..., s.

With Proposition 3.1, rk(Ê v
sv+1) = rv, v ∈ V , and the equation

∑
v∈V xv · rv = 0

(Remark 3.1, ii), we �nd that

ε · A+B ≥ ε ·
s∑

i=1

γi+1 − γi

p
·
(
p · rk(Ẽ total

i )− h0
(
Ẽ total

i (l)
)
· r
)

−
∑
v∈V

xv ·
sv∑

i=1

(γv
i+1 − γv

i ) · rk(Ê v
i )

= ε ·
s∑

i=1

γi+1 − γi

p
·
(
p · rk(Ẽ total

i )− h0
(
Ẽ total

i (l)
)
· r
)

−
s∑

i=1

(γi+1 − γi) ·
∑
v∈V

xv · rk(Ẽ v
i ).

Next, we point out that there might occur equalities in the �ltration

0 ⊆ Ẽ total
1 ⊆ · · · ⊆ Ẽ total

s ⊆ Ẽ total.

We clear these and obtain a �ltration

0 ⊆ E
total

1 ( · · · ( E
total

s ( E
total

= Ẽ total.
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in which all inclusions are strict. For i ∈ { 1, ..., s+ 1 }, we set

(i) := min
{
j ∈ { 1, ..., s }

∣∣ Ẽ total
j = E

total

i

}
,

and γi := γ(i).

Writing

E
total

i =
⊕
v∈V

E
v

i , i = 1, ..., s,

we �nd

ε ·
s∑

i=1

γi+1 − γi

p
·
(
p · rk(Ẽ total

i )− h0
(
Ẽ total

i (l)
)
· r
)

−
s∑

i=1

(γi+1 − γi) ·
∑
v∈V

xv · rk(Ẽ v
i )

= ε ·
s∑

i=1

γi+1 − γi

p
·
(
p · rk(E

total

i )− h0
(
E

total

i (l)
)
· r
)

−
s∑

i=1

(γi+1 − γi) ·
∑
v∈V

xv · rk(E
v

i ). (3.7)

We de�ne α• = (α1, ..., αs) via

αi :=
γi+1 − γi

p
, i = 1, ..., s.

Then, the expression in (3.7) takes the form

s∑
i=1

αi ·
(
p2 · rk(E

total

i )

r · d
− p · a · rk(E

total

i )

r
−
p · h0

(
E

total

i (l)
)

d
+ (3.8)

+ a ·
∑
v∈V

κv(l) · h0
(
E

v

i (l)
))

− p ·
s∑

i=1

αi ·
(∑

v∈V

xv · rk(E
v

i )

)
.

Let (M̃ total, γ•), γ• = (γ1, ..., γs+1), be the weighted �ltration of M̃ that comes from

the weighted �ltrations (Ŵ v
• , γ

v
•) of the Wv, v ∈ V . Then, for

m′ :
(
M̃⊗a

)⊕b −→ H0
(
L ⊗c(a · l)

)
,

we compute

µ
(
λ, [m′]

)
= −min

{
γι1 + · · ·+ γιa

∣∣ (ι1, ..., ιa) ∈ { 1, ..., s+ 1 }×a : m′
|(fMtotal

ι1
⊗···⊗fMtotal

ιa )⊕b 6= 0
}
.

Since qv(W̃v ⊗ OX) generically generates Ẽ v
i (l), i = 1, ..., sv, v ∈ V , we infer

∀ι = (ι1, ..., ιa) ∈ { 1, ..., s }×a : m′
|(fMtotal

ι1
⊗···⊗fMtotal

ιa )⊕b 6= 0 ⇐⇒ ϕ|( eE total
ι1

⊗···⊗ eE total
ιa )⊕b 6= 0.
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We thus �nd the estimate

µ
(
λ, [m′]

)
= −min

{
γι1 + · · ·+ γιa

∣∣ (ι1, ..., ιa) ∈ { 1, ..., s+ 1 }×a : ϕ|( eE total
ι1

⊗···⊗ eE total
ιa

)⊕b 6= 0
}

≥ −min
{
γι1 + · · ·+ γιa

∣∣ (ι1, ..., ιa) ∈ { 1, ..., s+ 1 }×a : ϕ|(E total
ι1

⊗···⊗E
total
ιa

)⊕b 6= 0
}
.

By de�nition, the entries of γ• = (γ1, ..., γs+1) are the entries of the vector

s∑
i=1

αi ·
(
mi − p, ..,mi − p︸ ︷︷ ︸

mi×

,mi, ...,mi︸ ︷︷ ︸
(p−mi)×

)
, mi := h0

(
E

total

i (l)
)

i = 1, .., s.

Let ι ∈ { 1, ..., s+ 1 }×a be such that ϕ|(E total
ι1

⊗···⊗E
total
ιa )⊕b 6= 0. With (3.6), we thus �nd

µ
(
λ, [m′]

)
≥

s∑
i=1

αi · (νi(ι) · p− a ·mi).

By now, it has become our task to show that, for some ι ∈ { 1, ..., s + 1 }×a with
ϕ|(E total

ι1
⊗···⊗E

total
ιa )⊕b 6= 0, we have

s∑
i=1

αi ·
(
p2 · rk(E

total

i )

r · d
− p · a · rk(E

total

i )

r
−
p · h0

(
E

total

i (l)
)

d

)
+

+ p ·
s∑

i=1

αi · νi(ι)− p ·
s∑

i=1

αi ·
(∑

v∈V

xv · rk(E
v

i )

)
(≥) 0. (3.9)

We introduce the weighted �ltration (E •, α•) of E = (Ev, v ∈ V ) with E i = (E
v

i , v ∈ V ),
i = 1, ..., s, and α• = (α1, ..., αs). By computations analogous to those on page 126,
inequality (3.9) amounts to the inequality

s∑
i=1

αi ·
(
p · rkσ(E i)−R · h0

(
E

total

i (l)
))

+R ·
s∑

i=1

αi ·
(∑

v∈V

χv(l) · rk(E
v

i )

)

+d ·
( s∑

i=1

αi ·
(
νi(ι0) ·R− a · rkσ(E i)

))
(≥) 0.

Let γ′• = (γ′1, ..., γ
′
s) be the entries of the vector

s∑
i=1

αi ·
(
Ri −R, .., Ri −R︸ ︷︷ ︸

Ri×

, Ri, ..., Ri︸ ︷︷ ︸
(R−Ri)×

)
.

Choosing ι with ϕ|(E total
ι1

⊗···⊗E
total
ιa )⊕b 6= 0 in such a way that

γ′ι1 + · · ·+ γ′ιa
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becomes minimal, we see that
s∑

i=1

αi ·
(
νi(ι) ·R− a · rk(E

total

i )
)

= µ(E •, α•, ϕ).

As in the proof of Lemma 3.2, we write

{ 1, ..., s } = { i1, ..., is1 } t { j1, ..., js2 }.

Here, i1, ..., is1 are those i in { 1, ..., s } with hj(E
total

i (l)) = 0, j > 0. We have

s∑
i=1

αi ·
(
p · rkσ(E i)−R · h0

(
E

total

i (l)
))

+R ·
s∑

i=1

αi ·
(∑

v∈V

χv(l) · rk(E
v

i )

)

=

s1∑
f=1

αif ·
(
p · rkσ(E if

)−R · h0
(
E

total

if
(l)
))

+R ·
s1∑

f=1

αif ·
(∑

v∈V

χv(l) · rk(E
v

if
)

)
+

+

s2∑
g=1

αjg ·
(
p · rkσ(E jg

)−R · h0
(
E

total

jg
(l)
))

+R ·
s2∑

g=1

αjg ·
(∑

v∈V

χv(l) · rk(E
v

jg
)

)
and

µ(E •, α•, ϕ) ≥ µ(E 1
•, α

1
•, ϕ)− a · (R− 1) ·

s2∑
g=1

αjg .

Now, we let (E 1, α1
•) be the weighted �ltration of E containing the V -split sheaves E if

,

f = 1, ..., s1, and the vector α• = (α1
1, ..., α

1
s) := (αi1 , ..., αis1

). Then,

s1∑
f=1

αif ·
(
p · rkσ(E if

)−R · h0
(
E

total

if
(l)
))

+

+R ·
s1∑

f=1

αif ·
(∑

v∈V

χv(l) · rk(E
v

if
)

)
+ d · µ(E 1

•, α
1
•, ϕ)

= Mκ,χ(E 1
•, α

1
•)(l) + δ(l) · µ(E 1

•, α
1
•, ϕ) (≥) 0

follows from the (semi-)stability of (E , ϕ). By the boundedness of semistable decorated
V -split sheaves (Proposition 2.1), we may prescribe a constant C > 0 and assume

µ(E
total

i ) < µ(E )− C, i = j1, ..., js2 .

Then, we use the LePotier�Simpson estimate ([10], Corollary 3.3.8) to obtain an in-
equality of the form

p · rkσ(E i)−R · h0
(
E

total

i (l)
)
> C ′ ·mdim(X)−1 + lower order terms, i = j1, ..., js2 .

The lower order terms depend only on P and (X,OX(1)), and, given C ′ > 0, we can
�nd an appropriate constant C which yields C ′. It is, therefore, possible to �nd C ′ and
l0, such that

p · rkσ(E i)−R · h0
(
E

total

i (l)
)

+R ·
(∑

v∈V

χv(l) · rk(E
v

i )

)
− δ(l) · a · (R− 1) > 0

for i = j1, ..., js2 and all l ≥ l0.
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Properness of the Gieseker morphism

For our construction, we work with the Gieseker morphism

Γ : M −→ P̃′ × X
v∈V

Gv.

There is the G̃-invariant open subset

U :=
(
P̃′ × X

v∈V
Gv

)ss

of those points that are semistable with respect to the �xed linearization. By Geo-
metric Invariant Theory, the categorical quotient U//G̃ exists as a projective scheme.
Theorem 3.3 and 3.4 show that

Mss := Γ−1(U)

consists exactly of those points m = (qv : Wv ⊗ OX(−l) −→ Ev, v ∈ V, ϕ), such that
(E , ϕ) is a semistable decorated V -split sheaf of type (P , a, b, c,m). The existence of
the moduli space, claimed in Theorem 2.1, reduces to the following statement:

Proposition 3.2. The induced morphism

Γ|Mss : Mss −→ U

is proper and therefore a�ne.

As usual, one uses the valuative criterion of properness to see this. So, let R be
a discrete valuation ring with quotient �eld K, S := Spec(R) and S? = Spec(K).
Suppose we have a family mS? = (qS?

v : Wv ⊗ π?
S?(OX(−l)) −→ E S?

v , v ∈ V, ϕS?) of
semistable decorated V -split sheaves of type (P , a, b, c,m) over S? ×X and let

κ? : S? −→ M

be the classifying morphism. Suppose further that λ? := Γ ◦κ? extends to a morphism

λ : S −→ U.

The family mS? extends to a family m̃S = (q̃S
v : Wv ⊗ π?

S(OX(−l)) −→ Ẽ S
v , v ∈ V, ϕ̃S)

over S ×X. The sheaf Ẽ S
v is �at over S, but Ẽ S

v|{0}×X may have torsion, v ∈ V . There
are a family E S

v of torsion free sheaves onX parameterized by S and a homomorphism

τS
v : Ẽ S

v −→ E S
v which is an isomorphism on S? × X, such that the kernel of τS

v|{0}×X

is just the torsion subsheaf Tv of Ẽ S
v|{0}×X , v ∈ V (see [10], Proposition 4.4.2). Let

T ⊂ {0} × X be the union of the supports of the torsion subsheaves Tv, v ∈ V , and
W := (S ×X) \ ({0} × T ). Finally, let ι : W −→ S ×X be the inclusion. De�ne

ϕS : E S
a,b,c −→ ι?

(
ι?(Ẽ

S

a,b,c)
) ι?(ι?(eϕS))−→ ι?

(
ι?
(
π?

X

(
OX(−l)

)))
= π?

X

(
OX(−l)

)
.

The family mS = (qS
v : Wv ⊗ π?

S?(OX(−l)) −→ E S
v , v ∈ V, ϕS) de�nes a morphism

S −→ P̃′ × X
v∈V

Gv

which agrees with λ? on S? and consequently identi�es with λ. It su�ces now to check
the following:
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Theorem 3.5. The set of isomorphism classes of torsion free sheaves E ′, such that
there exist an l ∈ N, a tuple m = (qv : Wv ⊗ OX(−l) −→ Ev, v ∈ V, ϕ) in which qv
is a generically surjective homomorphism, v ∈ V , whose associated point Γ (m) is
semistable with respect to the chosen linearization in O(%, ϑv, v ∈ V ), and an index
v0 ∈ V with E ′ ∼= Ev0 is bounded.

One checks that the semistability of Γ (m) implies thatH0(qv(l)) : Wv −→ H0(Ev(l))
is injective, v ∈ V . With this, the proof of this result is an easy adaptation of the proof
of Theorem 3.1. In fact, in (3.4), we replace H0(Ẽ total(l)) by M̃ and H0(F total(l)) by

M̃ ∩H0(F total(l)).

4 Proof of the main theorem

In this �nal section, we explain how the main theorem may be reduced to Theorem
2.1. This is again very similar to the corresponding step in [13], so that we may
be rather sketchy.

We return to the setting of quiver representations. So, let Q = (V,A, t, h) be a quiver
with vertices V = { v1, ..., vt }, arrows A = { a1, ..., au }, the tail map t : A −→ V ,
and the head map h : A −→ V . Since we allow twisting by vector bundles in the
representations, we may assume that no multiple arrows occur. Fix a tuple of locally
free coherent sheaves G = (Ga, a ∈ A). An augmented representation of Q of type
(P ,G ) is a tuple (Ev, v ∈ V, ϕa, a ∈ A, ε), consisting of

• a V -split sheaf (Ev, v ∈ V ) of type P ,

• homomorphisms ϕa : Ga ⊗ Et(a) −→ Eh(a), a ∈ A,

• a complex number ε,

such that either ε 6= 0 or one of the ϕa, a ∈ A, is non-trivial. Two augmented repre-
sentations (Ev, v ∈ V, ϕa, a ∈ A, ε) and (E ′

v, v ∈ V, ϕ′a, a ∈ A, ε′) are called equivalent, if
there are isomorphisms ψv : Ev −→ E ′

v, v ∈ V , and z ∈ C?, such that

z · (ψh(a) ◦ ϕa ◦ (idGa ⊗ ψt(a))
−1) = ϕ′a, a ∈ A, and z · ε = ε′.

In [13], p. 32, it is described how one may associate with an augmented repre-
sentation (Ev, v ∈ V, ϕa, a ∈ A, ε) of Q of type (G , P ) a decorated V -split sheaf
(E , ψ), E = (Ev, v ∈ V ), of type (P , a, b, c,m) for suitable positive integers a, b, c,
m. We �x stability parameters κ, η and δ and say that an augmented representation
(Ev, v ∈ V, ϕa, a ∈ A, ε) of Q of type (G , P ) is (κ, η, δ)-(semi)stable, if the associated
decorated V -split sheaf (E , ψ) of type (P , a, b, c,m) is.

We remind the reader that associating with an augmented quiver representation a
decorated V -split sheaf involves choosing suitable positive integers b and m as well as
surjections OX(−m)⊕b −→ Ga, a ∈ A ([13], p. 32). Using these surjections, we may
assign to every quiver representation (Ev, v ∈ V, ϕa, a ∈ A) a homomorphism

ϕ : E total −→ E total ⊗ OX(m)⊕b.
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For s ≥ 1, we set

ϕ(s) := ϕ⊗ idOX(s·m)⊕bs : E total ⊗ OX(s ·m)⊕bs −→ E total ⊗ OX

(
(s+ 1) ·m

)⊕bs+1

and say that ϕ is nilpotent, if there is an s ≥ 1 with

ϕ(s) ◦ ϕ(s−1) ◦ · · · ◦ ϕ(2) ◦ ϕ(1) = 0.

Lemma 4.1. Let (Ev, v ∈ V, ϕa, a ∈ A, ε) be an augmented quiver representation of type
(G , P ), (E , ψ) the associated decorated V -split sheaf and (E •, α•) a weighted �ltration
of E .

i) One �nds
µ(E •, α•, ψ) > 0,

if and only if there is an index i ∈ { 1, ..., s }, such that

ϕ
(
E total

i

)
6⊂ E total

i ⊗ OX(m)⊕b.

ii) The condition
µ(E •, α•, ψ) < 0

is equivalent to the fact that ε = 0 and

ϕ
(
E total

i

)
⊂ E total

i−1 ⊗ OX(m)⊕b, i = 1, ..., s+ 1.

Proof. Apply [14], Proposition 1.5.1.22, to the restriction of the objects involved to the
generic point of X.

Proposition 4.1. Suppose the following data are �xed:

• a tuple P = (Pv, v ∈ V ) of Hilbert polynomials,

• an integer t ≥ 0,

• a tuple κ = (κv, v ∈ V ) of positive integral polynomials of degree exactly t,

• a positive rational polynomial δ of degree at most t+ dim(X)− 1,

• and a tuple η = (ηv, v ∈ V ) of rational numbers, subject to the condition
∑

v∈V ηv ·
rv = 0,

and set

• χv := ηv · δ, v ∈ V , χ = (χv, v ∈ V ),

• σ = (σv, v ∈ V ), σv the leading coe�cient of κv, v ∈ V .

Then, the family of torsion free sheaves E ′ for which there exist an index v0 and an
augmented representation (Ev, v ∈ V, ϕa, a ∈ A, ε) of Q of type (G , P ), such that

a) ε 6= 0 or ϕ is not nilpotent,
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b) for any collection of saturated subsheaves Fv ⊂ Ev, v ∈ V , not all trivial and not
all equal to Ev, such that ϕa(Ga ⊗Ft(a)) ⊂ Fh(a) for all arrows a ∈ A, one has

Pκ,χ(Fv, v ∈ V )

rkσ(Fv, v ∈ V )
�
Pκ,χ(Ev, v ∈ V )

rkσ(Ev, v ∈ V )
,

and

c) E ′ ∼= Ev0

is bounded.

Proof. To the stated semistability condition of augmented quiver representations, there
belongs a corresponding notion of slope semistability. As in Remark 2.2, one sees that
this notion of slope semistability is already covered by the formalism in [13]. For this
reason, the proposition follows from [13], Proposition 4.3.2.

Proposition 4.2. Fix the same data as in the previous proposition. Any (κ, η, δ)-
(semi)stable augmented representation (Ev, v ∈ V, ϕa, a ∈ A, ε) of Q of type (G , P )
satis�es Condition a) and b) from Proposition 4.1.

Proof. This follows immediately from Lemma 4.1.

Theorem 4.1. Fix the same data as in the two previous propositions and assume that
δ has degree exactly t + dim(X) − 1. Then, there is a natural number n∞, such that
for any n ≥ n∞ and any augmented representation (Ev, v ∈ V, ϕa, a ∈ A, ε) of Q of
type (G , P ) , the following conditions are equivalent:

1. (Ev, v ∈ V, ϕa, a ∈ A, ε) is (κ, η/n, n · δ)-(semi)stable, η/n := (ηv/n, v ∈ V ).

2. (Ev, v ∈ V, ϕa, a ∈ A, ε) satis�es Semistability Condition a) and b) from Proposi-
tion 4.1.

Proof. The implication �1.=⇒2.� has been veri�ed in greater generality in the last
proposition. For the converse direction, note that, by Lemma 4.1, Condition 2. is
equivalent to requiring that µ(E •, α•, ψ) ≥ 0 holds for every weighted �ltration (E •, α•)
of E and that the (semi)stability condition is veri�ed for every weighted �ltration
(E •, α•) with µ(E •, α•, ψ) = 0.

Now, we use Lemma 3.1. By the boundedness result in Proposition 4.1, there is a
constant C > 0, such that

Mκ,χ(E •, α•) � −C · xt+dim(X)−1

holds for every weighted �ltration (E •, α•) of E in which α• = (α1, ..., αs) consists of
integers in the set { 1, ..., A }. Assume that

n ≥ n∞ :=

⌈
C + 1

coe�cient of xt+dim(X)−1 in δ

⌉
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and that (E •, α•) is weighted �ltration of E in which α• = (α1, ..., αs) is a vector of
integers from the set { 1, ..., A }, such that

µ(E •, α•, ψ) > 0.

Since µ(E •, α•, ψ) is an integer,

Mκ,χ(E •, α•) + n · δ · µ(E •, α•, ψ) � −C · xt+dim(X)−1 + n · δ � 0.

Thus, for n ≥ n∞, an augmented representation (Ev, v ∈ V, ϕa, a ∈ A, ε) of Q of type
(G , P ) which satis�es 2. is (κ, η/n, n · δ)-(semi)stable.

Fix n ≥ n∞ By Theorem 2.1, we get a projective moduli space

R(Q,G )ss
P/κ/η/δ

for (κ, η/n, n · δ)-semistable augmented representations of Q of type (G , P ). As in [13],
p. 32�, one constructs a projective space

H = H(Q,G , P )

and a morphism
Hit(Q,G , P ) : R(Q,G )ss

P/κ/η/δ −→ H.

We de�ne the a�ne space D as the open set ε = 1 in H and

D(Q,G )ss
P/κ/η/δ

as the preimage of D under Hit(Q,G , P ). This is the moduli space we wanted to
construct.

Acknowledgments

The author is supported by SFB 647 �Space-Time-Matter�, project A11 �Al-
gebraic Varieties and Principal Bundles: Semistable Objects and their Moduli
Spaces�. The paper was �nished during the author's visit to the Isaac New-
ton Institute in Cambridge as a participant to the programme �Moduli Spaces�
(http://www.newton.ac.uk/programmes/MOS/). He thanks the organizers for the in-
vitation and the Isaac Newton Institute for its hospitality.



138 A. Schmitt

References

[1] L. �Alvarez-C�onsul, Some results on the moduli spaces of quiver bundles, Geom. Dedicata 139
(2009), 99-120.

[2] L. �Alvarez-C�onsul, O. Garc��a-Prada, Hitchin�Kobayashi correspondence, quivers, and vortices,
Comm. Math. Phys. 238 (2003), 1-33.

[3] L. �Alvarez-C�onsul, A. King, A functorial construction of the moduli of sheaves, Invent. Math.
168 (2007), 613-666.

[4] D. Ban�eld, Stable pairs and principal bundles, Q. J. Math. 51 (2000), 417-436.

[5] S. Bradlow, O. Garc��a-Prada, I. Mundet i Riera, Relative Hitchin�Kobayashi correspondences
for principal pairs, Q. J. Math. 54 (2003), 171-220.

[6] T.L. G�omez, A. Langer, A. Schmitt, I. Sols, Moduli spaces for principal bundles in large charac-
teristics, in: I. Biswas (ed.) et al, Teichm�uller theory and moduli problems, Ramanujan Mathe-
matical Society Lecture Notes Series 10 (2010), 281-371.

[7] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New
York�Heidelberg, 1977, xvi+496 pp.

[8] J. Heinloth, A. Schmitt, The cohomology rings of moduli stacks of principal bundles over curves,
Documenta Math. 15 (2010), 423-488.

[9] F. Hirzebruch, Topological methods in algebraic geometry, translation from the German and
appendix one by R. L. E. Schwarzenberger, appendix two by A. Borel, reprint of the 2nd, corr.
print. of the 3rd ed. 1978, Classics in Mathematics, Berlin: Springer-Verlag, 1995, ix+234 pp.

[10] D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, 2nd ed., Cambridge: Cam-
bridge University Press, 2010, xviii+325 pp.

[11] M. L�ubke, A. Teleman, The universal Kobayashi�Hitchin correspondence on Hermitian mani-
folds, Mem. Amer. Math. Soc. 183 (2006), vi+97 pp.

[12] A. Schmitt, A universal construction for moduli spaces of decorated vector bundles over curves,
Transform. Groups 9 (2004), 167-209.

[13] A. Schmitt, Moduli for decorated tuples of sheaves and representation spaces for quivers, Proc.
Indian Acad. Sci., Math. Sci. 115 (2005), 15-49.

[14] A. Schmitt, Geometric invariant theory and decorated principal bundles, Zurich Lectures in
Advanced Mathematics, Z�urich: European Mathematical Society, vii+389 pp.

[15] A. Sheshmani, Higher rank stable pairs and virtual localization, math.AG 1011.6342v2, 87 pp.

Alexander Schmitt
Institut f�ur Mathematik
Freie Universit�at Berlin
Arnimallee 3, D-14195 Berlin, Deutschland
E-mail: alexander.schmitt@fu-berlin.de

Received: 20.04.2011


