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Abstract. In this paper we consider the problem of definition of the Monge-Ampére
operator for an arbitrary plurisubharmonic function. The paper has a survey charac-
ter; in it we discuss on the results related to this area. We give one construction of
the definition of the Monge-Ampere operator, which will then be applied to maximal
plurisubharmonic functions.

1 Introduction

Complex pluripotential theory, based on plurisubharmonic (Psh) functions and the
Monge-Ampere operator (dd“u)”, is one of the important directions in potential theory
and multi-dimensional complex analysis. Built in 1980s the theory has already found
many applications in geometric questions of complex analysis and in the theory of Psh
functions. We recall the following standard notation:

, 0 0 ~ 0 g
d= (9—1—8, d¢=1 (8—0) ,Where 0= a—%dzl+...+a—%dzn, 0= a—z_ldzl—i—...jL&—Z_ndzn,

so that
ddu = 2i00u, du A d°u = 2idu A du ,

2
(ddw)" = dd°u A ... A dd°u = const det [ =21 ) av
8zj8zk

In the classical case of n = 1 the operator (dd“u)" is the linear Laplace operator,
dd “u is easily defined and it is a positive Borel measure for every subharmonic function
u .

Defining the Monge-Ampere operator (dd“u)" in general case and solving the cor-
responding Dirichlet problem

(ddu)" = p, uw € Psh(2), ulag = ¢, (1.1)

have a long history and are more complicated.
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Bremermann [1] noted, that if u € C? () Psh(£2) is maximal (an analogue of
harmonic functions, see. Ch 2), then (ddu)" =0. Later Kerzman [17] proved that
if (ddu)" = 0 then u is maximal. Chern, Levine and Nirenberg [12] proved that
the operator (dd “u)" is bounded in the mean for the class of uniformly bounded Psh
function of class C2. We note that this proposition easily follows also from the integral
formula below, proved by author [20, 21]: if G = {p(z) < 0} is a strictly pseudoconvex
domain, p € C?(G) , 0 = mGin,o(z) and u is a C? Psh function in G, then for each r

and k such, that c <r <0, 1<k <n

/ it / (ddp)™™* A (ddu) < (M — m) / (dd )™ A (ddew)", (12)

o <t oL
where M = max u (), m= ménu (2).

Chern - Levine - Nirenberg’s result impies that if u € Psh (2)NL72. (2) and w; |
u is a C approximation of u, then {(dd“u;)"} is a compact family of (positive) Borel
measures and the sequence {(dd“u;)"} has partial weak limits ( — ) for subsequences
{(dd‘u;,)"}. The main problem here is to prove that the sequence {(dd“u;)"} has a
limit, which can be considered to be (dd“u)".

In this way Bedford and Taylor [6] have defined the Monge-Ampere operator for
u € Psh (£2) N L2, (£2) by the recurrent relation as current:

loc

/(ddcu)k Ag= /u(ddcu)“ ANddp , o e DORn=R) =1 2 n—1.

Here the D™ %7=k) ig the space of test forms, i.e. space of all finite differential forms
of bi-degree (n — k,n — k), with C* coefficients. Moreover, later in [7] it was proved
that (dd“u)® defined as above is well-defined, i.e. (dd‘u;)* — (dd“u)” for any ap-
proximation u; | u.

But the definition of (dd“u)" for an arbitrary u € Psh (£2) is still a hard problem.
This is also an obstacle for solving the Dirichlet problem (1.1) in general case and for
providing answers to many other questions .

Namely, firstly, in 1975 Shiffman and Taylor showed that there is u € Psh (C")
such that [ (ddu;)" — oo, where u; | u. Kiselman [18] constructed a simple example
of a function u (z) = (—In |z |)"/" (]z2|2 S 1), which is Psh near the origin,
has this property and is such that its Monge-Ampeére mass is unbounded near z; = 0.

Secondly, Cegrell [8] suggested the following example. For the Psh function u (z) =

In|z)* 4 ... + In|z,|* if we take the approximation u; (z) = In (!zlznf + %) L u(z2),
then (dd“u;)" +— 0. On the other hand, if we take the approximation v, (z) =
In (\21\2 + %) +...+In <|zn|2 + %) L u(z), then (dd “u;)" — nl4"§,, where &y is the Dirac
measure. This example shows that for arbitrary Psh functions the operator(dd “u)"
cannot be well-defined by appoximations u; | u.

There were some more attempts to define (dd “u)” for arbitrary Psh functions.

1. Kiselman [18] proposed of following method for defining (dd “u)": he considered
a domain 2 x {w € C:|Imw| < 3} C C" and the auxiliary function F (z,w) =
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(u(z) — Rew)™ . Then the measure (dd°F)"*' is supported on the graph {(z,w) €
C"' . Rew = u(z)} and its projection onto C” is equal to (dd“u)" for bounded
functions. For an arbitrary Psh function u we denote this projection by K (u). It is
clear that K (u) characterizes (dd“u)" outside the singular set S = {u = —oco}. For
example, for u (z) = In||z||* we have K (u) = 0.

2. Another method of defining (dd“u)" outside S was given by Blocki: for a
bounded Psh function u it is clear that e*ddu = 2e"dd“e" — dd“e®. Therefore,
for unbounded functions we can define B? (U) = (dd“u)”, 1 < p < n, outside S using
e BP(u) = (edd “u)? = (2e"dd “e" — 3dd“e**)P. Operators (dd“u)” in this definition
do not take into account the mass, supported on the singular set S = {u (z) = —o0}.

These methods show that in 2\ S the operator (dd“u)” is always defined correctly.

However, for some class of unbounded Psh functions it is possible to well-define
(dd “u)" .

3. In the paper [22] the author proved that for class

L™ ={u(z) € Psh(C") : o+ Inllz[| u(z) < B+ 1]z, Y]zl = r},

where 7, «, 3 — const, the operators (dd°u)® and wu(ddu)"", 0 < k < n, are well-
defined. It follows that if Psh function w(z) is bounded in some sphere S (0,7) (or
some level of Psh function) then these operators are well-defined inside B (0, 7).

Similar results were also proved by Demailly [14], that if the singular set S : {u =
—oo} of Psh function u is compact, then the Monge - Ampere operators (ddcu)k
are well-defined. Bedford [5] proved that if Psh function u has only "small degree"
singularities, then (dd“u)" are well-defined.

4. Cegrell [9] introduced several classes of Psh functions, where (dd “u)" can be well-
defined. Let 2 C C* be a hyperconvex domain, i.e. there exists v € Psh (§2),v|n <
0 and zli%lgv (z) = 0. We put

Eq(2) = {u € Psh(2)NL>®(£2):u|p <0, lirannu(z) =0 and /(ddcu)" < 00 },

F(02)= {u € Psh(£2) : 3u; | u,u; € Ey(£2) and sup/ (dd “u;)" < o0, } (1.3)
Q
E () = {u € Psh({2) : the sequense u; exists locally} .

Cegrell prove that, for v € E (£2) D F ({2) it is possible to define (dd“u)", using
compactness of (dd “u;)" — p.

In this way Blocki [3] introduced a class D, where the Monge-Ampere operator can
be well-defined.

Definition 1. We say that the operator (dd “u)" is well-defined for a given u € Psh (2)
if in {2 there exist a Borel measure p such that for each open set U CC {2 and
u; € Psh(U)NC*® (U),u; | u, we have (dd“u;)" — . In this case we put (dd “u)" = p
and the set of all such v we denote by D.

Blocki proved a series of properties of D. In particular, u € D(£2) & (ddu;)"
is weakly bounded for each sequence u; | u. Moreover, the class D is characterized



100 A. Sadullaev

by boundedness of currents |uj|" """ duj A du; A (dd “u;)” A (dd° ||z||2)”‘p‘1, p =

0,1,...,n — 2, for a single sequence u; | u. Then it also follows that these currents are
bounded for all sequences u; | v .

For hyperconvex domain 2 CC C" Cegrell’s class £ (2) is equal D (§2) and for
cach u € E () = D (1), all currents (dd“u)”, 1 < k < n, are also well-defined.

Other properties of the Cegrell’s classes, in particular, the solution of the Dirichlet
problem in these classes are given in a series of works of Cegrell, Coman, Guedj, Zeriahi,
Kolodziej and others (see |11, 13, 16, 19]). The aim of this paper is to give a survey
in this direction and continue the definition of currents (dd Cu)k 1 < k < n, from
Cegrell’s class to a wider class of Psh ({2).

2 Maximal Psh functions

Maximal Psh function is an analogue of harmonic functions. They possess the maxi-
mality condition of harmonic functions.

Definition 2 ([21]). We say that a function v € Psh ({2) is maximal in the domain
2 if the maximality principle holds, i.e. if v € psh (£2): lim (u(z) —v(z)) > 0, then

u(z) 2v(z), Vzen.
The condition lim (u(z) —wv(z)) > 0 here means that for arbitrary fixed ¢ > 0

z—0D
there exist a compact K C (2 such that v(z) < u(z) + € outside K. In particular,
v (2) = —o0 if u(z) = —oo. Next proposition is convenient in applications

Proposition. The following statements are equivalent:
1) u - is maximal in (2;
2) for any domain G CC {2 and for any function v € psh (G) : lim (u(z) —v(2)) >
z—0G
0 implies u(z) > v (z), Vz € G;
3) for any domain G CC 2 and for any function v € psh (£2) : ulsg = v|se implies
u(z) 2v(z), VzeG.

Proof. The implication 3) = 1) is clear. For implications 1) = 2) = 3) we note that
the function

max {u(z),v(2)}, if z € G
w(z) = { u(z), if ze 2\G (2.1)
is Psh in {2 and h_I(;l (u(z) —w(z)) =0. Hence u(z) > w(z), Vze€ 2 and u(z) >

v(z), VzegG. O

In the class of bounded Psh functions, a function w(z) € Psh(§2) N LS (§2) is

maximal if and only if (ddu)” = 0. Moreover, the following comparison principle of
Bedford-Taylor (see [6, 7]) is true: if u,v € Psh(§2) N L7, (2) and the set F' = {z €
2: u(z) <v(z)} CC 2, then

/ (ddu)" > / (dd*v)" (2.2)

F F
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An example of unbounded maximal Psh function in complex space C? is u (z) =
In |2'1|

Theorem 1. If for u(z) € Psh({2) there exists a sequence u;(z) € Psh(£2) N

L2 (02) such that u; | w, (ddu;)" — 0, then u is mazimal. Conversely, if u is mawi-

mal, then there exists an approzimation {u; (2)} such that

u; € Psh(£2;) N Ly, (£25), (dd°uj)" =0, 2, CC 2,41 CC 12,

0= U uj (2) L u(z) Vz € 0. (2.3)

Proof. Let u(z) € Psh(f2) and let there exists a sequence u;(z) € Psh(£2) N
L2 (£2)such that u; | u, (dd“u;)" — 0. Suppose to the contrary that u is not maxi-
mal . Then there exist a domain G CC (2 and a function v € psh (£2) such that u(z) >
v(z) in a neighborhood of G, but u (z°) < v (2%), 2° € G.

We fix a small ¢ > 0 such that u (2°) +& < v (2°) and put

£
B 2-max {|z]2: 2 € G}

Then the plurisubharmonic in (2 function ¥ = v + §|z|? satisfies the condutions
u(2%) +e<0(2°), ulog +e = ac. (2.4)

We can choose jo € N so large that wu, (2°)+e < 0(2"), j > jo. Since ujlaoc+¢ = 0ag,
then approximating u;,v in a neighborhood of G' by standard sequences uy ; | u;, vy |
v, u;, vp € C®, k=1,2,..., and putting 0 = vy + d|2|?, by comparison princple we
have

/(ddcuk,j)n > /(ddcflk)n, F = {Z eG: Ugj+ €< ﬁk} CC . (25)
F F
We note that the set £ = {u(z) +e <9(2)} # @ and the Lebesgue measure
measE > 0 by (2.4). Since F = U , where E; = {u;(2) +¢ <9(2)}, E; C Ejp,
then lim measE; = measE. By (2. 5) we have

Jj—oo

/ (ddew)" > T [ (dd°up,)" > T [ (dd®up,)" > T [ (dd<o)" >

k—oo k—oo k—oo
G G F F
> km (dd“vy)" = " hm (dd°|z*)" >
{ug,; <0} {ug,; <0}
>o" hm meas{uy; < 0} = 0"meask;, (2.6)

k—o0
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which if we let j — oo gives

lim [ (dd“u;)" > d"measE > 0.
]—>OO§
This is a contradiction to the claim (dd “u;)" — 0.
Let now u (z) be maximal. For a fixed domain G CC (2 with smooth boundary
0G, we fix an approximation w; | u, w; € Psh(G')NC>®(G'),j = 1,2,..., where
G CC G’ CC (2. Tt is well-known that the regularization v}(2) = limy_., v (A) of

vj(z) =sup{v(z) € Psh(G)NC (G) : v|pe < wjloc} (2.7)

is a bounded Psh function in G with vanishing Monge-Ampere operator, (dd “v;)" = 0.
Moreover, since u is maximal, we have v; (2) | u(2) , z € G.

Now it is not difficult to construct, by applying this process to an arbitrary compact
G CC f2, a sequence of domains 2; C {2 and approximations wu;(z) | u(z) such
that w; € Psh(£2;) N L2, (£2;) , (dd°u;)" = 0, where 2; CC 2,1 CC 2, 2 =

loc

U 2. O
7j=1

Remark 1. If the domain G CC {2 above is strongly pseudoconvex , then the up-
per envelop (2.7) is continuous in G by Bremermann-Walsh theorem. Since for an
arbitrary domain G' C {2 with smooth boundary OG the functions u; are Psh in the
neighborhood G’ O G, then the technique of Walsh allows also to prove continuity of

vi 1 v; € Psh(G) N C(G). Therefore, the sequence {u;(2)} in (2.3) we can choose to

be continuous: u; € Psh(£2;) N C(£2;).
Remark 2. Theorem 1 was proved in [21] under the assumption, that the sequence

{u;(z)} is continuous. Similar properties of maximal Psh functions considered also by
Blocki [2] and Cegrell [10].

Remark 3. Theorem 1 shows that for given maximal function u € Psh({2), locally,
in a fixed ball B CC {2 there exist at least one sequence u; | u, u; € Psh(B)NC(B)
such that (dd“u;)" — 0. On the other hand, Blocki [4] showed that there is maximal
function u € B, for which (dd “max{u, j})" does not tends 0 (see Section 3).

3 One way of defining the Monge-Ampeére operator

The Cegrell class D C Psh (£2) is the biggest class, where (dd“u)" is well-defined, i.e.
for any sequence {u;} C Psh(2) N L. (2), u; | u (dd“u;)" weekly tends to the

unique limit 7. Let now u € Psh (£2)\D. Then the set {T'} of all Borel measures
T = lim (dd°u;)", where {u;} C Psh(2)N LS. (2), u; | u may contain many
j—o00

loc

elements or may be empty (when (dd“u)" is not compact). The problem of definition
of Monge-Ampere operator is, generally speaking, consists of a reasonable selection of
T, € {T'}. That is,

a) the comparison principle (2.2) holds for T;

b) u is maximal if and only if T;, = 0;
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¢) T,, is minimal among {T'}, i.e., if T € {T'} is another measure, then T,, — T is not
positive.

1. We consider here one interesting example given by Blocki [4]. The function
u(z,w) = —24/In |z| In |w| is Psh in the unit disk U2, Then u is maximal in U?\ {0, 0},
but it is not maximal in all U2 In U2\ {0,0}

lim (dd°max {u,—j})" =T

Jj—00
exists and
0 if zw #0
T = iy ifz=0 (3.1)
2mdV, : _
—m lf w = 0

This example shows that lim (dd“max {u,—j})" is not good for defining the (dd “u)"
j—o0

(condition b) does not hold). We note that if B C U?, 0 € B, is an open set , then
lim [ (dd°max{u,—j})" = occ.
J—x©p

2. Let u(z) € Psh(f2) be an arbitrary Psh function in a domain 2 C". We put
v=c¢c"and u, =In(v+a) =In(e"+a), a >0. Then u, | v as a | 0 and v €
Psh (2)N L2 (£2). So the operators (dd v)” and v (dd“v)”, dvAd A (ddv)’"" are

correctly defined. We have
dd°u, = (v +a) " [ddv — (v+a) " dv A d],

(dd“uq)” = (v+a)™" [(dd“v)" = p (v + a)" dv A dv A (ddcv)p_l] =

1
= [v(dd“)? — pdv A d A (ddv)P~] +
(U+a>p+1 [ ( ) ( ) }
The currents wy , and wq, are positive. This is clear for ws,. To prove it for w4,
we show that the current ¢? = v (ddv)"’ — pdv A dv A (dd v)P~" is positive. We take

the standard approximation u; | v and put v; = €% . Then we have

a

c,\P _
W (dd U) = Wia -+ wgﬂ.

¢! = v;(dd “v;)P — pdv; A dv; A (dd“v;)P " = e (dd u; + duy A d ;)P —

(p+1)u,

—pe(p“)uiduj Aduj A (dd“uj + duj A dcuj)p*1 =e (dd “u;)” > 0.

It is clear that ¢§ — ¢P as j — oo. Thus ¢ > 0. We put formally

(3.2)

The current w! characterizes (ddu)” completely outside a singular set S
{u(z) = —oc}. If the current @?/vP™! is locally bounded in (2, i.e,

< oo, VK CC {2,

¢ A (dde|2])""
/ Up+1
K\S
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then W} = @?/vPT! represents a current in (2 and we call it the regular part (the part
outside S ) of (dd“u)’. However, w} = ¢"/v""! is not bounded near z; = 0 for
Kiselman’s example u (z) = (—In |z )" - - (Iz2]* + ... + |2a]” = 1) . Tt follows that for
some Psh functions w} may be unbounded near a singular set S. In this case it is not
possible to define of (dd“u)” as a current, i.e., (dd“u)” is undefinable.

Definition 3. We say that (dd‘u)” is definable at a point o € (2, if there exist a
neighborhood U of o such that w; bounded in U (then it is a current) and wo, weekly
tends to some current w, as a — 0.

We note that if (dd“u)” is definable at a point o € 2, then supp wy C S. wy is
called to be singular part (the part on S ) of (dd“u)”.

We shall study the current w, , and its limit. Since v = e* € Psh (£2)NL52, (2) then
ddv = v(duANdu+ddu) and (dd°v)’ = vP [duAduA (dd cw)’~! + (dd u)’].
Therefore we have

a c avpil u c c c —1
W2, = —(v Ty (dd“v)? = —(v T e’ [du A du+ ddu] A (dd“u)’™ =
avpil U jc c \p—1
= —(v - a)pﬂd(e du) A (ddu)’™ . (3.3)

It is clear that

1 - 1 u C
(ddce"/?)" = Pt [du A du A (ddu)’™"] + ¢ (dd u)?

c u p 1 1
eP/Q (dd € /217) - (2p)p+1 (2p)2p

It follows that the d (e“d“u) A (ddu)?~" represents a current of bi-degree (p,p). More-
over, it is well-defined, i.e. if {u;} C Psh(2)NC?(2), wu; | u then

e [du A du A (ddu)’™"] +

e (dd“u)’ .

d (e d u;) A (dd“u;)’ ™" — d (e"d“u) A (dd“u)’ ™" . (3.4)

Now fix a «a(z) € C®(£2), B = suppa CC §2. We can assume that v < 0 in
B. Let By={v<t}NB and p,(t) = [ d(e*du) A (ddu)’"" Ao (z) (dd|z]*)",

By
t> 0.
We want to find
TN G (e"du) A (ddu)’™" Ao (dd®|2[)"" (3.5)
a—0 (U+a)p+1 . .

For a C? to function u the integral in (3.5) is equal (see [15]) to

avP~! w e . i atP~!
/md(e d°u) A (dd*u) " Ao (dd€)=f?)" / e (). (39)
B1 0
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Integrating by parts we have

1 1
atP~! ajle (1) /{ a ] tP—2
t) = ———— + 2 — o (B)dt
/ e () = e L Fra) e
0 0

and

avpil U jc c, \p—1 c 2\ n—p
B1

1
afie (1 P2
o (1)dt.
(1+ap1+a/[ t—i—a} (t+ o ()
0

By (3.4) this relation is true for arbitrary u € Psh (£2).
Now we need the following
Lemma. If the limit
o (t
lim MT() A

t—0

exists, then the limit
1

lim v d
ima | ————pq (1) dt,
a—0 / (t—i—a)pﬂu ®)

and consequently, limit (3.5) also exist.

Proof. 1t is clear that

1 o1
lima/—ﬂdt = C = const,
a—0 (t+a)

so that exists

1 1

a—0 a—0

t+a) (t+ a)"

We note that if the limit

[ d(e"deu) A (ddeu)’™" A (dd|2)""

. B
lim
t—0 t

=A

=2 P
hma/‘m,ua (t) dt :hma/— (A+O(t)) dt = AC.

105

(3.7)

(3.8)

exists for any B CC (2, then (3.7) exists for an arbitrary function a € C* (£2) such

that supp a CC 2. We arrive at the following statement.

Theorem 2. If the Psh function u satisfies the condition (3.8) and w is a locally

bounded current in §2, then (dd°u)’ definable.
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4 Examples

Lou=Inlz’=In(|z[* + ... + |2.]°). Then v = |z1|* + ... + |z,[°, dd°v = dzy A dz +
ot dz, NdZ, and dv Adv = |z|*dzy AdF + ...+ |z0| dzn A dZ,. Tt follows that for
psn—1

v (dd“v)? — pdv A dv A (ddv)P

‘Z|2(p+1)

Wi =
and [ WA (dd¢|2)"" — 0 as r — 0. We note that
B(o,r)
a

o = (g (= 0

as a — 0, so that b = 0.
It is clear that wi’, =0 and

adV

(|z!2 +a

n
/ Wy, — 1

B(0,r)

no _
Wy, = const )n+1’

where

as a — 0, i.e. wi =9y (Dirac measure).

2. In C"{z1, 29, ..., 2.} letu=1In( |z1)* + |z2|2) , v =|z1]> + |22|>. Then ddv =
dzy Ndz +dza NdZy , do ANdv = |zl\2dzl ANdz + |zz|2d22 A dz.

For p > 3 we have wi, =wj, =0 ,ie wf =wy =0.

Forp=1
ol Wl = |20|* dzy A dzg + | 212 dzo A d7
l,a - 3 .
(|Z1‘2 + |Z2|2)
Therefore .
wi A (dde]z?) " = ——
|21]" + [22]
It is not difficult to see that
dV
w%,a A (ddc ‘Z|2) = a — 0

(211 + |2?)

as a — 0and wi = 0.
Finally, w? = 0 and

2 adV
= 3
(|z1|2 + |ZQ|2 + a)

w;a A (ddc |z]2)n7

— 5{21 =0,22=0}>»

where 0, -0 ,—0} is the Dirac measure supported on the plane {z; = 0,2, =0} C C™.
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3.u=In|f(z )|?, where f € O(C"). Thenv = ff, duAdv = |f[>df Adf, ddv =
df Adf. Tt is clear that W}, +wh, =0 for p > 2. We have wi, = 0 and

Whe = —————df Ndf — 7],

(If* + a)

where [Zf] is (1,1) current corresponding to the analytic set Z; = {f = 0}.
4. Let u € Psh(£2), v < 0 and let there exist M < 0 such that the set
{u< M} CC £, i.e. uhas compact singularities. For u € Psh (£2) N C?(02),

/d(eudcu) A (ddu)’" A (dd®|2)?)" " = /e“dcu/\ (dd u)’" A (dde|=)" " =

By 0B

— ¢ / deu A (dd°u)’~ A (dd®|z)*)" "
OBy

Therefore, for s >t > 0 we have

/ d°u A (ddu)’~" A (dd°|2[?)" " - / d°u A (ddu)’" A (dd°|z[?)"" =

0B 0By

- / (dd°w)? A (dd°|2[*)""
Bs\Bq
This equality shows that for our given function u € Psh(f2), u < 0 integral

[ (dd°u)? A (dd ]z|2)n7p is bounded and limit (2.8) exists. We note, that the current
Bs\S

dd“u)” is definable.
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