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Abstract. In this paper we consider the problem of de�nition of the Monge-Amp�ere
operator for an arbitrary plurisubharmonic function. The paper has a survey charac-
ter; in it we discuss on the results related to this area. We give one construction of
the de�nition of the Monge-Amp�ere operator, which will then be applied to maximal
plurisubharmonic functions.

1 Introduction

Complex pluripotential theory, based on plurisubharmonic (Psh) functions and the
Monge-Amp�ere operator (ddcu)n, is one of the important directions in potential theory
and multi-dimensional complex analysis. Built in 1980s the theory has already found
many applications in geometric questions of complex analysis and in the theory of Psh
functions. We recall the following standard notation:

d = ∂+ ∂̄ , d c = i
(
∂̄ − ∂

)
,where ∂ =

∂

∂z1

dz1 + ...+
∂

∂zn

dzn, ∂̄ =
∂

∂z̄1

dz̄1 + ...+
∂

∂z̄n

dz̄n,

so that
dd cu = 2i∂∂̄u, du ∧ d cu = 2i∂u ∧ ∂̄u ,

(dd cu)n = dd cu ∧ ... ∧ dd cu = const det

(
∂2 u

∂zj∂z̄k

)
dV

In the classical case of n = 1 the operator (dd cu)n is the linear Laplace operator,
dd cu is easily de�ned and it is a positive Borel measure for every subharmonic function
u .

De�ning the Monge-Amp�ere operator (dd cu)n in general case and solving the cor-
responding Dirichlet problem

(dd cu)n = µ, u ∈ Psh (Ω) , u|∂Ω = ϕ, (1.1)

have a long history and are more complicated.
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Bremermann [1] noted, that if u ∈ C2 (Ω)
⋂
Psh (Ω) is maximal (an analogue of

harmonic functions, see. Ch 2), then (dd cu)n =0. Later Kerzman [17] proved that
if (dd cu)n = 0 then u is maximal. Chern, Levine and Nirenberg [12] proved that
the operator (dd cu)n is bounded in the mean for the class of uniformly bounded Psh
function of class C2.We note that this proposition easily follows also from the integral
formula below, proved by author [20, 21]: if G = {ρ (z) < 0} is a strictly pseudoconvex
domain, ρ ∈ C2 (G) , σ = min

G
ρ (z) and u is a C2 Psh function in G, then for each r

and k such, that σ < r < 0, 1 6 k 6 n

r∫
σ

dt

∫
ρ(z)6 t

(dd cρ)n−k ∧ (dd cu)k 6 (M −m)

∫
ρ(z)6 r

(dd cρ)n−k+1 ∧ (dd cu)k−1, (1.2)

where M = max
G

u (z) , m = min
G
u (z) .

Chern - Levine - Nirenberg's result impies that if u ∈ Psh (Ω)∩L∞loc (Ω) and uj ↓
u is a C∞ approximation of u, then {(ddcuj)

n} is a compact family of (positive) Borel
measures and the sequence {(ddcuj)

n} has partial weak limits ( 7→ ) for subsequences
{(ddcujk

)n}. The main problem here is to prove that the sequence {(ddcuj)
n} has a

limit, which can be considered to be (ddcu)n.
In this way Bedford and Taylor [6] have de�ned the Monge-Amp�ere operator for

u ∈ Psh (Ω) ∩ L∞loc (Ω) by the recurrent relation as current:∫
(dd cu)k ∧ ϕ =

∫
u (dd cu)k−1 ∧ dd cϕ , ϕ ∈ D(n−k,n−k), k = 1, 2, ..., n− 1.

Here the D(n−k,n−k) is the space of test forms, i.e. space of all �nite di�erential forms
of bi-degree (n− k, n− k), with C∞ coe�cients. Moreover, later in [7] it was proved
that (dd cu)k de�ned as above is well-de�ned, i.e. (dd cuj)

k 7→ (dd cu)k for any ap-
proximation uj ↓ u.

But the de�nition of (dd cu)n for an arbitrary u ∈ Psh (Ω) is still a hard problem.
This is also an obstacle for solving the Dirichlet problem (1.1) in general case and for
providing answers to many other questions .

Namely, �rstly, in 1975 Shi�man and Taylor showed that there is u ∈ Psh (Cn)
such that

∫
(ddcuj)

n →∞, where uj ↓ u. Kiselman [18] constructed a simple example

of a function u (z) = (− ln |z1|)1/n (|z2|2 + ...+ |zn|2 − 1
)
, which is Psh near the origin,

has this property and is such that its Monge-Amp�ere mass is unbounded near z1 = 0.
Secondly, Cegrell [8] suggested the following example. For the Psh function u (z) =

ln |z1|2 + ... + ln |zn|2 if we take the approximation uj (z) = ln
(
|z1...zn|2 + 1

j

)
↓ u (z),

then (dd cuj)
n 7→ 0. On the other hand, if we take the approximation vj (z) =

ln
(
|z1|2 + 1

j

)
+...+ln

(
|zn|2 + 1

j

)
↓ u (z), then (dd cuj)

n 7→ n!4nδ0, where δ0 is the Dirac

measure. This example shows that for arbitrary Psh functions the operator(dd cu)n

cannot be well-de�ned by appoximations uj ↓ u.
There were some more attempts to de�ne (dd cu)n for arbitrary Psh functions.
1. Kiselman [18] proposed of following method for de�ning (dd cu)n: he considered

a domain Ω ×
{
w ∈ C : |Imw| < 1

2

}
⊂ Cn+1 and the auxiliary function F (z, w) =
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(u (z)− Rew)+ . Then the measure (dd cF )n+1 is supported on the graph {(z, w) ∈
Cn+1 : Rew = u (z)} and its projection onto Cn

z is equal to (dd cu)n for bounded
functions. For an arbitrary Psh function u we denote this projection by K (u). It is
clear that K (u) characterizes (dd cu)n outside the singular set S = {u = −∞}. For
example, for u (z) = ln ‖z‖2 we have K(u) = 0.

2. Another method of de�ning (dd cu)n outside S was given by B locki: for a
bounded Psh function u it is clear that e2udd cu = 2eudd ceu − 1

2
dd ce2u. Therefore,

for unbounded functions we can de�ne Bp (U) = (dd cu)p, 1 6 p 6 n, outside S using
e2puBp(u) = (e2udd cu)p = (2eudd ceu − 1

2
dd ce2u)p. Operators (dd cu)p in this de�nition

do not take into account the mass, supported on the singular set S = {u (z) = −∞} .
These methods show that in Ω\S the operator (ddcu)p is always de�ned correctly.
However, for some class of unbounded Psh functions it is possible to well-de�ne

(dd cu)n .
3. In the paper [22] the author proved that for class

L+ = {u (z) ∈ Psh (Cn) : α + ln ‖z‖ 6 u (z) 6 β + ln ‖z‖ , ∀ ‖z‖ > r} ,

where r, α, β − const, the operators (dd cu)k and u (dd cu)k−1 , 0 < k 6 n, are well-
de�ned. It follows that if Psh function u (z) is bounded in some sphere S (0, r) (or
some level of Psh function) then these operators are well-de�ned inside B (0, r).

Similar results were also proved by Demailly [14], that if the singular set S : {u =
−∞} of Psh function u is compact, then the Monge - Amp�ere operators (dd cu)k

are well-de�ned. Bedford [5] proved that if Psh function u has only "small degree"
singularities, then (dd cu)k are well-de�ned.

4. Cegrell [9] introduced several classes of Psh functions, where (dd cu)n can be well-
de�ned. Let Ω ⊂ Cn be a hyperconvex domain, i.e. there exists v ∈ Psh (Ω) , v|Ω <
0 and lim

z→∂Ω
v (z) = 0. We put

E0 (Ω) =

{
u ∈ Psh (Ω) ∩ L∞ (Ω) : u|Ω 6 0, lim

z→∂Ω
u (z) = 0 and

∫
Ω

(ddcu)n < ∞
}
,

F (Ω) =

{
u ∈ Psh (Ω) : ∃uj ↓ u, uj ∈ E0(Ω) and sup

∫
Ω

(dd cuj)
n <∞,

}
(1.3)

E (Ω) = {u ∈ Psh (Ω) : the sequense uj exists locally} .

Cegrell prove that, for u ∈ E (Ω) ⊃ F (Ω) it is possible to de�ne (dd cu)n , using
compactness of (dd cuj)

n 7→ µ.
In this way B locki [3] introduced a class D, where the Monge-Amp�ere operator can

be well-de�ned.

De�nition 1. We say that the operator (dd cu)n is well-de�ned for a given u ∈ Psh (Ω)
if in Ω there exist a Borel measure µ such that for each open set U ⊂⊂ Ω and
uj ∈ Psh (U)∩C∞ (U) , uj ↓ u, we have (dd cuj)

n 7→ µ. In this case we put (dd cu)n = µ
and the set of all such u we denote by D.

B locki proved a series of properties of D. In particular, u ∈ D (Ω) ⇔ (ddcuj)
n

is weakly bounded for each sequence uj ↓ u. Moreover, the class D is characterized
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by boundedness of currents |uj|n−p−2 duj ∧ d cuj ∧ (dd cuj)
p ∧

(
dd c ‖z‖2)n−p−1

, p =
0, 1, ..., n− 2, for a single sequence uj ↓ u. Then it also follows that these currents are
bounded for all sequences uj ↓ u .

For hyperconvex domain Ω ⊂⊂ Cn Cegrell's class E (Ω) is equal D (Ω) and for
each u ∈ E (Ω) = D (Ω), all currents (dd cu)k , 1 6 k 6 n, are also well-de�ned.

Other properties of the Cegrell's classes, in particular, the solution of the Dirichlet
problem in these classes are given in a series of works of Cegrell, Coman, Guedj, Zeriahi,
Kolodziej and others (see [11, 13, 16, 19]). The aim of this paper is to give a survey
in this direction and continue the de�nition of currents (dd cu)k , 1 6 k 6 n, from
Cegrell's class to a wider class of Psh (Ω).

2 Maximal Psh functions

Maximal Psh function is an analogue of harmonic functions. They possess the maxi-
mality condition of harmonic functions.

De�nition 2 ([21]). We say that a function u ∈ Psh (Ω) is maximal in the domain
Ω if the maximality principle holds, i.e. if v ∈ psh (Ω) : lim

z→∂Ω
(u (z)− v (z)) > 0 , then

u (z) > v (z) , ∀ z ∈ Ω.
The condition lim

z→∂D
(u (z)− v (z)) > 0 here means that for arbitrary �xed ε > 0

there exist a compact K ⊂ Ω such that v (z) 6 u (z) + ε outside K. In particular,
v (z) = −∞ if u (z) = −∞. Next proposition is convenient in applications

Proposition. The following statements are equivalent:
1) u - is maximal in Ω;
2) for any domain G ⊂⊂ Ω and for any function v ∈ psh (G) : lim

z→∂G
(u (z)− v (z)) >

0 implies u (z) > v (z) , ∀ z ∈ G;
3) for any domain G ⊂⊂ Ω and for any function v ∈ psh (Ω) : u|∂G > v|∂G implies

u (z) > v (z) , ∀ z ∈ G.

Proof. The implication 3) ⇒ 1) is clear. For implications 1) ⇒ 2) ⇒ 3) we note that
the function

w (z) =

{
max {u (z) , v (z) } , if z ∈ G

u (z) , if z ∈ Ω\G (2.1)

is Psh in Ω and lim
z→∂Ω

(u (z)− w (z)) = 0. Hence u (z) > w (z) , ∀ z ∈ Ω and u (z) >

v (z) , ∀ z ∈ G.

In the class of bounded Psh functions, a function u (z) ∈ Psh (Ω) ∩ L∞loc (Ω) is
maximal if and only if (dd cu)n = 0. Moreover, the following comparison principle of
Bedford-Taylor (see [6, 7]) is true: if u, v ∈ Psh(Ω) ∩ L∞loc (Ω) and the set F = {z ∈
Ω : u (z) < v (z)} ⊂⊂ Ω, then∫

F

(dd cu)n >
∫
F

(dd cv)n (2.2)
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An example of unbounded maximal Psh function in complex space C2 is u (z) =
ln |z1|

Theorem 1. If for u (z) ∈ Psh (Ω) there exists a sequence uj (z) ∈ Psh (Ω) ∩
L∞loc (Ω) such that uj ↓ u, (dd cuj)

n 7→ 0, then u is maximal. Conversely, if u is maxi-
mal, then there exists an approximation {uj (z)} such that

uj ∈ Psh (Ωj) ∩ L∞loc (Ωj) , (ddcuj)
n = 0 , Ωj ⊂⊂ Ωj+1 ⊂⊂ Ω,

Ω =
∞⋃

j=1

Ωj, uj (z) ↓ u (z) ∀z ∈ Ω. (2.3)

Proof. Let u (z) ∈ Psh (Ω) and let there exists a sequence uj (z) ∈ Psh (Ω) ∩
L∞loc (Ω) such that uj ↓ u, (dd cuj)

n 7→ 0. Suppose to the contrary that u is not maxi-
mal . Then there exist a domain G ⊂⊂ Ω and a function v ∈ psh (Ω) such that u(z) >
v(z) in a neighborhood of ∂G, but u (z0) < v (z0) , z0 ∈ G.

We �x a small ε > 0 such that u (z0) + ε < v (z0) and put

δ =
ε

2 ·max
{
|z|2 : z ∈ G

} .
Then the plurisubharmonic in Ω function ṽ = v + δ|z|2 satis�es the condutions

u
(
z0
)

+ ε < ṽ
(
z0
)
, u|∂G + ε > ṽ|∂G. (2.4)

We can choose j0 ∈ N so large that uj0 (z0)+ε < ṽ (z0) , j ≥ j0. Since uj|∂G+ε > ṽ|∂G,
then approximating uj, v in a neighborhood of G by standard sequences uk,j ↓ uj, vk ↓
v, uk,j, vk ∈ C∞, k = 1, 2, ..., and putting ṽk = vk + δ|z|2, by comparison princple we
have ∫

F

(ddcuk,j)
n >

∫
F

(ddcṽk)n , F = {z ∈ G : uk,j + ε < ṽk} ⊂⊂ G. (2.5)

We note that the set E = {u(z) + ε < ṽ(z)} 6= � and the Lebesgue measure
measE > 0 by (2.4). Since E =

⋃
j

Ej, where Ej = {uj(z) + ε < ṽ(z)} , Ej ⊂ Ej+1,

then lim
j→∞

measEj = measE. By (2.5) we have

∫
G

(dd cuj)
n > lim

k→∞

∫
G

(dd cuk,j)
n > lim

k→∞

∫
F

(dd cuk,j)
n > lim

k→∞

∫
F

(dd cṽk)n >

> lim
k→∞

∫
{uk,j<ṽ}

(dd cṽk)n > δn lim
k→∞

∫
{uk,j<ṽ}

(
dd c|z|2

)n
>

> δn lim
k→∞

meas{uk,j < ṽ} = δnmeasEj, (2.6)
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which if we let j →∞ gives

lim
j→∞

∫
G

(dd cuj)
n > δnmeasE > 0.

This is a contradiction to the claim (dd cuj)
n 7→ 0.

Let now u (z) be maximal. For a �xed domain G ⊂⊂ Ω with smooth boundary
∂G, we �x an approximation wj ↓ u, wj ∈ Psh (G′) ∩ C∞ (G′) , j = 1, 2, ..., where

G ⊂⊂ G′ ⊂⊂ Ω. It is well-known that the regularization v∗j (z) = limλ→z v
∗
j (λ) of

vj(z) = sup
{
v (z) ∈ Psh (G) ∩ C

(
G
)

: v|∂G 6 wj|∂G

}
(2.7)

is a bounded Psh function in G with vanishing Monge-Amp�ere operator, (dd cvj)
n = 0.

Moreover, since u is maximal, we have vj (z) ↓ u (z) , z ∈ G.
Now it is not di�cult to construct, by applying this process to an arbitrary compact

G ⊂⊂ Ω, a sequence of domains Ωj ⊂ Ω and approximations uj (z) ↓ u (z) such
that uj ∈ Psh (Ωj) ∩ L∞loc (Ωj) , (dd cuj)

n = 0 , where Ωj ⊂⊂ Ωj+1 ⊂⊂ Ω , Ω =
∞⋃

j=1

Ωj.

Remark 1. If the domain G ⊂⊂ Ω above is strongly pseudoconvex , then the up-
per envelop (2.7) is continuous in G by Bremermann-Walsh theorem. Since for an
arbitrary domain G ⊂ Ω with smooth boundary ∂G the functions uj are Psh in the
neighborhood G′ ⊃ G, then the technique of Walsh allows also to prove continuity of
v∗j : v∗j ∈ Psh(G) ∩ C(G). Therefore, the sequence {uj(z)} in (2.3) we can choose to
be continuous: uj ∈ Psh(Ωj) ∩ C(Ωj).

Remark 2. Theorem 1 was proved in [21] under the assumption, that the sequence
{uj(z)} is continuous. Similar properties of maximal Psh functions considered also by
B locki [2] and Cegrell [10].

Remark 3. Theorem 1 shows that for given maximal function u ∈ Psh(Ω), locally,
in a �xed ball B ⊂⊂ Ω there exist at least one sequence uj ↓ u, uj ∈ Psh(B) ∩ C(B)
such that (dd cuj)

n 7→ 0. On the other hand, B locki [4] showed that there is maximal
function u ∈ B, for which (dd cmax{u, j})n does not tends 0 (see Section 3).

3 One way of de�ning the Monge-Amp�ere operator

The Cegrell class D ⊂ Psh (Ω) is the biggest class, where (dd cu)n is well-de�ned, i.e.
for any sequence {uj} ⊂ Psh (Ω) ∩ L∞loc (Ω) , uj ↓ u (dd cuj)

n weekly tends to the
unique limit T . Let now u ∈ Psh (Ω) \D. Then the set {T} of all Borel measures
T = lim

j→∞
(dd cuj)

n, where {uj} ⊂ Psh (Ω) ∩ L∞loc (Ω) , uj ↓ u may contain many

elements or may be empty (when (dd cu)n is not compact). The problem of de�nition
of Monge-Amp�ere operator is, generally speaking, consists of a reasonable selection of
Tu ∈ {T}. That is,

a) the comparison principle (2.2) holds for Tu;
b) u is maximal if and only if Tu = 0;
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c) Tu is minimal among {T}, i.e., if T ∈ {T} is another measure, then Tu−T is not
positive.

1. We consider here one interesting example given by B locki [4]. The function
u (z, w) = −2

√
ln |z| ln |w| is Psh in the unit disk U2. Then u is maximal in U2\ {0, 0},

but it is not maximal in all U2. In U2\ {0, 0}

lim
j→∞

(ddc max {u,−j})n = T

exists and

T =


0 if zw 6= 0

− 2πdVw

|w|2 ln |w| if z = 0

− 2πdVz

|z|2 ln |w| if w = 0

(3.1)

This example shows that lim
j→∞

(dd c max {u,−j})n is not good for de�ning the (dd cu)n

(condition b) does not hold). We note that if B ⊂ U2, 0 ∈ B , is an open set , then
lim
j→∞

∫
B

(ddc max {u,−j})n = ∞.

2. Let u (z) ∈ Psh (Ω) be an arbitrary Psh function in a domain Ω ⊂n. We put
v = eu and ua = ln (v + a) = ln (eu + a) , a > 0. Then ua ↓ u as a ↓ 0 and v ∈
Psh (Ω)∩L∞loc (Ω) . So the operators (dd cv)p and v (dd cv)p , dv∧d cv∧ (dd cv)p−1 are
correctly de�ned. We have

ddcua = (v + a)−1 [dd cv − (v + a)−1 dv ∧ d cv
]
,

(dd cua)p = (v + a)−p [(dd cv)p − p (v + a)−1 dv ∧ dcv ∧ (dd cv)p−1] =

=
1

(v + a)p+1

[
v (dd cv)p − pdv ∧ dcv ∧ (ddcv)p−1]+

a

(v + a)p+1
(dd cv)p = ω1,a + ω2,a.

The currents ω1,a and ω2,a are positive. This is clear for ω2,a. To prove it for ω1,a,
we show that the current φp = v (dd cv)p − pdv ∧ d cv ∧ (dd cv)p−1 is positive. We take
the standard approximation uj ↓ u and put vj = euj . Then we have

φp
j = vj(dd

cvj)
p − pdvj ∧ d cvj ∧ (dd cvj)

p−1 = e(p+1)uj (dd cuj + duj ∧ d cuj)
p−

−pe(p+1)ujduj ∧ d cuj ∧ (dd cuj + duj ∧ d cuj)
p−1 = e

(p+1)uj
(dd cuj)

p ≥ 0.

It is clear that φp
j 7→ φp as j →∞. Thus φp > 0. We put formally

ωp
1 = lim

a→0
ωp

1,a =
φp

vp+1
. (3.2)

The current ωp
1 characterizes (dd cu)p completely outside a singular set S :

{u (z) = −∞}. If the current φp/vp+1 is locally bounded in Ω, i.e,∫
K\S

φp ∧
(
dd c |z|2

)n−p

vp+1
<∞, ∀K ⊂⊂ Ω,
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then ωp
1 = φp/vp+1 represents a current in Ω and we call it the regular part (the part

outside S ) of (dd cu)p. However, ωn
1 = φn/vn+1 is not bounded near z1 = 0 for

Kiselman's example u (z) = (− ln |z1|)1/n · ·
(
|z2|2 + ...+ |zn|2 − 1

)
. It follows that for

some Psh functions ωp
1 may be unbounded near a singular set S. In this case it is not

possible to de�ne of (dd cu)p as a current, i.e., (dd cu)p is unde�nable.

De�nition 3. We say that (dd cu)p is de�nable at a point o ∈ Ω, if there exist a
neighborhood U of o such that ω1 bounded in U (then it is a current) and ω2,a weekly
tends to some current ω2 as a→ 0.

We note that if (dd cu)p is de�nable at a point o ∈ Ω, then supp ω2 ⊂ S. ω2 is
called to be singular part (the part on S ) of (dd cu)p.

We shall study the current ω2,a and its limit. Since v = eu ∈ Psh (Ω)∩L∞loc (Ω) then
dd cv = v (du ∧ d cu+ dd cu) and (dd cv)p = vp

[
du ∧ d cu ∧ (dd cu)p−1 + (dd cu)p] .

Therefore we have

ω2,a =
a

(v + a)p+1
(dd cv)p =

avp−1

(v + a)p+1
eu [du ∧ d cu+ dd cu] ∧ (dd cu)p−1 =

=
avp−1

(v + a)p+1d (eud cu) ∧ (dd cu)p−1 . (3.3)

It is clear that(
dd ceu/p

)p
=

1

pp+1
eu
[
du ∧ d cu ∧ (dd cu)p−1]+

1

pp
eu (dd cu)p

ep/2
(
dd ceu/2p

)p
=

1

(2p)p+1 e
u
[
du ∧ d cu ∧ (dd cu)p−1]+

1

(2p)2p e
u (dd cu)p .

It follows that the d (eud cu)∧ (ddcu)p−1 represents a current of bi-degree (p, p). More-
over, it is well-de�ned, i.e. if {uj} ⊂ Psh (Ω) ∩ C2 (Ω) , uj ↓ u then

d (eujd cuj) ∧ (dd cuj)
p−1 7→ d (eud cu) ∧ (dd cu)p−1 . (3.4)

Now �x a α (z) ∈ C∞ (Ω) , B = suppα ⊂⊂ Ω. We can assume that u < 0 in

B. Let Bt = {v < t} ∩ B and µα (t) =
∫
Bt

d (eudcu) ∧ (dd cu)p−1 ∧ α (z)
(
dd c |z|2

)n−p
,

t > 0.
We want to �nd

lim
a→0

∫
B1

avp−1

(v + a)p+1d (eud cu) ∧ (dd cu)p−1 ∧ α
(
dd c |z|2

)n−p
. (3.5)

For a C2 to function u the integral in (3.5) is equal (see [15]) to

∫
B1

avp−1

(v + a)p+1d (eud cu) ∧ (dd cu)p−1 ∧ α
(
dd c |z|2

)n−p
=

1∫
0

atp−1

(t+ a)p+1dµα (t). (3.6)
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Integrating by parts we have

1∫
0

atp−1

(t+ a)p+1dµα (t) =
aµα (1)

(1 + a)p+1 + a

1∫
0

[
2− a

t+ a

]
tp−2

(t+ a)p+1µα (t)dt

and ∫
B1

avp−1

(v + a)p+1d (eud cu) ∧ (dd cu)p−1 ∧ α
(
dd c |z|2

)
n−p =

aµα (1)

(1 + a)p+1 + a

1∫
0

[
2− a

t+ a

]
tp−2

(t+ a)p+1µα (t)dt.

By (3.4) this relation is true for arbitrary u ∈ Psh (Ω).
Now we need the following

Lemma. If the limit

lim
t→0

µα (t)

t
= A (3.7)

exists, then the limit

lim
a→0

a

1∫
0

tp−2

(t+ a)p+1µα (t) dt,

and consequently, limit (3.5) also exist.

Proof. It is clear that

lim
a→0

a

1∫
0

tp−1

(t+ a)p+1 dt = C = const,

so that exists

lim
a→0

a

1∫
0

tp−2

(t+ a)p+1µα (t) dt = lim
a→0

a

1∫
0

tp−1

(t+ a)p+1 (A+O (t)) dt = AC.

We note that if the limit

lim
t→0

∫
Bt

d (eud cu) ∧ (ddcu)p−1 ∧
(
ddc |z|2

)n−p

t
= A (3.8)

exists for any B ⊂⊂ Ω, then (3.7) exists for an arbitrary function α ∈ C∞ (Ω) such
that supp α ⊂⊂ Ω. We arrive at the following statement.

Theorem 2. If the Psh function u satis�es the condition (3.8) and ω 1 is a locally
bounded current in Ω, then (ddcu)p de�nable.
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4 Examples

1. u = ln |z|2 = ln
(
|z1|2 + ...+ |zn|2

)
. Then v = |z1|2 + ... + |zn|2, dd cv = dz1 ∧ dz̄1 +

...+ dzn ∧ dz̄n and dv ∧ d cv = |z1|2 dz1 ∧ dz̄1 + ...+ |zn|2 dzn ∧ dz̄n. It follows that for
p 6 n− 1

ωp
1 =

v (dd cv)p − pdv ∧ d cv ∧ (dd cv)p−1

|z|2(p+1)

and
∫

B(o,r)

ωp
1 ∧
(
dd c |z|2

)n−p → 0 as r → 0. We note that

ωp
2,a =

a

(v + a)p+1 (dd cv)p 7→ 0

as a→ 0, so that ωp
2 = 0.

It is clear that ωn
1,a = 0 and

ωn
2,a = const

adV(
|z|2 + a

)n+1 ,

where ∫
B(0,r)

ωn
2,a 7→ 1

as a→ 0, i.e. ωn
2 = δ0 (Dirac measure).

2. In Cn {z1, z2, ..., zn} let u = ln
(
|z1|2 + |z2|2

)
, v = |z1|2 + |z2|2 . Then dd cv =

dz1 ∧ dz̄1 + dz2 ∧ dz̄2 , dv ∧ d cv = |z1| 2 dz1 ∧ dz̄1 + |z2|2 dz2 ∧ dz̄2.
For p > 3 we have ωp

1,a = ωp
2,a = 0 , i.e. ωp

1 = ωp
2 = 0.

For p = 1

ω1
1,a 7→ ω1

1 =
|z2|2 dz1 ∧ dz1 + |z1|2 dz2 ∧ dz2(

|z1|2 + |z2|2
)2 .

Therefore

ω1
1 ∧
(
dd c |z|2

)
n−1 =

dV

|z1|2 + |z2|2
.

It is not di�cult to see that

ω1
2,a ∧

(
dd c |z|2

)
n−1 =

adV(
|z1|2 + |z2|2

)2 7→ 0

as a→ 0 and ω1
2 = 0.

Finally, ω2
1 = 0 and

ω2
2,a ∧

(
dd c |z|2

)n−2
=

adV(
|z1|2 + |z2|2 + a

)3 7→ δ{z1=0,z2=0},

where δ{z1=0,z2=0} is the Dirac measure supported on the plane {z1 = 0, z2 = 0} ⊂ Cn.
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3. u = ln |f (z)|2 , where f ∈ O (Cn) . Then v = ff̄ , dv∧d cv = |f |2 df∧df̄ , dd cv =
df ∧ df̄ . It is clear that ωp

1.a + ωp
2,a = 0 for p > 2. We have ω1

1,a = 0 and

ω1
2,a =

a(
|f |2 + a

)2df ∧ df̄ 7→ [Zf ] ,

where [Zf ] is (1, 1) current corresponding to the analytic set Zf = {f = 0}.
4. Let u ∈ Psh (Ω) , u < 0 and let there exist M < 0 such that the set

{u < M} ⊂⊂ Ω, i.e. u has compact singularities. For u ∈ Psh (Ω) ∩ C2 (Ω) ,∫
Bt

d (eud cu) ∧ (dd cu)p−1 ∧
(
dd c |z|2

)n−p
=

∫
∂Bt

eud cu ∧ (dd cu)p−1 ∧
(
dd c |z|2

)n−p
=

= t

∫
∂Bt

d cu ∧ (dd cu)p−1 ∧
(
dd c |z|2

)n−p
.

Therefore, for s > t > 0 we have∫
∂Bs

d cu ∧ (dd cu)p−1 ∧
(
dd c |z|2

)n−p −
∫

∂Bt

d cu ∧ (dd cu)p−1 ∧
(
dd c |z|2

)n−p
=

=

∫
Bs\Bt

(dd cu)p ∧
(
dd c |z|2

)n−p
.

This equality shows that for our given function u ∈ Psh (Ω) , u < 0 integral∫
Bs\S

(dd cu)p ∧
(
ddc |z|2

)n−p
is bounded and limit (2.8) exists. We note, that the current

(dd cu)p is de�nable.
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