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Abstract. Let F (u) = h be a solvable operator equation in a Banach space X with a
Gateaux di�erentiable norm. Under minimal smoothness assumptions on F , su�cient
conditions are given for the validity of the Dynamical Systems Method (DSM) for
solving the above operator equation. It is proved that the DSM (Dynamical Systems
Method)

u̇(t) = −A−1
a(t)(u(t))[F (u(t)) + a(t)u(t)− f ], u(0) = u0,

converges to y as t → +∞, for a(t) properly chosen. Here F (y) = f , and u̇ denotes
the time derivative.

1 Introduction

Consider an operator equation
F (u) = f, (1.1)

where F is an operator in a Banach space X with a Gateaux-di�erentiable norm.
Assume that F is continuously Fr�echet di�erentiable, F ′(u) := A(u). Denote by Aa :=
A + aI, where I is the identity operator, and by cj, j = 0, 1, 2, 3, various positive
constants. Let L be a smooth path on the complex plane C joining the origin and
some point a0, 0 < |a0| < ε0, where ε0 > 0 is a small �xed number independent of u.

The following assumptions A1- A3 are valid throughout the paper.
A1. Assume that

‖A(u)− A(v)‖ ≤ c0‖u− v‖κ, κ ∈ (0, 1], (1.2)

where κ is a constant.
A2. Assume that

‖A−1
a (u)‖ ≤ c1

|a|b
; ∀a ∈ L, 0 < |a| < ε0. (1.3)

Assumption (1.3) holds if there is a smooth path L on a complex a-plane, consisting
of regular points of the operator A(u), such that the norm of the resolvent A−1

a (u) grows,
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as a→ 0, not faster than a power |a|−b. Thus, assumption (1.3) is a weak assumption.
For example, assumption (1.3) is satis�ed for the class of linear operators A, satisfying
the spectral assumption, introduced in [10], Chapter 8. This spectral assumption says,
that the set {a : | arg a − π| ≤ φ0, 0 < |a| < ε0} consists of the regular points of the
operator A. This assumption implies the estimate ||A−1

a || ≤ c1
a
, 0 < a < ε0, that is,

estimate (1.3) with b = 1 and a ∈ (0, ε0).
A3. Assume that the equation

F (wa) + awa − f = 0, a ∈ L, (1.4)

is uniquely solvable for any f ∈ X, and

lim
a→0,a∈L

‖wa − y‖ = 0, F (y) = f. (1.5)

Assume that there exists a constant c > 0 such that

|ȧ(t)| ≤ c|ṙ(t)|, r(t) := |a(t)|. (1.6)

In formula (2.1) (see below) inequality |ṙ(t)| ≤ |ȧ(t)| is established. Thus,

|ṙ(t)| ≤ |ȧ(t)| ≤ c|ṙ(t)|. (1.7)

We formulate the main result at the end of the paper for convenience of the reader,
because some additional assumptions, used in the proof of Theorem 2.1 are �exible and
will arise naturally in the course of the proof.

One of the goals in this paper is to demonstrate the methodology for establishing the
convergence results of the type obtained in Theorem 2.1.

All our assumptions are satis�ed, for example, if F is a monotone operator in a
Hilbert space H and L is a segment [0, ε0]. In this case c1 = 1 and b = 1. Our
assumptions are satis�ed for the class of operators satisfying a spectral assumption,
mentioned above, which was studied in [10] in connection to the Dynamical System
Method (DSM) for solving operator equations. Su�cient conditions for (1.5) to hold
are given in [10].

Every equation (1.1) with a linear, closed, densely de�ned in a Hilbert space H
operator F = A can be reduced to an equation with a monotone operator A∗A, where
A∗ is the adjoint to A. The operator T := A∗A is selfadjoint and densely de�ned in
H. If f ∈ D(A∗), where D(A∗) is the domain of A∗, then the equation Au = f is
equivalent to Tu = A∗f , provided that Au = f has a solution, i.e., f ∈ R(A), where
R(A) is the range of A. Recall that D(A∗) is dense in H if A is closed and densely
de�ned in H. If f ∈ R(A) but f 6∈ D(A∗), then equation Tu = A∗f still makes sense
and its normal solution y, i.e., the solution with minimal norm, can be de�ned as

y = lim
a→0

T−1
a A∗f. (1.8)

One proves that Ay = f , and y ⊥ N(A), where N(A) is the null-space of A. These
results are proved in [10].

Our aim is to prove convergence of the DSM for solving equation (1.1):

u̇(t) = −A−1
a(t)(u(t))[F (u(t)) + a(t)u(t)− f ], u(0) = u0, (1.9)
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where u0 ∈ X is an initial element, a(t) ∈ C1[0,∞), a(t) ∈ L. The DSM version (1.9)
is a computationally e�cient analog of a continuous regularized Newton's method for
solving equation (1.1). Other versions of DSM are studied in [10]. In [16] an approach
to a justi�cation of the DSM in Banach spaces is developed. The ideas from [16] are
used in this paper. Among other things, an important Lemma 1 is formulated in a
more general form than in [10], see also [7],[12], [8], [14], [15], [9]. Our main result is
formulated in Theorem 5, in Section 2.

The DSM for solving operator equations has been developed in the monograph [10].
It was used as an e�cient computational tool in [6], [9]. One of the earliest papers on
the continuous analogue of Newton's method for solving well-posed nonlinear operator
equations was [4].

The novel points in our paper include the larger class of the operator equations than
earlier considered, and the weakened assumptions on the smoothness of the nonlinear
operator F : in [10] it was often assumed that F ′′(u) is locally bounded, in the current
paper a much weaker assumption (1.2) is used.

Our proof of Theorem 5 uses the following result.

Lemma 1. Assume that g(t) ≥ 0 is continuously di�erentiable on any interval [0, T ),
on which it is de�ned, and satis�es the following inequality:

ġ(t) ≤ −γ(t)g(t) + α(t, g) + β(t), t ∈ [0, T ), (1.10)

where α(t, g), γ(t) and β(t) are rel-valued continuous on [0,∞) functions of t, α(t, g) is
locally Lipschitz with respect to g. Suppose that there exists a µ(t) > 0, µ(t) ∈ C1[0,∞),
such that

α(t, µ−1(t)) + β(t) ≤ µ−1(t)[γ(t)− µ̇(t)µ−1(t)], t ≥ 0, (1.11)

and
µ(0)g(0) ≤ 1. (1.12)

Then T = ∞, i.e., g exists on [0,∞), and

0 ≤ g(t) ≤ µ−1(t), t ≥ 0. (1.13)

This lemma generalizes some results from [10], [13]. It is useful in a study of
large-time behavior of solutions to evolution problems, which are important in many
appications, see, for example, [1], [18], [14]. Lemma 1 is proved at the end of the paper
for convenience of the reader and for making this paper essentially self-contained. We
apply Lemma 1 with α(t, g) = α(t)gp, p > 1 is a constant, and α(t) > 0 is a continuous
function.

In Section 2 a method is given for a proof of the following conclusions:
There exists a unique solution u(t) to problem (1.9) for all t ≥ 0, there exists u(∞) :=
limt→∞ u(t), and F (u(∞)) = f , that is:

∃!u(t) ∀t ≥ 0; ∃u(∞); F (u(∞)) = f. (1.14)

The assumptions on u0 and a(t) under which conclusions (1.14) hold for the solution
to problem (1.9) are formulated in Theorem 5 in Section 2. Theorem 5 in Section 2
is our main result. Roughly speaking, this result says that conclusions (1.14) hold for
the solution to problem (1.9), provided that a(t) is suitably chosen.
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2 Proofs

Let |a(t)| := r(t) > 0. If a(t) = a1(t) + ia2(t), where a1(t) = Re a(t), a2(t) = Im a(t),
then

|ṙ(t)| ≤ |ȧ(t)|. (2.1)

Indeed,

|ṙ(t)| =
|a1ȧ1 + a2ȧ2|

r(t)
≤ r(t)|ȧ(t)|

r(t)
, (2.2)

and (2.2) implies (2.1).
Let

g(t) := ‖z(t)‖, z(t) := u(t)− wa(t), (2.3)

where u(t) solves (1.9) and wa(t) solves (1.4) with a = a(t). By the assumption,
wa(t) exists for every t ≥ 0. The local existence of u(t), the solution to (1.9), is the
conclusion of Lemma 2. Let ψ(t) ∈ C1([0,∞);X). In the following lemma a proof of
local existence of the solution to problem (1.9) is given by a novel argument. The right-
hand side of (1.9) is a nonlinear function of u, which does not, in general, satisfy the
Lipschitz condition. This condition is the standard condition in the usual proofs of the
local existence of the solution to an evolution problem. Our argument uses an abstract
inverse function theorem. This argument is valid under the minimal assumption that
F ′(u) depends continuously on u.

Lemma 2. If assumption (1.3) holds and (1.4) is uniquely solvable for any f ∈ X,
then the solution u(t) to (1.9) exists locally.

Proof. Di�erentiate equation (1.4) with a = a(t) with respect to t. The result is

Aa(t)(wa(t))ẇa(t) = −ȧ(t)wa(t), (2.4)

or
ẇa(t) = −ȧ(t)A−1

a(t)(wa(t))wa(t). (2.5)

Denote
ψ(t) := F (u(t)) + a(t)u(t)− f. (2.6)

For any ψ ∈ H equation (2.6) is uniquely solvable for u(t) by our assumption (1.4),
which is used with f + ψ(t) in place of f in (1.4). By the inverse function theorem,
which holds due to our assumption (1.3), and by assumption (1.2), the solution u(t) to
(2.6) is continuously di�erentiable with respect to t provided ψ(t) is. One may solve
(2.6) for u and write u = G(ψ), where the map G is continuously Fr�echet di�erentiable
because F is.

Di�erentiate (2.6) and get

ψ̇(t) = Aa(t)(u(t))u̇(t) + ȧ(t)u. (2.7)

If one wants the solution to (2.6) to be a solution to (1.9), then one has to require that

Aa(t)(u(t))u̇ = −ψ(t). (2.8)
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If (2.8) holds, then (2.7) can be written as

ψ̇(t) = −ψ + ȧ(t)G(ψ), G(ψ) := u(t), (2.9)

where G(ψ) is continuously Fr�echet di�erentiable. Thus, equation (2.9) is equivalent
to (1.9) at all t ≥ 0 if

ψ(0) = F (u0) + a(0)u0 − f. (2.10)

Indeed, if u solves (1.9) then ψ, de�ned in (2.6), solves the Cauchy problem (2.9)-(2.10).
Conversely, if ψ solves (2.9)-(2.10), then u(t), de�ned as the unique solution to (2.6),
solves (1.9). Since the right-hand side of (2.9) is Fr�echet di�erentiable, it satis�es a
local Lipschitz condition. Thus, problem (2.9)-(2.10) is locally, solvable. Therefore,
problem (1.9) is locally solvable.
Lemma 2 is proved.

It is known (see, for example, [10]) that the solution u(t) to (1.9) exists globally if
the following estimate holds:

sup
t≥0

‖u(t)‖ <∞. (2.11)

Lemma 3. Estimate (2.11) holds.

Proof. Denote
z(t) := u(t)− w(t), (2.12)

where u(t) solves (1.9) and w(t) = wa(t) solves (1.4) with a = a(t). When t→∞, the
function w(t) tends to the limit y by (1.5), and, therefore, is uniformly bounded. If
one proves that

lim
t→∞

‖z(t)‖ = 0, (2.13)

then (2.11) follows from (2.13) and the boundedness of w(t). Indeed,

sup
t≥0

‖u(t)‖ ≤ sup
t≥0

‖z(t)‖+ sup
t≥0

‖w(t)‖ <∞. (2.14)

To prove (2.13) we use Lemma 1.

Rewrite (1.9) as

ż = −ẇ − A−1
a(t)(u(t))[F (u(t))− F (w(t)) + a(t)z(t)]. (2.15)

Lemma 4. If the norm ‖w(t)‖ in X is di�erentiable, then∣∣∣∣d‖w(t)‖
dt

∣∣∣∣ ≤ ‖ẇ(t)‖. (2.16)

Proof. The triangle inequality implies:

‖w(t+ s)‖ − ‖w(t)‖
s

≤ ‖w(t+ s)− w(t)‖
s

, s > 0. (2.17)

Passing to the limit s↘ 0 and using the assumption concerning the di�erentiability of
the norm in X, one gets d‖w(t)‖

dt
≤ ‖ẇ(t)‖. Similarly, one gets −d‖w(t)‖

dt
≤ ‖ẇ(t)‖. These

two inequalities yield (2.16).
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Various necessary and su�cient conditions for the Gateaux or Fr�echet di�erentia-
bility of the norm in Banach spaces are known in the literature (see, for example, [2]
and [3]), starting with Shmulian's paper of 1940, see [17].

Hilbert spaces, Lp(D) and `p-spaces, p ∈ (1,∞), and Sobolev spaces W `,p(D),
p ∈ (1,∞), D ⊂ Rn is a bounded domain, have Fr�echet di�erentiable norms. These
spaces are uniformly convex and they have the following property: if un ⇀ u and
||un|| → ||u|| as n→∞, then limn→∞ ||un − u|| = 0.

From (2.5) and (1.7) one gets

‖ẇ‖ ≤ c1|ȧ(t)|r−b(t)‖w(t)‖, r(t) = |a(t)|, (2.18)

where w(t) := wa(t). Since we assume that limt→∞ |a(t)| = 0, one concludes that (1.5)
and (2.18) imply the following inequality:

‖ẇ‖ ≤ c2|ȧ(t)|r−b(t), c2 = const > 0, (2.19)

because (1.5) implies the following estimate:

c1‖w(t)‖ ≤ c2, t ≥ 0. (2.20)

Inequalities (1.7) and (2.19) imply that

‖ẇ‖ ≤ c2|ṙ(t)|r−b(t), t ≥ 0. (2.21)

Recall that F ′(u) := A(u) and note that

F (u)− F (w) =

∫ 1

0

F ′(w + sz)dsz = A(u)z +

∫ 1

0

[A(w + sz)− A(u)]dsz. (2.22)

Thus, one can write (2.15) as

ż(t) = −z(t)− ẇ(t)− A−1
a(t)(u(t))η(t) := −z(t) +W, (2.23)

‖η(t)‖ = O(gp(t)), p = 1 + κ, g(t) := ‖z(t)‖, (2.24)

where estimate (1.2) was used, and W is de�ned by the formula

W := −ẇ(t)− A−1
a(t)(u(t))η(t). (2.25)

Let
Z(t) := etz(t). (2.26)

Then (2.23) yields
e−tŻ = W. (2.27)

Taking the norm of this equation yields

e−t‖Ż‖ = ‖W‖. (2.28)

One has

‖W‖ ≤ c2|ṙ(t)|r−b(t) + c3r
−b(t)gp(t), g(t) := ‖z(t)‖, p = 1 + κ, (2.29)
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where c3 := c0c1, c0 is the constant from (1.2) and c1 is the constant from (1.3). Using
estimate (2.16), one gets

‖Ż‖ ≥
∣∣∣∣d‖Z(t)‖

dt

∣∣∣∣ =

∣∣∣∣d(etg(t))

dt

∣∣∣∣ . (2.30)

Using formulas (2.27)-(2.30) one gets from (2.23) the following inequality:

ġ(t) ≤ −g + c2|ṙ(t)|r−b(t) + c3r
−b(t)gp, g(t) = ‖z(t)‖, p = 1 + κ. (2.31)

Inequality (2.31) is of the form (1.10) with

γ(t) = 1, α(t) = c3r
−b(t), β(t) = c2|ṙ(t)|r−b(t). (2.32)

Choose
µ(t) = λr−k(t), λ = const > 0, k = const > 0. (2.33)

Then
µ̇µ−1 = −kṙr−1. (2.34)

Let us assume that, as t→∞,

r(t) ↘ 0, ṙ < 0, |ṙ| ↘ 0. (2.35)

Assumption (1.12) implies

g(0)
λ

rk(0)
< 1, (2.36)

and inequality (1.11) holds if

c3r
−b(t)rkp

λp
+ c2|ṙ(t)|r−b(t) ≤ rk(t)

λ

(
1− k|ṙ(t)|r−1(t)

)
, t ≥ 0. (2.37)

Inequality (2.37) can be written as

c3r
k(p−1)−b(t)

λp−1
+
c2λ|ṙ(t)|
rk+b(t)

+
k|ṙ(t)|
r(t)

≤ 1, t ≥ 0. (2.38)

Let us choose k so that k(p− 1)− b = 1, that is,

k =
b+ 1

p− 1
. (2.39)

Choose λ, for example, as follows:

λ :=
rk(0)

2g(0)
. (2.40)

Then inequality (2.36) holds, and inequality (2.38) can be written as:

c3
r(t)[2g(0)]p−1

[rk(0)]p−1
+ c2

rk(0)

2g(0)

|ṙ(t)|
rk+b(t)

+ k
|ṙ(t)|
r(t)

≤ 1, t ≥ 0. (2.41)
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Note that (2.39) implies:
k + b = kp− 1. (2.42)

Choose r(t) so that relations (2.35) hold and

k
|ṙ(t)|
r(t)

≤ 1

2
, t ≥ 0. (2.43)

Since r(0) ≥ r(t) and (2.43) holds, then inequality (2.41) holds if

c3
[2g(0)]p−1

rb(0)
+ c2

rk(0)

2g(0)

|ṙ(t)|
rkp−1

≤ 1

2
, t ≥ 0. (2.44)

Denote

c2
rk(0)

2g(0)
= c2λ := c4. (2.45)

Let

c4
|ṙ(t)|
rkp−1

=
1

4
, t ≥ 0, (2.46)

and kp > 2. Then equation (2.46) implies

r(t) = [c5 + c6t]
− 1

kp−2 , c5 = r2−kp(0), c6 =
kp− 2

4c4
, (2.47)

where c5 and c6 are positive constants. Their explicit values are not used below.This
r(t) satis�es conditions (2.35), and equation (2.46) can be rewritten as:

k
|ṙ(t)|
r(t)

=
krkp−2(t)

4c4
, t ≥ 0. (2.48)

Recall that r(t) decays monotonically. Therefore, inequality (2.43) holds if

krkp−2(0)

4c4
≤ 1

2
. (2.49)

Inequality (2.49) holds if

kg(0)

c2
rk(p−1)−2(0) =

kg(0)

c2
rb−1(0) ≤ 1, (2.50)

because (2.39) implies:
k(p− 1)− 2 = b− 1. (2.51)

Condition (2.50) holds if g(0) is su�ciently small or rb−1(0) is su�ciently large:

g(0) ≤ c2
k
rb−1(0). (2.52)

If b > 1, then condition (2.52) holds for any �xed g(0) if r(0) is su�ciently large.
If b = 1, then (2.52) holds if g(0) ≤ c2

k
. If b ∈ (0, 1) then (2.52) holds either if g(0) is

su�ciently small or r(0) is su�ciently small.



94 A.G. Ramm

If (2.47) and (2.52) hold, then (2.46) holds. Consequently, (2.44) holds if

c3
[2g(0)]p−1

rb(0)
≤ 1

4
. (2.53)

It follows from (2.52) that (2.53) holds if

c32
p−1
(c2
k

)p−1 1

r−1+p+2b−bp(0)
≤ 1

4
. (2.54)

One has p = 1 + κ, and κ ∈ (0, 1]. If b > 0 and κ ∈ (0, 1], then

−1 + p− pb+ 2b = κ+ (1− κ)b > 0. (2.55)

Thus, (2.54) always holds if r(0) is su�ciently large, speci�cally, if

r(0) ≥ [4c3
(
2c2k

−1
)p−1

]
1

κ+(1−κ)b . (2.56)

We have proved the following theorem.

Theorem 5. Let the assumptions A1, A,2, and A3 hold. If r(t) = |a(t)| is de�ned
in (2.47), and inequalities (2.52) and (2.56) hold, then

‖z(t)‖ < rk(t)λ−1, lim
t→∞

‖z(t)‖ = 0. (2.57)

Thus, problem (1.9) has a unique global solution u(t) and

lim
t→∞

‖u(t)− y‖ = 0, (2.58)

where F (y) = f .

Proof of Lemma 1. Inequality (1.10) can be written as

−γ(t)µ−1(t) + α(t, µ−1(t)) + β(t) ≤ dµ−1(t)

dt
. (2.59)

Let φ(t) solve the following Cauchy problem:

φ̇(t) = −γ(t)φ(t) + α(t, φ(t)) + β(t), t ≥ 0, φ(0) = φ0. (2.60)

The assumption that α(t, g) is locally Lipschitz with respect to g guarantees local
existence and uniqueness of the solution φ(t) to problem (2.60). From the known
comparison result (see, for instance, [5], Theorem III.4.1) it follows that

φ(t) ≤ µ−1(t) ∀t ≥ 0, (2.61)

provided that φ(0) ≤ µ−1(0), where φ(t) is the unique solution to problem (2.60).
Let us take φ(0) = g(0). Then φ(0) ≤ µ−1(0) by the assumption in Lemma 1, and
inequality (1.10) implies that

g(t) ≤ φ(t) t ∈ [0, T ). (2.62)
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Inequalities φ(0) ≤ µ−1(0), (2.61), and (2.62) imply

g(t) ≤ φ(t) ≤ µ−1(t), t ∈ [0, T ). (2.63)

By the assumption, the function µ(t) is de�ned for all t ≥ 0 and is bounded on any
compact subinterval of the set [0,∞). Consequently, the functions φ(t) and g(t) ≥ 0
are de�ned for all t ≥ 0, and estimate (1.13) is established. Lemma 1 is proved. �

When this paper was under consideration, convergence of the DSM for general
operator equations was established in [19].
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