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Abstract. Let F(u) = h be a solvable operator equation in a Banach space X with a
Gateaux differentiable norm. Under minimal smoothness assumptions on F', sufficient
conditions are given for the validity of the Dynamical Systems Method (DSM) for
solving the above operator equation. It is proved that the DSM (Dynamical Systems
Method)

u(t) = — Ay (W) [F(u(t) + at)u(t) — fl,  u(0) = uo,

converges to y as t — o0, for a(t) properly chosen. Here F(y) = f, and 4 denotes
the time derivative.

1 Introduction

Consider an operator equation
Flu) = f, (L.1)

where F' is an operator in a Banach space X with a Gateaux-differentiable norm.
Assume that F' is continuously Fréchet differentiable, F'(u) := A(u). Denote by A, :=
A + al, where [ is the identity operator, and by c¢;, j = 0,1,2,3, various positive
constants. Let L be a smooth path on the complex plane C joining the origin and
some point ag, 0 < |ag| < €y, where ¢y > 0 is a small fixed number independent of w.

The following assumptions A1- A3 are valid throughout the paper.

A1l. Assume that

[A(u) = A(v)|| < collu —wl|”,  w € (0,1, (1.2)

where k 18 a constant.
A2. Assume that

A (u)]| < ﬁ; VaeL, 0<la| <e. (1.3)

Assumption (1.3) holds if there is a smooth path L on a complex a-plane, consisting
of regular points of the operator A(u), such that the norm of the resolvent A (u) grows,
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as a — 0, not faster than a power |a|=. Thus, assumption (1.3) is a weak assumption.
For example, assumption (1.3) is satisfied for the class of linear operators A, satisfying
the spectral assumption, introduced in [10], Chapter 8. This spectral assumption says,
that the set {a : |arga — 7| < ¢, 0 < |a|] < €} consists of the regular points of the
operator A. This assumption implies the estimate ||A;'|] < 2, 0 < a < ¢, that is,
estimate (1.3) with b =1 and a € (0, €).

A3. Assume that the equation

F(wy) +aw, — f=0, a€L, (1.4)
15 uniquely solvable for any f € X, and
lim Aflw, =yl =0, F(y) =f. (1.5)

a—0,a€L

Assume that there exists a constant ¢ > 0 such that
la(t)] < c[r(t)],  r(t) :=la(t)]. (1.6)
In formula (2.1) (see below) inequality |7 (¢)| < |a(t)] is established. Thus,
7)) < la()] < clr(t)]. (1.7)

We formulate the main result at the end of the paper for convenience of the reader,
because some additional assumptions, used in the proof of Theorem 2.1 are flexible and
will arise naturally in the course of the proof.

One of the goals in this paper is to demonstrate the methodology for establishing the
convergence results of the type obtained in Theorem 2.1.

All our assumptions are satisfied, for example, if I’ is a monotone operator in a
Hilbert space H and L is a segment [0, ¢p]. In this case ¢; = 1 and b = 1. Our
assumptions are satisfied for the class of operators satisfying a spectral assumption,
mentioned above, which was studied in [10] in connection to the Dynamical System
Method (DSM) for solving operator equations. Sufficient conditions for (1.5) to hold
are given in [10].

Every equation (1.1) with a linear, closed, densely defined in a Hilbert space H
operator F' = A can be reduced to an equation with a monotone operator A*A, where
A* is the adjoint to A. The operator T := A*A is selfadjoint and densely defined in
H. If f € D(A*), where D(A*) is the domain of A*, then the equation Au = f is
equivalent to Tu = A*f, provided that Au = f has a solution, i.e., f € R(A), where
R(A) is the range of A. Recall that D(A*) is dense in H if A is closed and densely
defined in H. If f € R(A) but f & D(A*), then equation Tu = A*f still makes sense

and its normal solution vy, i.e., the solution with minimal norm, can be defined as
y = lim T 1A f. (1.8)
One proves that Ay = f, and y L N(A), where N(A) is the null-space of A. These

results are proved in [10].
Our aim is to prove convergence of the DSM for solving equation (1.1):

(t) = —Ayh () [F () + altyu(t) = I, a(0) = up, (L.9)
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where uy € X is an initial element, a(t) € C*0,0), a(t) € L. The DSM version (1.9)
is a computationally efficient analog of a continuous regularized Newton’s method for
solving equation (1.1). Other versions of DSM are studied in [10]. In [16] an approach
to a justification of the DSM in Banach spaces is developed. The ideas from [16] are
used in this paper. Among other things, an important Lemma 1 is formulated in a
more general form than in [10], see also [7],[12], [8], [14], [15], [9]. Our main result is
formulated in Theorem 5, in Section 2.

The DSM for solving operator equations has been developed in the monograph [10].
It was used as an efficient computational tool in [6], [9]. One of the earliest papers on
the continuous analogue of Newton’s method for solving well-posed nonlinear operator
equations was [4].

The novel points in our paper include the larger class of the operator equations than
earlier considered, and the weakened assumptions on the smoothness of the nonlinear
operator F: in [10] it was often assumed that F”(u) is locally bounded, in the current
paper a much weaker assumption (1.2) is used.

Our proof of Theorem 5 uses the following result.

Lemma 1. Assume that g(t) > 0 is continuously differentiable on any interval [0,T),
on which it is defined, and satisfies the following inequality:

9(t) < —(W)g(t) + alt,g) + 5(t), t€0,T), (1.10)

where a(t, g), v(t) and 5(t) are rel-valued continuous on [0,00) functions of t, a(t, g) is
locally Lipschitz with respect to g. Suppose that there exists a u(t) > 0, u(t) € C*0, 00),
such that

a(t, (1) + B(t) < p O — pOpT @), >0, (1.11)
and
1(0)g(0) < 1. (1.12)

Then T = oo, i.e., g exists on [0,00), and
0<g(t)<pu '), t>0. (1.13)

This lemma generalizes some results from [10], [13]. It is useful in a study of
large-time behavior of solutions to evolution problems, which are important in many
appications, see, for example, [1], [18], [14]. Lemma 1 is proved at the end of the paper
for convenience of the reader and for making this paper essentially self-contained. We
apply Lemma 1 with a(t, g) = a(t)g?, p > 1 is a constant, and «(t) > 0 is a continuous
function.

In Section 2 a method is given for a proof of the following conclusions:

There exists a unique solution u(t) to problem (1.9) for allt > 0, there exists u(oo) :=
limy o u(t), and F(u(c0)) = f, that is:

Au(t) YVt >0; Ju(oco); F(u(oo)) = f. (1.14)

The assumptions on ug and a(t) under which conclusions (1.14) hold for the solution
to problem (1.9) are formulated in Theorem 5 in Section 2. Theorem 5 in Section 2
is our main result. Roughly speaking, this result says that conclusions (1.14) hold for
the solution to problem (1.9), provided that a(t) is suitably chosen.
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2 Proofs

L}?t la(t)| :==r(t) > 0. If a(t) = a1(t) + iaz(t), where a;(t) = Rea(t), as(t) = Ima(t),
then

17 ()] < la(t)]- (2.1)
et | 0]
. aldl + agag r(t)|a(t
7 (t)] = OO (2.2)
and (2.2) implies (2.1).
Let
g(t) =z, 2(t) = u(t) —wa(?), (2.3)

where u(t) solves (1.9) and w,(t) solves (1.4) with a = a(t). By the assumption,
w,(t) exists for every ¢ > 0. The local existence of u(t), the solution to (1.9), is the
conclusion of Lemma 2. Let ¢(t) € C(|0,00); X). In the following lemma a proof of
local existence of the solution to problem (1.9) is given by a novel argument. The right-
hand side of (1.9) is a nonlinear function of u, which does not, in general, satisfy the
Lipschitz condition. This condition is the standard condition in the usual proofs of the
local existence of the solution to an evolution problem. Our argument uses an abstract
inverse function theorem. This arqument is valid under the minimal assumption that
F'(u) depends continuously on u.

Lemma 2. If assumption (1.3) holds and (1.4) is uniquely solvable for any f € X,
then the solution u(t) to (1.9) ewxists locally.

Proof. Differentiate equation (1.4) with a = a(t) with respect to t. The result is

Autey(a(t)i(t) = —i(twat), (2.9
a(t) = —a() A4 (w0a (1) (1), (2.5
Denote
W(t) == F(u(t)) + a(t)u(t) — f. (2.6)

For any ¢ € H equation (2.6) is uniquely solvable for u(t) by our assumption (1.4),
which is used with f + ¢(¢) in place of f in (1.4). By the inverse function theorem,
which holds due to our assumption (1.3), and by assumption (1.2), the solution u(t) to
(2.6) is continuously differentiable with respect to t provided v (t) is. One may solve
(2.6) for u and write u = G(1)), where the map G is continuously Fréchet differentiable
because F'is.

Differentiate (2.6) and get

() = Aay (u(t))alt) + a(t)u. (2.7)

If one wants the solution to (2.6) to be a solution to (1.9), then one has to require that

Aty (u(t))is = —(). (2.8)
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If (2.8) holds, then (2.7) can be written as

U(t) = = +a(t)G(P),  G(¥) = u(t), (2.9)

where G/(1)) is continuously Fréchet differentiable. Thus, equation (2.9) is equivalent
to (1.9) at all t > 0 if

$(0) = F(uo) + a(0)ug — f. (2.10)
Indeed, if u solves (1.9) then 1), defined in (2.6), solves the Cauchy problem (2.9)-(2.10).
Conversely, if 1) solves (2.9)-(2.10), then u(t), defined as the unique solution to (2.6),
solves (1.9). Since the right-hand side of (2.9) is Fréchet differentiable, it satisfies a
local Lipschitz condition. Thus, problem (2.9)-(2.10) is locally, solvable. Therefore,
problem (1.9) is locally solvable.
Lemma 2 is proved. O

It is known (see, for example, [10]) that the solution u(t) to (1.9) exists globally if
the following estimate holds:
sup [Ju(t)|| < oo. (2.11)
>0

Lemma 3. Estimate (2.11) holds.

Proof. Denote
2(t) == u(t) — w(t), (2.12)

where u(t) solves (1.9) and w(t) = wa() solves (1.4) with a = a(t). When ¢t — oo, the
function w(t) tends to the limit y by (1.5), and, therefore, is uniformly bounded. If

one proves that
lim ||z(¢)|| =0, (2.13)

t—o0

then (2.11) follows from (2.13) and the boundedness of w(¢). Indeed,

sup [u(t)]| < sup [[z(8)[] + sup [lw (#)]] < oo. (2.14)

To prove (2.13) we use Lemma 1. O
Rewrite (1.9) as

&= — A (u(t))[F(u(t)) — Fw(t)) + a(t)z(t)]. (2.15)

Lemma 4. If the norm ||w(t)|| in X is differentiable, then
d||w(t)]| _
A < o (216)

Proof. The triangle inequality implies:

[w(t + )| = lw®I _ lwt +s) = w(@)]

I < . s> 0. (2.17)

s s
Passing to the limit s \, 0 and using the assumption concerning the differentiability of
the norm in X, one gets W < |la(t)||. Similarly, one gets —W < |lw(t)]|. These

two inequalities yield (2.16). O
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Various necessary and sufficient conditions for the Gateaux or Fréchet differentia-
bility of the norm in Banach spaces are known in the literature (see, for example, [2]
and |3]), starting with Shmulian’s paper of 1940, see [17].

Hilbert spaces, LP(D) and (P-spaces, p € (1,00), and Sobolev spaces W%P(D),
p € (1,00), D C R™ is a bounded domain, have Fréchet differentiable norms. These
spaces are uniformly convex and they have the following property: if uw, — u and
||un|| — ||ul| as n — oo, then lim,,_, ||u, — ul| = 0.

From (2.5) and (1.7) one gets

lwll < el @)llw @), r(t) = la(t)], (2.18)

where w(t) := w,(t). Since we assume that lim; . |a(t)| = 0, one concludes that (1.5)
and (2.18) imply the following inequality:

|| < eala(t)|r™"(t), ¢y = const >0, (2.19)
because (1.5) implies the following estimate:
allw@)]] <c, t>0. (2.20)
Inequalities (1.7) and (2.19) imply that
||| < el (t)|r0(t), t>0. (2.21)

Recall that F'(u) := A(u) and note that
F(u) — F(w) = /0 F'(w+ s2)dsz = A(u)z + /0 [A(w + sz) — A(u)]dsz.  (2.22)

Thus, one can write (2.15) as

(t) = —2(t) — w(t) — Azl (u()n(t) = —=(t) + W, (2.23)
Il = 0@ 1). p=1+x g(t) = =00, 2.2

where estimate (1.2) was used, and W is defined by the formula
W= —i(t) — A (u(t)n(o). (2.25)

Let
Z(t) = e'2(t). (2.26)
Then (2.23) yields

etz =W. (2.27)

Taking the norm of this equation yields
e Z] =Wl (2.28)
One has

Wl < el @) (1) + ear (g7 (1), g&) =B, p=1+r, (2.29)
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where ¢z := cocy, o is the constant from (1.2) and ¢ is the constant from (1.3). Using

estimate (2.16), one gets

1Z] > 'd”fzit)”‘ _ ’d(etdgt(t)) ’

Using formulas (2.27)-(2.30) one gets from (2.23) the following inequality:

9(t) < —g +elr@®lr™(t) +er ()", gt) =[2(t)l, p=1+nr.

Inequality (2.31) is of the form (1.10) with

W) =1, alt)=cor™(t), Bt)=clf()lr"(t).
Choose
w(t) = 7F(t), X=const >0, k= const>D0.

Then

ppt = —kirh

Let us assume that, as t — oo,

Assumption (1.12) implies

and inequality (1.11) holds if

car b (t)rkp
P

r*(t)
A

+ el ()|~ (t) <

Inequality (2.37) can be written as

et ) | ()] k]
A1 rhtb(t) rit) — -

Let us choose k so that k(p — 1) — b =1, that is,

po bl
p—1
Choose )\, for example, as follows:
A= r(0)
29(0)

Then inequality (2.36) holds, and inequality (2.38) can be written as:

rORe(OF"  HO) [7(t)]
[+ (0)]p “29(0) riHo(t)

C3

()

L= kF@ @),  t=0.

"(t
r

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

(2.40)

(2.41)
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Note that (2.39) implies:

k+b=kp— 1. (2.42)
Choose r(t) so that relations (2.35) hold and
(T 1
A (2.43)
r(t) — 2
Since r(0) > r(t) and (2.43) holds, then inequality (2.41) holds if
290" rM0) [F(B)] _ 1
< = t>0. 2.44
S0y g0y et S D = (2.44)
Denote ()
(0
= o\ = ¢y 2.45
“aq0) = = (245)
- Fo) 1
T
e T (2.46)
and kp > 2. Then equation (2.46) implies
1 kp —2
r(t) = [cs5 + cot] W . s =1r7RP(0), g = ]Zl ) (2.47)
Cq

where c5 and cg are positive constants. Their explicit values are not used below.This
r(t) satisfies conditions (2.35), and equation (2.46) can be rewritten as:

rE)| kP2 (t)

|
k = t>0. 2.48
r(t) dey - ( )

Recall that r(t) decays monotonically. Therefore, inequality (2.43) holds if

krtp=2(0) 1
—_— < 2.4
464 -2 ( 9)
Inequality (2.49) holds if
k k
9(0) Tk(p_l)_2<0) _ g<0) Tb_1<0) < 17 (250)
C2 C2
because (2.39) implies:
k(p—1)—2=0b—1. (2.51)
Condition (2.50) holds if ¢(0) is sufficiently small or r~1(0) is sufficiently large:
9(0) < C—;r”—l(o). (2.52)

If b > 1, then condition (2.52) holds for any fixed ¢(0) if r(0) is sufficiently large.
If b = 1, then (2.52) holds if g(0) < 2. If b € (0,1) then (2.52) holds either if g(0) is
sufficiently small or r(0) is sufficiently small.
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If (2.47) and (2.52) hold, then (2.46) holds. Consequently, (2.44) holds if

c3% < i. (2.53)
It follows from (2.52) that (2.53) holds if
320! <%>P1 T—l-&-p—éb—bp(()) = i (2.54)
One has p=1+k, and k € (0,1]. If b > 0 and « € (0, 1], then
—14+p—pb+2b=rK+ (1 —k)b>0. (2.55)
Thus, (2.54) always holds if r(0) is sufficiently large, specifically, if
r(0) > [des (2e0k™ )"0, (2.56)

We have proved the following theorem.

Theorem 5. Let the assumptions A1, A,2, and A3 hold. If r(t) = |a(t)| is defined
in (2.47), and inequalities (2.52) and (2.56) hold, then

=@ < OA T 0] = 0. (2.57)
Thus, problem (1.9) has a unique global solution u(t) and
lim [u(t) - y]| = 0. (2.58)
where F(y) = f.

Proof of Lemma 1. Inequality (1.10) can be written as

dp~"(t)
dt

=y () +alt,nH (1) + A1) < (2.59)

Let ¢(t) solve the following Cauchy problem:

o(t) = —y(1)o(t) + alt,¢(t)) + B(1), =0, ¢(0) = ¢. (2.60)

The assumption that «(t,g) is locally Lipschitz with respect to g guarantees local
existence and uniqueness of the solution ¢(t) to problem (2.60). From the known
comparison result (see, for instance, [5], Theorem I111.4.1) it follows that

o) <put(t)  Vt>0, (2.61)

provided that ¢(0) < p~*(0), where ¢(t) is the unique solution to problem (2.60).
Let us take ¢(0) = ¢(0). Then ¢(0) < p~!(0) by the assumption in Lemma 1, and
inequality (1.10) implies that

o) <oty telo,T). (2.62)
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Inequalities ¢(0) < p~1(0), (2.61), and (2.62) imply
g(t) < o(t) <p™(t),  tel0,T). (2.63)

By the assumption, the function p(t) is defined for all ¢ > 0 and is bounded on any
compact subinterval of the set [0, 00). Consequently, the functions ¢(t) and g(¢) > 0
are defined for all ¢ > 0, and estimate (1.13) is established. Lemma 1 is proved. 0J

When this paper was under consideration, convergence of the DSM for general
operator equations was established in [19].
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