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Abstract. A new inequality between angles in inner product spaces is formulated and
proved. It leads directly to a concise statement and proof of the generalized Wielandt
inequality, including a simple description of all cases of equality. As a consequence,
several recent results in matrix analysis and inner product spaces are improved.

1 Introduction

The Wielandt and generalized Wielandt inequalities control how much angles can
change under a given invertible matrix transformation of C". The control is given
in terms of the condition number of the matrix. Wielandt, in [13], gave a bound on the
resulting angles when orthogonal complex lines are transformed. Subsequently, Bauer
and Householder, in [1], extended the inequality to include arbitrary starting angles.
These basic inequalities of matrix analysis were introduced to give bounds on conver-
gence rates of iterative projection methods but have found a variety of applications
in numerical methods, especially eigenvalue estimation. They are also applied in mul-
tivariate analysis, where angles between vectors correspond to statistical correlation.
See, for example, [1], [5], [6], [7] and [5]. There are also matrix-valued versions of the
inequality that are receiving attention, especially in the context of statistical analysis.
See [2], [10], [12], and [16].

The condition number of an invertible matrix A is x(A) = || A||||A™]|, where || - ||
denotes the operator norm. If A is positive definite and Hermitian, x(A) is easily seen
to be the ratio of the largest and smallest eigenvalues of A. The following statement
of the generalized Wielandt inequality is taken from [5].

Theorem 1.1. Let A be an invertible n x n matriz. If z,y € C" and &,¥ € [0, 7/2]
satisfy
yal < alllyll cos® and  cot(#/2) = (A) cot(®/2),
then
|(Ay)"(Az)| < [|Az]|[| Ay[| cos ¥

The generalized Wielandt inequality can be difficult to apply for several reasons.
First, despite having various equivalent formulations, the inequality seems always to be
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expressed in ways that hide the natural symmetry coming from the invertible transfor-
mation involved. Next, the conditions for equality are known, see [9], but are unwieldy
and hard to apply. Finally, the angles involved are angles between complex lines rather
than between individual vectors.

Although the last point seems minor, we found it to be the key to a symmetric
formulation and a simple description of the cases of equality. In Theorem 2.1 and
its matrix analytic counterpart, Theorem 3.1, we present a new inequality that gives
sharp upper and lower bounds for the angle between a pair of transformed vectors.
The conditions for equality are simple and easy to apply. This new inequality relates
angles between vectors rather than between complex lines but it immediately implies a
result for angles between complex lines that is equivalent to the generalized Wielandt
inequality. Moreover, this version of the generalized Wielandt inequality retains the
simple form of the new inequality and (most of) the simplicity of its conditions for
equality.

In Section 2 we work in the context of an arbitrary real or complex vector space
having two inner products. This approach preserves symmetry by avoiding the distinc-
tion between angles before and after a fixed transformation. Also, the main result is
not restricted to C™ but holds for vectors in infinite-dimensional spaces. As an appli-
cation of the unrestricted result, we improve a metric space inequality from [2]. The
main results are then formulated in the language of matrix analysis in Section 3, and
we apply them to improve inequalities from [15] and [11], and to settle a conjecture
from [14].

To begin, a short discussion of angles in inner product spaces is in order. In a real
inner product space (V,(-,-)) the angle 6§ = 0(u,v) between two non-zero vectors is
defined by, 0 < 0 < 7 and
{u,v)

[Jullllv]|

cosf =

Here ||u|| = +/(u,u) is the norm induced by the inner product. The angle between
subsets S and T of V' is the infimum of the angles between non-zero elements of S and
T, so

O(S,T) = inf{f(u,v) : 0 #£ueS,0#veT}.

With this definition it is easy to check that the angle ©® = O(Ru, Rv) between the lines
Ru and Ro satisfies 0 < © < 7/2 and

cos @ = M
[[uellf]o]

A complex inner product space (V, (-, -)) may be viewed as the real inner product
space (Vg,Re(-,-)) where Vg = V with the scalars restricted to R. Since Re(v,v) =
(v,v) for all v € V| lengths in V' are preserved and therefore so are angles. Thus, this
real inner product is used to define the angle # between the vectors u and v, and a
computation gives the formula for the angle © between the complex lines Cu and Cu.

We have,
cosf = M and COS@:M.
[[ulll[v] [ullf|v]l
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The second formula is often used as a definition of the angle between vectors v and v
in a complex inner product space. (Angles defined this way do not determine angles
in triangles correctly but they have the advantage that complex orthogonality, namely
(u,v) = 0, is equivalent to the angle between u and v being 7/2.)

We will make use of the simple observation that if |a| = 1, then

O(Cu,Cv) = 0(au,v) if and only if |[(u,v)| = alu,v). (1.1)

(Note that our inner products are taken to be linear in the first variable.) The above
observation remains valid for ©(Ru, Rv) in a real inner product space, where a = £1.

2 Main results

Suppose V' is a non-trivial real or complex vector space. Let (-,-); and (-, -)o be inner
products on V' and define m, V,,,, M, Vs, B4 and E5 by,

(=i ol /el V= {v €V s flolls = mljol},

M = sup [jol2/lvll, Vi ={veV:|vlla = Mloli},
0#veV (21)

\

E:E]:{(U,U>L+ Y va “ LEVM}?

[l loll; lally ol

for j = 1,2. Here, as usual, ||v||; = v/(v,v); and |[v]]a = y/(v,v)2. We anticipate the

result of Corollary 2.2 in the definition of E above.

Evidently 0 < m < M < 00, 0 € V,,, and 0 € V). (The convention 000 = 0
ensures that 0 € V); when M = oo.) A standard compactness argument shows that if
V is finite dimensional then 0 < m < M < oo and V,,, # {0} # Viy. If m = M then
V,, = Vay = V and, by polarization, (u,v)s = m?*(u,v); for all u,v € V.

Lemma 2.1. Let V' be a real vector space equipped with inner products (-,-); and
(-,-)2. Make definitions (2.1). If m < M, then V,, and Vi are subspaces and the two
are mutually orthogonal with respect to both inner products.

Proof. Suppose u is a non-zero vector in V,, and v € V' is not a multiple of u. Then

f(t) . ”U + tUH% - <U7 u>2 + 2t<u7 U>2 + t2<1}, U>2
”U—i-tl)“% (u,u>1+2t(u,v>1+t2<v,v>1

is defined and differentiable for ¢t € R. Since f achieves its minimum value at t = 0,
f/(0) = 0. That is, (u,v)e(u,u); = (u,u)s(u,v);. Thus, for all u € V,,, and all v € V,

(u,v)y = m?{u,v);.

(The excluded case, u = 0 or v a multiple of u, is easily verified.) It follows that if
v € V,, then f is the constant function with value m?. In particular, f(1) = m?, so

u+v € V,,. Since it is clearly closed under scalar multiplication, V,, is a subspace.
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Repeating the argument for V), shows that it, too, is a subspace and that for all
veVyandueV,
(u,v)y = M*(u,v);.
If w € V,, and v € Vi then m*(u,v); = (u,v); = M?*{u,v); and hence (u,v); =

(u,v)e = 0. Thus u and v are orthogonal with respect to both inner products. This
completes the proof. O

Corollary 2.1. Let V' be a real vector space equipped with inner products (-,-)1 and
(-, )2. Make definitions (2.1). If V is two-dimensional, then there is a basis of V that
15 orthogonal with respect to both inner products.

Proof. If m = M then the two inner products are multiples of each other and any
orthogonal basis will do. Otherwise, let 0 # b € V,,, and 0 # B € V). Then {b, B} is
the desired basis. O

The next result justifies the use of E to denote either F; or Ej.

Corollary 2.2. Let V' be a real vector space equipped with inner products (-,-)1 and
(,-)2. Make definitions (2.1). Then E; = Ej.

Proof. By symmetry it is enough to show that E; C Fs. For (u,v) € Fy, let

“ L % ey, oand W=-—"__"" cv,.
fully (vl ully (vl

By Lemma 2.1, w and W are orthogonal with respect to (-, -)s, so

lullz /llully = 3w+ W5 = 3(lwl3 + [1W13) = 3llw = W5 = [lvliz /llvI -

Thus
4 AN ]| P A A ] L
Jull vl Jlull2 lulla ol Jlull2
and so (u,v) € E. O

Having two inner products, the space V' has two differing notions of the angle
between vectors. Our main result provides a comparison between these angles in terms
of the quantities m and M defined in (2.1).

Theorem 2.1. Let V' be a real or complex vector space equipped with inner products
(-,)1 and (-, -)2. Make definitions (2.1). For independent vectors u and v in 'V let ¢
and v be defined by, 0 < p <7, 0 <y <,

_ Re(u,v), and  cosdh — Re(u, v)q
O = Tallol, ™ Y= Tallolle
Then
(m/M) tan(p/2) < tan(y/2) < (M/m)tan(p/2). (2.2)

FEquality holds in the right-hand inequality if and only if (u,v) € E. Equality holds in
the left-hand inequality if and only if (u, —v) € E.
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Proof. First consider the case that V' is a real vector space. Note that the assumption
of independence ensures 0 < ¢ < 7 and 0 < ¢ < 7.

By Corollary 2.1, the span of u and v has a basis {b, B} that is orthogonal with
respect to both inner products. Without loss of generality we may assume that ||b]|; =
||B||; = 1. For notational convenience, set n = ||b|| and N = ||B||2 and suppose, by
interchanging b and B if necessary, that n < N. Note that the definitions of m and M
ensure that m < n and N < M. Write u = u3b + ugB and v = v,b + vgB for some
real numbers uy, up, vy, and vg. In terms of these coordinates we have,

ull3l|v]|3 sin® ¢ = [|ullillv]l} = (u,v)]
= (up + ug)(v; + vg) — (wvy + upvp)?

= (ubvB - UB'Ub)Q

and
lull2llv]lz sin® ¥ = Jull2llvl3 — (u,v)3
= (n*ui + N?u%)(n*v} + N?v%) — (n*uyvy + N?ugvg)?
= n’N?*(upvp — ugwvy)?.
Thus,

[ullaf[vl[2sin ¢ = RN [ul1[[v]}y sinp. (2.3)

The derivative of

g(x) = (ug + $u23)1/2(v§ + xv%)l/g + (upvp + TUBVR)

2
1 02 + 2ot \ V4 w2 + zu\ Y
/I — — U u v u >07
g (@) 2<B<u§+azu2B o v + 2v3 -

so g(1) < g(N?/n?). Multiplying both sides of this by n? gives,

is

n?lulli[[v]l: (1 + cos @) < [Jullz]|vll2(1 + cos ¢). (2.4)

Combining (2.3) and (2.4) gives,

sin 1) < nN sin ¢

(A +cosd) =l +oosg) N tan(e/2) (2.5)

tan(y/2) =
with equality if and only if ¢/(x) = 0 for z € (1, N?/n?). Since m <n < N < M, (2.5)
proves the right-hand inequality of (2.2).

If equality holds in the right-hand inequality of (2.2), then equality holds in (2.5)
andn=m, N=M,beV,,,and Be Vy,. lf m= M thenV,, =Vy; =V and p = so
the last two statements of the theorem are trivial. Otherwise, equality in (2.5) implies
that ¢’ is zero on the non-trivial interval (1, M?/m?). That is,

1/4 1/4

v+ 202\ Y w2 4+ vu\ Y

b B b B _

up 5o + vp RO =0
uy + rup v, +20p
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and hence u%v? = viui. Since u and v are independent, both up and vp are non-zero,

they have opposite signs, and ugv, = —vgu,. Therefore,

U v _ubb+uBB+vbb+vBB

—+ =
fulle Mol Vg +ud o+ 0}

(up/up)b+ B (up/vp)b+ B ) L 2w/up)b

N (up/up)® + 1 (vo/vp)? +1 (w/up)? +1 "
and
v v upb + upB B upb + vpB
llle ol g +ug, Vo + g
b+ B b+ B 2B
_ 4 (ub/uB) + 4 (vb/UB) + = 4+ € V.
(up/up)® +1 (vo/vB)? +1 (up/up)? +1

That is, (u,v) € By, = E.
Conversely, suppose that (u,v) € F, set

u

Al

w —i—LGVm and W:L—LEVM,
[olh ulls o]l

and observe that w + W is in the direction of v and w — W is in the direction of v. By
Lemma 2.1, w and W are orthogonal with respect to both inner products. Thus,
(wH+Ww=W) Jwllf = W]

cos p = =
lw + Wlllw =Wl [[wl} + W]

and
1—cosp |[W]}

L+cosp w3’

tan?(¢/2) =
A similar calculation yields the corresponding formula for ¢ and leads to the conclusion,

W15 _ MW

i3 m2{lwlf?

tan®(¢/2) = = (M/m)* tan*(p/2).

Taking square roots establishes equality in the right-hand inequality of (2.2).
Applying the right-hand inequality of (2.2) to the vectors u and —v replaces ¢ by
7 — @ and ¥ by m — 1 to give the conclusion,

cot(¢/2) = tan(m/2 — ¢ /2) < (M/m) tan(n/2 — ¢/2) = (M /m) cot(p/2).

This proves the left-hand inequality of (2.2), with equality if and only if (u, —v) € E.
This completes the proof in the case that V is a real vector space.

If V' is a complex space and (-,-); and (-, )2 are complex inner products, the con-
clusion of the theorem follows by applying the result just proved to the real vector
space Vi equipped with the real inner products Re(-,-); and Re(,-)2. This completes
the proof. O
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The angle between two subsets of V' is defined as an infimum of angles between
pairs of vectors. The inequality (2.2) remains valid when we take an infimum of all
three terms so we have the following result. Note that since the cosine function is
decreasing, the cosine of an infimum of angles is achieved by taking the supremum of
their cosines.

Corollary 2.3. Let V' be a real or complex vector space equipped with inner products
(-,)1 and (-, -)o. Make definitions (2.1). For S, T C V, each containing at least one
non-zero vector, let @ and ¥ be the angles between the subsets S and T with respect to
(-,-)1 and (-, )9, respectively. That is, 0 <& <7, 0 <V <,

R R
cos® = sup M, and cos¥ = sup M. (2.6)
oucs [ufl1]v]ly oues [ull2]|v]]2
0veT 0#veT
Then
(m/M) tan(®/2) < tan(¥/2) < (M/m) tan(P/2).

The following theorem is our version of the generalized Wielandt inequality in inner
product spaces. As pointed out earlier, the angles between the (real or complex) lines
determined by u and v are often taken as alternative definitions of the angle between
vectors themselves. We show that with this definition the results of Theorem 2.1 still
hold, but the conditions for equality become slightly more complicated.

Theorem 2.2. Let V be a real or compler vector space equipped with inner products
(-,)1 and (-,-)o. Make definitions (2.1). For independent vectors v and v in V let &
and ¥ be defined by, 0 <& <7/2, 0 <V < 7/2,

bl o ol
OSP=Taldol ™ Y ull el

Then
(m/M) tan(®/2) < tan(¥/2) < (M/m) tan(P/2). (2.7)

Let oy and ag be solutions to |(u,v)1| = ag(u,v); and [{(u,v)s| = ag(u,v)s. Equality
holds in the right-hand inequality of (2.7) if and only if (yu,v) € E and either a; =
ay or (u,v)e = 0. FEquality holds in the left-hand inequality of (2.7) if and only if
(ou, —v) € E and either a1 = asy or (u,v); = 0.

Proof. Apply Corollary 2.3 to the lines S = Cu and T = Cv (S = Ru and T'= Ruv in
the real case) to obtain (2.7). By (1.1), @ is the angle between aju and v with respect
to (-,+); and ¥ is the angle between asu and v with respect to (-, -)s. To analyse the
right-hand inequality of (2.7), let 6 be the angle between aju and v with respect to
(-,-)2. The infimum definition of ¥ and Theorem 2.1 show that

tan(¥/2) < tan(0/2) < (M/m) tan(®/2). (2.8)

By (1.1), the first of these is equality if and only if either a; = ay or (u,v)s = 0. By
Theorem 2.1, the second is equality if and only if (cju,v) € E. Thus equality holds
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in the right-hand inequality of (2.7) if and only if (ayu,v) € E and either ay = ay or
(u,v)s = 0.

To analyse the left-hand inequality of (2.7), let 6 be the angle between asu and v
with respect to (-,-);. The infimum definition of @ and Theorem 2.1 show that

(m/M)tan(®/2) < (m/M)tan(6/2) < tan(¥/2). (2.9)

By (1.1), the first of these is equality if and only if either ay = ay or (u,v); = 0. By
Theorem 2.1, the second is equality if and only if (aou, —v) € E. Thus equality holds
in the left-hand inequality of (2.7) if and only if (awu, —v) € E and either a; = ay or
<u7 U>1 = 0. ]

Inequalities (2.2) and (2.7) can be expressed in various equivalent forms. In terms
of cosines (2.2) becomes, with x = (M? — m?)/(M? + m?),

— COS COS

= 2.10
1—xcosp — 14+ xcosep ( )

Replace ¢ and ¢ by @ and ¥ to get the expression for (2.7). In terms of inner products
instead of angles, the inequalities (2.2) of Theorem 2.1 and (2.7) of Theorem 2.2 become,
in the case [|ull; = ||v]1 = 1,

—x + Re(u, v)1 < Re(u, v)o o X Re(u, v)q

. 2.11
T—xRelw, o) = Talalolls = T+ xRefu, v); (2.11)
and
o oh] _ fvdl X+ o)l 212
T—x(@ o)1 = Tulllols = T+ )0 o]’
respectively.

The special case @ = 7/2 in Theorem 2.2 gives an inner product formulation of
Wielandt’s inequality that includes all cases of equality. Note that the right-hand
inequality of (2.12) is equivalent to the left-hand inequality of (2.7).

Corollary 2.4. Let V be a real or complex vector space equipped with inner products
(-,)1 and (-,-)o. Make definitions (2.1). Suppose the non-zero vectors u,v € V are
orthogonal with respect to (-,-)1 and « satisfies |(u,v)s| = a{u,v)s. Then,

|{u, v)s] < M? —m?
[ullallvfle = M2+ m?

(2.13)

with equality if and only if (au, —v) € E.

The following theorem gives upper and lower bounds on the difference between the
cosines of ¢ and 1. It improves the estimates given in Theorems 1 and 2 of [2].

Theorem 2.3. Let V be a real or complex vector space equipped with inner products
(-, )1 and (-, -)o. Make definitions (2.1). For independent vectors u and v in V,

M—m < Re(u,v)s  Re(u,v); < M —m
M+m = ullsloll flulloll = M +m

(2.14)
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and, if Re{u,v); >0, then
Re(u,v)2  Re(u,v); < M? —m?

< . (2.15)
[ull2llvlla Nlullflolle = M2 +m?
Also,
2 2 2 2
M2 +m? = ullzlollz - fullflvll = M2 +m

Proof. Suppose ¢ and 1 are the angles between v and v with respect to (-,-); and
(-,)2. Since,

cos ) — cosp = 2/(1 + tan®(1/2)) — 2/(1 + tan®(p/2)),
Theorem 2.1 gives

2 2 ¢ oo g 2 2
— COS — COS —
1+ (M/m2z 1+z— PE 1t m/M)2r 1+a

where = tan®(p/2). A little calculus shows that the minimum value, over all z €
[0, 0], of the expression on the left occurs at x = m/M and the maximum value, over
all z € [0, o0], of the expression on the right occurs at x = M /m. This gives (2.14). If
Re(u,v); > 0 then ¢ < /2 and so x = tan?(/2) < 1. The maximum value on the
right now occurs at = = 1, giving (2.15).

The same analysis, applied to the angles @ and ¥ between the lines Cu and Cuv
(or Ru and Ruv in the real case) includes the restriction tan?(®/2) < 1 and gives the
right-hand inequality in (2.16). The left-hand inequality follows from the right-hand
one by interchanging the inner products (-,-); and (-,-)s. Besides interchanging the
angles ¢ and 1, this has the effect of replacing m by 1/M and M by 1/m to give

[(w,oh| — [{wv)e| _ (1/m)* = (A/M)* _ M?* —m?
lullllvll lullzllvlle = (1/m)? + (1/M)* M2 +m?

Multiplying through by —1 completes the proof. ]

In our notation, Dragomir’s results from [2]| are

2 2
L R N A TR
m* = ull2llvllz flull[vll M
and, if Re(u,v); > 0, then
2 2
1_%2 < Re(u,v)s  Re(u,v): < 1_22.
m* = ull2llvllz flull[vll M
Since
1 M2< 2M—m< M? —m? d M2—mQ<1 m?
m2 ~ M+4+m~— M?+m? M? 4+ m? — M?’

Theorem 2.3 improves on both of these statements.
Estimate (2.14), on the difference between the cosines of ¢ and 1 readily gives a
lower bound on the product of those cosines.
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Corollary 2.5. Let V be a real or complex vector space equipped with inner products
(-,)1 and (-, -)o. Make definitions (2.1). For independent vectors u and v in V,

Re(u, v)1 Re(u, v)2 (M _ m)z.

_ 2.17
Fls ol Tallalol =~ \ 37 m (2.17)

Proof. Let = (M —m)/(M +m),

. Re(u, v), and 1 = Re(u, v)o

Al lull2lloll”

Note that 0 < u < 1. By the Cauchy-Schwarz inequality and (2.14), the point (z,y) lies
in the region defined by —1 <z <1, -1 <y <1, and -2 < x —y < 2u. Minimizing
xy over this hexagonal region easily yields (x,y) = (—p, ) or (x,y) = (1, —p). Thus,
xy > —p? as required. O

3 Formulation in terms of matrices

The angle 6 between vectors z,y € C" is defined by 0 < 6 < 7 and

Rey*z

cosf =
[yl

and the angle © between the complex lines Cx and Cy satisfies 0 < © < 7/2 and

e
[yl

cos @ =

Let A be an invertible n x n matrix and consider the two inner products

(x,y)1 =y"r and (z,y)s = (Ay)"(Az) (3.1)

on C". Then the definitions in (2.1) show that M = ||A|| and 1/m = ||A™!|| so the
condition number of A is kK(A) = M/m. Theorem 2.1 becomes the following.

Theorem 3.1. Let A be an invertible n x n matriz. For independent x,y € C" let ¢
be the angle between x and y and let 1 be the angle between Ax and Ay. Then,

k(A) tan(p/2) < tan(/2) < Kk(A) tan(p/2).

Let X\, and \1 denote the smallest and largest eigenvalues of A*A. Then equality holds
in the right-hand inequality above if and only if x/||z|| + y/||y|| is in the A\, -eigenspace
of A*A and z/||z|| — y/||y|| is in the \i-eigenspace of A*A. Also, equality holds in the
left-hand inequality above if and only if x/||x|| — y/||ly|| is in the \,-eigenspace of A*A
and z/||x|| +y/||lyll is in the A\i-eigenspace of A*A.

Theorem 2.2 gives a concise reformulation of the generalized Wielandt inequality.
Since k(A) = k(A™!), the symmetry between the angles @ and ¥ is clear.
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Theorem 3.2. Let A be an invertible n x n matriz. For independent x,y € C" let @
be the angle between the complex lines Cx and Cy and let ¥ be the angle between the
complez lines C(Ax) and C(Ay). Then

k(A) " tan(®/2) < tan(¥/2) < k(A)tan(P/2).

It takes a bit of care to show the equivalence of this theorem with Theorem 1.1
because the angles @ and ¥ represent subtly different concepts in the two statements. In
Theorem 3.2, @ and ¥ represent angles between given complex lines, while in Theorem
1.1 they represent bounds on those angles rather than the angles themselves. Also, one
must apply Theorem 1.1 to A and to A~ (or else to x,y and to x, —y) to obtain both
sides of the inequality above.

The conclusion of Theorems 3.1 and 3.2 may be rewritten as

—X + cos < costp < X + cos e ’
1 —xcosp 14 ycosy

where y = (k(A)? — 1)/(k(A)* +1). (Of course, ¢ and ¢ should be replaced by @ and
¥ when rewriting Theorem 3.2.)

We have omitted the characterization of the cases of equality in Theorem 3.2 but
they can be readily obtained from Theorem 2.2. Conditions for equality in Theorem 2.1
are simpler than those in Theorem 2.2 because the former deals with angles between
a single pair of vectors and the latter with an infimum of angles between vectors in
two one-dimensional subspaces. To recognize when equality occurs in Theorem 2.1 one
only has to consider the placement of the vectors u and v relative to the eigenspaces
Vi, and Vj;. But equality in Theorem 2.2 requires that this infimum of angles be
achieved for u and v in addition to requiring their correct placement with respect to
these eigenspaces. In 9], Kolotilina gave the following characterization of the cases
of equality in the generalized Wielandt inequality, without explicit recognition of this
two-stage requirement. We give an alternative proof using Theorem 2.2. (Notice that
the complex numbers £ and 7 appearing in the Theorem of [9] are unnecessary as they
may be absorbed into the eigenvectors z; and z,,.)

(3.2)

Proposition 3.1. Let B be an n x n invertible Hermitian matrix, suppose Ay > A\, > 0
are its largest and smallest eigenvalues, respectively, and set x = (A1 — An) /(A1 + ).
Fiz independent x,y € C" and let cos o = |y*z|/(||z|||y]|). Then

ly*Bx| = X F oS —————Va*Bx\/y*By (3.3)

14 xcosp
if and only of

1
HIH \/é(\/l +cospry+4/1—cospx,), and
T
\/1 +cospx; —y/1 —cospx,)

for some complex number € of unit modulus and some unit eigenvectors x1 and x,
satisfying Bxy = \xq1 and Bx, = \,x,.

(3.4)

IIyH
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Proof. With A = B'Y/? we have B = A*A. Apply Theorem 2.2 to inner products (3.1)
and note that M = A\ and m = A\, so Vj; and V,, are the A\;- and \,-eigenspaces
of B, respectively. Using (2.10), we see that (3.3) is equivalent to equality in the left
hand inequality of (2.7). Thus, Theorem 2.2 shows that (3.3) holds if and only if
(agx, —y) € E and either a; = ay or y*x = 0. As in Theorem 2.2, |y*z| = ayy*z and
(Ay)*(Az)]| = as(Ay)*(Az).

First suppose that = and y satisfy (3.4). A calculation, using the fact that x; and
x,, are orthogonal, shows that ey*z > 0 and ¢(Ay)*(Axz) > 0. It follows that either
a1 = ag =€ or y'r = 0. Also,

=t + _y|‘:\/§€\/1—coscpxnevm

ez |-y

and . B
ezl — ” y” :\/55\/1+cosgox1€VM
ex —y

so (agx, —y) € E.
Conversely, suppose that (asz, —y) € E and either a; = i or y*x = 0. Set € = ap.

Then there exist w € V,,, and W € V), such that

Ex ex

— i — — + i =W.
[zl [yl )l lyll

Since w and W are orthogonal,the parallelogram law gives ||[W]|? + ||w]||? = 4 and the
definition of ¢ gives |IW||*>—||w]||?> = 4 cos . Solving these two equations yields, |[W| =

V2y/T ¥ cosp and ||w| = v2y/1 = cosp. With 2, = EW/||W| and z, = éw/||w|| we
have (3.4). This completes the proof. O

In Theorem 3 of [15], Yeh gave a different generalization of the Wielandt inequality
for angles between complex lines. Here we show that Theorem 3.2 gives the stronger
inequality.

Theorem 3.3. [15] Let A be an invertible n X n matriz. For independent x,y € C"
let @ be the angle between the complex lines Cx and Cy and let ¥ be the angle between
the complex lines C(Ax) and C(Ay). Define 0 by 0 < 0 < 7/2 and cot(0/2) = k(A).
If cos® < 1/k(A)?, then

cos¥ < cosf + 2cos?(0/2) cos . (3.5)

Proof. By Theorem 3.2 and (3.2), it is enough to show that
P
X cos® < cosf + (1 + cosf) cos P,
1+ xcos®

where

k(AP -1 cot?(0/2) —1
o R(A)2 41 cot?(/2) +1
But both x and cos® are positive, so

= cos 0.

X + cos P
— < o< 1 1]
1+XCOS@_X+COS < x+ (1+x)cos

as required. O
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In Theorem 3.1 of [14], Yan generalized the Wielandt inequality for real symmetric
matrices as follows.

Theorem 3.4. [1/] Let B be a real n X n symmetric positive definite matriz with
eigenvalues A\y > Ao -+ > N\, > 0. For independent x,y € R"™ define @ by 0 < & < /2
and ||z||||y|| cos® = |yTz|. Then,

A cos?(®/2) — \;sin?(P/2)
"Byl < d : VT Bxy/yT By. 3.6
=" Byl < T Ai cos2(D/2) + \; sin®(D/2) VYR (3:6)

It was left as a conjecture in [14] that the theorem remains true for complex vectors
x and y and a positive definite Hermitian matrix B.
It is routine to verify that the expression

scos?(®/2) — tsin?(P/2)
scos?(®/2) + tsin?(P/2)

is increasing in s and decreasing in t. Thus, the maximum in (3.6) is achieved when
t =1 and j = n, where it takes the value,

A cos?(D/2) — A, sin®(D/2)  x + cos P

A1 cos?(D/2) + A, sin?(@/2) 1+ xcosd’

Here x = (A\/An — 1)/(Mi/M +1). If A = BY2 then x(A)? = k(B) = A\ /), s0
Theorem 3.2 and (3.2) implies that Theorem 3.4 holds in both the real and complex
cases, confirming Yan’s conjecture.

We end with an improvement of Lemma 2.2 from [11]. It follows directly from
Corollary 2.5 with (x,y); = y" Az and (z,y)» = y' Bx.

Lemma 3.1. Suppose A and B are real symmetric positive definite n X n matrices and
let k = K(A™Y2BAY2). Then for x,y € R™ with y # 0,

y! Ax y! Bx >_(\/E—1)2
VaT Ar\/yT Ay VaT Bx/yT By — VE+1/) °

The above inequality followed by the AM-GM inequality give the conclusion of
Lemma 2.2 from [11]:

y' Az y" Bx _ VE—1 2 /2T Ag 2T B\ V/?
yT Ay yTBy — VE+1 y' Ay y* By

o VE—1\? xTAx+xTBx
— \WVr+1) \yTAy y"By)’
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