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Abstract. In this paper the existence of a constant κ0 > 0 is proved such that all
solutions of a class of regular partially hypoelliptic (with respect to the hyperplane
x
′′

= (x2, ..., xn) = 0 of the space En ) equations P (D)u = 0 in the strip Ωκ =
{(x1, x

′′
) = (x1, x2, ..., xn) ∈ En; |x1| < κ} are in�nitely di�erentiable when κ ≥ κ0

and Dαu ∈ L2(Ωκ) for all multi-indices α = (0, α
′′
) = (0, α2, · · · , αn) in the Newton

polyhedron of the operator P (D)·.

1 Introduction

After in 1950's in connection with a study of the regularity of a solution of the problem
P (D)u = 0 in the space of generalized functions (distributions) L. H�ormander intro-
duced the concept of a hypoelliptic di�erential equation all distributional solutions u of
which are in�nitely di�erentiable (see [13], [14]), a problem arose of �nding additional
assumptions on solutions u of more general, non-hypoelliptic equations ensuring that
these solutions are in�nitely di�erentiable.

In [8] L. G�arding and B. Malgrange, in [18] B. Malgrange, in [23] J. Peetre, in [6]
L. Ehrenpreis, in [ 11] and [12] E.A. Gorin, in [7] J. Friberg and others introduced the
concept of partially hypoelliptic equations P (D)u = f , all distributional solutions u of
which with an in�nitely di�erentiable right-hand side are in�nitely di�erentiable under
the a priori assumption that they are in�nitely di�erentiable with respect to a certain
group of the variables.

In [2 ] Ya.S. Bugrov constructed an example of a non-hypoelliptic equation, all
solution of which in the half-space are in�nitely di�erentiable provided they are square
integrable in the half-space together with some of their derivatives.

In [3], [4] and [5] V.I. Burenkov considered the equation P (D)u = f in the cylinder
Ω = Ωl×En−l where 0 ≤ l < n and Ω l is an open set in E

l (if l = 0 then Ω = En) and
f and all its derivatives are l− locally square integrable on Ω, i.e. square integrable on
Ql × En−l for all compacts Ql ⊂ Ωl (if l = 0 square integrable on En). Necessary and
su�cient conditions on P were found ensuring that all solutions u of this equation with
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any such f, which are l− locally square integrable on Ω together with some of their
derivatives, are of the same class as f (in particular they are in�nitely di�erentiable).

The class of hypoelliptic by Burenkov operators is essentially wider than the class
of hypoelliptic operators.

Since this paper directly adjoins the results in [2] and [3], we formulate these results
in a suitable for us formulation. Let En

+ = {x ∈ En : xn > 0}, and for δ > 0 and
G ⊂ En

+ Gδ = {x ∈ G : ρ(x, ∂G) ≥ δ}· Let m = (m1,m2, ...,mn) be a vector with
positive integer coordinate and M = {α 6= 0 : 0 ≤ αk ≤ mk}, k = 1, ..., n − 1, and
P (D) =

∑
α∈M

D2α· Note that P (D) is non - hypoelliptic di�erential operator.

Bugrov's Theorem (see [2]). Let
∑

α∈M

||Dαu||L2(En
+) < ∞ and P (D)u = 0· Then

||Dβu||L2((En
+)δ) <∞ ∀δ > 0, ∀β 6= 0. In particular u ∼ v ∈ C∞(En

+).

Let 0 ≤ m ≤ n, Ω = Ωm × En−m, where Ωm is any open set in Em· Denote by
Qm the set of all paralleiepipeds G = Gm × En−m, where Gm = {−∞ < ak < xk <
bk < ∞, k = 1, ...,m}; Gm ⊂ Ωm· One say that u ∈ [L2]m(Ω), if u ∈ L2(G) for all
G ⊂ Qm·

Denote by [J∞2 ]m(Ω) the set of all functions u such that ||Dαu||[L2]m(G) <∞ for
all G ⊂ Qm and for all α ≥ 0· Note that if u ∈ [J∞2 ]m(Ω) then u ∼ v ∈ C∞(Ω)·

Let P (D) be an arbitrary linear di�erential operator with constant coe�cients,
Em = {α;α = (α1, ..., αm, 0, ..., 0) ≥ 0}, E ′m = {α ∈ Em : α 6= 0 } and let [U2]m(Ω) be
the set of all functions umeasurable on Ω and such that

||u||[U2]m(G) = ||u||L2(G) +
∑

α∈E ′m

||P (α)u||L2(G) <∞

for all G ⊂ Qm·
Burenkov's Theorem (see [3]). The conditions u ∈ [U2]m(Ω) and P (D)u ∈

[J∞2 ]m(Ω) imply that u ∈ [J∞2 ]m(Ω) if and only if
1) P (ξ) 6= 0 for su�ciently large ξ ∈ Rn

and
2)

lim
ξ→∞

P (β)(ξ)

P (ξ)
= 0 ∀β ∈ E ′m·

In this paper we consider a class of partially hypoelliptic (with respect to hyperplane
x
′′

= (x2, ..., xn) = 0 of the space En) regular equations P (D)u = 0 and prove
that all distributional solutions of such equations which belong to a certain weighted
Sobolev space in a certain strip in En are in�nitely di�erentiable. Namely we prove
that there exists a number κ > 0 such that all solutions of equation P (D)u = 0
on Ωκ = {x ∈ En : |x1| < κ}, satisfying conditions D0, α2,..., αnu ∈ L2(Ωκ) for all
α; α2 + ...,+αn ≤ m = ordP are in�nitely di�erentiable.

To state the problem and formulate the results we need some notation and def-
initions. We use the following standard notation: N denotes the set of all natu-
ral numbers, N0 = N ∪ {0}, Nn

0 = N0 × ... × N0 is the set of all n− dimensional
multi-indices, En and Rn are the n-dimensional Euclidean spaces of points (vectors)
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x = (x1, ..., xn) and ξ = (ξ1, ..., ξn) respectively. For ξ ∈ Rn, x ∈ En and α ∈ Nn
0 we

put | ξ| =
√
ξ2
1 + ...+ ξ2

n, |x| =
√
x2

1 + ...+ x2
n, |α| = α1 + ... + αn, ξα = ξα1

1 ...ξαn
n ,

Dα = Dα1
1 ...Dαn

n , where Dj = 1
i

∂
∂xj

(j = 1, ..., n).

Let A = {αj = (αj
1, ..., α

j
n)}M

1 be a �nite set of multi-indices in Nn
0 . By the

Newton polyhedron of the set A we mean the minimal convex polyhedron < = <(A)
in Rn

+ = {ξ ∈ Rn; ξj ≥ 0 (j = 1, ..., n)} containing all points of A.
A polyhedron < ⊂ Rn

+ with vertices in Nn
0 is said to be complete (see [20] or

[21]) if < has a vertex at the origin and one vertex (distinct from the origin) on each
coordinate axis of Nn

0 . A complete polyhedron < is called regular (completely regular),
if all coordinates of the outward normals of its noncoordinate (n−1)-dimensional faces
are non-negative (positive) (see [24] and [16]).

Let P (D) = P (D1, ..., Dn) =
∑
α

γαD
α be a linear di�erential operator with con-

stant coe�cients and let P (ξ) = P (ξ1, ..., ξn) =
∑
α

γα ξ
α be its characteristic poly-

nomial (the complete symbol). Here the sum goes over a �nite set of multi-indices
(P ) = {α ∈ Nn

0 ; γα 6= 0}.
The Newton polyhedron < = <(P ) of the set (P ) ∪ {0} is called the Newton or

characteristic polyhedron of the operator P (D) (the polynomial P (ξ) ) (see [21] or [24])
and is denoted by <(P ).

An operator P (D) (a polynomial P (ξ)) is called hypoelliptic (see [13] or [14], De�-
nition 11.1.2 and Theorem 11.1.1 ) if the following equivalent conditions are satis�ed:

1) if u ∈ D′(Ω) ( Ω is an open set in En, D′(Ω) is the set of distributions de�ned
in Ω) is a solution of the equation P (D)u = 0 then u ∈ C∞(Ω),

2) all solutions u ∈ D′ = D′(En) of the equation P (D)u = f are in�nitely di�eren-
tiable (belong to C∞ = C∞(En) ) for all f ∈ C∞.

3) if | ξ| → ∞, and 0 6= α ∈ Nn
0 then

P (α)(ξ)/P (ξ) ≡ DαP (ξ)/P (ξ) → 0.

An operator P (D) is called partially hypoelliptic with respect to hyperplane x
′′

=
(x2, ..., xn) = 0 of the space En (a polynomial P (ξ) is called partially hypoelliptic with
respect to ξ

′′
= (ξ2, ..., ξn) (see [8], or [14] De�nition 11.2.4 and Theorem 11.2.3 ) when

P (α)(ξ)/P (ξ) → 0 if 0 6= α ∈ Nn
0 and |ξ′′| → ∞ while ξ

′
= ξ1 remain bounded.

Finally, a polynomial P (ξ) is called almost hypoelliptic (see [15]) if for a constant
C > 0

|P (α)(ξ)|/[1 + |P (ξ)| ] ≤ C ∀ξ ∈ Rn, ∀α ∈ Nn
0 .

It is known that the Newton polyhedron of hypoelliptic polynomial is completely
regular (see [24] or [16]) and the Newton polyhedron of an almost hypoelliptic polyno-
mial is regular (see [15]).

In [9] the following statement was proved. Let f and its derivatives be square
integrable on En with a certain exponential weight. Then all solutions of the equation
P (D)u = f, which are square integrable with the same weight, are also such that all
their derivatives are square integrable with this weight, if and only if the operator P (D)
is almost hypoelliptic.
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During the whole work even numbers m and m2 (m > m2) are �xed and we
denote by < = <(m,m2) ⊂ Rn

+ the polyhedron with the vertices (0, ..., 0), (m, 0, ..., 0)
, ..., (0, ..., 0,m) and (m,m2, 0, ..., 0). It is easy to verify that < is a regular (but not
completely regular) polyhedron in Rn

+ which is bounded by the (n − 1)-dimensional
coordinate hyperplanes ξj = 0 (j = 1, ..., n) and the (n− 1)-dimensional hyperplanes

P1 = {ξ : ξ ∈ Rn, ∆1(ξ) ≡
m−m2

m2
ξ1 +

1

m
(ξ2 + ...+ ξn) = 1},

P2 = {ξ : ξ ∈ Rn, ∆2(ξ) ≡ ξ1 + ξ3 + ...+ ξn = m}.

Throughout this paper the notation α ∈ < means that α ∈ < ∩Nn
0 .

We shall study a linear di�erential operator P (D) with constant coe�cients and
with the Newton polyhedron < = <(m,m2), where the characteristic polynomial P (ξ)
is nondegenerate (regular) with respect to the polyhedron < (see [22] or [21]). This
means that there exist positive constants µ1 and µ2 such that

1 + |P (ξ)| ≥ µ1

∑
α∈<

| ξα | ∀ξ ∈ Rn (1.1)

and for all k = 0, ...

|Dk
1P (ξ)| ≤ µ2[ 1 +

∑
(α1+k, α′′)∈<

| ξα | ] ∀ξ ∈ Rn. (1.2)

One can easily see that the polynomial P (ξ), satisfying conditions (1.1), (1.2) is
almost hypoelliptic (see [15], Theorem 3) and partially hypoelliptic with respect to
ξ′′ = (ξ2, ..., ξn) (see [14], Theorem 11.2.3 ).

It also satis�es Condition 1) and Condition 2) with m = 1 of Burenkov's Theorem.
This follows since each multi-index (α1, α

′′
) for which (α1 +k, α

′′
) ∈ <(m,m2) does not

belong to P1 ∪ P2, hence

lim
ξ→∞

1 +
∑

(α1+k,α′′)∈<
|ξα|∑

α∈<
|ξα|

= 0.

A positive function k de�ned in Rn is said to be a tempered weight function (see [14],
De�nition 10.1.1 ) if there exist positive constants C and M such that

k(ξ + η) ≤ C(1 + |ξ|)M k(η) ∀ξ, η ∈ Rn.

The set of all such functions k will be denoted by K.
Let S = S(Rn) be the Schwartz space of all complex-valued rapidly decreasing

in�nitely di�erentiable functions in Rn and let S
′
(Rn) be the set of all complex-valued

tempered distributions on Rn. For k ∈ K by Bk denote the set of all distributions
u ∈ S ′ such that (see [14], De�nition 10.1.6) the Fourier transform F (u) is a function
and

||u||2k ≡ ||u||2Bk
=

∫
|k(ξ)F (u)(ξ)|2dξ <∞.



On selection of in�nitely di�erentiable solutions 45

It is easily shown that if k0 ∈ K and kj(ξ) = k0(ξ)(1 + |ξ1|j) then kj ∈ K (j =
1, 2, · · · )·

In the sequel we shall use the following statement which we present in a suitable for
us formulation (where, for κ > 0, Ωκ = {(x1, x

′′
) = (x1, x2, ..., xn) ∈ En; |x1| < κ} ).

G�arding-Malgrange Theorem (see [14], Theorem 11.2.5). Let P (D) be a partially
hypoelliptic operator with respect to the hyperplane x

′′
= (x2, ..., xn) = 0, Bloc

k (G) =
{u ∈ S ′;u ∈ Bk(G

′
) ∀G′ ⊂ G} and k0 ∈ K. If u ∈ Bloc

kj
(Ωκ) (j = 0, 1, ...) is a solution

of equation P (D)u = 0, then u ∈ C∞(Ωκ).

2 Some numerical inequalities and weighted estimates for the

derivatives of functions

In the sequel we will introduce some weight functions and weighted multi-anisotropic
Sobolev spaces connected with the polyhedron < = <(m,m2) and the domain Ωκ =
{(x1, x

′′
) = (x1, x2, ..., xn) ∈ En; |x1| < κ} for a given κ > 0. Namely:

a) as a weight function we consider a function g(t) of one variable t ∈ R1 such that

1) g ∈ C∞(−1, 1),

2) 0 ≤ g(t) ≤ 1, g(−t) = g(t) for t ∈ R1, and g(t) = 0 for |t| ≥ 1.Let κ > 0 and
gκ(t) = g(t/κ) then it is obvious that

3) g
(l)
κ (t) ≡ Dl[gκ(t)] = κ− l (Dlg)κ(t) for t ∈ (−κ, κ) and for all l = 0, 1, ...·

Here is an example of such function: g(t) = 1/(2p)!(1 − t2p) for t ∈ (−1, 1) and
g(t) = 0 for |t| ≥ 1 for any p ∈ N.

b) Let <′ be the set of multi-indices α ∈ Nn
0 such that (α1, α

′′) ∈ <, (α1+1, α′′) /∈ <·
We introduce an integer-valued function d(α) with the domain <∩Nn

0 , which satis�es
the following conditions:

1) d(α1 ± l, α′′) = d(α)± l for any l ∈ N,α1 − l ∈ N0,

2) d(α) < m for α ∈ < \ <′
and

3) d(α) = m for α ∈ <′.
To construct such a function let us �rst construct the (n − 1)− dimen-

sional hyperplane P3 which passes through points (m,m2, 0, ..., 0), (0,m2, 0, ..., 0),
(0, 0,m, 0, ..., 0), ..., (0, 0, ..., 0,m) of the polygon < = <(m,m2). The equation of this
hyperplane is

P3 : ∆3(ξ) ≡
ξ2
m2

+
ξ3
m

+ ...+
ξn
m

= 1.

Thus the set < is representable as the union of the following two sets: < = ℵ1 ∪ ℵ2,
where ℵ1 = {α ∈ <;∆3(α) ≤ 1} and ℵ2 = < \ ℵ1. Let ℵ

′
1 = ℵ1 ∩ <

′
and ℵ′2 = ℵ2 ∩ <

′
.

Note that for α ∈ ℵ′1 either α ∈ P2 or the point (α1 + 1, α
′′
) is outside of <·

Let a ∈ R1 and [a] be the integer part of a. Denote by [a]
′

= [a] = a, if a is integer
and [a]

′
= [a] + 1 otherwise. Put for any α ∈ <

d(α) = ∆2(α) ≡ α1 + α3 + ...+ αn α ∈ ℵ1, (1.3)
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d(α) = α1 + [∆4(α)]
′
α ∈ ℵ2, (1.4)

where

∆4(α) = m
|α′′| −m2

m−m2

·

A simple calcultation gives that such a de�nition of function d is correct since the
values of functon d(α) for the points α ∈ P3 ∩ Nn

0 de�ned by di�erent formulas (1.3)
or (1.4) coincide.

Let us prove that the function d(α) de�ned by formulas (1.3), (1.4) satis�es the
Conditions 1) - 3). Condition 1) follows immediately by the de�nition of the function
d(α). We prove Conditions 2) and 3) �rst for α ∈ ℵ1. Condition 2) in this case follows
immediately by the de�nition of the function d(α) and the de�nition of set ℵ1 as well.
To prove Condition 3) in this case it su�ces to show that ℵ′1 ⊂ P2. Let α ∈ ℵ

′
1, i.e.

α ∈ ℵ1 ⊂ < and (α1 + 1, α
′′
) /∈ < then ∆2(α) ≤ m and (α1 + 1) + α3 + ... + αn > m,

i.e. m− 1 < ∆2(α) ≤ m. Since the number ∆2(α) is integer we have that ∆2(α) = m,
that is α ∈ P2. Let now α ∈ ℵ2. Let us remark that in this case a point α ∈ ℵ′2 can be
an interior point of <. So α can be an element of P1 or not.

First note that for α ∈ P1 ∩Nn
0 the number ∆4(α) is integer. Indeed in this case

α1
m−m2

m
+ α2 + ...+ αn = m,

therefore

α1
m−m2

m
+ α2 + ...+ αn −m2 = m−m2,

and

α1(m−m2) +m(|α′′| −m2) = m(m−m2),

i.e.

α1 +m
|α′′| −m2

m−m2

= m,

whence it follows that ∆4(α) + α1 = m, hence, the number ∆4(α) is integer and
Condition 3) is proved for the points α ∈ P1 ∩Nn

0 .
Let α ∈ ℵ2 \ P1 and the number σ > 0 be chosen in such a way that α(σ) ≡

(α1 + σ, α
′′
) ∈ < ∩ P1. If σ ∈ N then α(σ) ∈ P ∩Nn

0 , α /∈ ℵ′2 and we conclude by the
part already proved that d(α(σ)) = m. On the other hand d(α) = α1 + [∆4(α)]

′ ≤
α1 + [∆4(α)] + 1, i.e. d(α) < m− [σ] + 1.

If [σ] 6= 0 then �rstly (α(σ), α
′′
) /∈ ℵ′2 and secondly from this it follows that

d(α) < m which proves Condition 2) in this case as well.
Let now [σ] = 0, i.e. 0 < σ < 1. Then (α1 + 1, α

′′
) /∈ <, and α ∈ ℵ′2, α1 +

∆4(α) + 1 > m by the de�nition of the set ℵ′2, i.e. α1 +∆4(α) > m− 1.
On the other hand since α ∈ ℵ2 \ P2 and [a]

′
< a+ 1 we obtain α1 +∆4(α) < m

and d(α) < α1 + ∆4(α) + 1 < m− 1. Thus we get m − 1 < d(α) < m + 1. Because
the number d(α) is integer we have d(α) = m which proves that the function
d(α) satis�es Conditions 1) � 3).
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The following lemma is a generalization of Lemma 1.3 in [10] and Lemma 1.1 in
[17].

Lemma 2.1. Let M ≥ 2 and κ0 > 0, p(κ) and aj(κ) (j = 1, ...,M) be
non - negative functions such that p(κ) < 1 for κ ≥ κ0 and

(1− p(κ)) aj(κ) ≤ 1

2
(1 + p(κ)) aj−1 +

1

2
aj+1(κ) (j = 1, ...,M)· (2.1)

Then there exist a number κ1 ≥ κ0 and functions {δj(κ)} bounded for
κ ≥ κ1 and {σj(κ)} such that δj(κ) → 0 as p(κ) → 0 and for all
κ ≥ κ1

aj(κ) ≤ (
j

M
+ δj(κ)) aM(κ) + σj(κ) a0(κ) j = 1, ...,M − 1. (2.2)

In particular for some κ2 ≥ κ1 and σ0 > 0

aj(κ) ≤ aM(κ) + σ0 a0(κ), j = 1, ...,M − 1. (2.3)

Proof. The proof is by induction on M. For M = 2 and j = 1 we have from (2.1)

a1(κ) ≤ 1

2(1− p(κ))
a2(κ) +

1 + p(κ)

2(1− p(κ))
a0(κ)·

Given any κ > 0 we write

δ1(κ) =
p(κ)

2(1− p(κ))
, σ1(κ) =

1 + p(κ)

2(1− p(κ))
·

These are bounded functions for κ ≥ κ0 such that 1/2 + δ1(κ) = 1/2(1− p(κ))
and δ1(κ) → 0 as p(κ) → 0. This proves inequality (2.2) for M = 2.

Let l ≥ 2· Assuming that inequalities (2.2) hold for M ≤ l, let us prove
that they hold for M = l + 1.

From (2.1) for M = l + 1, j = l and from (2.2) for M = l, j = l − 1 we have for
any κ ≥ κ0

(1− p(κ)) al(κ) ≤ 1

2
(1 + p(κ)) al−1 +

1

2
al+1(κ) ≤

≤ 1

2
aM(κ) +

1

2
(1 + p(κ))

[ l − 1

l
+ δl−1(κ)

]
al(κ)+

+
[1

2
(1 + p(κ))σl−1(κ)

]
a0(κ).

Transferring corresponding terms from the right-hand to the left-hand side and
denoting

δ
′

l = 1− p(κ)− 1

2
(1 + p(κ))

[ l − 1

l
+ δl−1(κ)

]
; σ

′

l (κ) =
1

2
(1 + p(κ))σl−1(κ)



48 H.G. Ghazaryan

we obtain

δ
′

l al(κ) ≤ 1

2
aM(κ) + σ

′

l (κ) a0(κ).

Choose a number κ1 ≥ κ0 such that δ
′

l ≥ 1/4 for all κ ≥ κ1. Then

al(κ) ≤ aM(κ)

2δ
′
l (κ)

+ 4σ
′

l (κ), κ ≥ κ1,

which implies that for κ ≥ κ1

al(κ) ≤
[ l
M

+ δl(κ)
]
aM(κ) + σl(κ) a0(κ),

where

δl(κ) =
l

2(l + 1)
δ
′

l (κ); σl(κ) = 4σ
′

l (κ)

and a simple computation gives δl(κ) → 0 as p(κ) → 0, i.e. we get one of inequalities
(2.2) for M = l + 1 and j = l = M − 1. From this and by the inductive assumption it
follows that inequalities (2.2) are proved for any M ∈ N.

Inequalities (2.3) follow by inequalities (2.1) and by already proved properties of
the functions {δj(κ)} and {σj(κ)}·

Let the polyhedron < = <(m,m2), the set <
′
, the domain Ωκ (for a given κ > 0

), have the same meaning as in the introduction, α
′′

= (α2, · · · , αn) ∈ N
n−1

0 and
|α′′| = α2 + · · ·+ αn ≤ m. Then (0, α

′′
) ∈ < and either (0, α

′′
) ∈ <′

or to each of such
multi-index α

′′
corresponds a unique number α

′
1 = α

′
1(α

′′
) ∈ N0 (which we shall call

the limiting value of α
′′
) such that α

′
= (α

′
1, α

′′
) ∈ <′

, or which is the same α
′ ∈ <,

(α
′
1 + 1, α

′′
) /∈ <. Also by the de�nition of the polyhedron <

a) (j, α
′′
) ∈ < for all j = 0, 1, · · · , α′1,

b) the polyhedron < contains such and only such multi-indices (j, α
′′
) for which

|α′′| ≤ m and j = 0, 1, · · · , α′1·
Lemma 2.2 Let α

′′ ∈ Nn−1
0 , |α′′| ≤ m, α

′
1 = α

′
1(α

′′
) be corresponding limiting value

of α
′′
and α

′
= (α

′
1, α

′′
). Then there exist positive numbers C and κ1 such that for

any κ ≥ κ1 and for all ϕ ∈ C∞
0 (Ωκ)

α
′
1∑

j=0

||D(j, α
′′
)ϕ · gd(j, α

′′
)

κ (x1)||L2(Ωκ) ≤ C · [||Dα
′

ϕ · gm
κ (x1)||L2(Ωκ)||+

+θ(α
′′
) · ||Dα

′′

ϕ · gd(0, α
′′
)

κ (x1)||L2(Ωκ)], (2.4)

where || · ||L2(Ωκ) has the usual meaning, θ(α
′′
) = 0 if (0, α

′′
) ∈ < and θ(α

′′
) = 1

otherwise.

Proof. Fist note that α
′
1 = 0 and d(0, α

′′
) = m for (0, α

′′
) ∈ <′

(see the proof of
the properties of the function d(α)). Therefore in this case inequality (2.4) turns into
equality for C = 1 and θ(α

′′
) = 0. Thus we can assume that (0, α

′′
) /∈ <′

, i.e. α
′
1 > 0.
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If α
′
1 = 1 then the sum in the left-hand side of (2.4) consists of two items. The item

for j = 0 coincides with the second item of the right-hand side of (2.4) for θ(α
′′
) = 1

and the item for j = 1 coincides with the �rst item of the right-hand side of (2.4) for
C = 1. This means that in case α

′
1 = 1 the inequality (2.4) is valid for any C ≥ 1.

Hereinafter we suppose that α
′
1 ≥ 2.

Arguing as above we get estimates for the items corresponding to the values j = 0
and j = α

′
1.

Thus we can assume that α
′
1 ≥ 2, 1 ≤ j ≤ α

′
1 − 1.

Let us introduce the following notation α(j) = (j, α
′′
), dj = d(α(j)) (j =

1, · · · , α′1 − 1).
Integrating by parts in the variable x1, applying Fubini's theorem and the property

gκ(−x1) = gκ(x1) of the weight function g we obtain for each j : 1 ≤ j ≤ α
′
1 − 1, for

any κ > 0, and for all ϕ ∈ C∞
0 (Ωκ)

||Dα(j)ϕgdj
κ ||2L2(Ωκ) =

∫
Ωκ

|Dα(j)ϕ(x)| 2 g 2dj
κ (x1)dx =

=

∫
En−1

κ∫
−κ

|i−|α(j)| ∂|α(j)|ϕ(x)

∂xj
1 ∂(x′′)α′′

| 2 g 2dj
κ (x1)dx =

=

∫
En−1

κ∫
−κ

∂|α(j)|ϕ(x)

∂xj
1 ∂(x′′)α′′

∂|α(j)|ϕ(x)

∂xj
1∂(x′′)α′′

g 2dj
κ (x1) dx =

= −
∫

En−1

κ∫
−κ

∂|α(j)|−1ϕ(x)

∂xj−1
1 ∂(x′′)α′′

∂|α(j)+1ϕ(x)

∂xj+1
1 ∂(x′′)α′′

g 2dj
κ (x1) dx+

+
2dj

κ

∫
En−1

κ∫
−κ

∂|α(j)|−1ϕ(x)

∂x
(j−1)
1 ∂(x′′)α′′

∂|α(j)|ϕ(x)

∂xj
1∂(x′′)α′′

g 2dj−1
κ (x1)(g

′
)κ(x1)dx ≡

≡ I1 + I2· (2.5)

To evaluate I1, we apply the property 2dj = dj−1 + dj+1 of the function d(α) and
the numerical inequality |ab| ≤ 1

2
(a2 + b2)· We get

I1 ≤
∫

En−1

κ∫
−κ

|Dα(j−1)ϕ(x) gdj−1
κ (x1)| |Dα(j+1)ϕ(x) g dj+1

κ (x1)|dx ≤

≤ 1

2
[ ||Dα(j−1)ϕ gdj−1

κ || 2
L2(Ωκ) + ||Dα(j+1)ϕ g

dj+1)
κ || 2

L2(Ωκ) ]. (2.6)

To evaluate I2, note that |x1

κ
| ≤ 1 for x ∈ Ωκ and d(α) ≤ m for α ∈ <, therefore

|I2| ≤
2m

κ
[ ||Dα(j−1)ϕ g dj−1

κ || 2
L2(Ωκ) + ||Dα(j)ϕ g dj

κ || 2
L2(Ωκ) ]· (2.7)

From (2.6), (2.7) it follows that
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||Dα(j)ϕ g dj
κ || 2

L2(Ωκ) ≤
1

2
(1 +

4m

κ
)||Dα(j−1)ϕ g dj−1

κ || 2
L2(Ωκ)+

+
1

2
||Dα(j+1)ϕ g dj+1

κ || 2
L2(Ωκ) +

2m

κ
||Dα(j)ϕ g dj

κ || 2
L2(Ωκ)·

Hence it follows that

(1− 2m

κ
) ||Dα(j)ϕ g dj

κ || 2
L2(Ωκ) ≤

≤ 1

2
(1 +

4m

κ
)||Dα(j−1)ϕ g dj−1

κ || 2
L2(Ωκ) +

1

2
||Dα(j+1)ϕ g dj+1

κ || 2L2(Ωκ)·

Application Lemma 2.1 and summing up the obtained inequalities in j = 1, · · · , α′1
we get the required inequaliy (2.4).

Corollary 2.1. Applying here Lemma 2.1 for all α
′′ ∈ Nn−1

0 , |α| ≤ m and summing
up corresponding inequalities (2.4) we get for any κ ≥ κ1 ≥ 2m and for all ϕ ∈
C∞

0 (Ωκ), with a constant C > 0∑
α∈<

||Dαϕ · gd(α)
κ ||L2(Ωκ) ≤ C[

∑
α∈<′

||Dαϕ · gm
κ ||L2(Ωκ)+

+
∑

|α′′ |≤m

θ(α
′′
)||Dα

′′

ϕ · g d(0, α
′′
)

κ ||L2(Ωκ)]· (2.8)

Corollary 2.2. By applying inequalities (2.8), Corollary 1.3 in [16] (see also Theorem
2.3 in [19]) and the Leibnitz formula we get for all ϕ ∈ C∞

0 (Ωκ) and for every κ ≥ κ2

with constants C1 > 0 and κ2 ≥ κ1∑
α∈<

||Dαϕ gd(α)
κ ||L2(Ωκ) ≤ C[

∑
α∈< ′

||Dα(ϕ gm
κ )||L2(Ωκ)+

+
∑

|α′′ |≤m

||Dα
′′

ϕ gd(0, α
′′
)

κ ||L2(Ωκ)] ∀ϕ ∈ C∞
0 (Ωκ)· (2.9)

Lemma 2.3. Let the symbol P (ξ) of the operator P (D) with Newton's polyhedron
< = <(m,m2) satisfy conditions (1.1), (1.2). Then there exist positive numbers κ0

and C such that for all κ ≥ κ0 and ϕ ∈ C∞
0 (Ωκ),∑

α∈<

||Dαϕ gd(α)
κ ||L2(Ωκ) ≤ C[||P (D)ϕ gm

κ ||L2(Ωκ)+

+
∑

|α′′ |≤m

||Dα
′′

ϕ gd(0, α
′′
)

κ ||L2(Ωκ)] ∀ϕ ∈ C∞
0 (Ωκ)· (2.10)
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Proof. Let us choose number κ2 > 0 such that inequalities (2.8) and (2.9) hold for any
κ ≥ κ2· By applying the Parseval equality, estimate (2.9 ) and property (1.1) of the
operaror P we obtain with a constant C1 = C1(κ2, µ1) > 0 for any κ ≥ κ2∑

α∈<

||Dαϕ gd(α)
κ ||L2(Ωκ) ≤ C1[ ||P (D)(ϕ gm

κ )||L2(Ωκ) + ||ϕ gm
κ ||L2(Ωκ)+

+
∑

|α′′ |≤m

||Dα
′′

ϕ gd(0, α
′′
)

κ ||L2(Ωκ) ] ∀ϕ ∈ C∞
0 (Ωκ)· (2.11)

It is obvious that it su�cies to estimate only the �rst term of the right-hand side
of (2.11). For this purpose by applying the Leibnitz formula, properties 1) - 3) of
the function d(α) (see Introduction), the estimate (1.2) and the Parseval equality, we
obtain with a constant C2 > 0 for any κ ≥ κ2 and for all ϕ ∈ C∞

0 (Ωκ),

||P (D)(ϕ gm
κ )||L2(Ωκ) ≤ ||(P (D)ϕ) gm

κ )||L2(Ωκ)+

+
∑
j≥1

1

j!
|| [P (j, 0

′′
)(D)ϕ] (Dj

1g
m
κ )||L2(Ωκ) ≤ || [P (D)ϕ] gm

κ ||L2(Ωκ)+

+C2µ2

∑
β∈(P );β1≥1

β1∑
j=1

(
2

κ
)j ||D(β1−j, β

′′
)ϕ gm−j

κ ||L2(Ωκ) ≤

≤ ||(P (D)ϕ) gm
κ )||L2(Ωκ) +

2

κ
C2mµ2

∑
β∈(P )

||Dβϕ gd(β)
κ ||L2(Ωκ)·

Choose a number κ0 such that κ0 > 2C2mµ2.

Since (P ) ⊂ <, we get the inequality (2.10) for any κ ≥ κ0 by transferring last
term of this inequality from the right-hand to the left-hand side, dividing both parts
by arising positive coe�cient and applying inequality (2.11).

For k ∈ N0 by Ak denote the set of multi-indices α ∈ Nn
0 , for which (α1−k, α

′′
) ∈ <′

,
and by <k Newton's polyhedron of set <

⋃
Ak· It is obvious that <0 = <·

At last we prove the main result of this section.

Lemma 2.4. Let the assumptions of Lemma 2.3 hold. Then for each k ∈ N0 there
exist numbers aj > 0 (j = 0, 1, · · · , k) such that for any κ ≥ κ0

∑
β∈ < k

||Dβϕ gd(α)
κ ||L2(Ωκ) ≤

k∑
j=0

aj ||Dj
1(P (D)ϕ) gm+j

κ ||L2(Ωκ)+

+ak+1

∑
|α′′ |≤m

||Dα
′′

ϕ gd(0, α
′′
)

κ ||L2(Ωκ)] ∀ϕ ∈ C∞
0 (Ωκ)· (2.12)
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Proof. The proof is by induction on k· Since <0 = <, the inequality (2.12) follows from
(2.10) for k = 0 . Assuming that inequalities (2.12) hold for k ≤ r, let us prove that
they hold for k = r + 1· Applying the Leibnitz formula we get∑

β ∈ <r+1

||Dβϕ gd(α)
κ ||L2(Ωκ) = (

∑
β ∈ <r+1\<r

+
∑

β ∈ <r

)||Dβϕ gd(β)
κ ||L2(Ωκ) =

=
∑
α ∈ <

||D(α1+r+1, α
′′
)ϕ gd(α1+r+1, α

′′
)

κ ||L2(Ωκ) +
∑

β ∈ <r

||Dβϕ gd(β)
κ ||L2(Ωκ)· (2.13)

By the inductive assumption inequality (2.12) holds for k = r, and by the de�nition
of the function d(α) (see Condition 1) of the function d(α) in Introduction) d(α1 +r+
1, α

′′
) = d(α) + r+ 1. Therefore the second summand in the right-hand side of (2.13)

is estimated by the right-hand side of (2.12) for k = r and thereby by the right-hand
side of (2.12) for k = r + 1.

Thus it su�ces to evaluate the �rst summand in the right-hand side of (2.13).
Applying once more the Leibnitz formula we obtain∑

α ∈ <

||D(α1+r+1, α
′′
)ϕ gd(α1+r+1, α

′′
)

κ ||L2(Ωκ) =

=
∑

α ∈ <; α1=0

||Dα
′′

[Dr+1
1 ϕ gr+1

κ ] gd(α)
κ ||L2(Ωκ)+

+
∑

α ∈ <; α1≥1

||Dα[Dr+1
1 ϕ gr+1

κ ] gd(α)
κ −

−
α1∑
j=1

Cj
α1

[D(α1−j+r+1, α
′′
)ϕ] (Dj

1g
r+1
κ ) gd(α)

κ ||L2(Ωκ) ≤

≤
∑
α ∈ <

||Dα[Dr+1
1 ϕ gr+1

κ ] gd(α)
κ ||L2(Ωκ)+

+
∑

α ∈ <; α1≥1

α1∑
j=1

Cj
α1
||[D(α1−j+r+1, α

′′
)ϕ] (Dj

1g
r+1
κ ) gd(α)

κ ||L2(Ωκ)· (2.14)

Let lj = max{r + 1− j, 0} (j = 1, · · · , α1), then
a) d(α) + lj ≥ d(α1 − j + r + 1, α

′′
) (j = 1, · · · , α1)

b) since |gκ(x1)| ≤ 1 and |x1|/κ ≤ 1 for x ∈ Ωκ, hence with some constants
bj > 0

|Dj
1 g

r+1
κ (x1)| ≤ bj g

lj
κ (x1); |x1| ≤ κ, (j = 1, · · · , α1)

|Dj
1 g

r+1
κ (x1) g

d(α)
κ | ≤ bj g

d(α)+lj
κ (x1) ≤ bj g

d(α1−j+r+1,α
′′

κ )(x1),

where βj ≡ (α1 − j + r + 1, α
′′
) ∈ <r (j = 1, · · · , α1)·

Thus the second summand in the right-hand side of (2.14) is estimated by the left-
hand side of (2.12) for k = r, which in turn, by the inductive assumption, is estimated
by the right-hand side of (2.12) for k = r + 1·
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Since Dr+1
1 ϕ gr+1

κ ∈ C∞
0 (Ωκ), it follows from Lemma 2.3 that for the �rst summand

in the right-hand side of (2.14) we get with a constant C1 > 0

∑
α ∈ <

||Dα[Dr+1
1 ϕ gr+1

κ ] g d(α)
κ ||L2(Ωκ) ≤ C1 ||P (D)[Dr+1

1 ϕ gr+1
κ ] gm

κ ||L2(Ωκ)+

+
∑

|α′′ |≤m

||Dα
′′

[Dr+1
1 ϕ gr+1

κ ] gd(0, α
′′
)

κ ||L2(Ωκ)· (2.15)

Applying the generalized Leibnitz formula (see [14], Theorem 11.1.7) we obtain for
the �rst component in the right-hand side of (2.15)

P (D)[Dr+1
1 ϕ gr+1

κ ] = P (D)[Dr+1
1 ϕ] gr+1

κ +
m∑

l=1

1

l!
P (l, 0

′′
)(D)[Dr+1

1 ϕ]Dl
1g

r+1
κ ·

From here we get with a constant C2 > 0

|P (D)[Dr+1
1 ϕ gr+1

κ ]| ≤ |P (D)[Dr+1
1 ϕ] gr+1

κ |+

+C2

m∑
l=1

(
2

κ
)l |P (l,0

′′
)(D)[Dr+1

1 ϕ]Dl
1g

r+1
κ |·

From which it follows for every κ > 2

||P (D)[Dr+1
1 ϕ gr+1

κ ] gm
κ ||L2(Ωκ) ≤ ||P (D)[Dr+1

1 ϕ]gr+1+m
κ ||L2(Ωκ)+

+C2
2

κ

m∑
l=1

||P (l, 0
′′
)(D)[Dr+1

1 ϕ] gr+1+m
κ ||L2(Ωκ)· (2.16)

Let

P (l, 0
′′
)(D) =

∑
ν ∈ (P )

γ l
ν D

(ν− l, ν
′′
) (l = 1, · · · ,m)·

Then

P (l, 0
′′
)(D)[Dr+1

1 ϕ] gr+1+m− l
κ = [

∑
ν ∈ (P )

γ l
ν D

(ν1+r+1− l, ν
′′
)ϕ] gr+1+m−l

κ ·

Since r+1+m− l ≤ r+1+m−1 for all ν ∈ < (l = 1, · · · ,m) and (r+m, ν
′′
) ∈ <r,

it follows that (r + 1 +m− l, ν
′′
) ∈ <r for all ν ∈ < and l = 1, · · · ,m·

On the other hand since 0 ≤ gκ(x1) ≤ 1 for x ∈ Ωκ, we see that gr+1+m− l
κ (x1) ≤

gr+1+ν1− l
κ (x1) for x ∈ Ωκ· Therefore we get from here with a constant C3 > 0 being
independent of r

m∑
l=1

||P (l, 0
′′
)(D)[Dr+1

1 ϕ] gr+1+m− l
κ ||L2(Ωκ) ≤ C3

∑
β ∈ <r

||Dβϕ gd(β)
κ ||L2(Ωκ)·
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This means that the second summand in the right-hand side of (2.16) is estimated
by the left-hand side of (2.12) for k = r, which in turn, by the inductive assumtion, is
estimated by the right-hand side of (2.12).

The �rst component in the right-hand side of (2.16) coincides with last term of the
�rst summand in the right-hand side of (2.12) for k = r+ 1· The result is that the �rst
component in the right - hand side of (2.15) is estimated by the right - hand side of
(2.12) for k = r + 1·

For the second summand in the right-hand side of (2.15) we have

∑
|α′′ |≤m

||Dα
′′

[Dr+1
1 ϕ gr+1

κ ] gd(0, α
′′
)

κ ||L2(Ωκ) ≤
∑

|α′′ |≤m

||D(r+1, α
′′
)ϕ gd(0, α

′′
)

κ + r + 1||L2(Ωκ)·

Since m ≥ 2 and d(0, α
′′
) + r + 1 = d(r + 1, α

′′
), it follows (r + 1, α

′′
) ∈ <r for all

α
′′ ∈ Nn

0 , |α
′′| ≤ m and therefore we get with a constant C4 > 0

∑
|α′′ |≤m

||D(r+1, α
′′
)ϕ gd(0, α

′′
)

κ + r + 1||L2(Ωκ) ≤ C4

∑
β ∈ <r

||Dβϕ gd(β)
κ ||L2(Ωκ)·

By the inductive assumption the right-hand side of this inequality is estimated by
the right-hand side of (2.12) for k = r. It follows from the last two inequalities that the
second summand in the right-hand side of (2.15) is estimated by the right-hand side of
(2.12) for k = r + 1 as well.

3 Function spaces and the main result

Let the functions g(t), d(α), the domain Ωκ, and for each k ∈ N0 the polyhedron <k

have the same meaning as above. Denote by Hk = Hk(<k, g, d, Ωκ) the set of all
function u locally integrable on Ωκ, with �nite norms

||u||Hk
≡
∑
α∈<k

||Dαu gd(α)
κ ||L2(Ωκ)· (3.1)

It is obvious that for any k ∈ N0 and any functions d(α) and g(t), satisfying stated
above conditions, the set Hk with the norm (3.1) is complete normed space, coinciding
with the weighted Sobolev space Wm

2,g(Ωκ) for m2 = 0· For m2 6= 0 the space Hk is
often called multianisotropic weighted Sobolev space.

First we need some properties of spaces Hk.

Lemma 3.1. For each k ∈ N0 and any κ > 0
a) the norm

||u|| ′Hk
=
∑

α∈ <k

||Dα[ug d(α)
κ ]||L2(Ωκ) (3.2)

is equivalent to the initial norm (3.1) of the space Hk,
b) the set C∞

0 (Ωκ) is dense in Hk,
c) Hk is semi - local ( see [14], De�nition 10.1.18), i.å. if ϕ ∈ C∞

0 (Ωκ) and u ∈ Hk,
then ϕu ∈ Hk·
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Proof. We start with part a). Applying the Leibnitz formula and property 1) of the
function d(α), we get with a constant C = C(k) > 0

||u|| ′Hk
≤
∑

α∈ <k

α1∑
l=0

C l
α1
||(D(α1− l, α

′′
)uDlg d(α)

κ )||L2(Ωκ) ≤

≤
∑

α∈ <k

α1∑
l=0

C l
α1
κ− l d(α)!

(d(α)− l)!
||(D(α1− l, α

′′
)u g d(α)− l

κ )||L2(Ωκ) ≤

≤ C
∑

β∈ <k

||(Dβu) g d(β)
κ ||L2(Ωκ) = C ||u||Hk

, (3.3)

where C does not depend on κ when κ ≥ 1·
To prove the converse estimate �rst we show that for any multiindex α ∈ <k there

exists a number C1 = C1(α) > 0 such that

||(Dαu) g d(α)
κ ||L2(Ωκ) ≤ C1

α1∑
l=0

||D(l, α
′′
)(u g d(l, α

′′
)

κ )||L2(Ωκ)· (3.4)

Since g depends on only x1, inequality (3.4) is hold for α1 = 0 and for any C1 ≥ 1.
Let α1 > 1 and κ ≥ 1. Applying once more the Leibnitz formula and property 1) of
the function d(α), we get with a constant C2 = C2(α) > 0

||(Dαu) g d(α)
κ ||L2(Ωκ) = ||(Dα(u g d(α)

κ )−
α1∑
l=0

(D(α1− l, α
′′
)u)Dlg d(α)

κ ||L2(Ωκ) ≤

≤ ||Dα(u gd(α)
κ )||L2(Ωκ) + C2

α1−1∑
l=0

||(D(l, α
′′
)u)g d(l, α

′′
)

κ ||L2(Ωκ),

which means that estimate (3.4) for a multiindex α = (α1, α
′′
) will be proved once we

prove it for the multiindex (α1 − 1, α
′′
)·

Continuing this process after α1 − 1 step we get estimate (3.4).
Summing up inequalities (3.4) on all α ∈ <k, we get with a constant C3 > 0

||u||Hk
≤ C3 ||u||

′

Hk
∀u ∈ Hk·

Taking into account (3.3) the last inequality proves part a).
For the proof of part b) we shall assume that the function u ∈ Hk is �xed. Then

by the de�nition of the improper Lebesgue integral for each ε > 0 there exist numbers
δ ∈ (0, κ) and M ≥ 1 such that

||u||H(<k, g, Ωκ\ΩM
κ−δ) < ε, (3.5)

where ΩM
κ−δ = {x ∈ En, |x1| < κ− δ, |xj| < M, j = 2, · · · , n}·

Let the numbers κ, δ and M be �xed . We construct nonnegative functions ψ1, δ ∈
C∞

0 (E1) of variable x1 ∈ E1 and ψ2 ∈ C∞
0 (En−1) of variables x

′′
= (x2, · · · , xn) ∈ En−1

such that
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1) ψ1, δ(x1) = 1 for |x1| < κ− δ, ψ1, δ = 0 for |x1| > κ− δ/2,
2) ψ2(x

′′
) = 1 for |xj| < M (j = 2, · · · , n), ψ2(x

′′
) = 0 for |xj| ≥ M + 1 (j =

2, ..., n), ψ2 ∈ C∞
0 (En−1),

3) for a number b ≥ 1 and for all x = (x1, x
′′
) ∈ En

ψ
(j)
1, δ(x1) ≤ b δ−j (j = 0, 1, · · · ,m); |Dα

′′

ψ2(x
′′
)| ≤ b |α′′| ≤ m·

It is obvious that such a function ψ2 exist and satis�es Conditions 2), 3).
Let us construct the function ψ1, δ· Let χA be the characteristic function of set A =

A(κ, δ) = {|x1| ≤ κ − 3
4
δ} and 0 ≤ ϕ ∈ C∞

0 (−1, 1),
∫
ϕ(x)dx = 1, ϕε(x) = ε−1ϕ(x

ε
),

put

ψ1, δ(x1) = (χA ∗ ϕδ/4)(x1) =

∫
E1

χA(x1 − t)ϕδ/4(t)dt =

=

∞∫
−∞

χA(z)ϕδ/4(x1 − z)dz· (3.6)

It is obvious that ψ1, δ ∈ C∞
0 (E1)· We show that ψ1, δ satis�es condition 1).

Let |x1| ≤ κ− δ· Because of |t| ≤ δ/4 and |x1 − t| ≤ |x1|+ |t| ≤ κ− δ + δ/4 =
κ− 3

4
δ, then χA(x1 − t) = 1 and from (3.6) we have for |x1| ≤ κ− δ

ψ1, δ(x1) =

δ/4∫
−δ/4

ϕδ/4(t)dt =

δ/4∫
−δ/4

(δ/4)−1ϕ(
t

δ/4
)dt = 1·

Let |x1| ≥ κ− δ/2· Then |x1− t| ≥ |x1|− |t| > κ− δ/2− δ/4 = κ− 3
4
δ, therefore

χA(x1 − t) = 0 and it follows from (3.6) that ψ1, δ(x1) = 0·
Let us prove Property 3) of function ψ1, δ· From (3.6) and the de�nition of the

function χA we have

ψ1, δ(x1) =

κ− 3
4
δ∫

−(κ− 3
4
δ)

ϕδ/4(x1 − z)dz = (
δ

4
)−1

κ− 3
4
δ∫

−(κ− 3
4
δ)

ϕ(
x1 − z

δ/4
)dz·

Therefore

ψ
(j)
1, δ(x1) = (

δ

4
)−1

κ− 3
4
δ∫

−(κ− 3
4
δ)

Dj
x1
ϕ(
x1 − z

δ/4
)dz =

= (
δ

4
)−j−1

κ− 3
4
δ∫

−(κ− 3
4
δ)

(Dj
x1
ϕ)(

x1 − z

δ/4
)dz = (

δ

4
)−j

x1+(κ− 3
4
δ)∫

x1−(κ− 3
4
δ)

ϕ(j)(t)dt·

Then
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|ψ(j)
1, δ(x1)| ≤ (

δ

4
)−j

∞∫
−∞

|ϕ(j)(t)|dt ≡ Cj δ
−j (j = 0, 1, · · · ,m)·

Denoting by b the maximum of the numbers {Cj}, we get the property 3) of the
function ψ1, δ·

After the construction of functions ψ1, δ and ψ2, we put v(x) =
u(x)ψ1, δ(x1)ψ2(x

′′
)· Then supp v = ΩM

κ−δ/2·
Henceforth it is assumed that for all α ∈ <k the functions Dαu are continued by

zero outside of Ωκ. We denote by Dαu the continued functions too.
Since v(x) = u(x) for x ∈ ΩM

κ−δ and Dαu ∈ L2 for α ∈ <k, we obtain by (3.5)

∑
α∈<k

||(Dαv −Dαu) gd(α)
κ || L2(En) =

∑
α∈<k

||(Dαv −Dαu) gd(α)
κ || L2(En\ΩM

κ−δ) ≤

≤
∑
α∈<k

[ ||(Dαv g d(α)
κ || L2(En\ΩM

κ−δ) + ||(Dαu g d(α)
κ || L2(Ωκ\ΩM

κ−δ) ] ≤

≤
∑
α∈<k

||Dα(u(x)ψ1, δ(x1)ψ2(x
′′
)) g d(α)

κ || L2(Ωκ\ΩM
κ−δ) + ε· (3.7)

Since gκ(x1) ≤ (2δ)/κ for x ∈ supp (ψ1, δψ2) ∩ (Ωκ \ ΩM
κ−δ) and g

d(α)
κ ≤ g

d(β)
κ for

β ≤ α applying the Leibnitz formula and Properties 1) � 3) of the functions ψ1, δ, ψ2 we
obtain for the �rst part in the right-hand side of (3.7) with a constant C1 = C1(κ) > 0∑

α∈<k

||Dα(u(x)ψ1, δ(x1)ψ2(x
′′
)) g d(α)

κ ||L2(Ωκ\ΩM
κ−δ) ≤

≤
∑
α∈<k

∑
β≤α

Cβ
α ||DβuDα1−β1

1 ψ1, δD
α2−β2

2 · · ·Dαn−βn
n ψ2 g

d(α)
κ ||L2(Ωκ\ΩM

κ−δ) ≤

≤
∑
α∈<k

∑
β≤α

Cβ
α b

|α−β| δ−(α1−β1) (
δ

κ
) α1−β1 ||Dβu g d(α)

κ ||L2(Ωκ\ΩM
κ−δ) ≤

≤ C1

∑
β∈<k

||Dβu g d(β)
κ ||L2(Ωκ\ΩM

κ−δ) ≤ C1 ε·

From here and (3.7 ) we get∑
α∈<k

||(Dαv −Dαu) g d(α)
κ ||L2(En) ≤ (C1 + 1) ε· (3.8)

Let h > 0, Sh = {x ∈ En; |x| < h}, χ ∈ C∞
0 (S1), χ(x) ≥ 0,

∫
χ(x)dx =

1, χh(x) = h−2 · χ(x/h) and vh = v ∗ χh·
One can easily to see that vh ∈ C∞(En) for h > 0, where vh(x) = 0 for x /∈

supp v ∪ Sh. On the other hand since supp v ∪ Sh ⊂ Ωκ for h ∈ (0, δ/4) we have
vh ∈ C∞

0 (Ωκ) for h ∈ (0, δ/4)·
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Since gκ(x1) ≤ 1 and u ∈ Hk, we obtain Dαv ∈ L2(E
n) for all α ∈ <k, where

(see, for instance, [1] , 6.3.(2)) Dα(vh) = (Dαv)h· Then by Young's inequality and by
the continuity in the mean of functions from L2 we get∑

α∈ <k

||Dα(vh − v) gd(α)
κ ||L2(En) ≤

∑
α∈ <k

||Dα(vh − v)||L2(En) =

=
∑

α∈ <k

||(Dαv)h −Dαv||L2(En) ≤
∑

α∈ <k

sup
|y|<h

||Dαv(x− y)−Dαv(x)||L2(En) → 0

as h→ 0·
Because ε > 0 is arbitrary we get the proof of part b) of the Lemma from (3.5) -

(3.8).
We obtain the proof of part c) if for any α ∈ <k we denote by φα(x) =

ϕ(x)/g
d(α)
κ (x1) for x ∈ supp ϕ and φα(x) = 0 for x /∈ supp ϕ, and note that

φα ∈ C∞
0 (En).

Let P (D) be a regular partially hypoelliptic (with respect to hyperplane x
′′

=
(x2, ..., xn) = 0 of the space En ) operator with Newton polyhedron < = <(m,m2),
the symbol P (ξ) of which satis�es conditions (1.1) - (1.2). Denote

N(P, κ) = {u;D(0,α
′′
)u ∈ L2(Ωκ), |α′′| ≤ m,P (D)u = 0 on Ωκ}.

Let ϕ ∈ C∞
0 (−1, 1), ϕ ≥ 0,

∫
ϕ(t)dt = 1, h > 0 and ϕh(x) = h−1 ϕ(t/h)·

Arguing as above it is assumed that the functions u are continued by zero outside of
Ωκ and the continued functions we denote by u.

Next we put for any h > 0

uh(x) =

∫
u(x1 − y1, x

′′
)ϕh(y1)dy1·

It is easy to verify that Dαuh ∈ L2 for α ∈ <k (k = 0, 1, · · · ) and Dα
′′
uh =

(Dα
′′
u)h for |α′′| ≤ m·

Lemma 3.2. Let u ∈ N(P, κ)· Then for any l = 0, 1, · · ·

||(Dl
1P (D)uh)gm+l

κ ||L2(Ωκ) → 0 (3.9)

as h→ 0+·

Proof. Since P (D)u = 0 for u ∈ N(P, κ), we have that Dl
1[P (D)u] = 0 (l = 0, 1, · · · ).

Consequently Dl
1P (D)uh(x) = (Dl

1P (D)u)h(x) = 0 (l = 0, 1, · · · ) for x ∈ Ωκ−h, (see
[1] , 6.2.(2)). Therefore to prove the relation (3.9) it su�ces to show that for any
l = 0, 1, · · ·

||(Dl
1P (D)uh) · gm+l

κ ||L2(Ωκ\Ωκ−h) → 0 (3.10)

as h→ +0·
Let



On selection of in�nitely di�erentiable solutions 59

Dl
1P (D) =

∑
α∈(Dl

1P )

γk
αD

α

and

γ = max{|γl
α|, α ∈ (Dl

1P )}·

Since gκ(x1) ≤ 2h/κ for x ∈ Ωκ\Ωκ−h, by Young's inequality we obtain with a constant
Cl = Cl(κ) > 0

||(Dl
1P (D)uh) gm+l

κ ||L2(Ωκ\Ωκ−h) ≤ (
2h

κ
)m+l ||Dl

1P (D)uh||L2(Ωκ\Ωκ−h) ≤

≤ γ (
2h

κ
)m+l

∑
α∈(P )

||D(α1+l,α
′′
)uh||L2(Ωκ\Ωκ−h) ≤

≤ γ (
2h

κ
)m+l

∑
α∈(<)

||
∫

En−1

(Dα
′′

u)(x1 − y1, x
′′
)Dα1+l

1 ϕh(y1)dy1||L2(Ωκ\Ωκ−h) ≤

≤ γ (
2h

κ
)m+l

∑
α∈<

||Dα1+l
1 ϕh||L1 sup

y1<h
||(Dα

′′

u)(x1 − y1, x
′′
)||L2(Ωκ\Ωκ−h) ≤

≤ Cl(
1

h
)m+l (

2h

κ
)m+l

∑
|α′′ |≤m

sup
y1<h

||(Dα
′′

u)(x1 − y1, x
′′
)||L2(Ωκ\Ωκ−h)· (3.11)

By the de�nition of the set N(P, κ) we have Dα
′′
u ∈ L2(E

n) for |α′′| ≤ m.
Therefore by Fubini's theorem we obtain

ωα′′(x1) ≡
∫

En−1

(Dα′′u)2(x)dx
′′ ∈ L1(E

1); ωα′′(x1) = 0, |x1| > κ

and by the continuity of the Lebesgue integral in measure we have for h → +0, and
|α′′| ≤ m

sup
y1<h

||(Dα
′′

u)(x1 − y1, x
′′
)|| = sup

y1<h
||ωα′′(x1 − y1)||1/2

L1(κ−h<|x1|<κ) → 0·

Hence relation (3.10) is proved using (3.11).

The main goal of this paper is to prove the following statement.

Theorem 3.1. Let < = <(m1,m2) be the Newton polyhedron of an operator P (D)
with the symbol P (ξ) satisfying conditions (1.1) - (1.2) and the number κ0 > 0 be
chosen as in Lemma 2.3. Then

a) N(P, κ) ⊂ H(<l, g, Ωκ) for any κ ≥ κ0 and l = 0, 1, ...
b) N(P, κ) ⊂ C∞(Ωκ) for all κ ≥ κ0·
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Proof. of the �rst part. Let l ∈ N0, κ ≥ κ0, u ∈ N(P, κ)· We must prove that u ∈
H(<l, g, Ωκ)· As above it is assumed that u being continued by zero outside of Ωκ·

Let h > 0, ϕ ∈ C∞
0 (−1, 1),

∫
ϕ(t)dt = 1, and ϕh(t) = h−1 ϕ(t/h)· We put

uh(x) = u ∗ ϕh =
1

h

∫
E1

u(x1 − t, x
′′
)ϕ(

t

h
)dt,

Applying Lemma 2.4 and part b) of Lemma 3.1, we obtain

∑
β∈ < l

||(Dβuh)g d(β)
κ || L2( Ωκ) ≤

l∑
j=0

aj ||Dj
1(P (D)uh)g m+j

κ || L2( Ωκ)+

+a l+1

∑
|β′′ |≤m

||Dβ
′′

uh g
d(0, β

′′
)

κ || L2(Ωκ)

for κ ≥ κ0· Let {hk} be an arbitrary in�nitesimal sequence. From this inequality and
by Lemma 3.2 we obtain that ||uhp − uhs ||Hk

→ 0, as p, s → ∞ i.e. uhk
is a Cauchy

sequence in Hl for every l ∈ N0· Since the space Hl is complete the sequence {hk}
converges. It is obvious that in L2(Ωκ) the sequence uhl

converges to initial function
u· On the other hand, since the operator of generalized di�erentiation is closed (see [1],
Lemma 6.2 ), uhk

→ u as k →∞ in Hk too, where u ∈ Hk· The part a) is proved.
To prove the second part of the Theorem we put k0(ξ) = 1 + |P (ξ)|, kj(ξ) =

k0(ξ).(1 + |ξ1|)j (j = 1, 2, ...). Since the operator P (D) satis�es the conditions (1.1)-
(1.2), it is easy to verify that kj(ξ) (j = 0, 1, · · · ) are tempered weight functions.
On the other hand since the operator P (D) is partially hypoelliptic with respect to
hyperplane x

′′
= (x2, ..., xn) = 0, and taking account the G�arding - Malgrange Theorem

(see Introduction), in order to prove the second part it su�ces to show that

N(P, κ) ⊂ Bloc
2, kj

(Ωκ), κ ≥ κ0, j = 0, 1, · · · ·

Let ϕ ∈ C∞
0 (Ωκ). In view of Parseval's equality and the point b) of Lemma 3.1 we

have with positive constants C1 = C1(<j), C2 = C2(<, ϕ)

||uϕ|| B2, kj
(Ωκ) = ||(1 + |P (ξ)|)(1 + |ξ1|)jF (uϕ)(ξ)|| L2(En) ≤

≤ C1 ||u · ϕ||Hj
≤ C2 ||u||

′

Hj
.

It follows from this and the part a) of Lemma 3.1 that uϕ ∈ B2, kj
(Ωκ) for any

function ϕ ∈ C∞
0 (Ωκ), i.e. u ∈ Bloc

2, kj
(Ωκ) for any κ ≥ κ0 and j = 0, 1, · · · ·

Remark. Burenkov's Theorem quoted in Introduction cannot be applied to proving
that N(P, κ) ⊂ C∞ because N(P, κ) 6⊂ [U2]1(Ωκ).

Theorem 3.1 shows that a priori assumption u ∈ [U2]m(Ω) in Burenkov's Theorem
can be weakened at least for the class of operators under consideration. An interesting
question arises. Is it possible to further weaken the assumption u ∈ [U2]m(Ω)? Can it
be replaced just by u ∈ [L2]m(Ω)?



On selection of in�nitely di�erentiable solutions 61

References

[1] O.V. Besov, V.P. Il'in, S.M. Nikolskii, Integral representations of functions and embedding the-
orems. Nauka, Moscow, 1975 (in Russian). English transl. John Wiley and sons, New York 1
(1978), v.2, 1979.

[2] Ya.S. Bugrov, Embedding theorems for some funtion spaces. Proc. Steklov Inst. Math. 77 (1965),
45 - 64 (in Russian).

[3] V.I. Burenkov, An analogue of H�ormander's theorem on hypoellipticity for functions converging
to 0 at in�nity. Proc. 7th Soviet - Czechoslovak Seminar. Yerevan, 1982, 63 - 67 (in Russian).

[4] V.I. Burenkov, Investigation of spaces of di�erentiable functions de�ned on irregular domains.
Doctor's degree thesis. Steklov Inst. Math., Moscow, 1982 (in Russian).

[5] V.I. Burenkov, Conditional hypoellipticity and Fourier multipliers in weighted Lp−spaces with
an exponential weight. Proc. of the Summer School "Function spaces, di�erential operators,
nonlinear analysis" held in Fridrichroda in 1993. B.G. Teubner, Stuttgart - Leipzig. Teubner -
Texte zur Matematik 133 (1993), 256 - 265.

[6] L. Ehrenpreis, Solutions of some problems of division. 4. Amer. J. Math. 82 (1960), 522 - 588.

[7] J. Friberg, Estimates for partially hypoelliptic di�erential operators. Medd. Lunds Univ. Mat.
Sem. 17 (1963).

[8] L. G�arding, B. Malgrange, Operateurs di�erentiels partillement hypoelliptiques. Math. Scand. 9
(1961), 5 - 21, .

[9] H.G. Ghazaryan, V.N. Margaryan, On in�nite di�erentiability of solutions of nonhomogenous
almost hypoelliptic equations. Eurasian Math. Journal 1, no. 1 (2010), 54 - 72.

[10] H.G. Chazarian, V.N. Margarian, Essential self-adjointness of semielliptic operators. J. Integral
Eq. Math. Phys. 1, no. 1 (1992), 67-104.

[11] E.A. Gorin, Partially hypoelliptic partial di�erential equations with constant coe�cients. Sib.
math. Journal 3, no. 4 (1962), 500 - 526 (in Russian).

[12] E.A. Gorin, Asimptotic properties of polynomials and algebraic functions of several variables.
Uspehi Mat. Nauk 16:1 (1961), 91 - 118 (in Russian).

[13] L. H�ormander, Hypoelliptic Di�erential operators. Ann. Inst. Fourier (Grenoble) 11,477 - 492.
1961.

[14] L. H�ormander, The Analysis of linear Partial Di�erential Operators. II. Springer - Verlag. 1983.

[15] G.G. Kazaryan, On almost hypoelliptic polynomials. Doklady Ross. Acad. Nauk. Matematika
398, no. 6 (2004), 701 - 703 (in Russian).

[16] G.G. Kazaryan, On a family of hypoelliptic polynomials. Izvestija Akad. Nauk. Armjan. SSR,
ser. matem. 9 (1974), 189 - 211 (in Russian).

[17] G.G. Kazaryan, V.N. Margaryan, On weighted bounds for functions in anizotropic Sobolev -
Slobodetski spaces. Izvestija Nat. Akad. Nauk Armenii, ser. matem. 32, no. 6 (1997), 12-25 (in
Russian).

[18] B. Malgrange, Sur un class d'operateurs di�erentiels hypoelliptiques. Bull. Math. France 85
(1957), 283 - 306.



62 H.G. Ghazaryan

[19] V.N. Margaryan, H.G. Ghazaryan, On smoothness of solutions of a class of almost hypoelliptic
equations. Izv. AN Armenii. Matematika 43, no. 3 (2008), 40 - 66 (in Russian). English transl.
in Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences) 43, no. 3
(2008), 28 - 54.

[20] V.P. Mikhailov, The behavior of certain clases of polynomials at in�nity. Dokl. Akad. Nauk SSSR
164 (1965), 499 - 502 (in Russian). English transl. in Soviet Math. Dokl. 6 (1965).

[21] V.P. Mikhailov, The behavior of a class of polynomials at in�nity. Proc. Steklov Inst. Math. 91,
(1967), 59 - 81 (in Russian).

[22] S.M. Nikolskii, Proof of uniquness of the classical solution of �rst boundary value problem.
Izvestija AN SSSR, ser. matem. 27 (1963), 1113 - 1134 (in Russian).

[23] J. Peetre, Theoremes de regularite pour quelques classes d'operateurs di�erentiels. Thesis - Lund.,
1959.

[24] L.R. Volevich, S.G. Gindikin, The method of Newton's polihedron in the theory of PDE. Kluwer.
1992.

Haik Ghazaryan
Department of mathematics and mathematical modelling
Russian � Armenian (Slavonic) State University
123 Ovsep Emin St.
0051 Yerevan, Armenia
E-mail: haikghazaryan@mail.ru

Received: 15.10.2011


