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Abstract. In this paper we study the validity of various types of minimax condition
for operators in Schatten ideals of compact operators on separable Hilbert spaces.

1 Introduction

Let f : X × Λ → R be a real function on the product of non-empty sets X and Λ.
The classical minimax problem is the problem to �nd suitable conditions on f that
guarantee the validity of the equality

inf
x∈X

(
sup
λ∈Λ

f(x, λ)

)
= sup

λ∈Λ

(
inf
x∈X

f(x, λ)

)
. (1.1)

For an overview of the subject see [7]. Borenshtein and Shulman proved in [4] that if
X is a compact metric space, Λ is a real interval and f is continuous, then (1.1) holds
provided that, for each x ∈ X, the function f(x, ·) is concave; and for each λ ∈ Λ, every
local minimum of the function f(·, λ) is a global minimum. Some weaker conditions
on f that ensure the validity of (1.1) were established by Saint Raymond in [9] and
Ricceri in [8].

The minimax conditions has many interesting applications to the operator theory
(see [1], [2], [4] and [6]). In [4], for example, the authors used (1.1) to prove Asplund-
Ptak equality inf

λ∈C
‖A− λB‖ = sup

x∈B(H)

inf
λ∈C

‖Ax− λBx‖ , for operators A,B on a Hilbert

space H and established that, for Banach spaces, it should be replaced by an inequality.

In this paper we study the validity of various types of minimax condition (1.1) for
operators in Schatten ideals of compact operators. These minimax conditions are linked
to the approximation of operators by �nite-rank operators in the Schatten norms.

Let H be a separable Hilbert space. Let B(H) be the C*-algebra of all bounded
operators on H with operator norm ‖·‖ and let C(H) be the closed ideal of all compact
operators in B(H). A two-sided ideal J of B(H) is symmetrically normed (s. n.) if
(see [5]) it is a Banach space in its own norm ‖ · ‖J and ‖AXB‖J ≤ ‖A‖‖X‖J‖B‖, for
A,B ∈ B(H) and X ∈ J. By Calkin theorem, all s. n. ideals lie in C(H).



30 T. Formisano, E Kissin

The most important class of s. n. ideals - the class of Schatten ideals - is de�ned in
the following way (see � III.4 [5]). Let c0 be the space of all sequences of real numbers
converging to 0. Consider the following functions φp on c0:

φp(ξ) =

(
∞∑
i=1

|ξi|p
)1/p

, for 1 ≤ p <∞, where ξ = (ξ1, ..., ξn, ...) ∈ c0.

For each A ∈ C(H), the non-increasing sequence s(A) = {si(A)} of all singular
values of A, which are eigenvalues of the operator (A∗A)1/2, belongs to c0. For each
p ∈ [1,∞), the set of compact operators

Sp = {A ∈ C(H): φp(s(A)) <∞} with norm ‖A‖p = φp(s(A)) =

(∑
j

sp
j(A)

)1/p

(1.2)
is a Banach *-algebra and a symmetrically normed ideal of B(H):

‖A∗‖p = ‖A‖p and ‖BAC‖p ≤ ‖B‖‖A‖p‖C‖ for all A ∈ Sp, B, C ∈ B(H). (1.3)

The algebras Sp are called Schatten ideals. We will also write S∞ = C(H). Then

‖A‖∞ = ‖A‖ = sup sj = s1.

All Sp are separable algebras and the ideal of all �nite rank operators in B(H) is dense
in each of them. Moreover,

Sq ⊂ Sp, if q < p ≤ ∞, and ‖A‖p ≤ ‖A‖q if A ∈ Sq. (1.4)

We extend the norms ‖·‖p to B(H), by setting ‖A‖p = ∞, if A ∈ B(H) and A /∈ Sp.
Thus

‖A‖p <∞ if A ∈ Sp, and ‖A‖p = ∞ if A /∈ Sp, for p ∈ [1,∞). (1.5)

Let {An}∞n=1 be a sequence of operators in B(H). It converges to a bounded operator
A in the weak operator topology (w.o.t), if

(Anx, y) → (Ax, y) for all x, y ∈ H;

and in the strong operator topology, if

‖Ax− Anx‖ → 0 for all x ∈ H.

All Schatten ideals Sp, p ∈ [1,∞), share the following important property.

Theorem 1.1. [5, Theorem III.5.1]Let p ∈ [1,∞) and let a sequence {An} of operators
from Sp converge to A ∈ B(H) in w.o.t. If sup

n
‖An‖p = M < ∞ for some M > 0,

then A ∈ Sp and ‖A‖p ≤M.

Theorem 1.1 implies the following result.
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Corollary 1.1. Let {Tn} be a sequence of operators in B(H) that converges to 1H in
s.o.t. Let p ∈ [1,∞) and let A ∈ B(H). The following conditions are equivalent.

(i) A belongs to Sp.
(ii) for some M1 > 0, A satis�es

sup
n
‖TnATn‖p = M1 <∞. (1.6)

(iii) for some M2 > 0, A satis�es sup
n
‖TnA‖p = M2 <∞.

Proof. By the uniform boundedness principle, there is L > 0 such that sup
n
‖Tn‖ ≤ L.

(i) → (iii). If A ∈ Sp then, by (1.3), we have ‖TnA‖p ≤ ‖Tn‖ ‖A‖p ≤ L ‖A‖p .
Hence (iii) holds for M2 = L ‖A‖p .

(iii) → (ii) follows from the fact that, by (1.3), ‖TnATn‖p ≤ ‖TnA‖p ‖Tn‖ ≤M2L.
(ii) → (i). Let (1.6) hold. The sequence {TnATn} converges to A in s.o.t. Indeed,

we have ‖z − Tnz‖ → 0, as n→∞, for all z ∈ H. Hence, for each x ∈ H,

‖Ax− TnATnx‖ ≤ ‖Ax− TnAx‖+ ‖TnAx− TnATnx‖
≤ ‖Ax− TnAx‖+ ‖Tn‖ ‖A‖ ‖x− Tnx‖ → 0, as n→∞.

Thus {TnATn} converges to A in w.o.t. As ‖TnATn‖p ≤M1 <∞, all operators TnATn

belong to Sp. It follows from Theorem 1.1 that A ∈ Sp and ‖A‖p ≤M1.

Corollary 1.1 is partially stated in Theorem III.5.2 of [5] but only for monotonically
increasing sequence of �nite rank projections. We gave its proof here for the reader's
convenience.

It should be noted that Corollary 1.1 does not hold for p = ∞, that is, for S∞ =
C(H), since ‖·‖∞ coincides with the usual operator norm ‖·‖ , so that (1.6) holds for
all operators A ∈ B(H) and not only for compact operators.

The following result shows that each ideal Sp, p ∈ [1,∞], (including S∞ = C(H))
has an approximate identity.

Theorem 1.2. [5, Theorem III.6.3] Let a sequence of bounded operators {Tn} on H
converge to 1H in s.o.t. Then {Tn} is an approximate identity in all ideals Sp, p ∈
[1,∞], that is, for each A ∈ Sp,

‖A− TnA‖p → 0 and ‖A− TnATn‖p → 0, as n→∞. (1.7)

Corollary 1.2. Let a sequence of bounded operators {Tn} on H converge to 1H in
s.o.t. Suppose that sup

n
‖Tn‖ ≤ 1. Then, for each A ∈ B(H),

sup
n
‖TnATn‖p = ‖A‖p . (1.8)

Proof. Let A ∈ Sp. Then, by (1.3), ‖TnATn‖p ≤ ‖Tn‖ ‖A‖p ‖Tn‖ ≤ ‖A‖p . On the other
hand, by (1.7), lim

n→∞
‖TnATn‖p = ‖A‖p . Hence sup

n
‖TnATn‖p = ‖A‖p .

Let A /∈ Sp. Then, by (1.5), ‖A‖p = ∞. If sup
n
‖TnATn‖p <∞ then it follows from

Corollary 1.1 that A ∈ Sp, a contradiction. Hence sup
n
‖TnATn‖p = ∞ = ‖A‖p .
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2 Some minimax condition for norms in Sp

Let {Tn} be a sequence of bounded operators onH that converges to 1H in the s.o.t. For
each A ∈ B(H), consider the function fA(p, n) = ‖TnATn‖p , for n ∈ N and p ∈ [1,∞).
In this section we will show that fA satis�es the following minimax condition:

inf
p∈[1,∞)

sup
n
fA(p, n) = sup

n
inf

p∈[1,∞)
fA(p, n)

in the following two cases:
1) when A ∈ ∪p∈[1,∞)S

p,
2) when A /∈ ∪p∈[1,∞)S

p and TkATk /∈ ∪p∈[1,∞)S
p for some k.

We will also show that the inverse minimax condition

inf
n

sup
p∈[1,∞)

fA(p, n) = sup
p∈[1,∞)

inf
n
fA(p, n)

holds for all operators A in B(H). The following lemma contains simple norm equali-
ties.

Lemma 2.1. Let A ∈ Sq, for some q ∈ [1,∞). Then

lim
q≤p→∞

‖A‖p = ‖A‖ . (2.1)

Let a sequence of bounded operators {Tn} on H converge to 1H in the s.o.t. If a
sequence {pn} in [q,∞) satis�es lim

n→∞
pn = ∞, then

lim
n→∞

‖TnATn‖pn
= ‖A‖ . (2.2)

Proof. Let {sj} be the non-increasing sequence of all singular values of A (the eigen-
values of the operator (A∗A)1/2). Set αj =

sj

s1
. Then all αj ≤ 1. As A ∈ Sq, the series∑∞

j=1 s
q
j = sq

1

∑∞
j=1 α

q
j converges. Hence we can �nd N such that

∑∞
j=N α

q
j < 1, so that∑∞

j=N α
p
j ≤

∑∞
j=N α

q
j < 1, for all p > q. Therefore,

∞∑
j=1

sp
j = sp

1

∞∑
j=1

αp
j = sp

1

N−1∑
j=1

αp
j + sp

1

∞∑
j=N

αp
j ≤ sp

1(N − 1) + sp
1 = Nsp

1.

Thus

s1 ≤

(
∞∑

j=1

sp
j

)1/p

= ‖A‖p ≤ s1N
1/p → s1, as p→∞.

Hence lim
p→∞

‖A‖p = s1 =
∥∥(A∗A)1/2

∥∥ = ‖A‖ which completes the proof of (2.1).

As all pn ≥ q, it follows from (1.4) that A belongs to all Spn and∣∣∣‖A‖ − ‖TnATn‖pn

∣∣∣ ≤ ∣∣∣‖A‖ − ‖A‖pn

∣∣∣+
∣∣∣‖A‖pn

− ‖TnATn‖pn

∣∣∣ .
By (2.1), lim

n→∞

∣∣∣‖A‖ − ‖A‖pn

∣∣∣ = 0, as lim
n→∞

pn = ∞. We also have that∣∣∣‖A‖pn
− ‖TnATn‖pn

∣∣∣ ≤ ‖A− TnATn‖pn

(1.4)

≤ ‖A− TnATn‖q .

By Theorem 1.2, ‖A− TnATn‖q → 0, as n→∞. Thus (2.2) holds.
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In the following proposition we evaluate

inf
p∈[1,∞)

(
sup

n
‖TnATn‖p

)
and sup

n
inf

p∈[1,∞)
‖TnATn‖p .

Proposition 2.1. Let A ∈ B(H). Let a sequence of bounded operators {Tn} on H
converge to 1H in s.o.t. Suppose that sup

n
‖Tn‖ ≤ 1.

(i) If A ∈ ∪p∈[1,∞)S
p then inf

p∈[1,∞)

(
sup

n
‖TnATn‖p

)
= ‖A‖ .

(ii) If A /∈ ∪p∈[1,∞)S
p then inf

p∈[1,∞)

(
sup

n
‖TnATn‖p

)
= ∞.

(iii) If TnATn ∈ ∪p∈[1,∞)S
p, for each n (for example, all Tn are �nite rank operators,

or A belongs to some Sq), then

sup
n

inf
p∈[1,∞)

‖TnATn‖p = ‖A‖ . (2.3)

(iv) If, for some k, TkATk /∈ ∪p∈[1,∞)S
p then sup

n
inf

p∈[1,∞)
‖TnATn‖p = ∞.

Proof. As sup
n
‖Tn‖ ≤ 1, it follows from (1.8) that, for each A ∈ B(H), we have

inf
p∈[1,∞)

(
sup

n
‖TnATn‖p

)
= inf

p∈[1,∞)
‖A‖p .

(i) If A ∈ Sq, for some q ∈ [1,∞), then, taking into account (1.4), we have

inf
p∈[1,∞)

‖A‖p = lim
q≤p→∞

‖A‖p

(2.1)
= ‖A‖

which completes the proof of (i).
(ii) If A /∈ Sp, for all p ∈ [1,∞), then ‖A‖p = ∞ and we have inf

p∈[1,∞)
‖A‖p = ∞

which proves (ii).
(iii) Fix n. Then TnATn belongs to some Sq(n). Hence TnATn ∈ Sp, for all p ≥ q(n),

and

inf
p∈[1,∞)

‖TnATn‖p = inf
q(n)≤p∈[1,∞)

‖TnATn‖p

(1.4)
= lim

p→∞
‖TnATn‖p

(2.1)
= ‖TnATn‖ .

Therefore

sup
n

inf
p∈[1,∞)

‖TnATn‖p = sup
n
‖TnATn‖ ≤ sup

n
‖Tn‖ ‖A‖ ‖Tn‖ = ‖A‖ .

Thus in order to prove (2.3) it su�ces to show that ‖A‖ = lim
n→∞

‖TnATn‖ .
Given ε > 0, we can �nd x ∈ H such that ‖x‖ = 1 and 0 ≤ ‖A‖−‖Ax‖ < ε. Then,

as Tn → 1H in the s.o.t., we have

‖TnATnx− Ax‖ ≤ ‖TnA(Tnx− x)‖+ ‖TnAx− Ax‖
≤ ‖Tn‖ ‖A‖ ‖Tnx− x‖+ ‖TnAx− Ax‖ → 0, as n→∞.
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Choose N ∈ N such that ‖TnATnx− Ax‖ < ε, for all n > N. Then, as ‖TnATnx‖ ≤
‖TnATn‖ ≤ ‖A‖ , we have

0 ≤ ‖A‖ − ‖TnATn‖ ≤ ‖A‖ − ‖TnATnx‖ ≤ (‖A‖ − ‖Ax‖) + (‖Ax‖ − ‖TnATnx‖)
< ε+ ‖Ax− TnATnx‖ < 2ε.

Since we can choose ε arbitrary small, we have that lim
n→∞

‖TnATn‖ = ‖A‖. Thus (2.3)
is proved.

(iv) If, for some k, the operator TkATk does not belong to all S
p, then ‖TkATk‖p = ∞

for all p ∈ [1,∞). Hence inf
p∈[1,∞)

‖TkATk‖p = ∞. Therefore sup
n

inf
p∈[1,∞)

‖TnATn‖p = ∞
and the proof is complete.

Making use of Propositions 2.1, we obtain

Theorem 2.1. Let A be a bounded operator on Hilbert spaces H. Let {Tn} be a sequence
of bounded operators on H that converges to 1H in the s.o.t. Suppose that sup

n
‖Tn‖ ≤ 1.

Then
(i) If A ∈ ∪p∈[1,∞)S

p then the minimax condition holds:

inf
p∈[1,∞)

sup
n
‖TnATn‖p = sup

n
inf

p∈[1,∞)
‖TnATn‖p = ‖A‖ .

(ii) If A /∈ ∪p∈[1,∞)S
p and TkATk /∈ ∪p∈[1,∞)S

p, for some k, then the minimax
condition trivially holds:

inf
p∈[1,∞)

sup
n
‖TnATn‖p = sup

n
inf

p∈[1,∞)
‖TnATn‖p = ∞

(iii) If A /∈ ∪p∈[1,∞)S
p but each TnATn ∈ ∪p∈[1,∞)S

p, then the minimax condition
does not hold:

inf
p∈[1,∞)

sup
n
‖TnATn‖p = ∞, while sup

n
inf

p∈[1,∞)
‖TnATn‖p = ‖A‖ .

Remark 2.1. Using the same arguments as above, we obtain that the results of The-
orem 2.1 hold if TnATn is replaced by TnA.

Unlike the minimax condition in Theorem 2.1 that only holds for some operators
in B(H), its inverse minimax condition holds for all operators in B(H). To prove this,
we need the following lemma.

Lemma 2.2. Let f : X × Λ→ R ∪∞ be a function on the product of non-empty sets
X and Λ. Suppose that there exists µ ∈ Λ such that

sup
λ∈Λ

f(x, λ) = f(x, µ) for each x ∈ X. (2.4)

Then

inf
x∈X

(
sup
λ∈Λ

f(x, λ)

)
= sup

λ∈Λ

(
inf
x∈X

f(x, λ)

)
= inf

x∈X
f(x, µ). (2.5)
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Proof. For any function f : X × Λ→ R ∪∞, we always have

inf
x∈X

(
sup
λ∈Λ

f(x, λ)

)
≥ sup

λ∈Λ

(
inf
x∈X

f(x, λ)

)
. (2.6)

Indeed, f(y, λ) ≥ inf
x∈X

f(x, λ), for each λ ∈ Λ and y ∈ X. Hence sup
λ∈Λ

f(y, λ) ≥

sup
λ∈Λ

(
inf
x∈X

f(x, λ)

)
, for all y ∈ Y, which implies (2.6).

Suppose now that (2.4) holds. Then inf
x∈X

(
sup
λ∈Λ

f(x, λ)

)
= inf

x∈X
f(x, µ). Hence

inf
x∈X

(
sup
λ∈Λ

f(x, λ)

)
= inf

x∈X
f(x, µ) ≤ sup

λ∈Λ

(
inf
x∈X

f(x, λ)

)
.

Combining this with (2.6), we obtain (2.5).

Theorem 2.2. For a set X, let {Ax}x∈X be a family of operators in B(H). Then the
following minimax condition holds:

inf
x∈X

(
sup

p∈[1,∞)

‖Ax‖p

)
= sup

p∈[1,∞)

(
inf
x∈X

‖Ax‖p

)
= inf

x∈X
‖Ax‖1 .

In particular, if {Tn} is a sequence of operators in B(H) then, for each operator A ∈
B(H), the following minimax condition holds:

inf
n

(
sup

p∈[1,∞)

‖TnATn‖p

)
= sup

p∈[1,∞)

(
inf
n
‖TnATn‖p

)
= inf

n
‖TnATn‖1 .

Proof. Set f(x, p) = ‖Ax‖p for all x ∈ X and p ∈ [1,∞). Then, for each x ∈ X, it
follows from (1.4) that

sup
p∈[1,∞)

f(x, p) = sup
p∈[1,∞)

‖Ax‖p = ‖Ax‖1 = f(x, 1).

Setting Λ = [1,∞) and µ = 1 in Lemma 2.2, we obtain

inf
x∈X

(
sup

p∈[1,∞)

‖Ax‖p

)
= sup

p∈[1,∞)

(
inf
x∈X

‖Ax‖p

)
= inf

x∈X
‖Ax‖1

which concludes the proof.

Remark 2.2. Note that we can not apply Lemma 2.2 to prove Theorem 2.1. Indeed,
to do this, we have to set X = [1,∞), Λ = N and f(p, n) = ‖TnATn‖p . Then (see
(2.4)) we have to �nd µ ∈ N such that

sup
n∈N

‖TnATn‖p = sup
n∈N

f(p, n) = f(p, µ) = ‖TµATµ‖p , for each p ∈ [1,∞).

As, by (1.8), sup
n∈N

‖TnATn‖p = ‖A‖p , this means that there is µ ∈ N such that, for each

p ∈ [1,∞), ‖A‖p = ‖TµATµ‖p which is, generally speaking, not true.
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For x, y ∈ H, consider the rank one operator x⊗ y on H that acts by the formula
(x⊗ y)z = (z, x)y for all z ∈ H. For any selfadjoint operator T ∈ B(H), we have

T (x⊗ y)T = Tx⊗ Ty and ‖x⊗ y‖p = ‖x‖ ‖y‖ , (2.7)

for all p ∈ [1,∞). Thus if ‖x‖ = 1 then x⊗x is the projection on the one-dimensional
subspace Cx.

De�nition 2.1. We say that a family of nonzero subspaces {Ln} of H is approximately
intersecting if, for every ε > 0, there is xε ∈ H such that

‖xε‖ = 1 and dist(xε, Ln) := min
y∈Ln

‖xε − y‖ ≤ ε for all n. (2.8)

Let Pn be the projections on Ln. If there exists 0 6= x ∈ H such that Pnx = x, for
all n, then, clearly, the family of subspaces {Ln} is approximately intersecting.

Lemma 2.3. A family of nonzero subspaces {Ln} of H is approximately intersecting
if and only if, for each ε > 0, there is xε ∈ H such that

‖xε‖ = 1 and ‖Pnxε‖ ≥ 1− ε for all n. (2.9)

Proof. Let {Ln} be approximately intersecting. Then, for each ε > 0, there is xε ∈ H
such that (2.8) holds for all n. As ‖xε − Pnxε‖ = min

y∈Ln

‖xε − y‖ ≤ ε, we have ‖Pnxε‖ ≥
‖xε‖ − ‖xε − Pnxε‖ ≥ 1− ε for all n.

Conversely, let for each ε > 0, there is xε ∈ H such that (2.9) holds for all n. As
xε = Pnxε + (1 − Pn)xε and (1 − Pn)xε, Pnxε are orthogonal, we have 1 = ‖xε‖2 =
‖Pnxε‖2 + ‖(1− Pn)xε‖2 . Hence

‖xε − Pnxε‖2 = 1− ‖Pnxε‖2 ≤ 1− (1− ε)2 = 2ε− ε2 for all n.

Thus
∥∥xε2/2 − Pnxε2/2

∥∥ ≤ ε, for all n, and (2.8) holds.

We will now verify the following minimax conditions in Schatten ideals for a family
of projections.

Theorem 2.3. Let {Pn}∞n=1 be projections in B(H), Pn 6= 1, and let 1 ≤ q < ∞.
Suppose that a sequence {pn}∞n=1 in (q,∞) satis�es lim

n→∞
pn = ∞. Then

(i) inf
X∈Sq ,‖X‖q=1

(
sup

n
‖PnXPn‖pn

)
= sup

n

(
inf

X∈Sq ,‖X‖q=1
‖PnXPn‖pn

)
= 0.

(ii) The inverse minimax condition

inf
n

(
sup

X∈Sq ,‖X‖q=1

‖PnXPn‖pn

)
= sup

X∈Sq ,‖X‖q=1

(
inf
n
‖PnXPn‖pn

)
= 1, (2.10)

holds if and only if the family of subspaces {Ln = PnH}∞n=1 is approximately intersect-
ing.
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Proof. (i) As all Pn 6= 1, we can choose for each n the operator Xn ∈ Sq such that
‖Xn‖q = 1 and PnXnPn = 0. Then we have that RHS = 0.

Set p = inf{pn}. Since lim
n→∞

pn = ∞, we have q < p ≤ pn →∞, as n→∞, and

‖PnXPn‖pn
≤ ‖Pn‖ ‖X‖pn

‖Pn‖ = ‖X‖pn

(1.4)

≤ ‖X‖p . (2.11)

Let Xk = {k−1/q, ..., k−1/q, 0, ...} be the diagonal operators with �rst k elements equal

to k−1/q and the rest equal 0. Then all ‖Xk‖q = 1 and ‖Xk‖p =
(

k
kp/q

)1/p
= k

1
p
− 1

q → 0,
as k →∞. Hence

inf
X∈Sq ,‖X‖q=1

(
sup

n
‖PnXPn‖pn

)
≤ inf

k

(
sup

n
‖PnXkPn‖pn

)
(2.11)

≤ inf
k
‖Xk‖p = 0

and (i) is proved.
(ii) First note that it follows from (2.6) that

inf
n

(
sup

X∈Sq ,‖X‖q=1

‖PnXPn‖pn

)
≥ sup

X∈Sq ,‖X‖q=1

(
inf
n
‖PnXPn‖pn

)
always holds. As ‖PnXPn‖pn

≤ ‖Pn‖ ‖X‖pn
‖Pn‖ = ‖X‖pn

≤ ‖X‖q = 1, we have

1 ≥ inf
n

(
sup

X∈Sq ,‖X‖q=1

‖PnXPn‖pn

)
.

Thus in order to prove (2.10) we only need to show that

sup
X∈Sq ,‖X‖q=1

(
inf
n
‖PnXPn‖pn

)
≥ 1. (2.12)

Let the spaces {Ln = PnH}∞n=1 be approximately intersecting. Then, by (2.9), for
each ε > 0, there is xε ∈ H such that ‖xε‖ = 1 and ‖Pnxε‖ ≥ 1 − ε for all n. Set
Xε = xε⊗xε. Then, by (2.7), ‖Xε‖q = ‖xε ⊗ xε‖q = ‖xε‖2 = 1, PnXεPn = Pnxε⊗Pnxε

and
‖PnXεPn‖pn

= ‖Pnxε ⊗ Pnxε‖pn
= ‖Pnxε‖2 ≥ (1− ε)2.

Hence

sup
X∈Sq ,‖X‖q=1

(
inf
n
‖PnXPn‖pn

)
≥ sup

ε

(
inf
n
‖PnXεPn‖pn

)
≥ sup

ε
(1− ε)2 = 1

which proves (2.12).
Conversely, suppose now that (2.10) holds. Let us prove that the spaces {Ln =

PnH}∞n=1 are approximately intersecting. It follows from the last equality in (2.10)
that, for each ε > 0, there is Xε ∈ Sq such that ‖Xε‖q = 1 and ‖PnXεPn‖pn ≥ 1 − ε,
for all n. Let p = inf{pn}. Then q < p and

‖Xε‖p ≥ ‖PnXεPn‖p ≥ ‖PnXεPn‖pn ≥ 1− ε for all n. (2.13)



38 T. Formisano, E Kissin

Let s1 ≥ s2 ≥ ... be the singular values of Xε, that is, the eigenvalues of the operator
(X∗

εXε)
1/2. Then it follows from (1.2) and (2.13) that

∞∑
n=1

sp
n = ‖Xε‖p

p ≥ (1− ε)p.

Therefore, as sp
n ≤ sp−q

1 sq
n and ‖Xε‖q = (

∑∞
n=1 s

q
n)

1/q
= 1, we have

(1− ε)p ≤ ‖Xε‖p
p =

∞∑
n=1

sp
n ≤ sp−q

1

∑
n

sq
n = sp−q

1 ‖X‖q
q = sp−q

1 .

Thus s1 ≥ (1− ε)
p

p−q .

Consider the Schmidt decomposition of the operator Xε:

Xε =
∑

k

skxk(ε)⊗ yk(ε),

where {xk(ε)}∞k=1 and {yk(ε)}∞k=1 are some orthonormal systems of vectors in H (see
[5, Sec. II.2.2]). Then Bε = s1x1(ε)⊗ y1(ε) is a rank one operator and, for all n,

‖Xε −Bε‖pn ≤ ‖Xε −Bε‖q =

(
∞∑

k=2

sq
k

)1/q

=

(
∞∑

k=1

sq
k − sq

1

)1/q

= (1− sq
1)

1/q .

Hence it follows from this and (2.13) that, for all n,

‖PnBεPn‖pn > ‖PnXεPn‖pn − ‖Pn(Xε −Bε)Pn‖pn ≥ (1− ε)− ‖Xε −Bε‖pn

≥ (1− ε)− (1− sq
1)

1/q.

Making use of (2.7), we obtain that, for all n,

‖PnBεPn‖pn = ‖s1Pnx1(ε)⊗ Pny1(ε)‖pn = |s1| ‖Pnx1(ε)‖ ‖Pny1(ε)‖ .

Hence, by the above inequality,

|s1| ‖Pnx1(ε)‖ ‖Pny1(ε)‖ ≥ (1− ε)− (1− sq
1)

1/q.

Therefore

‖Pnx1(ε)‖ ‖Pny1(ε)‖ ≥
(1− ε)− (1− sq

1)
1/q

|s1|
.

We have ‖Pnx1(ε)‖ ≤ ‖x1(ε)‖ = 1 and ‖Pny1(ε)‖ ≤ ‖y1(ε)‖ = 1. We also have that

s1 ≥ (1 − ε)
p

p−q . Hence, if ε → 0 then s1 → 1, so that ‖Pnx1(ε)‖ ‖Pny1(ε)‖ → 1
uniformly with respect to n. Therefore ‖Pnx1(ε)‖ → 1 uniformly with respect to n.
Hence it follows by Lemma 2.3 that the family {Ln = PnH}∞n=1 is approximately
intersecting.
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3 Some minimax condition for norms on lp spaces

The results of the previous section can be easily transferred to lp spaces. Let M be
the commutative C*-algebra of all bounded in�nite sequences m = (m1,m2, ...,mi, ...)
with norm ‖m‖M = sup

i
|mi| and pointwise multiplication. For each p ∈ [1,∞), let lp

be the subspace of M that consists of all sequences x = (x1, ..., xn, ...) in M satisfying

‖x‖p =
( ∞∑

i=1

|xn|p
)1/p

<∞.

Then each lp is a Banach *-algebra in ‖·‖p , an ideal of M and

‖mx‖p ≤ ‖m‖M ‖x‖p for all m ∈M and x ∈ lp. (3.1)

The space l2 is a Hilbert space with the scalar product (x, y) =
∑∞

i=1 xnyn.
Each m = (m1, ...,mn, ...) ∈M generates a bounded multiplication operator Am on

l2 by the formula Tmx = (m1x1, ...,mnxn, ...), for x ∈ l2, and ‖Tm‖ = ‖m‖M . Thus
Tm ∈ B(l2), for each m ∈ M, and we can identify M with the maximal commutative

subalgebra M̃ = {Tm: m ∈ M} of B(l2). Moreover, if m ∈ lp then Tm ∈ Sp(l2) and

‖Tm‖p = ‖m‖p . Thus we can identify each lp with the ideal M̃ ∩ Sp(l2) of M̃.
Let a sequence {ξn}∞n=1 of elements in M poinwise converge to the identity 1 =

{1, ..., 1, ...} in M and let ‖ξn‖M ≤ 1, for all n. Then the multiplication operators
Tξn converge to the identity operator 1l2 on l2 in the strong operator tolology and
‖Tξn‖ ≤ 1. Combining this and Theorems 2.1 and 2.2, we obtain

Corollary 3.1. (i) Let {ξn} be a sequence of elements in M that pointwise converge
to the identity 1 = {1, ..., 1, ...} in M and let ‖ξn‖M ≤ 1, for all n. Then

1) if m ∈ ∪p∈[1,∞)lp then the following minimax condition holds:

inf
p∈[1,∞)

sup
n
‖ξnm‖p = sup

n
inf

p∈[1,∞)
‖ξnm‖p = ‖m‖ ;

2) if m /∈ ∪p∈[1,∞)lp and ξkm /∈ ∪p∈[1,∞)lp, for some k, then the following mini-
max condition trivially holds:

inf
p∈[1,∞)

sup
n
‖ξnm‖p = sup

n
inf

p∈[1,∞)
‖ξnm‖p = ∞;

3) if m /∈ ∪p∈[1,∞)lp but each ξnm ∈ ∪p∈[1,∞)lp, then the above minimax condi-
tion does not hold:

inf
p∈[1,∞)

sup
n
‖ξnm‖p = ∞, while sup

n
inf

p∈[1,∞)
‖ξnm‖p = ‖m‖ .

(ii) For a set X, let {ξx}x∈X be a family of elements in M . Then the following
minimax condition holds:

inf
x∈X

(
sup

p∈[1,∞)

‖ξx‖p

)
= sup

p∈[1,∞)

(
inf
x∈X

‖ξx‖p

)
= inf

x∈X
‖ξx‖1 .
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