EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879

Volume 3, Number 1 (2012), 18 - 28

SYMMETRIES AND FIRST INTEGRALS OF A SECOND ORDER EVOLUTIONARY OPERATOR EQUATION

S.A. Budochkina

Communicated by M. Otelbaev

Key words: conditions of B_u -potentiality, symmetries of equations, first integrals.

AMS Mathematics Subject Classification: 47G40, 70S10.

Abstract. A constructive method for finding some first integrals of a given evolutionary operator equation is suggested.

1 Introduction

First integrals play an important role in mathematics, mechanics, physics because they have various applications. Usually they are used to prove the uniqueness of classical solutions of partial differential equations (see [2, 9]). P. Lax [3] applied some conservation laws to prove existence of wave solutions for the Korteweg - de Vries equation. First integrals of evolutionary equations can be also used for investigation of stability of motion in the case of some systems with infinite number of degrees of freedom (see [10]). So more attention has been paid to development of methods of constructing first integrals and many important results have been obtained [1, 4].

In the paper we use a method based on application of transformation of variables to establish invariance of the evolutionary operator equation of the following type

$$N(u) \equiv P_{2u,t}u_{tt} + P_{3u,t}u_t^2 + P_{1u,t}u_t + Q(t,u) = 0,$$

$$u \in D(N) \subseteq U \subseteq V, \quad t \in [t_0, t_1] \subset \mathbb{R}; \quad u_t \equiv D_t u \equiv \frac{d}{dt}u, \qquad u_{tt} \equiv \frac{d^2}{dt^2}u.$$

$$(1)$$

Here $\forall t \in [t_0, t_1], \forall u \in U_1 \ P_{iu,t} : U_1 \to V_1 \ (i = \overline{1,3})$ are linear operators; $Q : [t_0, t_1] \times U_1 \to V_1$ is an arbitrary operator; D(N) is the domain of definition of the operator N,

$$D(N) = \{ u \in U : u|_{t=t_0} = \varphi_1, \ u|_{t=t_1} = \varphi_2,$$

$$u_t|_{t=t_0} = \varphi_3, \ u_t|_{t=t_1} = \varphi_4, \ \varphi_i \in U_1(i=\overline{1,4})\};$$
 (2)

 $U = C^2([t_0, t_1]; U_1), \ V = C([t_0, t_1]; V_1), \ U_1, V_1 \ \text{are linear normed spaces}, \ U_1 \subseteq V_1.$

Assume that for every $t \in (t_0, t_1)$ and $g(t), u(t) \in U_1$ the functions $P_{1u,t}g(t)$, $P_{3u,t}g(t)$ are continuously differentiable and $P_{2u,t}g(t)$ is twice continuously differentiable on (t_0, t_1) .

Any function $u \in D(N)$ is called a solution of problem (1) if it satisfies equation (1).

In the sequel, we shall write

$$N(u) \equiv P_{2u}u_{tt} + P_{3u}u_t^2 + P_{1u}u_t + Q(u) = 0,$$

bearing in mind that the operators P_{1u} , P_{2u} , P_{3u} and Q also depend on t.

In the paper we shall use notations and notions of [5-8].

Consider a nonlocal bilinear form

$$\Phi(\cdot, \cdot) \equiv \int_{t_0}^{t_1} \langle \cdot, \cdot \rangle \ dt : V \times V \to \mathbb{R}$$
 (3)

such that the bilinear mapping $\Phi_1(\cdot,\cdot) \equiv \langle \cdot,\cdot \rangle$ satisfies the following conditions:

$$\langle v_1(t), v_2(t) \rangle = \langle v_2(t), v_1(t) \rangle \quad \forall v_1(t), v_2(t) \in V_1,$$

$$D_t < v(t), g(t) > = < D_t v(t), g(t) > + < v(t), D_t g(t) > \forall v, g \in C^1([t_0, t_1]; V_1).$$

Definition 1. The operator $N:D(N)\subset U\to V$ is said to be B_u -potential on the set D(N) relative to bilinear form (3), if there exist a functional $F_N:D(F_N)=D(N)\to\mathbb{R}$ and an operator $B_u:D(B_u)\subset V\to V$ such that

$$\delta F_N[u,h] = \Phi(N(u), B_u h) \qquad \forall u \in D(N), \quad \forall h \in D(N'_u, B_u).$$

If $B_u \equiv I$ is the identical operator then the operator N is called potential on D(N) relative to bilinear form (3).

The following theorem is needed for the sequel.

Theorem 1 ([5]). Consider the operator $N: D(N) \subset U \to V$ and the bilinear form $\Phi(\cdot,\cdot): V \times V \to \mathbb{R}$ such that for any fixed elements $u \in D(N)$, $g,h \in D(N'_u,B_u)$ the function $\psi(\varepsilon) = \Phi(N(u+\varepsilon h),B_{u+\varepsilon h}g)$ belongs to the class $C^1[0,1]$. For N to be B_u -potential on the convex set D(N) relative to Φ it is necessary and sufficient to have

$$\Phi(N'_u h, B_u g) + \Phi(N(u), B'_u(g; h)) = \Phi(N'_u g, B_u h) + \Phi(N(u), B'_u(h; g))$$

$$\forall u \in D(N), \quad \forall g, h \in D(N'_u, B_u).$$
(4)

2 Conditions of B_u -potentiality and symmetries

Theorem 2. Let D_t be skew-symmetric on $D(N'_u, B_u)$. The operator N of equation (1) is B_u -potential on D(N) relative to bilinear form (3) if and only if $\forall u \in D(N), \forall h \in D(N'_u, B_u), \forall t \in [t_0, t_1]$ the following conditions are satisfied on $D(N'_u, B_u)$:

$$B_u^* P_{2u} - P_{2u}^* B_u = 0, (5)$$

$$u_t P_{3u}^* B_u - P_{2u}^{*\prime}(B_u(\cdot); u_t) - P_{2u}^* B_u^{\prime}(\cdot; u_t) + B_u^* P_{3u}(u_t(\cdot)) = 0,$$
(6)

$$-2\frac{\partial}{\partial t}(P_{2u}^*B_u) + P_{1u}^*B_u + B_u^*P_{1u} = 0, (7)$$

$$-\frac{\partial^{2}}{\partial t^{2}}(P_{2u}^{*}B_{u})h + [B'_{u}(\cdot;h)]^{*}Q(u) - [B'_{u}(h;\cdot)]^{*}Q(u) +$$

$$+\frac{\partial}{\partial t}(P_{1u}^{*}B_{u})h + B_{u}^{*}Q'_{u}h - Q'_{u}^{*}B_{u}h = 0,$$

$$(8)$$

$$P_{1u}^{*\prime\prime}(B_{u}h;u_{t}) + B_{u}^{*}P'_{1u}(u_{t};h) - [P'_{1u}(u_{t};\cdot)]^{*}B_{u}h + 2u_{t}\frac{\partial}{\partial t}(P_{3u}^{*}B_{u})h +$$

$$+P_{1u}^{*}B'_{u}(h;u_{t}) - 2\frac{\partial}{\partial t}P_{2u}^{*\prime\prime}(B_{u}h;u_{t}) + [B'_{u}(\cdot;h)]^{*}P_{1u}u_{t} -$$

$$-2\frac{\partial}{\partial t}(P_{2u}^{*}B'_{u}(h;u_{t})) - [B'_{u}(h;\cdot)]^{*}P_{1u}u_{t} = 0,$$

$$(9)$$

$$B_{u}^{*}P'_{2u}(u_{tt};h) - P_{2u}^{*\prime\prime}(B_{u}h;u_{tt}) - [P'_{2u}(u_{tt};\cdot)]^{*}B_{u}h + 2u_{tt}P_{3u}^{*}B_{u}h +$$

$$+[B'_{u}(\cdot;h)]^{*}P_{2u}u_{tt} - P_{2u}^{*}B'_{u}(h;u_{tt}) - [B'_{u}(h;\cdot)]^{*}P_{2u}u_{tt} = 0,$$

$$-P_{2u}^{*\prime\prime}(B_{u}h;u_{t};u_{t}) + B_{u}^{*}P'_{3u}(u_{t}^{2};h) - [P'_{3u}(u_{t}^{2};\cdot)]^{*}B_{u}h + 2u_{t}P_{3u}^{*\prime\prime}(B_{u}h;u_{t}) +$$

$$+[B'_{u}(\cdot;h)]^{*}P_{3u}u_{t}^{2} - 2P_{2u}^{*\prime\prime}(B'_{u}(h;u_{t});u_{t}) - P_{2u}^{*}B''_{u}(h;u_{t};u_{t}) +$$

$$+2u_{t}P_{3u}^{*}B'_{u}(h;u_{t}) - [B'_{u}(h;\cdot)]^{*}P_{3u}u_{t}^{2} = 0.$$

$$(11)$$

Proof. Using (1), we get

$$N'_{u}h = 2P_{3u}(u_{t}h_{t}) + P'_{3u}(u_{t}^{2};h) + P_{2u}h_{tt} + P'_{2u}(u_{tt};h) + P_{1u}h_{t} + P'_{1u}(u_{t};h) + Q'_{u}h.$$

In this case, condition (4) can be written in the form

$$\int_{t_0}^{t_1} (\langle 2P_{3u}(u_t h_t) + P'_{3u}(u_t^2; h) + P_{2u}h_{tt} + P'_{2u}(u_{tt}; h) + P_{1u}h_t + P'_{1u}(u_t; h) + P'_{1u}h_t + P'_{1u}h_t$$

or

$$\int_{t_0}^{t_1} \left\{ \langle 2B_u^* P_{3u}(u_t h_t) + B_u^* P'_{3u}(u_t^2; h) + B_u^* P_{2u} h_{tt} + B_u^* P'_{2u}(u_{tt}; h) + B_u^* P_{1u} h_t + B_u^* P'_{1u}(u_t; h) + B_u^* Q'_u h, g \rangle + \langle [B'_u(\cdot; h)]^* (P_{2u} u_{tt} + P_{1u} u_t + P_{3u} u_t^2 + Q(u)), g \rangle - \langle -2D_t(u_t P_{3u}^* B_u h) + [P'_{3u}(u_t^2; \cdot)]^* B_u h + D_t^2 (P_{2u}^* B_u h) + [P'_{2u}(u_{tt}; \cdot)]^* B_u h - D_t (P_{1u}^* B_u h) + [P'_{1u}(u_t; \cdot)]^* B_u h + Q'_u^* B_u h, g \rangle - \langle [B'_u(h; \cdot)]^* (P_{2u} u_{tt} + P_{1u} u_t + P_{3u} u_t^2 + Q(u)), g \rangle \right\} dt = 0$$

$$\forall u \in D(N), \quad \forall g, h \in D(N'_u, B_u).$$

$$(12)$$

Taking into account the second Gâteaux derivative, we obtain

$$D_{t}[P_{1u}^{*}B_{u}h] = \frac{\partial}{\partial t}(P_{1u}^{*}B_{u})h + P_{1u}^{*\prime}(B_{u}h;u_{t}) + P_{1u}^{*}B_{u}^{\prime}(h;u_{t}) + P_{1u}^{*}B_{u}h_{t}; \qquad (14)$$

$$D_{t}[u_{t}P_{3u}^{*}B_{u}h] = u_{tt}P_{3u}^{*}B_{u}h + u_{t}\frac{\partial}{\partial t}(P_{3u}^{*}B_{u})h + u_{t}P_{3u}^{*\prime}(B_{u}h;u_{t}) +$$

$$D_{t}[u_{t}P_{3u}^{*}B_{u}h] = u_{tt}P_{3u}^{*}B_{u}h + u_{t}\frac{\partial}{\partial t}(P_{3u}^{*}B_{u})h + u_{t}P_{3u}^{*\prime}(B_{u}h;u_{t}) + + u_{t}P_{3u}^{*}B_{u}^{\prime}(h;u_{t}) + u_{t}P_{3u}^{*}B_{u}h_{t}.$$

$$(15)$$

From (12) - (15) it follows that

$$\int_{t_0}^{t_1} <2B_u^* P_{3u}(u_t h_t) + B_u^* P_{3u}'(u_t^2; h) + B_u^* P_{2u} h_{tt} + B_u^* P_{2u}'(u_{tt}; h) + B_u^* P_{1u} h_t +$$

$$+B_u^* P_{1u}'(u_t; h) + B_u^* Q_u' h + [B_u'(\cdot; h)]^* (P_{2u} u_{tt} + P_{1u} u_t + P_{3u} u_t^2 + Q(u)) -$$

$$-\frac{\partial^2}{\partial t^2} (P_{2u}^* B_u) h - 2\frac{\partial}{\partial t} P_{2u}^{*\prime} (B_u h; u_t) - 2\frac{\partial}{\partial t} (P_{2u}^* B_u'(h; u_t)) -$$

$$-2\frac{\partial}{\partial t} (P_{2u}^* B_u) h_t - P_{2u}^{*\prime\prime} (B_u h; u_t; u_t) - 2P_{2u}^{*\prime\prime} (B_u'(h; u_t); u_t) - 2P_{2u}^{*\prime\prime} (B_u h_t; u_t) -$$

$$-P_{2u}^{*\prime\prime} (B_u h; u_{tt}) - P_{2u}^* B_u''(h; u_t; u_t) - 2P_{2u}^* B_u'(h_t; u_t) - P_{2u}^* B_u'(h; u_{tt}) - P_{2u}^* B_u h_{tt} -$$

$$-[P_{2u}'(u_{tt}; \cdot)]^* B_u h + 2u_{tt} P_{3u}^* B_u h + 2u_t \frac{\partial}{\partial t} (P_{3u}^* B_u) h + 2u_t P_{3u}^{*\prime\prime} (B_u h; u_t) +$$

$$+2u_t P_{3u}^* B_u'(h; u_t) + 2u_t P_{3u}^* B_u h_t - [P_{3u}'(u_t^2; \cdot)]^* B_u h + P_{1u}^* B_u h_t + \frac{\partial}{\partial t} (P_{1u}^* B_u) h +$$

$$+P_{1u}^{*\prime\prime} (B_u h; u_t) + P_{1u}^* B_u'(h; u_t) - [P_{1u}'(u_t; \cdot)]^* B_u h - Q_u'^* B_u h -$$

$$-[B_u'(h; \cdot)]^* (P_{2u} u_{tt} + P_{1u} u_t + P_{3u} u_t^2 + Q(u)), g > dt = 0.$$

Thus condition (12) is represented in the form

$$\int_{t_0}^{t_1} \langle (B_u^* P_{2u} - P_{2u}^* B_u) h_{tt} + (2B_u^* P_{3u}(u_t(\cdot)) + B_u^* P_{1u} + 2u_t P_{3u}^* B_u - 2\frac{\partial}{\partial t} (P_{2u}^* B_u) - 2P_{2u}^{*\prime}(B_u(\cdot); u_t) - 2P_{2u}^* B_u^{\prime}(\cdot; u_t) + P_{1u}^* B_u) h_t + B_u^* P_{3u}^{\prime}(u_t^2; h) + \frac{\partial}{\partial t} (P_{2u}^* B_u) - 2P_{2u}^{*\prime}(B_u(\cdot); u_t) - 2P_{2u}^* B_u^{\prime}(\cdot; u_t) + P_{1u}^* B_u) h_t + B_u^* P_{3u}^{\prime}(u_t^2; h) + \frac{\partial}{\partial t} (P_{2u}^* B_u) - 2P_{2u}^{*\prime\prime}(B_u(\cdot); u_t) - 2P_{2u}^* B_u^{\prime\prime}(\cdot; u_t) + P_{1u}^* B_u) h_t + B_u^* P_{3u}^{\prime\prime}(u_t^2; h) + \frac{\partial}{\partial t} (P_{2u}^* B_u) - 2P_{2u}^{*\prime\prime}(B_u(\cdot); u_t) - 2P_{2u}^* B_u^{\prime\prime}(\cdot; u_t) + P_{1u}^* B_u) h_t + B_u^* P_{3u}^{\prime\prime}(u_t^2; h) + \frac{\partial}{\partial t} (P_{2u}^* B_u) - 2P_{2u}^{*\prime\prime}(B_u(\cdot); u_t) - 2P_{2u}^* B_u^{\prime\prime}(\cdot; u_t) + P_{1u}^* B_u) h_t + B_u^* P_{3u}^{\prime\prime}(u_t^2; h) + \frac{\partial}{\partial t} (P_{2u}^* B_u) - 2P_{2u}^{*\prime\prime}(B_u(\cdot); u_t) - 2P_{2u}^* B_u^{\prime\prime}(\cdot; u_t) + P_{1u}^* B_u) h_t + B_u^* P_{3u}^{\prime\prime}(u_t^2; h) + \frac{\partial}{\partial t} (P_{2u}^* B_u) - 2P_{2u}^{*\prime\prime}(B_u(\cdot); u_t) - 2P_{2u}^* B_u^{\prime\prime}(\cdot; u_t) + P_{1u}^* B_u) h_t + B_u^* P_{3u}^{\prime\prime}(u_t^2; h) + \frac{\partial}{\partial t} (P_{2u}^* B_u) - 2P_{2u}^{*\prime\prime}(B_u(\cdot); u_t) - 2P_{2u}^* B_u^{\prime\prime}(\cdot; u_t) + P_{2u}^* B_u) h_t + \frac{\partial}{\partial t} (P_{2u}^* B_u) - 2P_{2u}^* B_u^{\prime\prime}(u_t^2; h) + \frac{\partial}{\partial t} (P_{2u}^* B_u) - 2P_{2u}^* B_u^{\prime\prime}(u_t^2; h) + \frac{\partial}{\partial t} (P_{2u}^* B_u) + \frac{\partial}{\partial t} (P$$

$$+B_{u}^{*}P_{2u}'(u_{tt};h) + B_{u}^{*}P_{1u}'(u_{t};h) + B_{u}^{*}Q_{u}'h + [B_{u}'(\cdot;h)]^{*}P_{2u}u_{tt} + [B_{u}'(\cdot;h)]^{*}P_{1u}u_{t} + \\ +[B_{u}'(\cdot;h)]^{*}P_{3u}u_{t}^{2} + [B_{u}'(\cdot;h)]^{*}Q(u) + 2u_{tt}P_{3u}^{*}B_{u}h + 2u_{t}\frac{\partial}{\partial t}(P_{3u}^{*}B_{u})h + \\ +2u_{t}P_{3u}^{*\prime}(B_{u}h;u_{t}) + 2u_{t}P_{3u}^{*}B_{u}'(h;u_{t}) - [P_{3u}'(u_{t}^{2};\cdot)]^{*}B_{u}h - \frac{\partial^{2}}{\partial t^{2}}(P_{2u}^{*}B_{u})h - \\ -2\frac{\partial}{\partial t}P_{2u}^{*\prime}(B_{u}h;u_{t}) - 2\frac{\partial}{\partial t}(P_{2u}^{*}B_{u}'(h;u_{t})) - P_{2u}^{*\prime\prime}(B_{u}h;u_{t};u_{t}) - 2P_{2u}^{*\prime\prime}(B_{u}'(h;u_{t});u_{t}) - \\ -P_{2u}^{*\prime}(B_{u}h;u_{t}) - P_{2u}^{*}B_{u}'(h;u_{t}) - P_{2u}^{*}B_{u}'(h;u_{t}) - [P_{2u}'(u_{tt};\cdot)]^{*}B_{u}h + \\ +\frac{\partial}{\partial t}(P_{1u}^{*}B_{u})h + P_{1u}^{*\prime}(B_{u}h;u_{t}) + P_{1u}^{*}B_{u}'(h;u_{t}) - [P_{1u}'(u_{t};\cdot)]^{*}B_{u}h - Q_{u}^{\prime*}B_{u}h - \\ -[B_{u}'(h;\cdot)]^{*}P_{2u}u_{tt} - [B_{u}'(h;\cdot)]^{*}P_{1u}u_{t} - [B_{u}'(h;\cdot)]^{*}P_{3u}u_{t}^{2} - [B_{u}'(h;\cdot)]^{*}Q(u), g > dt = 0 \\ \forall u \in D(N), \quad \forall g, h \in D(N_{u}', B_{u}). \end{cases}$$

This is satisfied identically if and only if

$$(B_{u}^{*}P_{2u} - P_{2u}^{*}B_{u}) h_{tt} + (2B_{u}^{*}P_{3u}(u_{t}(\cdot)) + B_{u}^{*}P_{1u} + 2u_{t}P_{3u}^{*}B_{u} - 2\frac{\partial}{\partial t}(P_{2u}^{*}B_{u}) - 2P_{2u}^{*\prime}(B_{u}(\cdot); u_{t}) - 2P_{2u}^{*\prime}B_{u}^{\prime}(\cdot; u_{t}) + P_{1u}^{*}B_{u}) h_{t} + B_{u}^{*}P_{3u}^{\prime}(u_{t}^{2}; h) + \\ + B_{u}^{*}P_{2u}^{\prime}(u_{tt}; h) + B_{u}^{*}P_{1u}^{\prime}(u_{t}; h) + B_{u}^{*}Q_{u}^{\prime}h + [B_{u}^{\prime}(\cdot; h)]^{*}P_{2u}u_{tt} + [B_{u}^{\prime}(\cdot; h)]^{*}P_{1u}u_{t} + \\ + [B_{u}^{\prime}(\cdot; h)]^{*}P_{3u}u_{t}^{2} + [B_{u}^{\prime}(\cdot; h)]^{*}Q(u) + 2u_{tt}P_{3u}^{*}B_{u}h + 2u_{t}\frac{\partial}{\partial t}(P_{3u}^{*}B_{u})h + \\ + 2u_{t}P_{3u}^{*\prime}(B_{u}h; u_{t}) + 2u_{t}P_{3u}^{*}B_{u}^{\prime}(h; u_{t}) - [P_{3u}^{\prime}(u_{t}^{2}; \cdot)]^{*}B_{u}h - \frac{\partial^{2}}{\partial t^{2}}(P_{2u}^{*}B_{u})h - \\ - 2\frac{\partial}{\partial t}P_{2u}^{*\prime}(B_{u}h; u_{t}) - 2\frac{\partial}{\partial t}(P_{2u}^{*}B_{u}^{\prime}(h; u_{t})) - P_{2u}^{*\prime\prime}(B_{u}h; u_{t}; u_{t}) - 2P_{2u}^{*\prime\prime}(B_{u}^{\prime}(h; u_{t}); u_{t}) - \\ - P_{2u}^{*\prime}(B_{u}h; u_{tt}) - P_{2u}^{*}B_{u}^{\prime\prime}(h; u_{t}; u_{t}) - P_{2u}^{*\prime\prime}(B_{u}h; u_{t}) - [P_{2u}^{\prime}(u_{tt}; \cdot)]^{*}B_{u}h + \\ + \frac{\partial}{\partial t}(P_{1u}^{*}B_{u})h + P_{1u}^{*\prime\prime}(B_{u}h; u_{t}) + P_{1u}^{*}B_{u}^{\prime}(h; u_{t}) - [P_{1u}^{\prime}(u_{t}; \cdot)]^{*}B_{u}h - Q_{u}^{\prime*}B_{u}h - \\ - [B_{u}^{\prime}(h; \cdot)]^{*}P_{2u}u_{tt} - [B_{u}^{\prime}(h; \cdot)]^{*}P_{1u}u_{t} - [B_{u}^{\prime}(h; \cdot)]^{*}P_{3u}u_{t}^{2} - [B_{u}^{\prime}(h; \cdot)]^{*}Q(u) = 0 \\ \forall u \in D(N), \quad \forall h \in D(N_{u}^{\prime}, B_{u}).$$

The necessary and sufficient conditions for this equality to be valid are that equations (5) - (11) be satisfied.

Consider a one-parametric group of transformations

$$G: \begin{cases} \overline{t} = t + \varepsilon \varphi(t, u), \\ \overline{u}(\overline{t}) = u(t) + \varepsilon \psi(t, u), \end{cases}$$
 (16)

where φ, ψ are some operators.

Using transformation (16), one can define a function $\overline{u}(t,\varepsilon)$ such that

$$\overline{u} = u + \varepsilon S(u), \tag{17}$$

where $S(u) = \psi(t, u) - u_t \varphi(t, u)$. In this case, the operator S is called a generator of transformation (17).

Definition 2. Transformation (17) is said to be a symmetry of the equation

$$N(u) = 0, (18)$$

if function \overline{u} (17) is a solution of (18) for any sufficiently small parameter ε and any solution u of this equation.

The following theorem is needed for the sequel.

Theorem 3 (Savchin V.M.). Transformation (17) is a symmetry of equation (18) if and only if

$$[N, S](u) \equiv N'_u S(u) - S'_u N(u) \stackrel{(18)}{=} 0.$$
 (19)

Definition 3. A functional J[t, u] is called a first integral of equation (1) under conditions (2) if it does not depend on t for any solution u(t) of problem (1) – (2).

Theorem 4. Suppose that S_1, S_2 are generators of symmetries of equation (1) and the operator N is B_u -potential on D(N) relative to bilinear form (3). Then

$$J[t, u] = D_t < P_{2u}S_2(u), B_uS_1(u) > -$$

$$- < 2P_{3u}(u_tS_2(u)) + 2P_{2u}D_tS_2(u) + P_{1u}S_2(u), B_uS_1(u) >$$
(20)

is a first integral of the given equation.

Proof. We have

$$< N'_u h, B_u g > + < N(u), B'_u(g;h) > = < 2P_{3u}(u_t h_t) + P'_{3u}(u_t^2;h) + P_{2u}h_{tt} + \\ + P'_{2u}(u_{tt};h) + P_{1u}h_t + P'_{1u}(u_t;h) + Q'_u h, B_u g > + \\ + < P_{2u}u_{tt} + P_{1u}u_t + P_{3u}u_t^2 + Q(u), B'_u(g;h) > = \\ = 2 < h_t, u_t P^*_{3u}B_u g > + < h, [P'_{3u}(u_t^2;\cdot)]^*B_u g > + < h_{tt}, P^*_{2u}B_u g > + \\ + < h, [P'_{2u}(u_{tt};\cdot)]^*B_u g > + < h_t, P^*_{1u}B_u g > + < h, [P'_{1u}(u_t;\cdot)]^*B_u g > + \\ + < Q'^*_u B_u g, h > + < h, [B'_u(g;\cdot)]^*(P_{2u}u_{tt} + P_{1u}u_t + P_{3u}u_t^2 + Q(u)) > = \\ = 2D_t < h, u_t P^*_{3u}B_u g > -2 < h, u_t P^*_{3u}B_u g > -2 < h, u_t P^*_{3u}B_u g > -2 < h, u_t P^*_{3u}B_u g > -1 \\ -2 < h, u_t P^*_{3u}(B_u g; u_t) > -2 < h, u_t P^*_{3u}B'_u(g; u_t) > -2 < h, u_t P^*_{3u}B_u g > -1 \\ + < h, [P'_{3u}(u_t^2;\cdot)]^*B_u g > + D^2_t < h, P^*_{2u}B_u g > -2D_t < h, \frac{\partial}{\partial t}(P^*_{2u}B_u)g > -1 \\ -2D_t < h, P^*_{2u}(B_u g; u_t) > -2D_t < h, P^*_{2u}B'_u(g; u_t) > -2D_t < h, P^*_{2u}B_u g > +1 \\ + < h, \frac{\partial^2}{\partial t^2}(P^*_{2u}B_u)g > + < h, 2\frac{\partial}{\partial t}P^*_{2u}(B_u g; u_t) > +2 < h, \frac{\partial}{\partial t}P^*_{2u}B'_u(g; u_t) > +1 \\ + < h, \frac{\partial}{\partial t}P^*_{2u}B_u g_t > + < h, P^*_{2u}(B_u g; u_t; u_t) > +2 < h, P^*_{2u}(g; u_t; u_t) > +1 \\ + < h, \frac{\partial}{\partial t}P^*_{2u}B_u g_t > + < h, P^*_{2u}(B_u g; u_t; u_t) > +2 < h, P^*_{2u}(g; u_t; u_t) > +1 \\ + < h, \frac{\partial}{\partial t}P^*_{2u}B_u g_t > + < h, P^*_{2u}(B_u g; u_t; u_t) > +2 < h, P^*_{2u}(g; u_t; u_t) > +1 \\ + < h, \frac{\partial}{\partial t}P^*_{2u}(g; u_t) > + < h, P^*_{2u}(B_u g; u_t; u_t) > +2 < h, P^*_{2u}(g; u_t; u_t) > +1 \\ + < h, P^*_{2u}(g; u_t; u_t) > +2 < h, P^*_{2u}(g; u_t; u$$

$$+2 < h, P_{2u}^* B_u'(g_t; u_t) > + < h, P_{2u}^* B_u'(g; u_{tt}) > + < h, P_{2u}^* B_u g_{tt} > +$$

$$+ < h, [P_{2u}'(u_{tt}; \cdot)]^* B_u g > + D_t < h, P_{1u}^* B_u g > - < h, \frac{\partial}{\partial t} (P_{1u}^* B_u) g > -$$

$$- < h, P_{1u}^{*\prime} (B_u g; u_t) - < h, P_{1u}^* B_u'(g; u_t) > - < h, P_{1u}^* B_u g_t > +$$

$$+ < h, [P_{1u}'(u_t; \cdot)]^* B_u g > + < h, Q_u^{\prime *} B_u g > +$$

$$+ < h, [B_u'(g; \cdot)]^* (P_{2u} u_{tt} + P_{1u} u_t + P_{3u} u_t^2 + Q(u)) > .$$

Taking into account conditions (5) - (11), we obtain

$$\langle N'_{u}h, B_{u}g \rangle + \langle N(u), B'_{u}(g;h) \rangle = \langle N'_{u}g, B_{u}h \rangle + \langle N(u), B'_{u}(h;g) \rangle + + D_{t}[D_{t} \langle P_{2u}g, B_{u}h \rangle - \langle 2P_{3u}(u_{t}g) + 2P_{2u}g_{t} + P_{1u}g, B_{u}h \rangle].$$
(21)

Substituting $S_1(u)$ for h and $S_2(u)$ for g in (21) and taking into consideration (19), we obtain that a first integral of the given equation is represented in form (20).

Remark 2.1. Suppose that the operator N of equation (1) is not B_u -potential on D(N) relative to bilinear form (3), S_1 is a generator of symmetry of this equation and there exists an operator S_2 such that $N'^*_u B_u S_2(u) \stackrel{(1)}{=} 0$. Then

$$J[t, u] = D_t < P_{2u}S_1(u), B_uS_2(u) > -$$

$$- < 2P_{3u}(u_tS_1(u)) + 2P_{2u}D_tS_1(u) + P_{1u}S_1(u), B_uS_2(u) >$$
(22)

a the first integral of the given equation.

Indeed, in this case

$$N_u''B_ug = D_t^2[P_{2u}^*B_ug] + [P_{2u}'(u_{tt};\cdot)]^*B_ug - D_t[P_{1u}^*B_ug] + [P_{1u}'(u_t;\cdot)]^*B_ug - -2D_t[u_tP_{3u}^*B_ug] + [P_{3u}'(u_t^2;\cdot)]^*B_ug + Q_u'^*B_ug.$$

Then

$$< h, N_u'' B_u g > - < N_u' h, B_u g > = < h, D_t^2 [P_{2u}^* B_u g] + [P_{2u}' (u_{tt}; \cdot)]^* B_u g -$$

$$- D_t [P_{1u}^* B_u g] + [P_{1u}' (u_t; \cdot)]^* B_u g - 2D_t [u_t P_{3u}^* B_u g] + [P_{3u}' (u_t^2; \cdot)]^* B_u g + Q_u'' B_u g > -$$

$$- < P_{2u} h_{tt} + P_{2u}' (u_{tt}; h) + P_{1u} h_t + P_{1u}' (u_t; h) + 2P_{3u} (u_t h_t) + P_{3u}' (u_t^2; h) +$$

$$+ Q_u' h, B_u g > = < h, D_t^2 [P_{2u}^* B_u g] + [P_{2u}' (u_{tt}; \cdot)]^* B_u g - D_t [P_{1u}^* B_u g] + [P_{1u}' (u_t; \cdot)]^* B_u g -$$

$$- 2D_t [u_t P_{3u}^* B_u g] + [P_{3u}' (u_t^2; \cdot)]^* B_u g + Q_u'^* B_u g > -D_t < h_t, P_{2u}^* B_u g > +$$

$$+ < h_t, D_t [P_{2u}^* B_u g] > - < h, [P_{2u}' (u_{tt}; \cdot)]^* B_u g > -2D_t < h, P_{1u}^* B_u g > +$$

$$+ < h, D_t [P_{1u}^* B_u g] > - < h, [P_{1u}' (u_t; \cdot)]^* B_u g > -2D_t < h, u_t P_{3u}^* B_u g > +$$

$$+ 2 < h, D_t [u_t P_{3u}^* B_u g] > - < h, [P_{3u}' (u_t^2; \cdot)]^* B_u g > - < h, Q_u'^* B_u g > =$$

$$= < h, D_t^2 [P_{2u}^* B_u g] > - D_t [D_t < h, P_{2u}^* B_u g > - < h, D_t [P_{2u}^* B_u g > -$$

$$+ D_t < h, D_t [P_{2u}^* B_u g] > - < h, D_t^2 [P_{2u}^* B_u g] > - D_t < h, P_{1u}^* B_u g > -$$

$$-2D_{t} < h, u_{t}P_{3u}^{*}B_{u}g > = -D_{t}^{2} < P_{2u}h, B_{u}g > +2D_{t} < h, D_{t}[P_{2u}^{*}B_{u}g] > -$$

$$-D_{t} < P_{1u}h, B_{u}g > -2D_{t} < P_{3u}(u_{t}h), B_{u}g > = -D_{t}^{2} < P_{2u}h, B_{u}g > +$$

$$+2D_{t}^{2} < P_{2u}h, B_{u}g > -2D_{t} < P_{2u}h_{t}, B_{u}g > -D_{t} < P_{1u}h, B_{u}g > -$$

$$-2D_{t} < P_{3u}(u_{t}h), B_{u}g > = D_{t}^{2} < P_{2u}h, B_{u}g > -2D_{t} < P_{2u}h_{t}, B_{u}g > -$$

$$-D_{t} < P_{1u}h, B_{u}g > -2D_{t} < P_{3u}(u_{t}h), B_{u}g > .$$

$$(23)$$

Substituting $S_1(u)$ for h and $S_2(u)$ for g in (23), we obtain that a first integral of the given equation is represented in form (22).

3 Examples

1. Consider the following partial differentional equation

$$N(u) \equiv u_{tt} + 2\beta v(t)u_{tx} + u_{xxxx} + v^{2}(t)u_{xx} + \beta v'(t)u_{x} = 0,$$

$$(x,t) \in Q_{T} = (a,b) \times (0,T).$$
(24)

Define D(N) by

$$D(N) = \{ u \in U = C_{t,x}^{2,4}(\overline{Q_T}) : u|_{t=0} = \phi_1(x), \ u|_{t=T} = \phi_2(x) \ (x \in (a,b)),$$

$$u|_{x=a} = \psi_1(t), \ u|_{x=b} = \psi_2(t), \ u_{x}|_{x=a} = \psi_3(t), \ u_{x}|_{x=b} = \psi_4(t),$$

$$u_{xx}|_{x=a} = \psi_5(t), \ u_{xx}|_{x=b} = \psi_6(t), \ u_{xxx}|_{x=a} = \psi_7(t), \ u_{xxx}|_{x=b} = \psi_8(t),$$

$$u_{tx}|_{x=a} = \psi_9(t), \ u_{tx}|_{x=b} = \psi_{10}(t), (t \in (0,T)),$$

$$(25)$$

where $\phi_i, \psi_i (i = 1, 2, j = \overline{1, 10})$ are given continuous functions.

Let us note that operator N (24) is potential on domain of definitions (25) relative to the classical bilinear form

$$\Phi(v,g) = \int_{0}^{T} \int_{a}^{b} v(x,t)g(x,t) dxdt.$$

Indeed, in this case

$$P_2 = I, \qquad P_1 = 2\beta v(t)D_x, \qquad P_1^* = -2\beta v(t)D_x, \qquad \frac{\partial P_1^*}{\partial t} = -2\beta v'(t)D_x,$$

$$P_3 = 0, \qquad Q_u' = D_x^4 + v^2(t)D_x^2 + \beta v'(t)D_x, \qquad Q_u'^* = D_x^4 + v^2(t)D_x^2 - \beta v'(t)D_x$$
 and

- $(5) \Longrightarrow I I = 0,$
- $(6) \implies 0 = 0,$
- $(7) \Longrightarrow 2\beta v(t)D_x 2\beta v(t)D_x = 0,$
- $(8) \Longrightarrow -2\beta v'(t)D_x + D_x^4 + v^2(t)D_x^2 + \beta v'(t)D_x D_x^4 v^2(t)D_x^2 + \beta v'(t)D_x = 0,$
- $(9) \implies 0 = 0,$
- $(10) \implies 0 = 0$,
- $(11) \implies 0 = 0.$

Suppose that $\psi_i \equiv 0$ $(i = \overline{1,10})$ in (25). Taking into account that $S_1(u) = u_x$ and $S_2(u) = u_{xx}$ are generators of symmetries of equation (24) and using (20), we obtain a first integral of the given equation in the form

$$J[t, u] = \int_{a}^{b} u_{xx}(u_{tx} + \beta v(t)u_{xx})dx.$$

Remark 3.1. Note that equation (24) can be represented in the divergence form

$$N(u) \equiv D_t u_t + D_x [2\beta v(t)u_t + u_{xxx} + v^2(t)u_x + \beta v'(t)u] = 0.$$

It is well known that

$$J_1[t, u] = \int_a^b u_t dx$$

is also a first integral of (24).

2. Let us consider the equation of in the form

$$N(u) \equiv auu_{tt} + buu_{xx} + au_t^2 + bu_x^2 = 0,$$

$$(x,t) \in Q_T = (0,l) \times (0,T),$$
(26)

where a, b are constants.

Define D(N) by

$$D(N) = \{ u \in U = C^{2}(\overline{Q_{T}}) : u|_{t=0} = \varphi_{1}(x), \ u|_{t=T} = \varphi_{2}(x) \ (x \in (0, l)),$$

$$u|_{x=0} = \psi_{1}(t), \ u|_{x=l} = \psi_{2}(t) \ (t \in (0, T)),$$

$$(27)$$

where $\varphi_1, \varphi_2, \psi_1, \psi_2$ are given continuous functions.

Here

$$P_{2u} = auI$$
, $P_3 = aI$, $P_1 = 0$, $Q(u) = buu_{xx} + bu_x^2$.

It is easy to check that operator N (26) is not B_u -potential on D(N) (27) relative to the bilinear form

$$\Phi(v,g) = \int_{0}^{T} \int_{0}^{l} v(x,t)g(x,t) dxdt,$$

if $B_u = u(D_x + I)$.

By straightforward computations we find that $S_1(u) = u_x$ is a generator of symmetry of equation (26) and $S_2(u) = u$ satisfies the condition $N_u^{\prime*} B_u S_2(u) \stackrel{(26)}{=} 0$.

Suppose that $\psi_i \equiv 0 \ (i = 1, 2)$ in (27) and using (22), we obtain that

$$J[t, u] = \int\limits_{0}^{l} u^{2} u_{t} u_{x} dx$$

is a first integral of the given equation.

Remark 3.2. Let us note that equation (26) can be written in the divergence form

$$N(u) \equiv D_t(auu_t) + D_x(buu_x) = 0.$$

It is well known that in this case

$$J_1[t, u] = \int\limits_0^l u u_t dx$$

is also a first integral of (26).

4 Conclusion

In the paper we investigate B_u -potentiality of a given operator N and obtain formulas for finding some first integrals of the evolutionary operator equation. All theoretical results are illustrated by some examples. It should be noted that the considered method allows us constructing first integrals different from the known ones.

Acknowledgments

The author is grateful to Professor V.M. Savchin for constant attention to this work and useful discussions.

The research was supported by the Russian Foundation for Basic Research (grant 10-01-91331-NNIO-a).

References

- [1] G. Caviglia, Symmetry transformation, isovectors and conservation laws. J. Math. Phys., 27, no. 4 (1986), 972 978.
- [2] R. Kurant, Partial differential equations. Mir, Moscow, 1964 (in Russian).
- [3] P.D. Lax, Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure and Appl. Math., 21, no. 5 (1968), 467 490.
- [4] E. Noether, *Invariant variational problems*. Variational principles of mechanics (1959), 611 630 (in Russian).
- [5] V.M. Savchin, Mathematical methods of mechanics of infinite-dimensional nonpotential systems. Peoples' Friendship University of Russia, Moscow, 1991 (in Russian).
- [6] V.M. Savchin, S.A. Budochkina, On the existence of a variational principle for an operator equation with the second derivative with respect to "time". Mathematical Notes, 80, no. 1 (2006), 87 94 (in Russian).
- [7] V.M. Savchin, S.A. Budochkina, On indirect variational formulations for operator equations. Journal of Function Spaces and Applications, 5, no. 3 (2007), 231 242.
- [8] V.M. Savchin, S.A. Budochkina, Symmetries and first integrals in the mechanics of infinite-dimensional systems. Doklady Mathematics, 425, no. 2 (2009), 169 171 (in Russian).
- [9] A.N. Tikhonov, A.A. Samarsky, *Equations of mathematical physics*. Nauka, Moscow, 1977 (in Russian).
- [10] V.G. Vil'ke, Analitical and qualitative methods of mechanics of systems with infinite number of degrees of freedom. M.V. Lomonosov Moscow State University, Moscow, 1986 (in Russian).

Svetlana Budochkina
Department of Mathematical Analysis and Theory of Functions
Peoples' Friendship University of Russia
6 Miklukho-Maklaya st.,
117198 Moscow, Russia
E-mail: sbudotchkina@yandex.ru

Received: 29.09.2010