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Abstract. Some new Hardy-type inequalities for Hardy-Volterra integral operators
are proved and discussed. The case 1 < ¢ < p < o0 is considered and the involved
kernels satisfy conditions, which are less restrictive than the usual Oinarov condition.

1 Introduction

Let 1 <p,q < o0, %4—& =1,—00 <a < b < oo, pand w be nonnegative functions, such

that the functions p?, w9, p= and w7 are locally integrable on the interval (a,b). For
a fixed parameter 1 < p < oo and a weight function p we define the weighted Lebesgue
space L, ,(a,b) as the set of all measurable functions f on (a,b) such that

1
P

b
1l = / F@PP@)ds | < oo

In this paper we consider the problem of the boundedness from L, , to L, of the
integral operators:

Kf(x) :/K(:E,S)f(s)ds, a<x<b, (1.1)
“b
K g(s) = /K(:L’,s)g(x)dx, a<s<b, (1.2)

with a nonnegative continuous kernel K (z,s). This problem is equivalent to finding
conditions under which the Hardy type inequality

P

b
<c / F@)P P (2)da (1.3)

1
q

b
/ K (o) () d
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holds for all f € L, ,, with C' which does not depend on the function f for fixed p, ¢
Since the kernel K(-,-) is non-negative then inequality (1.3) is equivalent to the
inequality

b

/(Kf(a:))qwq(x)dm <C /f(x)ppp(x)dx for f>0. (1.4)

a

Hence, here and in the sequel we shall consider, without loss of generality, the case
when the function f is non-negative.
In papers [5], [6] the class of kernels K (x, s), satisfying the condition

d K (z,t) + K(t,5)) < K(z,8) < d(K(x,t) + K(t,s)), (1.5)

for a < s <t < x < b with a constant d > 1 independent of z, t, s, was introduced.

A classical example where such a kernel appears is the Riemann-Liouville operator
with the kernel K(x,s) = (z — s)*7! for a > 1.

Later on R. Oinarov introduced less restrictive classes of kernels P, and @,,, n > 0,
and in the case 1 < p < ¢ < oo he gave a criterion for (1.4) to hold (see |7]). The
problem of the boundedness of operator (1.1) for 1 < ¢ < p < oo with kernels from the
classes P, or (), remains open.

In this paper we shall derive some criteria for the boundedness of integral operators
(1.1) and (1.2) with kernels in the classes P, and @)y in the case 1 < ¢ < p < oo. This
means that we shall characterize Hardy-type inequalities of type (1.4) in cases, which
are not known in the literature (see e.g. the books [2]-[4], [8] and the references given
there).

Here and in the sequel we use the notation p’ ppl, qJ = Ll and r = =
The symbol A < B means that A < ¢B, where c¢ is positive and depends only on
unessential parameters. We write A =~ B if A < B < A. Futhemore, xg(-) stands for
the characteristic function of a set E C (a,b) and Z denotes the set of all integers.

The paper is organized as follows. Our main results (Theorems 1-4) are presented in
Section 3. The proofs can be found in Section 4. In order not to disrupt our discussions
later on, we present some definitions and other preliminaries in Section 2.

Pq

2 Preliminaries

We first define the classes P, and Q.

Definition 1. Let K(-,-) be continuous, non-negative and non-decreasing in
the first argument, defined and measurable on the set {(z,s), a <s <z <b}. We
say that the function K(xz,s) belongs to the class P, if there exist nonnegative
measurable functions V(-) and R(-,-) and a constant d > 1, such that for all
x, t, s: a<s<t<x<bthe following inequalities hold:

d Y (R(z,t)V(s) + K(t,s)) < K(x,s) < d(R(z,t)V(s) + K(t,s)). (2.1)
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Definition 2. Let K(-,-) be continuous, non-negative and non-increasing in
the second argument, defined and measurable on the set {(x,s), a < s <z < b}.
We say that the function K (x,s) belongs to the class () if there exist non-negative
measurable functions U(-) and Q(-,-) and a constant d > 1, such that for all
x, t, s: a<s<t<ax<bthe following inequalities hold:

dH(K(z,t) +U(x)Q(t,s)) < K(z,s) < d(K(x,t) +U(z)Q(t,s)). (2.2)

The classes P; and (7 are wider than the class of kernels satisfying (1.2). For
example, the function K (z,s) = (f(z) + g(s))°, where a < s <z < b, § >0, g(s) >0
and f(x) is a non-negative increasing function, does not satisfy (1.2), but it belongs to
P, since for a < s <t < x < b the following two-sided estimate holds:

(f(2) +9())" = (f(x) = ()" + (f(1) + g(s))".

The function K (x,s) = (f(x) — g(s))ﬁ where a < s <z <b, >0, f(x) >0, g(s) is a
non-negative decreasing function, does not satisfy (1.2), but it belongs to @) since

(f(z) +g(8)” = (f(z) + g(t)" + (g(s) — g(t))”

fora<s<t<zxz<b.

Remark 1. Without loss of generality we can assume that R(-,-) is non-decreasing
with respect to the variable x and non-increasing with respect to the variable y.

Otherwise we can replace the function R(x,s) by R(z,s) = inft KV(?;)S). Then the
a<s<

function R(z,s) has both these monotonicity properties and inequality (2.1) with
R(z, s) replaced by R(z,s) holds.

First we note that by (2.1) it follows that R(z,t)V (s) < K(z,s). Hence, by taking
infimum we have that R(x,t) < E(x, t) and, by (2.1), the following estimate holds:

K(z,s) < Rz, )V (s) + K(t, s).

~ On the other hand, it follows from the definition of the function ﬁ, that
R(z,t)V(s) < K(z,s). Since the function K(z,s) is non-decreasing in the first ar-
gument, then K(t,s) < K(x,s) for ¢ < x. By combining the last two inequalities we
obtain the reverse estimate

R(z, )V (s) + K(t,s) < K(x,s).

Hence, K (x,s) ~ R(z,t)V(s) + K(t,s), i.e. the corresponding estimates hold with R
replacing R in (2.1).

In a similar way we can prove that the function Q(t,s) = <inf
t<zr<oo

K(z,s) ~ K(z,t)+U(z)Q(t, s). Hence we can assume that in (2.2) the function Q(-, -)
is non-decreasing in the first argument and non-increasing in the second one.

K(z,s)

e satisfies
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3 The main results
Our main results read as follows.

Theorem 3.1. Let 1 < ¢ < p < oo and assume that the kernel K(x,s) of the operator
K* defined by (1.2) belongs to the class Q1. Then the operator K* is bounded from
L, ,(a,b) to Ly(a,b) if and only if the quantities

b /b Vot : v

M, = / /Kp/(x,t)p_p/(x)dx /wq(s)ds wi(t)dt |
a t

a

|=

T i
7 b 7 "

Q

M = /b /t QU(t, s)wi(s)ds / U (w)p™ (2)da | UP(t)p™" (t)dt

t

are finite. Moreover, |K*|| = My + My, where ||K*|| denotes the norm of the operator
K* from the space L, ,(a,b) to Lg.(a,b) .

Our corresponding result for the operator K reads as follows.
Theorem 3.2. Let 1 < ¢ < p < oo and assume that the kernel K(x,s) of the operator

K defined by (1.1) belongs to the class Py. Then the operator K is bounded from
L, ,(a,b) to Lyw(a,b) if and only if the quantities

S =

L, = /b /qu(x,t)wq(x)dx /th/(s)p_p/(s)ds VP (t)p P (t)dt |

xr
7

Ly = /b /th/(t,s)pp/(s)ds /bwq(:c)d:c wi(t)dt

are finite. Moreover, |K|| ~ Ly + Lo, where |K|| denotes the norm of the operator K
from the space Ly, ,(a,b) to L,.,(a,b) .

By using the well-known duality principle we can obtain the following equivalence:
”K*qu,w < OHng,p Vg € Ly, < HKpr’,P*l < CHf”q’,w*la Vi€ Ly (3.1)
For a simple proof of this duality see e.g. the book [2, p. 13]. We can apply

equivalence (3.1) to obtain by Theorem 3.1 and Theorem 3.2 the following results of
independent interest.
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Theorem 3.3. Let 1 < ¢ < p < 0o and assume that the kernel K(x,s) of the operator
K defined by (1.1) belongs to the class Q1. Then the operator K is bounded from
L, ,(a,b) to Lq(a,b) if and only if the quantities

My = / / Koo, w@de || o7 sds | oo |

D13

M = /b j QF (t, s)p" (s)ds ’ /b Ul(z)wi(x)de | U9(t)wi(t)dt

are finite. Moreover, | K| ~ M + M;, where | K|| denotes the norm of the operator
K from the space Ly, ,(a,b) to L, (a,b).

Theorem 3.4. Let 1 < ¢ < p < oo and assume that the kernel K(x,s) of the operator
K™ defined by (1.2) belongs to the class Py. Then the operator K* is bounded from
L, ,(a,b) to Ly ,(a,b) if and only if the quantities

3=

r
q b q

I = /b /t K9(t, $)w?(s)ds / o ()de | ot |

Sl

L= /b /bRp/(x,t)p_p/(:z:)dx ' /th(s)wq(s)dx Va(t)wi(t)dt

=3

are finite. Moreover, |K*|| ~ L} + L3, where |K*|| denotes the norm of the operator
K* from the space L, ,(a,b) to Ly (a,b).

Remark 2. According to the famous Ando result [1] in the case 1 < ¢ < p <
any integral operator is bounded if and only if it is compact. Hence, for example, in
Theorem 3.1 as an equivalent condition we can also add the condition “K* defined by
(1.2) is compact”, i.e. Theorem 3.1 gives also a characterization of compact operators.
In the same way, we can add the equivalent condition “K defined by (1.1) is compact”

in Theorem 3.2.

4 Proofs

According to the duality principle discussed in Section 3 (see (3.1)) we only need to
prove Theorems 3.1 and 3.2.
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Proof of Theorem 3.1 Necessity.

Let the operator K* defined by (1.2) be bounded from L, ,(a,b) to L (a,b). This
means that there exists a constant C' > 0, such that for all functions g € L, , the
inequality

1K gllg0 < Cllgllp,p (4.1)

holds. We need to prove that M; < oo, My < .
Notice also that the dual inequality

HKpr’,p‘l < CHqu’,w—17 Vf € Lq’,w—1 (4'2)

holds.
For a fixed z € (a,b) we put f(-) = X(o,-)(-)w(-). By substituting f into (4.2) we

get that
b x o 1
Coi > 1K f |l -1 = (/pp/(x)(/K<x, s)f(s)ds) dx)p >

1

( /b P""@)( / Kz, s)w(s)dsy/da:)ﬂ > %( /b Up’(x)p‘p'(x)dxy- / Q(z, s)w(s)ds.

z

U(z)Q(z,s), where a < s < z <

-

In the last estimate we used the estimate K(z,s) >
x < b, which follows by (2.2).

b
Since z is arbitrary, it follows that [ UP (z)p~" (z)dx is finite.

Next, by choosing in (4.1) ¢(-) = X2y (-)p P (-)UP71() as a test function, we have
that

/U”/(fﬁ)p‘p/(x)dﬂr > [|K* ¢l gw >

Q=

q

/ /sz (2)UP M (x)dx | ds| >
b .

/U”( /quswq

z

Now, by d1V1d1ng both parts of the previous inequality by the expression

<f U? (z )dx) we obtain

1
q

/b U (2)p? (z)dx / Q(z, s)wi(s)ds | < C < .
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Hence, [ Q%(z, s)wi(s)ds < oc.
For aa and ( such that a < a < 8 < b we define the function
B q—1

9(T) = X(ap) (/Q" z, s)w'(s ) 1q(/U”'(y)p"’/(y)dy>p 0P @)p P (@),

T

It is easy to see that

ol = ( /ﬁ ( / @%x,s)w%s)ds)g( /ﬁ 07 o () )

x

s

UP (x)p~ '(x)dt>;.

(4.3)
Next, we estimate [[K*g||?,, from above as follows:

K g2, = / ( / K<x,s>g<x>dx> )ds > / ( JECXY )qw%s)ds

B x B -1
/U(x)g(x)/Qq(:E,s)wq(s) (/ U(T)g(T)dT) dsdz. (4.4)
U




12 L.S. Arendarenko, R. Oinarov, L.-E. Persson

] Q(z, s)wi(s)ds | x

[un

)

X —/ﬁ /ﬂU”'(y)p‘p'(y)dy d /Up'(y)p‘p'(y)dy =

(p—1)
P—q

(%) /qu(a:,s)wq(S)ds a /ﬁUpl(y)Pp/(y)dl/

We put the last estimate in (4.4) and find that

K60 >

p—1 (p—1)(g—1)
p—q B p—q

15 T
/ / Q(z, s)ut(s)ds / U” ()9 (y)dy Uw)g(x)dz.  (4.5)

T

Substituting the expression for the function g(z) in (4.5) we obtain

C”ng,p > HK*QHq,w >

Q=

T r
q B q
/

B z
[ [a@suwris| | [vrwer iy v'@er@is| . o)

x

It follows by (4.6) and (4.3) that

S =

T r
q B q

i j Q. s)w(s)ds / U” (y)p " (y)dy | U”

T

/ /

()p P (z)de | < C.

If in the last estimate we pass to limits when a — a and 3 — b, then we get that
M, <« C < 0.

In a similar way we prove that M; < oo. To do this we use inequality (4.2) and the
test function

(g=1)(p—1) q—1
p—q ] p—q

(v)dy / wi(r)dr | wi(s)

/

8
F(s) = X(ap(5) /K”/(y, s)p "

where o, 8: a<a<(<b.

Sufficiency. Let M; < oo, My < oc.

First we consider the case when ¢(t) is a non-negative function with compact sup-
port. In this case K*¢g(t) is a non-increasing and bounded function on the interval

(a,b).
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Hence, there exist m € Z, such that
K'g(t) <(d+1)™™, Vte (a,b).
We put

mo =maz{m € Z: K*g(t) < (d+1)"™, Vt € (a,b)};
tmy = @;

te = sup{t : K*g(t) = (d+1)""}, k> my.

It follows, by the continuity of the function K*g(t), that K*g(t;) = (d + 1)~*
For any integer k > my the inequality t; < tx11 holds. Indeed, for all k£ > mgy we
obtain that
K'g(ty) = (d+ 1) > (d+ 1)) = Krg(ty).

By using the monotonicity of K*¢(t), we conclude that ¢, < t51.
We have constructed the sequence {tx}72, ~C (a,b), such that (a,b) =

[e.o]

U (tx_1,tx]. Moreover, if k # [ then (tx_1,tx] ((ti—1, 8] = 0.
k=mgo+1
Since the function K(z,s) belongs to Q1 for k : mg < k < oo, the estimate

(d+1)""D = (@ +1)% —d(d+ 1)~ =

b b

/K(x, tr)g(x)dxr — d / K(x,tg1)g(z)de =
tr trt1
tpa1 b b
/K@@mmm+/K@mmwwd/K@mmmmg
tr tpt1 let1
tht1
/“KKLthdex+
23

d / (K (2, ty1) + U (@) Qrsr, ) — K(, teyr)) g(2)do =

tet1

tkt1

/me dqummk/U (2)dz (4.7)

tht1

holds.
Since (d+ 1)) < Kg(t) < (d+1)"% =2 for t_, <t < t;, we have the following
estimate:

0o tr 00 121

IKglr, = 3 / Kg(shw(s)'ds< 3 (d+ 1)) / wi(s)ds =

k:mo_l,_ltk_l k’:mo-‘rl tk:—l
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= (d+ 1)1 Z (d+ 1)~ / wi(s)ds.
k=mo+1 tho1
By using (2.1) we get the estimate
K" g[l. < L+ 1,
where
0o tot1 7 ¢
L = Z / K(x,tg)g(x)dx / wi(s)ds,
k=mo+1 th tho1
oo b 7
L= Y Qtwte) / U(z)g(z)dx / w(s)ds.
k=mo+1 k41 le—1
Now we estimate each term in (2.2) separately.
By using Holder’s inequality twice, we find that
oo tkt+1 7
I, = Z / K(x,ty)g(x)dx / wi(s)ds <
F=mo+l \ f th—1
tey1 o Tt Pty

tk tk tre—1

T r g
o tet1 P’ ty, a\ "
Z KP (z,t))p " (z)dx /wq(s)ds X

k=mo+1 \ ¢, k—1

0o trt1 p
<| Y. [ g@)f(a)de
k=mgo+1 tr

By applying the representation

b 7 t ¢ 7=a
/ wi(s)ds - / wi(t) / wi(s)ds dt
p—q
k—1 te—1 k—1
and using the estimate
tey1 let1

KP (z,t)p " (z)dz < d” / KP (z,t)p7 " (z)dx for t < t,,

tr ty

(4.8)
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we obtain

~+
=
Bl
3k

¢ r
0o k+1 P

ne| S| [ wener@a ) | [us) | el <

k=mo+1 th

3

oo tr tet1 p’ t P
S [ wwoerwas| | [wrs) v o, <
k:m0+1tk,1 th k1

Sk

¢ b
/ wi(s)ds | w't)dt | [lgll?, =

a

N———
s

i ] /b K (2,8)p7" (2)dz

k:m0+1tk_ L

3

o T
p’ t p

/b/pr/(%t)ﬂpl(%)dx /wq(s)ds wi(t)dt | [lgll2,.

a

Summing up, we have the following estimate for I:

1 < Mg, (49)
Next we estimate
00 b 9ty
Iy = Z Q*(t+1, k) / U(z)g(z)dx / wi(s)ds.
k=mo+1 i1 ey

Let 0,(t) denote the delta-function at a point z € (a,b). The expression 5 can be
written in the following way:

b b q
I = / / Ux)g(x)de | dA(t) = [H'g|? .
a t
where
o0 tk
dAt) = D QUtksr t) / wi(s)ds | 8., (t)dt.
k=mo+1 o1

By using standard results from the theory of Hardy type inequalities (see e.g. [3]-[4])
we get that the inequality

1Hgllgx < Cllgllp,p
holds if and only if the expression
r v 1
b t q b ? I3

M= / / dA(s) / UP (2)p~7 (x)dz | U7 (8)p" () dt

a a t
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is finite. Here
tr

/ }:Qm%m/w%m

t>tk+1 th_1

Moreover, M =~ HH*‘|Lp,p—>Lq,x
The estimate
Q(tk+1,tk) < Q(t,s) for s <t < thr1 <t

follows from the fact that Q(-,-) is non-decreasing in x and non-increasing in y.
Hence,

/d)\ <<Z/thswq ds</thswq (4.10)

>ty
By using (2.4) we get that ||H*|.,,~r,, = M < M, and the inequality
I < Mgllgll3 , (4.11)

holds.
It follows by (2.2), (2.3) and (2.5) that for any non-negative function g € L, ,(a, b)
with compact support the inequality

1K*glgw < (M1 + My)lg|lp, < o0 (4.12)

holds. This is equivalent to the fact that (2.6) holds for all functions in L, ,(a,b) with
compact support. But the set of such functions is dense in L, ,(a,b). Therefore, we
conclude that (2.6) holds for all g € L, ,(a,b) and the proof is complete.

The proof of the Theorem 3.2 is completely analogous to the proof of Theorem 3.1
so we leave out the details.
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