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1 Introduction and setting up the problem

For studying objects or processes in the surrounding world, methods of mathematical modeling are
extensively used. An efficient way to study processes by mathematical methods is by modeling these
processes in the form of fractional differential equations.

Fractional differential equations have excited, in recent years, a considerable interest both in
mathematics and in applications. They were used in the modeling of many physical and chemi-
cal processes and engineering (see, e.g., [2]-[4]). Other studies [7]-[6] demonstrate several interesting
features of the fractional diffusion-wave equations, which represent a peculiar union of properties typ-
ical for second-order parabolic and wave differential equations. Fractional evolution inclusions are
an important form of differential inclusions within nonlinear mathematical analysis. They are gener-
alizations of the much more widely developed fractional evolution equations (such as time-fractional
diffusion equations) seen through the lens of multivariate analysis. Compared with fractional evolu-
tion equations, research on the theory of fractional differential inclusions is however only in its initial
stage of development. This is important because differential models with the fractional derivative
provide an excellent instrument for the description of memory and hereditary properties, and have
recently been proven valuable tools in the modeling of many physical phenomena (see, [20] and the
references therein).

According to the fractional order α, the diffusion process can be specified as sub-diffusion (α ∈
(0, 1)) and super-diffusion (α ∈ (1, 2)), respectively. There is abundant literature on the studies
of fractional equations on various aspects, such as physical backgrounds, weak solutions, maximum
principle and numerical methods (see, [19] and the references therein).
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Practical needs often lead to problems in determining the coefficients, kernel, or the right-hand
side of a differential equation from certain known information about its solution. Such problems
have received the name inverse problems of mathematical physics. Inverse problems arise in various
domains of human activity, such as seismology, prospecting for mineral deposits, biology, medi-
cal visualization, computer-aided tomography, the remote sounding of the Earth, spectral analysis,
nondestructive control, etc., (see [3], [10]-[17]). In this paper, we discuss an inverse problem of de-
termining a coefficient and kernel depending on the time in a fractional-differential equation by the
measurement data of time trace at a fixed point xi.

Let QT
0 := (0, 1) × (0, T ) for a given time T > 0. We consider the following fractional integro-

differential equation with a fractional derivative in time t:

∂αt u(x, t) + Lu(x, t) = q(t)ut(x, t) + k ∗ u(x, ·) + f(x, t), (x, t) ∈ QT
0 , (1.1)

where 1 < α < 2 and ∂αt u(x, t) is the left Gerasimov-Caputo fractional derivative with respect to t
and is defined in [9] as

∂αt v(t) = K ∗ v′′,
here the kernel function K is given by

K(t) =

{
t1−α

Γ(2−α)
, t > 0,

0, t ≤ 0,

Γ(·) is the Gamma function and L is the differential operator defined by

Lu ≡ −(%(x)u′)′ + c(x)u,

where the coefficients belong to the set:

Λ :=
{

(%, c) ∈ C1[0, 1]× C[0, 1] : c(x) > 0, %(x) ≥ %0 > 0
}
,

and ∗ denotes the Laplace convolution

f ∗ g(t) =

∫ t

0

f(t− τ)g(τ)dτ.

Note that if α = 1 and α = 2, then equation (1.1) represents a parabolic and a hyperbolic integro-
differential equations, respectively. Since we are interested mainly in the fractional cases, we restrict
the order α to 1 < α < 2.

We supplement the above fractional wave equation with the following initial conditions:

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), 0 < x < 1, (1.2)

and the zero boundary condition:

u(0, t) = u(1, t) = 0, 0 < t < T. (1.3)

For convenience of the reader, we present here the necessary definitions from functional analysis
and fractional calculus theory.

For integers m, we denote Hm(0, 1) = Wm,2(0, 1) andW k,1(0, T ) the usual Sobolev spaces defined
for spatial and time variables respectively (see [1]), and Hm

0 (0, 1) is the closure of C∞0 (0, 1) in the
norm of space Hm(0, 1). For a given Banach space V on (0, 1), we use the notation Cm([0, T ];V ) to
denote the following space:

Cm([0, T ];V ) :=
{
u : [0, T ]→ V : ‖∂jtu(t)‖V is continuous in t on [0, T ] for all 0 ≤ j ≤ m

}
.
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We endow Cm([0, T ];V ) with the following norm, making it a Banach space:

‖u‖Cm([0,T ];V ) =
m∑
j=0

(
max

0≤t≤T
‖∂jtu(t)‖V

)
.

In addition, we define the Banach space XT
0 by

XT
0 := C([0, T ];D(Lγ+ 1

α )) ∩ C1([0, T ];D(Lγ))

with the norm
‖u‖XT

0
:= ‖u‖

C([0,T ];D(Lγ+ 1
α ))

+ ‖u‖C1([0,T ];D(Lγ)).

The notation XT
0 indicates that zero represents the initial state of the time variable, i.e., t = 0.

Furthermore, we set
Y T

0 = XT
0 × C1[0, T ]× C[0, T ]

endowed with the norm

‖(u, q, k)‖Y T0 := ‖u‖XT
0

+ ‖q‖C1[0,T ] + ‖k‖C[0,T ].

We denote the domain of L by D(L) = H2(0, 1)∩H1
0 (0, 1). It is well known that, if the coefficients

% and c of the operator L are in the set Λ, then the operator L has only real and simple eigenvalues
λn, and with suitable numbering, we have 0 < λ1 ≤ λ2 ≤ · · · , lim

k→∞
λk = ∞. By ek, we denote

the eigenfunction corresponding to λk, which satisfies ‖ek‖2
L2(0,1) = (ek, ek) = 1, where (·, ·) denotes

the inner product in the Hilbert space L2(0, 1) and λk, ek satisfy Lek = λkek, ek(0) = ek(1) = 0,
{ek} ⊂ H2(0, 1) ∩H1

0 (0, 1) is an orthonormal basis of L2(0, 1).
Now we define the fractional power operator Lγ for γ ∈ R (e.g. [13]) and the Hilbert space D(Lγ)

by

D(Lγ) :=
{
u ∈ L2(0, 1) :

∞∑
k=1

λ2γ
k |(u, ek)|

2 <∞
}
, Lγu =

∞∑
k=1

λγk(u, ek)ek

with the inner product (u, v)D(Lγ) = (Lγu,Lγv)L2(0,1) and, respectively, the norm

‖u‖D(Lγ) = ‖Lγu‖ =

(
∞∑
k=1

λ2γ
k |(u, ek)|

2

)1/2

.

Moreover, we shall use the Mittag-Leffler function (see [9]):

Eρ,µ(z) =
∞∑
k=0

zk

Γ(ρk + µ)
, z ∈ C

with Re(ρ) > 0 and µ ∈ C. It is known that Eρ,µ(z) is an entire function in z ∈ C.

Lemma 1.1. Let 0 < ρ < 2, µ ∈ R be arbitrary and θ satisfy πρ
2
< θ < min{π, πρ}. Then there

exists a constant c = c(ρ, µ, θ) > 0 such that

|Eρ,µ(z)| ≤ c

1 + |z|
, θ ≤ |arg(z)| ≤ π,

and the asymptotic behavior of Eρ,µ(z) at infinity is as follows: for any N ∈ N

Eρ,µ(z) = −
N∑
n=1

z−n

Γ(µ− ρn)
+O(z−N−1).
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For the proof, we refer, for example, to [5].

Remark 1. In the paper, the Mittag-Leffler function is used only for real negative z, in which case
the constant c depends only on ρ and µ.

Proposition 1.1. (see [9]) For λ > 0, α > 0, β ∈ C and positive integer m ∈ N, we have

dm

dtm
Eα,1(−λtα) = −λtα−mEα,α−m+1(−λtα), t > 0,

d

dt

(
tβ−1Eα,β(−λtα)

)
= tβ−2Eα,β−1(−λtα), t > 0

and
∂αt (Eα,1(−λtα)) = −λEα,1(−λtα), t ≥ 0.

Also, we shall use the following simple equality

max
y≥0

yθ

1 + y
= θθ(1− θ)1−θ < 1 for 0 < θ < 1. (1.4)

If q(t), k(t), f(x, t), ϕ(x) and ψ(x) are known, then problem (1.1)-(1.3) is called a direct problem.
The inverse problem in this paper is to reconstruct q(t) and k(t) according to the additional data

u(xi, t) = hi(t), t ∈ [0, T ], (1.5)

where xi ∈ (0, 1), i = 1, 2 are fixed points, hi(t), i = 1, 2 are given functions.
We investigate the following inverse problem.
Inverse problem. Find u ∈ XT

0 , q ∈ C1[0, T ] and k ∈ C[0, T ] to satisfy (1.1)-(1.3) and addi-
tional measurements (1.5), where D(Lγ) is a Hilbert space with some positive constant γ satisfying
inequality (1.6).

We now give a similar definition of a weak solution to (1.1)-(1.3), which is introduced in [15].

Definition 1. We call u a weak solution to (1.1)-(1.3) if (1.1) holds in L2(0, 1) and u(·, t) ∈ H1
0 (0, 1)

for almost all t ∈ (0, T ), u, ∂tu ∈ C([0, T ];D(L−γ)) and

lim
t→0
‖u(·, t)− ϕ‖D(L−γ) = lim

t→0
‖ut(·, t)− ψ‖D(L−γ) = 0

with some γ > 0.

Throughout this paper, we assume that 3
2
< γ0 and

5

4
< γ ≤ γ0. (1.6)

We make the following assumptions:

(C1) ∂αt hi ∈ C1[0, T ] (i = 1, 2), ϕ ∈ D(Lγ0+ 1
α ), ψ ∈ D(Lγ0), f ∈ C1([0, T ];D(Lγ));

(C2) h′i(0)q(0) = ∂αt hi(0) + Lϕ(xi)− f̃i(0), where f̃i(t) = f(xi, t), (i = 1, 2);
(C3) ϕ(xi) = hi(0), ψ(xi) = h′i(0), (i = 1, 2);
(C4) p(t) = h′1(t)h2(0)− h′2(t)h1(0) 6= 0 and p ∈ C1[0, T ] satisfies the following inequality:

|p(t)| ≥ 1

p0

,

where p0 is a positive constant.
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Remark 2. In (C1), ∂αt h ∈ C1[0, T ] implies hi ∈ W 2,1(0, T ) ↪→ H1(0, T ) (see [17]).

Remark 3. (C2)-(C3) are the consistency conditions for our problem (1.1)-(1.3), (1.5), which guar-
antees that inverse problem (1.1)-(1.3), (1.5) is equivalent to (2.36) and (2.38) (see Lemma 2.6).

Remark 4. In order to guarantee that ∂αt h ∈ C1[0, T ], we could give the usual regularity condition
hi ∈ C3[0, T ], such that h′′i (0) = 0 (see [17]).

The main result of this paper is the following local existence and uniqueness result for an inverse
problem.

Theorem 1.1. Let the assumptions (C1)-(C4) hold. Then, the inverse problem has a unique solution
(u, q, k) ∈ Y T

0 for sufficiently small T > 0.

The outline of the paper is as follows. Section 2 presents preliminary results, including the
existence and uniqueness of the direct problem (1.1)-(1.3), along with an equivalent problem. In
Section 3, we establish the local existence and global uniqueness of the solution to the inverse problem
(1.1)-(1.3), (1.5) using the Fourier method and the Banach fixed-point theorem. In Section 4, we
provide examples of the inverse problem (1.1)-(1.3), (1.5).

2 Preliminary results

This section presents some preliminary results, including the well-posedness for a fractional differ-
ential equation, an equivalent lemma for our inverse problem, and a technical result, which will be
used to prove our main results.

Let 
Z1(t)η(x) =

∞∑
n=1

(η, en)Eα,1(−λntα)en(x),

Z2(t)η(x) =
∞∑
n=1

(η, en)tEα,2(−λntα)en(x), (x, t) ∈ QT
0 ,

Z3(t)η(x) = −
∞∑
n=1

λn(η, en)tα−1Eα,α(−λntα)en(x).

for η ∈ L2(0, 1).
We first consider the following initial and boundary value problem:

∂αt u(x, t) + Lu(x, t) = F (x, t), (x, t) ∈ QT
0 ,

u(0, t) = u(1, t) = 0, 0 < t < T,

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), 0 < x < 1.

(2.1)

We split (2.1) into the following two initial and boundary value problems:
∂αt v(x, t) + Lv(x, t) = 0, (x, t) ∈ QT

0 ,

v(0, t) = v(1, t) = 0, 0 < t < T,

v(x, 0) = ϕ(x), vt(x, 0) = ψ(x), 0 < x < 1,

(2.2)

and 
∂αt w(x, t) + Lw(x, t) = F (x, t), (x, t) ∈ QT

0 ,

w(0, t) = w(1, t) = 0, 0 < t < T,

w(x, 0) = 0, wt(x, 0) = 0, 0 < x < 1.

(2.3)

Similarly to Theorem 2.3 in [15], it is easy to obtain the following assertion:
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Lemma 2.1. Let ϕ ∈ H2(0, 1) ∩H1
0 (0, 1) and ψ ∈ H1

0 (0, 1). Let γ > 0. Then there exists a unique
weak solution v ∈ C([0, T ];H2(0, 1) ∩H1

0 (0, 1)) ∩ C1([0, T ];D(L−γ)) to (2.2). Moreover, there exists
a constant c > 0, depending only on α, γ and λ1, such that

‖v(·, t)‖H2(0,1) + ‖vt(·, t)‖D(L−γ) ≤ c
(
‖ϕ‖H2(0,1) + ‖ψ‖H1(0,1)

)
, t ∈ (0, T ). (2.4)

Furthermore, we have {
v(x, t) = Z1(t)ϕ(x) + Z2(t)ψ(x), (x, t) ∈ QT

0 ,

vt(x, t) = Z3(t)ϕ(x) + Z1(t)ψ(x), (x, t) ∈ QT
0 .

(2.5)

Proof. The uniqueness and existence of a weak solution are verified similarly to Theorem 2.1 in
[15], but the statement about the smoothness for the function v given in the lemma differs from the
statement about the smoothness given in [15]. Therefore, here we prove only inequality (2.4). Using
Lemma 1.1, we have

‖v(·, t)‖2
H2(0,1) ≤ 2

∞∑
n=1

λ2
n |(ϕ, en)Eα,1(−λntα)|2 + 2

∞∑
n=1

λ2
n |(ψ, en)tEα,2(−λntα)|2

≤ 2c2‖ϕ‖2
H2(0,1) + 2c2

∞∑
n=1

λn|(ψ, en)|2
(

(λnt
α)

1
α

1 + λntα

)2

λ
1− 2

α
n ,

where c > 0, depending only on α, is given in Lemma 1.1. Since λ1− 2
α

n ≤ λ
1− 2

α
1 , n = 1, 2, ..., by (1.4)

we have
‖v(·, t)‖2

H2(0,1) ≤ 2c2 max{1, λ1− 2
α

1 }
(
‖ϕ‖2

H2(0,1) + ‖ψ‖2
H1(0,1)

)
. (2.6)

Further, by the second formula of (2.5), we have

‖vt(·, t)‖2
D(L−γ) ≤ 2

∞∑
n=1

λ−2γ
n

∣∣λntα−1(ϕ, en)Eα,α(−λntα)
∣∣2

+ 2
∞∑
n=1

λ−2γ
n |(ψ, en)Eα,1(−λntα)|2

≤ 2c2

∞∑
n=1

λ2
n|(ϕ, en)|2

(
(λnt

α)
α−1
α

1 + λntα

)2

λ
−2(γ+1− 1

α
)

n + 2c2

∞∑
n=1

λn|(ψ, en)|2λ−2(γ+ 1
2

)
n . (2.7)

Now, using Lemma 1.1 and (1.4), we have

‖vt(·, t)‖2
D(L−γ) ≤ 2c2 max{λ−2(γ+1− 1

α
)

1 , λ
−2(γ+ 1

2
)

1 }
(
‖ϕ‖2

H2(0,1) + ‖ψ‖2
H1(0,1)

)
. (2.8)

We introduce the following auxiliary lemmas to obtain the main results.

Lemma 2.2. Let F ∈ C([0, T ];D(L1/α)). Then there exists a unique weak solution w ∈
C([0, T ];H2(0, 1) ∩ H1

0 (0, 1)) to (2.3) with ∂αt w ∈ C([0, T ];L2(0, 1)). Moreover, for any γ > 0,
we have wt ∈ C([0, T ];D(L−γ)),

lim
t→0
‖w(·, t)‖H2(0,1) = lim

t→0
‖wt(·, t)‖D(L−γ) = 0. (2.9)
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Furthermore, there exists a constant c > 0, depending only on α, γ and λ1, such that

‖w(·, t)‖H2(0,1) + ‖wt(·, t)‖D(L−γ) ≤ c
(
t+ tα−1

)
‖F‖C([0,T ];D(L1/α)) (2.10)

and we have w(x, t) = −
∫ t

0
L−1Z3(t− s)F (x, s)ds, (x, t) ∈ QT

0 ,

wt(x, t) =
∫ t

0
L−1Z4(t− s)F (x, s)ds, (x, t) ∈ QT

0 ,
(2.11)

where

Z4(t)η(x) =
∞∑
n=1

λn(η, en)tα−2Eα,α−1(−λntα)en(x)

and the function w belongs to the space C([0, T ];H2(0, 1) ∩H1
0 (0, 1)) ∩ C1([0, T ];D(L−γ)).

Proof. By Theorem 2.2 in [15], for F ∈ C([0, T ];D(L1/α)), the unique solution w ∈ C([0, T ];H2(0, 1)∩
H1

0 (0, 1)) to (2.3) can be expressed by (2.11). As above, the uniqueness and existence of the weak
solution are verified similarly to Theorem 2.1 in [15]. Therefore, here we omitted it and we prove
only equality (2.9) and inequality (2.10).

We first have

‖w(·, t)‖2
L2(0,1) =

∞∑
n=1

∣∣∣∣∫ t

0

(F (·, s), en)(t− s)α−1Eα,α(−λn(t− s)α)ds

∣∣∣∣2

≤ c2

∞∑
n=1

∣∣∣∣∣
∫ t

0

λ
1
α
n |(F (·, s), en)|(λn(t− s)α)

α−1
α

1 + λn(t− s)α
λ−1
n ds

∣∣∣∣∣
2

,

or, by virtue of the generalized Minkowski inequality, we have

‖w(·, t)‖2
L2(0,1) ≤ c2

∣∣∣∣ ∫ t

0

( ∞∑
n=1

λ
2
α
n |(F (·, s), en)|2

)1/2

λ−1
1 ds

∣∣∣∣2
≤ c2λ−2

1 max
0≤s≤t

‖F (·, s)‖2
D(L1/α)

∣∣∣∣∫ t

0

ds

∣∣∣∣2 ≤ c2λ−2
1 ‖F‖2

C([0,T ];D(L1/α))t
2. (2.12)

Furthermore, according to Lemma 2.2, for F ∈ C([0, T ];D(L1/α)) and by Lemma 1.1, we have

‖ω(·, t)‖2
H2(0,1)

≤ ‖Lω(·, t)‖2
L2(0,1) =

∞∑
n=1

λ2
n

∣∣∣∣∫ t

0

(F (·, s), en)(t− s)α−1Eα,α(−λn(t− s)α)ds

∣∣∣∣2
≤ c2

∣∣∣∣ ∫ t

0

( ∞∑
n=1

λ
2
α
n |(F (·, s), en)|2

)1/2
(λn(t− s)α)

α−1
α

1 + λn(t− s)α
ds

∣∣∣∣2
≤ c2‖F‖2

C([0,T ];D(L1/α))t
2. (2.13)

By (2.3) and (2.13) we can estimate also ‖∂αt ω(·, t)‖C([0,T ];L2(0,1)) and we have lim
t→0
‖ω(·, t)‖H2(0,1) = 0.

Next, applying Lemma 1.1, Proposition 1, and the Cauchy-Schwarz inequality, for any γ > 0, we
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have

‖ωt(·, t)‖2
D(L−γ) =

∞∑
n=1

λ−2γ
n

∣∣∣∣ ∫ t

0

(F (·, s), en)(t− s)α−2Eα,α−1(−λn(t− s)α)ds

∣∣∣∣2
≤ c2

∣∣∣∣ ∫ t

0

( ∞∑
n=1

λ
1
α
n |(F (·, s), en)|2λ−2γ− 2

α
n

)1/2

(t− s)α−2ds

∣∣∣∣2
≤ c2

(α− 1)2
λ
−2γ− 2

α
1 ‖F‖2

C([0,T ];D(L1/α))t
2α−2. (2.14)

Therefore, lim
t→0
‖ωt(·, t)‖2

D(L−γ) = 0. Inequality (2.10) follows from inequalities (2.13) and (2.14).

By Lemma 2.1 and 2.2, we get the following assertion:

Lemma 2.3. Let ϕ ∈ H2(0, 1)∩H1
0 (0, 1), ψ ∈ H1

0 (0, 1) and F (x, t) ∈ C([0, T ];D(L1/α)). Then there
exists a unique weak solution u ∈ C([0, T ];H2(0, 1) ∩ H1

0 (0, 1)) ∩ C1([0, T ];D(L−γ)) to (2.1), such
that

‖u(·, t)‖H2(0,1) + ‖ut(·, t)‖D(L−γ)

≤ c
[
‖ϕ‖H2(0,1) + ‖ψ‖H1(0,1) + (t+ tα−1)‖F‖C([0,T ];D(L1/α))

]
(2.15)

for all t ∈ [0, T ], where the constant c > 0 depends only on α, γ and λ1, in particular, does not depend
on T . Furthermore, for all (x, t) ∈ QT

0 we have

{
u(x, t) = Z1(t)ϕ(x) + Z2(t)ψ(x)−

∫ t
0
L−1Z3(t− s)F (x, s)ds,

ut(x, t) = Z3(t)ϕ(x) + Z1(t)ψ(x) +
∫ t

0
L−1Z4(t− s)F (x, s)ds,

(2.16)

where Zj(t)[·](j = 1, 2, 3, 4) are defined above.

The next two lemmas are regularity results of the solution u to problem (2.1).

Lemma 2.4. Let ϕ ∈ D(Lγ+ 1
α ), ψ ∈ D(Lγ) and F ∈ C([0, T ];D(Lγ). Then the unique weak solution

u ∈ XT
0 to (2.1) is such that

‖u(·, t)‖
D(Lγ+ 1

α )
+ ‖ut(·, t)‖D(Lγ) ≤ c

(
‖ϕ‖

D(Lγ+ 1
α )

+ ‖ψ‖D(Lγ) + tα−1‖F‖C([0,T ];D(Lγ)

)
, (2.17)

where c > 0 depends only on α.
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Proof. Obviously, by Lemma 1.1 and the Cauchy-Schwarz inequality, we have

‖u(·, t)‖2

D(Lγ+ 1
α )
≤ 3

∞∑
n=1

λ
2γ+ 2

α
n |(ϕ, en)Eα,1(−λntα)|2 + 3

∞∑
n=1

λ
2γ+ 2

α
n t2|(ψ, en)Eα,2(−λntα)|2

+ 3
∞∑
n=1

λ
2γ+ 2

α
n

∣∣∣∣∫ t

0

(F (·, s), en)(t− s)α−1Eα,α(−λn(t− s)α)ds

∣∣∣∣2
≤ 3c2

∞∑
n=1

λ
2γ+ 2

α
n |(ϕ, en)|2 + 3c2

∞∑
n=1

λ2γ
n (ψ, en)2

(
(λnt

α)1/α

1 + λntα

)2

+ 3

∣∣∣∣ ∫ t

0

( ∞∑
n=1

λ2γ
n |(F (·, s), en)|2

)1/2

λ
1
α
n (t− s)α−1Eα,α(−λn(t− s)α)ds

∣∣∣∣2
≤ 3c2‖ϕ‖2

D(Lγ+ 1
α )

+ 3c2‖ψ‖2
D(Lγ)

+ 3c2

∣∣∣∣ ∫ t

0

( ∞∑
n=1

λ2γ
n |(F (·, s), en)|2

)1/2
(λn(t− s)α)

1
α

1 + λn(t− s)α
(t− s)α−2ds

∣∣∣∣2
≤ 3c2‖ϕ‖2

D(Lγ+ 1
α )

+ 3c2‖ψ‖2
D(Lγ) + 3c2‖F‖2

C([0,T ];D(Lγ))

∣∣∣ ∫ t

0

(t− s)α−2ds
∣∣∣2. (2.18)

As a result, we get

‖u(·, t)‖
D(Lγ+ 1

α )
≤ c(α)

(
‖ϕ‖

D(Lγ+ 1
α )

+ ‖ψ‖D(Lγ) + tα−1‖F‖C([0,T ];D(Lγ))

)
, (2.19)

where c(α) = 3c2

(α−1)2 . Furthermore, by Lemma 2.3, we have

ut(x, t) =
∞∑
n=1

{
−λntα−1(ϕ, en)Eα,α(−λntα) + (ψ, en)Eα,1(−λntα)

}
en(x)

+
∞∑
n=1

{∫ t

0

(F (·, s), en)(t− s)α−2Eα,α−1(−λn(t− s)α)ds

}
en(x). (2.20)

Therefore, by applying (1.4), and Lemma 1.1 again, we have

‖ut(·, t)‖2
D(Lγ)

≤ 3
∞∑
n=1

λ2γ
n λ

2
n|(ϕ, en)|2|tα−1Eα,α(−λntα)|2 + 3

∞∑
n=1

λ2γ
n |(ψ, en)|2|Eα,1(−λntα)|2

+ 3
∞∑
n=1

λ2γ
n

∣∣∣∣ ∫ t

0

(F (·, s), en)(t− s)α−2Eα,α−1(−λn(t− s)α)ds

∣∣∣∣2
≤ 3c2

∞∑
n=1

λ
2γ+ 2

α
n (ϕ, en)2

(
(λnt

α)
α−1
α

1 + λntα

)2

+ 3c2

∞∑
n=1

λ2γ
n (ψ, en)2

+ 3c2

∣∣∣∣ ∫ t

0

( ∞∑
n=1

λ2γ
n |(F (·, s), en)|2

)1/2
(t− s)α−2

1 + λ1(t− s)α
ds

∣∣∣∣2
≤ 3c2‖ϕ‖2

D(Lγ+ 1
α )

+ 3c2‖ψ‖2
D(Lγ) +

3c2

(α− 1)2
t2(α−1)‖F‖2

C([0,T ];D(Lγ)). (2.21)
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Thus,
‖ut(·, t)‖D(Lγ) ≤ c1

(
‖ϕ‖

D(Lγ+ 1
α )

+ ‖ψ‖D(Lγ) + tα−1‖F‖C([0,T ];D(Lγ))

)
(2.22)

for all t ∈ [0, T ], where c1 > 0 depends only on α. Then, we immediately obtain the desired estimate
(2.17).

It is easy to see that

Lu(xi, t) = LZ1(t)ϕ(xi) + LZ2(t)ψ(xi)−
∫ t

0

Z3(t− s)F (xi, s)ds, i = 1, 2. (2.23)

The following lemma is valid.

Lemma 2.5. Let ϕ ∈ D(Lγ0+ 1
α ), ψ ∈ D(Lγ0), c0 = min

x∈[0,1]
c(x) > 0 and F ∈ C([0, T ];D(Lγ)). Then

there exists a positive constant c > 0, depending only on α, ρ0, c0, γ, γ0, λ1, such that

‖Lu(xi, ·)‖C[0,T ] ≤ c
(
‖ϕ‖

D(Lγ0+ 1
α )

+ ‖ψ‖D(Lγ0 ) + T‖F‖C([0,T ];D(Lγ))

)
, i = 1, 2, (2.24)

and

‖Lut(xi, ·)‖C[0,T ] ≤ c
(
‖ϕ‖

D(Lγ0+ 1
α )

+ ‖ψ‖D(Lγ0 ) + Tα−1‖F‖C([0,T ];D(Lγ))

)
, i = 1, 2. (2.25)

Proof. An inequality similar to the estimate in (2.24) was derived in [18]. However, the smoothness
assumptions differ from those in [18], so we provide a detailed proof of inequalities (2.24) and (2.25).

Recall the following inequality for the fractional power Lβ of L with β ∈ R, β > 0 :

‖u‖H2β(0,1) ≤ c2‖Lβu‖L2(0,1)

where constant c2 > 0 depends only on β and λ1 (see., [13], p. 208).
Let ε0 = min{ε01, ε02} with 2ε01 = γ0 + 1

α
− 3

2
> 0 and 2ε02 = γ − 1

4
− 1

α
> 0. According to the

Sobolev embedding theorem H2β(0, 1) ⊂ C[0, 1] for β = 1
4

+ ε0, we have

‖en‖C[0,1] ≤ c3‖en‖H2β(0,1) ≤ c3c2‖Lβen‖L2(0,1) ≤ c4λ
β
n, (2.26)

where c2, c3, c4 > 0 depend only of β, λ1.
For convenience, we split Lu(xi, t) in three parts, namely Lu(xi, t) := I1 + I2 + I3, where

I1 := LZ1(t)ϕ(xi), I2 := LZ2(t)ψ(xi), I3 := −
∫ t

0

Z3(t− s)F (xi, s)ds, i = 1, 2.

Note that
λn ≥ c5n

2,

where c5 > 0 depends only on ρ0 and c0 (see [12], p. 190). For I1, by Lemma 1.1, and , we have

|I1| ≤
∞∑
n=1

λn|(ϕ, en)||Eα,1(−λntα)||en(xi)| ≤ c
∞∑
n=1

λ
γ0+ 1

α
n |(ϕ, en)|λ−(γ0+ 1

α
−β−1)

n

≤ c

( ∞∑
n=1

λ
2γ0+ 2

α
n |(ϕ, en)|2

)1/2( ∞∑
n=1

λ
−2(γ0+ 1

α
−β−1)

n

)1/2

≤ cc5‖ϕ‖D(Lγ0+ 1
α )

( ∞∑
n=1

n−4(γ0+ 1
α
−β−1)

)1/2

. (2.27)
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By the choice of β, we have 4(γ0 + 1
α
− β − 1) = 1 + 8ε01 − 4ε0 > 1, which implies

∞∑
n=1

n−4(γ0+ 1
α
−β−1) < c(α, γ0, γ).

So, we get
|I1| ≤ c(α, γ0, γ, ρ0, c0)‖ϕ‖

D(Lγ0+ 1
α )
. (2.28)

Further, by Lemma 1.1 and (1.4), we have the following estimate for I2:

|I2| ≤
∞∑
n=1

λn|(ψ, en)|t|Eα,2(−λntα)||en(xi)| ≤ cc4

∞∑
n=1

|(ψ, en)| λnt

1 + λntα
λβn

≤ cc4

∞∑
n=1

λγ0
n |(ψ, en)| (λnt

α)
1
α

1 + λntα
λ
−(γ0+ 1

α
−β−1)

n

≤ cc4

(
∞∑
n=1

λ2γ0
n |(ψ, en)|2

)1/2( ∞∑
n=1

λ
−2(γ0+ 1

α
−β−1)

n

)1/2

≤ c6‖ψ‖D(Lγ0 ), (2.29)

where c6 > 0 depends only on α, γ, γ0, λ1, ρ0, c0. Next, we estimate I3. The estimate for I3 is the same
as in [18] for γ − β − 1

α
= 2ε02 − ε0 > 0, and we have

|I3|2 =
∞∑
n=1

∣∣∣∣λn ∫ t

0

(F (·, s), en)(t− s)α−1Eα,α(−λn(t− s)α)ds · en(xi)

∣∣∣∣2
≤ c2c2

4

∣∣∣∣ ∫ t

0

( ∞∑
n=1

λ2γ
n |(F (·, s), en)|2

)1/2
(λn(t− s)α)

α−1
α

1 + λn(t− s)α
ds

∣∣∣∣2λ−2(γ−β− 1
α

)
n

≤ c2c2
4λ
−2(γ−β− 1

α
)

1 ‖F‖2
C([0,T ];D(L))t

2. (2.30)

So,
|I3| ≤ c(α, γ, γ0, λ1, ρ0, c0)t‖F‖C([0,T ];D(Lγ)), ∀t ∈ [0, T ]. (2.31)

According to (2.28)-(2.31), we obtain (2.24).
By differentiating (2.20) with respect to the variable t and taking into account Proposition 1, we

obtain
d

dt
Lu(xi, t) = −

∞∑
n=1

λ2
n(ϕ, en)tα−1Eα,α(−λntα)en(xi)

+
∞∑
n=1

λn(ψ, en)Eα,1(−λntα)en(xi)

+
∞∑
n=1

λn

(∫ t

0

(F (·, s), en)(t− s)α−2Eα,α−1(−λn(t− s)α)ds

)
en(xi)

:= Ĩ1 + Ĩ2 + Ĩ3. (2.32)

Let ε0 = min{ε10, ε11} where 2ε10 = γ0 − 3
2
> 0 and 2ε11 = γ − 5

4
> 0.
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By the asymptotic property of the eigenvalues λn ≥ c5n
2, for Ĩ1, using Lemma 1.1 and (1.4), we

have

|̃I1| ≤
∞∑
n=1

λ2
n|(ϕ, en)|tα−1|Eα,α(−λntα)||en(xi)|

≤ cc4

∞∑
n=1

λ
γ0+ 1

α
n |(ϕ, en)|(λnt

α)
α−1
α

1 + λntα
λ−(γ0−β−1)
n

≤ cc4

(
∞∑
n=1

λ
2γ0+ 2

α
n |(ϕ, en)|2

)1/2( ∞∑
n=1

λ−2(γ0−β−1)
n

)1/2

≤ cc4c5‖ϕ‖D(Lγ0+ 1
α )

(
∞∑
n=1

n−4(γ0−β−1)

)1/2

.

By choice of β, we have 4(γ0 − β − 1) = 1 + 8ε10 − 4ε0 > 1, which implies

∞∑
n=1

n−4(γ0−β−1) < c(γ, γ0).

Thus, we obtain
|̃I1| ≤ c(α, γ0, ρ0, c0)‖ϕ‖

D(Lγ0+ 1
α )
. (2.33)

Similarly, we have the following estimate for Ĩ2:

|̃I2| ≤
∞∑
n=1

λn|(ψ, en)||Eα,1(−λntα)||en(xi)|

≤ cc4

∞∑
n=1

λγ0
n |(ψ, en)|λ

−(γ0−β−1)
n

1 + λntα
≤ cc4

( ∞∑
n=1

λ2γ0
n |(ψ, en)|2

)1/2

×
( ∞∑

n=1

n−4(γ0−β−1)

)1/2

≤ c(α, γ, γ0, ρ0, c0)‖ψ‖D(Lγ0 ). (2.34)

Further, we estimate Ĩ3. By Lemma 1.1 and γ − β − 1 = 2ε11 − ε0 > 0, we have

|̃I3|2 ≤
∞∑
n=1

∣∣∣∣λn ∫ t

0

(F (·, s), en)(t− s)α−2Eα,α−1(−λn(t− s)α)ds · en(xi)

∣∣∣∣2
≤ c2c2

4

∣∣∣∣ ∫ t

0

( ∞∑
n=1

λ2γ
n |(F (·, s), en)|2

)1/2
(t− s)α−2

1 + λ1(t− s)α
ds

∣∣∣∣2 · λ−2(γ−β−1)
n

≤ c2c2
4 max

0≤s≤t
‖F (·, s)‖2

D(Lγ)

∣∣∣∣ ∫ t

0

sα−2ds

∣∣∣∣2 · λ−2(γ−β−1)
1 .

So that
|̃I3| ≤ c(α, γ, γ0, λ1, ρ0, c0)‖F‖C([0,T ],D(Lγ))t

α−1, ∀t ∈ [0, T ]. (2.35)

Finally, by (2.33)-(2.35), we get (2.25), thereby completing the proof of this lemma.

To study the main problem (1.1)-(1.3), (1.5), we consider the following auxiliary inverse initial
and boundary value problem.
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Lemma 2.6. Let (C1)-(C4) be held. Then the problem of finding a solution to (1.1)-(1.3), (1.5) is
equivalent to the problem of determining functions u(x, t) ∈ XT

0 , q(t) ∈ C1[0, T ] and k(t) ∈ C[0, T ]
satisfying 

∂αt u(x, t) + Lu(x, t) = q(t)ut(x, t) + (k ∗ u)(t) + f(x, t), (x, t) ∈ QT
0 ,

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x) 0 < x < 1,

u(0, t) = u(1, t) = 0, 0 < t < T,

(2.36)

and
q(t) =

1

p(t)

(
h2(0)N1[u, l](t)− h1(0)N2[u, l](t)

)
, 0 ≤ t ≤ T, (2.37)

k(t) = Dt

[
1

p(t)

(
h′1(t)N2[u, l](t)− h′2(t)N1[u, l](t)

)]
, 0 ≤ t ≤ T, (2.38)

where Dt := (d/dt),

Ni = ∂αt hi(t) + Lu(xi, t)− (l ∗ h′i)(t)− f̃i(t), (i = 1, 2) (2.39)

and

l(t) =

∫ t

0

k(τ)dτ. (2.40)

Remark 5. By Lemma 2.6, we know that problem (2.36)-(2.38) is an equivalent form of the original
inverse problem (1.1)-(1.3), (1.5). Therefore, in the following sections, we will discuss problem (2.36)-
(2.38), rather than the original one.

Proof. The solution (u(x, t), q(t), k(t)) ∈ Y T
0 of our inverse problem (1.1)-(1.3), (1.5) is also a solution

to problem (2.36) in Y T
0 , because problem (2.36) is the same as (1.1)-(1.3). Therefore, we should show

only (2.37) and (2.38). Let the three {u(x, t), q(t), k(t)} functions be a solution to problem (1.1)-
(1.3), (1.5). Taking into account the conditions ∂αt hi(t) ∈ C[0, T ] which imply that hi ∈ C1[0, T ],
and fractional differentiating both sides of (1.5) with respect to t gives

∂αt u(xi, t) = ∂αt hi(t), ut(xi, t) = h′i(t), 0 ≤ t ≤ T. (2.41)

Set x = xi in equation (1.1), the procedure yields

∂αt u(xi, t) + Lu(xi, t) = q(t)ut(xi, t) +

∫ t

0

k(t− τ)u(xi, τ)dτ + f(xi, t), i = 1, 2. (2.42)

We note that l(t) =
∫ t

0
k(τ)dτ . Then by integration by parts, we get the following equality:∫ t

0

k(τ)hi(t− τ)dτ = hi(0)l(t) +

∫ t

0

l(t− τ)h′i(τ)dτ. (2.43)

With the help of (2.41) and (2.43), we can rewrite (2.42) as

h′i(t)q(t) + hi(0)l(t) = ∂αt hi(t) + Lu(xi, t)− (l ∗ h′i)(t)− f̃i(t), i = 1, 2.

Due to (C4), we can solve this system to get (2.37) and

l(t) =
1

p(t)

(
h′1(t)N2[u, l](t)− h′2(t)N1[u, l](t)

)
. (2.44)

Furthermore, by differentiating (2.44) with respect to t, we get (2.38).
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Now, assume that (u, q, k) satisfies (2.36)-(2.38). To prove that {u, q, k} is a solution to the
inverse problem (1.1)-(1.3), (1.5), it suffices to show that {u, q, k} satisfies (1.5).

Setting x = xi in equation (2.36), we have

∂αt u(xi, t) + Lu(xi, t) = q(t)ut(xi, t) + (k ∗ u)(t) + f̃i(t). (2.45)

On the other hand, from (C2), we easily see that

1

p(0)

(
h′1(0)N2[u, l](0)− h′2(0)N1[u, l](0)

)
= 0.

We get (2.44) by integrating (2.38) over [0, t]. From (2.37) and (2.44), we conclude that

h′i(t)q(t) = −hi(0)l(t) + ∂αt hi(t) + Lu(xi, t)− (l ∗ h′i)(t)− f̃i(t)
= ∂αt hi(t) + Lu(xi, t)− (k ∗ hi)(t)− f̃i(t)

or
f̃i(t) = −h′i(t)q(t) + ∂αt hi(t) + Lu(xi, t)− (k ∗ hi)(t). (2.46)

Then substituting (2.46) into (2.45), and using (C3), we have that Pi(t) := u(xi, t)− hi(t) (i = 1, 2)
satisfies {

∂αt Pi(t) = q(t)P ′i (t) + (k ∗ Pi)(t), t > 0,

Pi(0) = P ′i (0) = 0.
(2.47)

Then, the fractional initial value problem (2.47) is equivalent to the integral equation (see, [9], p.
199)

Pi(t) =
1

Γ(α)

∫ t

0

(∫ t

s

(t− τ)α−1k(τ − s)dτ
)
Pi(s)ds

− 1

Γ(α)

∫ t

0

(t− s)α−1q′(s)Pi(s)ds

+
1

Γ(α− 1)

∫ t

0

(t− s)α−2q(s)Pi(s)ds, i = 1, 2. (2.48)

This is a weakly singular homogeneous integral equation, and it has only a trivial solution for q(t) ∈
C1[0, T ] and k(t) ∈ C[0, T ] (see [8]). Therefore, u(xi, t) − hi(t) = 0, for 0 ≤ t ≤ T , i.e., condition
(1.5) is satisfied.

At the end of this section, we present a lemma that will be used to estimate q and k.

Lemma 2.7. Let (C1) hold. Then for all (u, q, k) ∈ Y T
0 and l ∈ C1[0, T ], there exists a constant

c > 0 depending only on α, γ, γ0, λ1, ρ0, c0, in particular, independent of T , ϕ, ψ, such that

‖Ni[u, l]‖C1[0,T ] ≤ ‖∂αt hi‖C1[0,T ] + c
(
‖ϕ‖

D(Lγ0+ 1
α )

+ ‖ψ‖D(Lγ0 )

)
+ ‖f̃i‖C1[0,T ]

+ c(T + Tα−1)‖q‖C[0,T ]‖ut‖C([0,T ];D(Lγ))) + c(T 2 + Tα)‖k‖C[0,T ]‖u‖C([0,T ];D(Lγ+ 1
α ))

+ c(T + Tα−1)‖f‖C([0,T ];D(Lγ)) + T
1
2‖l‖C1[0,T ]

]
, (2.49)

where Ni (i = 1, 2) are the same as those in (2.39) and l(t) as in (2.40).
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Proof. By Lemma 2.5 and condition (C1), we see that

‖Ni[u, l]‖C[0,T ] ≤ ‖∂αt hi‖C[0,T ] + ‖Lu(xi, t)‖C[0,T ] + ‖l ∗ h′i‖C[0,T ]

+‖fi‖C[0,T ] ≤ ‖∂αt hi‖C[0,T ] + c
(
‖ϕ‖

D(Lγ0+ 1
α )

+ ‖ψ‖D(Lγ0 )

+T
α
2 ‖F‖C([0,T ];D(Lγ))

)
+ T

1
2‖l‖C[0,T ]‖h′i‖L2(0,T ) + ‖f̃i‖C[0,T ].

By the definition of F , the last inequality gives

‖Ni[u, l]‖C[0,T ] ≤ ‖∂αt hi‖C[0,T ] + c
[
‖ϕ‖

D(Lγ0+ 1
α )

+ ‖ψ‖D(Lγ0 )

+ T
(
‖q‖C[0,T ]‖ut‖C([0,T ];D(Lγ)) + λ

− 1
α

1 T‖k‖C[0,T ]‖u‖C([0,T ];D(Lγ+ 1
α ))

+ ‖f‖C([0,T ];D(Lγ))

)]
+ T

1
2‖l‖C[0,T ]‖h′i‖L2(0,T ) + ‖f̃i‖C[0,T ], (2.50)

where we have used that

‖v‖2
D(Lγ) =

∞∑
n=1

λ
2γ+ 2

α
n (v, en)2λ

− 2
α

n ≤ λ
− 2
α

1 ‖v‖2

D(Lγ+ 1
α )
.

On the other hand, direct calculations yields

DtNi[u, l](t) = (∂αt hi)
′ + Lut(xi, t)− (l′ ∗ h′i)(t)− f̃ ′i(t). (2.51)

Here we have taken into account that l(0) = 0. By Lemma 2.5, we have

‖DtNi[u, l]‖C[0,T ] ≤ ‖(∂αt hi)′‖C[0,T ] + c
[
‖ϕ‖

D(Lγ0+ 1
α )

+ ‖ψ‖D(Lγ0 )

+Tα−1
(
‖q‖C[0,T ]‖ut‖C([0,T ];D(Lγ)) + λ

− 1
α

1 T‖k‖C[0,T ]‖u‖C([0,T ];D(Lγ+ 1
α ))

+ ‖f‖C([0,T ];D(Lγ))

)]
+ T

1
2‖l′‖C[0,T ]‖h′i‖L2(0,T ) + ‖f̃ ′i‖C[0,T ]. (2.52)

Using (2.50) and (2.52), we obtain the desired estimate given in (2.49).

3 Well-posedness of the inverse problem

We can now prove the existence of a solution to our inverse problem, i.e. Theorem 1.1, which proceeds
by a fixed point argument. First, we define the function set

Bρ,T =
{

(ū, q̄, k̄) ∈ Y T
0 : ū(x, 0) = ϕ(x), ūt(x, 0) = ψ(x), ū(0, t) = ū(1, t) = 0,

‖ū‖XT
0

+ ‖q̄‖C1[0,T ] + ‖k̄‖C[0,T ] ≤ ρ
}
.

Here ρ is a large constant that depends on the initial and source data ϕ, ψ, f , as well on the
measurement data hi. For a given (ū, q̄, k̄) ∈ Bρ,T , we consider

∂αt u(x, t) + Lu(x, t) = F (x, t), (x, t) ∈ QT
0 ,

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), 0 < x < 1,

u(0, t) = u(1, t) = 0, 0 < t < T,

(3.1)
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where
F (x, t) = q̄(t)ūt(x, t) + (k̄ ∗ ū)(t) + f(x, t),

and
q(t) =

1

p(t)

(
h2(0)N1[u, l̄](t)− h1(0)N2[u, l̄](t)

)
, (3.2)

k(t) =
d

dt

(
h′1(t)N2[u, l̄](t)− h′2(t)N1[u, l̄](t)

p(t)

)
(3.3)

to generate (u, q, k), where l̄(t) =
∫ t

0
k̄(τ)dτ , Ni (i = 1, 2) are the same as those in (2.37).

By Hölder’s inequality, we have

‖(k̄ ∗ ū)(t)‖2
D(Lγ) ≤

∫ t

0

|k̄(t− τ)|2dτ
∫ t

0

‖u(·, τ)‖2
D(Lγ)dτ ≤ λ

− 2
α

1 t2‖k̄‖2
C[0,t]‖ū‖2

D(Lγ+ 1
α )

(3.4)

which implies
‖(k̄ ∗ ū)(t)‖C([0,T ];D(Lγ)) ≤ λ

− 1
α

1 ρ2T.

Furthermore

‖q̄ūt‖2
C([0,T ];D(Lγ)) = max

0≤t≤T

∣∣∣∣ ∞∑
n=1

λ2γ
n (q̄(t)ūt(·, t), en)2

∣∣∣∣ ≤ ‖q̄‖2
C[0,T ]‖ūt‖2

C([0,T ];D(Lγ)) ≤ ρ4. (3.5)

Using these results, along with f ∈ C1([0, T ];D(Lγ)), we have

q̄(t)ūt(x, t) + (k̄ ∗ ū)(t) + f(x, t) ∈ C([0, T ];D(Lγ)).

By Lemma 2.4, the unique solution u ∈ XT
0 to problem (3.1), given by (2.16) satisfies

‖u‖XT
0
≤ c

(
‖ϕ‖

D(Lγ+ 1
α )

+ ‖ψ‖D(Lγ) + Tα−1‖F‖C([0,T ];D(Lγ))

)
, (3.6)

where c > 0 depends only on α. Further, (3.2)-(3.3) define the functions q(t) and k(t) in terms of u.
Furthermore, by Lemma 2.7, we have

‖q‖C1[0,T ] + ‖k‖C[0,T ] ≤ c‖1/p‖C1[0,T ]

(
|h1(0)|+ |h2(0)|+ ‖h′1‖C1[0,T ] + ‖h′2‖C1[0,T ]

)
×
(

1 + (T + Tα−1)(1 + ‖q̄‖C[0,T ]‖ut‖C([0,T ];D(Lγ)))

+ (T 2 + Tα)‖k̄‖C[0,T ]‖u‖C([0,T ];D(Lγ+ 1
α ))

+ T
1
2‖l̄‖C1[0,T ]

)
. (3.7)

Note l̄(t) =
∫ t

0
k̄(τ)dτ . Then, we get

‖l̄‖C1[0,T ] =
∥∥∥∫ t

0

k̄(τ)dτ
∥∥∥
C[0,T ]

+ ‖k̄‖C[0,T ] ≤ (1 + T )‖k̄‖C[0,T ]. (3.8)

Substituting (3.8) into (3.7) yields

‖q‖C1[0,T ] + ‖k‖C[0,T ] ≤ c(T )
[
1 + ‖q̄‖C[0,T ]‖ut‖C([0,T ];D(Lγ))

+ ‖k̄‖C[0,T ]‖u‖C([0,T ];D(Lγ+ 1
α )

+ ‖k̄‖C[0,T ]

]
. (3.9)

This implies that q(t) ∈ C1[0, T ] and k(t) ∈ C[0, T ].
Thus the mapping

Z : Bρ,T → Y T
0 , (ū, q̄, k̄) 7→ (u, q, k) (3.10)

given by (3.1)-(3.3) is well defined.
The next lemma shows that Z is a contraction map on Bρ,T for sufficiently small T > 0. More

precisely, we have the following result.
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Lemma 3.1. Let (C1)-(C4) be hold. For (ū, q̄, k̄), (Ū , Q̄, K̄) ∈ Bρ,T , define

(u, q, k) = Z(ū, q̄, k̄), (U,Q,K) = Z(Ū , Q̄, K̄).

Then for any sufficiently large ρ and suitably small τ(ρ) > 0, we have

‖(u, q, k)‖Y T0 ≤ ρ

and
‖(u− U, q −Q, k −K)‖Y T0 ≤

1

2
‖(ū− Ū , q̄ − Q̄, k̄ − K̄)‖Y T0 (3.11)

for all T ∈ (0, τ(ρ)].

In the following proof, we use cj (j = 7, ...) to denote a constant that depends on α, γ, γ0, λ1, ρ0, c0

and the known functions ϕ, ψ, f and measurement data hi, i = 1, 2, but is independent of ρ.

Proof. First, we prove that Z(Bρ,T ) ⊂ Bρ,T for sufficiently large ρ and suitably small T . Without
loss of generality, we assume that ρ ∈ [1,∞) and T ∈ (0, 1].

By Lemma 2.4 and inequalities (3.4)-(3.6), we have

‖u‖XT
0
≤ cλ

−(γ0−γ)
1 (‖ϕ‖

D(Lγ0+ 1
α )

+ ‖ψ‖D(Lγ0 ))

+ cTα−1
[
‖q̄(t)ūt‖C([0,T ],D(Lγ)) + ‖(k̄ ∗ ū)‖C([0,T ],D(Lγ))

+ ‖f‖C([0,T ],D(Lγ)))
]
≤ c7

[
1 + ρ2Tα−1

]
. (3.12)

Here we have used the assumptions ρ ∈ [1,∞) and T ∈ (0, 1] (and we shall use them further on).
On the other hand, by (3.2)-(3.3), together with Lemma 2.7 and (3.8), we have

‖q‖C1[0,T ] + ‖k‖C[0,T ] ≤ c8

(
‖N1[u, l̄]‖C1[0,T ] + ‖N2[u, l̄]‖C1[0,T ]

)
≤ c9

[
1 + T + Tα−1 + ρ(T + Tα−1)‖ut‖C([0,T ];D(Lγ))

+ ρ(T 2 + Tα)‖u‖
C([0,T ];D(Lγ+ 1

α ))
+ ρT

1
2 (1 + T )

]
≤ c10

[
1 + T + Tα−1 + ρ(T 2 + Tα−1)‖u‖XT

0
+ ρT

1
2 (1 + T )

]
≤ c11[1 + c7ρT

α−1(1 + ρ2Tα−1) + ρT 1/2]

≤ c12[1 + ρ3(Tα−1 + T 1/2)]. (3.13)

Adding inequalities (3.12) and (3.13) gives us

‖(u, q, k)‖Y T0 ≤ c7

[
1 + ρ2Tα−1

]
+ c12

[
1 + ρ3(Tα−1 + T 1/2)

]
≤ c13

[
1 + ρ3

(
Tα−1 + T 1/2

) ]
. (3.14)

For ρ > c13, we choose a sufficiently small τ1(ρ) such that, for ρ > c13 and 0 < T < τ1(ρ)

c13

[
1 + ρ3

(
Tα−1 + T 1/2

) ]
≤ ρ. (3.15)

Therefore, for all T < min{1, τ1(ρ)}, we have

‖(u, q, k)‖Y T0 ≤ ρ. (3.16)
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That is, Z maps Bρ,T into itself for each fixed ρ > c13 and T ∈ (0,min{1, τ1(ρ)}].
Next, we check the second condition of contractive mapping Z. Let (u, q, k) = Z(ū, q̄, k̄) and

(U,Q,K) = Z(Ū , Q̄, K̄). Then we obtain that (u− U, q −Q, k −K) satisfies the equalities

u(x, t)− U(x, t) =

∫ t

0

A−1Y (t− s)F̄ (x, s)ds, (x, t) ∈ QT
0 , (3.17)

and

q(t)−Q(t) =
1

p(t)

(
h2(0)(N1[u, l̄](t)−N1[U, L̄](t))− h1(0)(N2[u, l̄](t)−N2[U, L̄](t))

)
, (3.18)

k(t)−K(t) =
d

dt

(h′1(t)(N2[u, l̄](t)−N2[U, L̄](t))

p(t)
− h′2(t)(N1[u, l̄](t)−N1[U, L̄](t))

p(t)

)
(3.19)

where L̄(t) =
∫ t

0
K̄(τ)dτ and

F̄ := q(ut − Ut) + (q −Q)Ut + k ∗ (u− U) + (k −K) ∗ U.

Using Lemma 2.4, (3.5) and (3.6), we get

‖u− U‖XT
0
≤ c14T

α−1
[
‖(q̄ − Q̄)ūt‖C([0,T ],D(Lγ)) + ‖(ūt − Ūt)q̄‖C([0,T ],D(Lγ))

+ ‖(k̄ − K̄) ∗ ū)‖C([0,T ],D(Lγ)) + ‖k̄ ∗ (ū− Ū)‖C([0,T ],D(Lγ))

]
≤ c14T

α−1
[
‖q̄ − Q̄‖C[0,T ]‖ūt‖C([0,T ];D(Lγ))

+ ‖ūt − Ūt‖C([0,T ],D(Lγ))‖q̄‖C[0,T ] + T 2λ
− 1
α

1 ‖k̄ − K̄‖C[0,T ]‖ū‖C([0,T ],D(Lγ+ 1
α ))

+ T 2λ
− 1
α

1 ‖ū− Ū‖C([0,T ],D(Lγ+ 1
α ))
‖k̄‖C[0,T ]

]
≤ c14ρT

α−1 max{1, T 2λ
− 1
α

1 }
[
‖q̄ − Q̄‖C[0,T ] + ‖ū− Ū‖XT

0
+ ‖k̄ − K̄‖C[0,T ]

]
. (3.20)

Similarly, by (3.18)-(3.19) and Lemma 2.7, we have

‖q −Q‖C1[0,T ] + ‖k −K‖C[0,T ] ≤ c15ρ(T 2 + Tα−1) max{1, T 2λ
− 1
α

1 , T
3
2}

×
[
‖q̄ − Q̄‖C[0,T ] + ‖ū− Ū‖XT

0
+ ‖k̄ − K̄‖C[0,T ]

]
. (3.21)

Therefore, by (3.20) and (3.21), we have

‖(u− U, q −Q, k −K)‖Y T0 ≤ c16ρ
[
Tα−1 max{1, T 2λ

− 1
α

1 }

+ (T 2 + Tα−1) max{1, T 2λ
− 1
α

1 , T
3
2}
]
‖(ū− Ū , q̄ − Q̄, k̄ − K̄)‖Y T0 . (3.22)

Hence, we can choose a sufficiently small τ2 such that

c16ρ
[
Tα−1 max{1, T 2λ

− 1
α

1 }+ (T 2 + Tα−1) max{1, T 2λ
− 1
α

1 , T
3
2}
]
≤ 1/2 (3.23)

for all T ∈ (0, τ2] to obtain

‖(u− U, q −Q, k −K)‖Y T0 ≤
1

2
‖(ū− Ū , q̄ − Q̄, k̄ − K̄)‖Y T0 . (3.24)

Estimates (3.16) and (3.24) show that Z is a contraction map on Bρ,T for all T ∈ (0, τ ], if we choose
τ ≤ min{1, τ1, τ2}.
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Let us now prove Theorem 1.1.

Proof. Lemma 3.1 shows that there exists a sufficiently large ρ > 0 and a corresponding sufficiently
small τ(ρ) > 0, such that, for any 0 < T < τ(ρ), the mapping Z is a contraction on Bρ,T . Hence,
the Banach fixed point theorem guarantees the existence of a unique solution (u, q, k) ∈ Bρ,T ⊂ Y τ

0

to the system (2.36)-(2.38), for sufficiently small τ. As a consequence, the problem constituted by
(1.1)-(1.3) and (1.5) also admits a unique solution (u, q, k) ∈ Bρ,T ⊂ Y τ

0 by Lemma 2.6.

Now, we present a global uniqueness result in time.

Lemma 3.2. Under conditions (C1)-(C4), for given measurement data hi(t) for i = 1, 2 in (1.5), if
the inverse problem (1.1)-(1.3), (1.5) has two solutions (uj, qj, kj) ∈ Y T

0 (j = 1, 2) for any time, then
(u1, q1, k1) = (u2, q2, k2) in [0, T ].

According to Remark 5, we know that (2.36)-(2.38) is equivalent to (1.1)-(1.3), (1.5). In Lemma
3.2, we discuss the global uniqueness of inverse problem (2.36)-(2.38).

Proof. Given any time T , let (ui, qi, ki) (i = 1, 2) be two solutions to inverse problem (2.36)-(2.38) in
[0, T ] such that (ui, qi, ki) ∈ Y T

0 . This implies

‖(ui, qi, ki)‖Y T0 ≤ C∗, i = 1, 2, (3.25)

where C∗ > 0 depends only on α, T , initial data ϕ and ψ, the known function f and measurement
data hi.

Let
ũ = u1 − u2, q̃ = q1 − q2, k̃ = k1 − k2.

Then (ũ, q̃, k̃) satisfies
∂αt ũ+ Lũ = q1ũt + q̃u2t + k1 ∗ ũ+ k̃ ∗ u2, (x, t) ∈ QT

0 ,

ũ(x, 0) = ũt(x, 0) = 0, 0 < x < 1,

ũ(0, t) = ũ(1, t) = 0, 0 < t < T,

(3.26)

and
q̃(t) =

1

p(t)

(
h2(0)Lũ(x1, t)− h1(0)Lũ(x2, t)− l̃ ∗ p

)
, (3.27)

k̃(t) =
d

dt

[h′1(t)
(
Lũ(x2, t)− l̃ ∗ h′2

)
− h′2(t)

(
Lũ(x1, t)− l̃ ∗ h′1

)
p(t)

]
, (3.28)

where l̃(t) = l1 − l2 and li(t) =
∫ t

0
ki(s)ds. We have to show

‖(ũ, q̃, k̃)‖Y T0 = 0. (3.29)

Define
σ = inf

{
t ∈ (0, T ] : ‖(ũ, q̃, k̃)‖Y t0 > 0

}
. (3.30)

If (3.29) does not hold, then it is clear that σ is well-defined and satisfies 0 ≤ σ ≤ T . Moreover,
by Theorem 1.1, we have σ > 0, and σ < T follows from the fact that ‖(ũ, q̃, k̃)‖Y T0 > 0 and the
continuity of the norm with respect to time t.

Let 0 < ε < T − σ. Further, by (2.16), we can write the solution ũ as

ũ(x, t) = −
∫ t

0

L−1Z3(t− s)F̃ (x, s)ds, (x, t) ∈ Qσ+ε
σ , (3.31)
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where
F̃ (x, t) = q1ũt + q̃u2t + k1 ∗ ũ+ k̃ ∗ u2.

Then, similarly to the proofs of Lemma 2.4 and 2.5, we have

‖ũ‖Xσ+ε
σ
≤ cεα−1‖F̃‖C([σ,σ+ε];D(Lγ)), (3.32)

and {
‖Lũ(xi, ·)‖C[σ,σ+ε] ≤ c17ε‖F̃‖C([σ,σ+ε];D(Lγ)),

‖Lũt(xi, ·)‖C[σ,σ+ε] ≤ c18ε
α−1‖F̃‖C([σ,σ+ε];D(Lγ)).

(3.33)

From the definition of σ, we see that

ũ = q̃ = k̃ = 0 in [0, σ]. (3.34)

By the definition of F̃ , and using (3.4), (3.5) and (3.25), we have

‖ũ‖Xσ+ε
σ
≤ c19ε

α−1
(
‖q1ũt‖C([σ,σ+ε];D(Lγ)) + ‖q̃u2t‖C([σ,σ+ε];D(Lγ))

+ ‖k1 ∗ ũ‖C([σ,σ+ε];D(Lγ)) + ‖k̃ ∗ u2‖C([σ,σ+ε];D(Lγ))

)
≤ c20C

∗εα−1
(
‖ũt‖C([σ,σ+ε];D(Lγ)) + ‖q̃‖C[σ,σ+ε]

+ λ
− 1
α

1 ε‖ũ‖
C([σ,σ+ε];D(Lγ+ 1

α ))
+ λ

− 1
α

1 ε‖k̃‖C[σ,σ+ε]

)
. (3.35)

Due to q̃(σ) = 0, then implies

‖q̃‖C[σ,σ+ε] = max
σ≤t≤σ+ε

|
∫ t

σ

q̃′(s)ds| ≤ ε‖q̃‖C1[σ,σ+ε]. (3.36)

Substituting (3.36) into (3.35), we have

‖ũ‖Xσ+ε
σ
≤ c20C

∗εα−1 max{1, ε, λ−
1
α

1 ε}‖(ũ, q̃, k̃)‖Y σ+ε
σ

. (3.37)

Note ‖q̃‖C1[0,σ] = ‖k̃‖C[0,σ] = 0. On the other hand, by (3.27), and using (3.33), we have the following
estimate for q̃

‖q̃‖C1[σ,σ+ε]

≤ c21(ε+ εα−1)
(
‖h2(0)/p(t)‖C1[σ,σ+ε] + ‖h2(0)/p(t)‖C1[σ,σ+ε]

)
‖F̃‖C([σ,σ+ε];D(Lγ))

+ ε1/2‖p‖C[σ,σ+ε]‖l̃‖C[σ,σ+ε]

≤ c21C(‖h1‖C1[0,T ], ‖h2‖C1[0,T ])(ε+ εα−1)
(
‖ũt‖C([σ,σ+ε];D(Lγ)) + ε‖q̃‖C1[σ,σ+ε]

+ λ
− 1
α

1 ε‖ũ‖
C([σ,σ+ε];D(Lγ+ 1

α ))

)
+ C(‖h1‖C[0,T ], ‖h2‖C[0,T ])ε

3/2‖k̃‖C[σ,σ+ε], (3.38)

where we have used that

‖l̃‖C[σ,σ+ε] = max
σ≤t≤σ+ε

|
∫ t

σ

k̃(s)ds| ≤ ε‖k̃‖C[σ,σ+ε].

Similarly to (3.38), by (3.28) we can easily estimate k̃

‖k̃‖C[σ,σ+ε] ≤ C(‖h1‖C2[0,T ], ‖h2‖C2[0,T ])
[
c21(ε+ εα−1)

(
‖ũt‖C([σ,σ+ε];D(Lγ))

+ ε‖q̃‖C1[σ,σ+ε] + λ
− 1
α

1 ε‖ũ‖
C([σ,σ+ε];D(Lγ+ 1

α ))

)
+ ε3/2‖k̃‖C[σ,σ+ε]

]
. (3.39)
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From (3.37)-(3.39), we obtain

‖(ũ, q̃, k̃)‖Y σ+ε
σ
≤ C(‖hi‖C2[0,T ], C

∗)η(ε)‖(ũ, q̃, k̃)‖Y σ+ε
σ

(3.40)

with
lim
ε→+0

η(ε) = lim
ε→+0

(
ε+ 2εα−1 + ε3/2

)
max{1, ε, λ−

1
α

1 ε} = 0,

and implying
‖(ũ, q̃, k̃)‖Y σ+ε

σ
= 0

for some sufficiently small positive constant ε. This means that (u1− u2, q1− q2, k1− k2) vanishes in
[0, σ + ε], which contradicts with the definition of σ. Therefore (3.29) is proved. From here, we can
conclude that

(u1, q1, k1) = (u2, q2, k2) in [0, T ]

for any time T .

4 Examples

In this section, as an illustration, we provide two examples of inverse problem (1.1)-(1.3), (1.5).
Example 1. In this example, we consider inverse problem (1.1)-(1.3), (1.5) with the following input
data:

ϕ(x) = sin 2πx, ψ(x) =
(
(8− 16

√
2)x2 + (8

√
2− 2)x

)
sin πx, x1 := 1

4
, x2 := 1

2
,

f(x, t) = −ϕ′′(x)−
[(
ψ′′(x) + (64− 74

√
2 + 7π2)ψ(x)

)
t+ (48− 42

√
2 + 8π2)t2ψ(x)

]
−
[
(48− 42

√
2 + 8π2)t+ 4π2t2

]
ϕ(x),

h1(t) := 1 + t, h2(t) := t.

It is easy to see that all functions given in Example 1 satisfy conditions (C1)-(C4).
Then, the exact solution of the inverse problem is

u(x, t) = ϕ(x) + ψ(x)t, k(t) = 48− 42
√

2 + 8π2 + 8π2t,

q(t) = (64− 74
√

2 + 7π2)t+ (24− 21
√

2 + 4π2)t2 − 4π2

3
t3.

Example 2. In this example, we consider inverse problem (1.1)-(1.3), (1.5) with the following input
data: 

ϕ(x) = sin 2πx, ψ(x) =
(
(8− 16

√
2)x2 + (8

√
2− 2)x

)
sin πx, x1 := 1

4
, x2 := 1

2
,

f(x, t) = −ϕ′′(x) + ϕ(x)ϕ′′(x1)

−
[
ψ′′(x) + (ϕ(x)− ψ(x))ψ′′(x2) + (ϕ′′(x1)− ψ′′(x1))ϕ(x)

]
cos t,

h1(t) := 1 + t, h2(t) := t.

Then the exact solution of the inverse problem is

u(x, t) = ϕ(x) + ψ(x)t, k(t) = 48− 42
√

2 + 4π2 sin t,

q(t) = (−64 + 74
√

2− 3π2)t+ (24− 21
√

2)t2 + 4π2 sin t.

Since the inverse problem considered in equations (1.1)-(1.3), (1.5) is nonlinear, hence, an ana-
lytical solution cannot be found, however, to obtain the exact solutions provided in Examples 1 and
2, we employed a reverse approach: first, we define the functions ϕ, ψ, h1, h2 that satisfy conditions
(C1)-(C4) and the function u(t, x) that satisfies conditions (1.2), (1.3) and (1.5), then we determine
the remaining functions q, k, f from the system of equations (2.36)-(2.38).
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