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Abstract. We consider in a Banach space the following two abstract systems of first-order and
second-order linear ordinary differential equations with general boundary conditions, respectively,

X ′(t)− A0(t)X(t) = F (t), Φ(X) =
n∑
j=1

MjΨj(X),

and
X ′′(t)− S(t)X ′(t)−Q(t)X(t) = F (t),

Φ(X) =
n∑
i=j

MjΨj(X), Φ(X ′) = CΦ(X) +
r∑
j=1

NjΘj(X),

where X(t) = col (x1(t), . . . , xm(t)) denotes a vector of unknown functions, F (t) is a given vector and
A0(t), S(t), Q(t) are given matrices, Φ,Ψ1, . . . ,Ψn, Θ1, . . . ,Θr are vectors of linear bounded func-
tionals, and M1, . . . ,Mn, C, N1, . . . , Nr are constant matrices. We first provide solvability conditions
and a solution formula for the first-order system. Then we construct in closed form the solution of a
special system of 2m first-order linear ordinary differential equations with constant coefficients when
the solution of the associated system of m first-order linear ordinary differential equations is known.
Finally, we construct in closed form the solution of the second-order system in the case in which it
can be factorized into first-order systems.

DOI: https://doi.org/10.32523/2077-9879-2025-16-2-55-73

1 Introduction

Boundary value problems (BVPs) for ordinary differential equations (ODEs) appear in a wide range
of sciences. Many of these are nonlocal problems with integral and multipoint boundary conditions,
such as in the modeling of power networks, telecommunication lines, electric railway systems, kinetic
reaction problems in chemistry, elasticity, and elsewhere [19, 18, 15].

Perhaps the first problem with nonlocal integral boundary conditions for a system of linear first
order ODEs was Hilb’s problem

LY = PY ′ +QY = f,

∫ 1

0

K(ξ)Y (ξ)dξ + γY (0)− ΓY (1) = 0,
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which was investigated in 1911 [12]. The multipoint boundary value problems for a system of Trans-
ferable Differential-Algebraic Equations was investigated in [15]. In [4] an approach is given to
solving the overdetermined problem for a system of the first and second order ODEs. The unique
exact solution to the BVP

Y ′(t)−M(t)Y (t) = F (t), Φ(Y ) = ~c,

was obtained in [10]. The solvability condition and exact solution to the BVP

Y ′(t)− AY (t) = F (t),
m∑
i=1

AiY (ti) +
s∑
j=0

Bj

∫ zj+1

zj

Cj(t)Y (t)dt = ~0,

where A,Ai, Bj are constant matrices, are given in [5]. Necessary and sufficient conditions are
established in [7] for the existence of a unique holomorphic solution of the BVP

X ′(t) = T (t)X(t) + F (t),
m∑
i=1

AiX(ti) +
m∑
j=0

∫ ti

ti−1

Φi(t)X(t)dt = h

with holomorphic coefficients and general linear boundary conditions. The existence of positive
solutions of nonlocal BVPs for ordinary second order differential systems is given in [8]. The existence
of solutions of nonlocal BVPs for ordinary differential systems of higher order was investigated in
[9]. A numerical method for solving systems of linear nonautonomous ODEs with nonseparated
multipoint and integral conditions was considered in [1]. Numerical solutions of systems of loaded
ordinary differential equations are given in [2]. Ordinary differential equations and systems of various
types were studied by the parametrization method in [13], [3] (see also [16]). The factorization
(decomposition) method is a powerful tool for finding solutions to systems of ODEs. The factorization
method proposed here for systems of ODEs is essentially different from other factorization methods
in the relevant literature, where usually approximate solutions to ordinary differential systems are
found by using the Adomian decomposition method and its many modifications [17], [6]. Note that
finding of the fundamental and particular solutions for the following system of linear second order
ODEs

B2X(t) = X ′′(t)− S(t)X ′(t)−Q(t)X(t) = F,

with nonlocal boundary conditions, is usually a difficult problem. Our goal is to find special cases
that allow factorization like B2X(t) = B2X(t), where an operator B corresponds to a system of
linear first order ODEs with a simpler nonlocal boundary condition. The technique proposed in this
article is simple to use and can be easily incorporated to any Computer Algebra System (CAS).

2 Preliminaries

Let X be a Banach space such as the space of continuous functions C[0, 1] or the space of Lebesgue
integrable functions Lp(0, 1). Let Xm be the space of column vectors X(t) = col(x1(t), . . . , xm(t)),
xi(t) ∈ X , i = 1, . . . ,m, i.e. Xm = Cm = Cm[0, 1] or Xm = Lp,m = Lp,m(0, 1) with the norm

||X(t)||Xm =
m∑
i=1

||xi(t)||X .

In addition, let X k, k > 0, be the space Ck[0, 1] with the norm

||x(t)||Xk =
k∑
`=0

||x(`)(t)||C ,
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or the Sobolev space Ŵ k
p (0, 1) with the norm

||x(t)||Xk =
k∑
`=0

||x(`)(t)||Lp ,

(in the case of the Sobolev spaces x(l) are weak derivatives), and X k
m be the space Ck

m[0, 1] or Ŵ k
p,m(0, 1)

with the norm

||X(t)||Xkm =
k∑
`=0

||X(`)(t)||Xm .

Let X ∗ be the adjoint space of X , i.e. the set of all linear and bounded functionals Φ on X .
We denote by Φ(x) the value of Φ ∈ X ∗ on x ∈ X . Let Ψj ∈ X ∗, j = 1, . . . , n, and the vector
Ψ = col(Ψ1, . . . ,Ψn) ∈ [Xm]∗. For X ∈ Xm we write

Φ(X) =

 Φ(x1)
...

Φ(xm)

 , Ψj(X) =

 Ψj(x1)
...

Ψj(xm)

 , Ψ(X) =

 Ψ1(X)
...

Ψn(X)

 .

Remark 1. Let m = 2, k = 1, X(t) = col(x1(t), x2(t)) ∈ X2 and the functional vector Θ (X(t)) =
col(Θ(x1),Θ(x2)). Then Θ ∈ [X2]∗ if there exists a constant c1 > 0, such that

|Θ(X)| =
√

[Θ(x1)]2 + [Θ(x2)]2 ≤ |Θ(x1)|+ |Θ(x2)|
≤ c1||x1||X + c1||x2||X = c1||X(t)||X2 .

Similarly Θ ∈ [X 1
2 ]∗ if there exists a constant c2 > 0, such that

|Θ(X)| =
√

[Θ(x1)]2 + [Θ(x2)]2 ≤ |Θ(x1)|+ |Θ(x2)|
≤ c2(||x1||X + ||x2||X + ||x′1||X + ||x′2||X )

= c2(||X(t)||X2 + ||X ′(t)||X2) = c2||X(t)||X 1
2
.

Let X ,Y be Banach spaces as above. Let the operator A : X → Y and let D(A) and R(A) denote
its domain and the range, respectively. The operator A is said to be injective or uniquelly solvable
if for all x1, x2 ∈ D(A) such that Ax1 = Ax2, it follows that x1 = x2. Recall that a linear operator
A is injective if and only if kerA = {0}. The operator A is called surjective or everywhere solvable
if R(A) = Y . The operator A is called bijective if it is both injective and surjective. Finally, the
operator A is said to be correct if A is bijective and its inverse A−1 is bounded on Y . Recall that the
problem Au = f is said to be well-posed if the operator A is correct.

We denote by 0m and Im the m×m zero and identity matrix, respectively, 0m,n the m× n zero
matrix, and ~0 the zero column vector.

Definition 1. Two n × m matrices P = P (t) = (P1(t), . . . , Pm(t)) and G = G(t) =
(G1(t), . . . , Gm(t)), where Pi(t) = col(p1i(t), . . . , pn i(t)) and Gi(t) = col(g1i(t), . . . , gni(t)),
i = 1, . . . ,m, respectively, are said to be linearly independent if the vectors
P1(t), . . . , Pm(t), G1(t), . . . , Gm(t) are linearly independent, that is, if ~c1,~c2 are two m-dimensional
constant column vectors and P (t)~c1 +G(t)~c2 = ~0, then ~c1 = ~c2 = ~0.
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3 General systems of m first-order ODEs

Let A : Xm → Xm be the differential operator defined by

AX(t) = X ′(t)− A0(t)X(t), X(t) ∈ D(A) = X 1
m, (3.1)

where A0(t) is an m × m matrix with entries from X . Let the m × m matrix Z = Z(t) =
(Z1(t), . . . , Zm(t)) = (zij(t)), i, j = 1, . . . ,m, be a fundamental matrix of the homogeneous system

AX(t) = ~0, (3.2)

such that

Φ(Z) =
(

Φ(Z1), . . . ,Φ(Zm)
)

=

 Φ(z11) . . . Φ(z1m)
... . . . ...

Φ(zm1) . . . Φ(zmm)

 = Im,

where Φ ∈ X ∗.

Lemma 3.1. Let the operator A be defined as in (3.1), Z be a fundamental matrix of the homogeneous
system (3.2), and F = F (t) = col(f1(t), . . . , fm(t)) ∈ Xm. Then:

(i) the operator Â : Xm → Xm, corresponding to the problem

ÂX(t) = AX(t) = F (t), D(Â) = {X(t) ∈ D(A) = X 1
m : Φ(X) = ~0}, (3.3)

is correct and the unique solution X(t) of equation (3.3) is given by

X(t) = Â−1F (t)

= −Z(t)Φ

(
Z(t)

∫ t

0

Z−1(s)F (s)ds

)
+ Z(t)

∫ t

0

Z−1(s)F (s)ds, (3.4)

(ii) if in (i), Φ(X) = X(0) then

X(t) = Â−1F (t) = Z(t)

∫ t

0

Z−1(s)F (s)ds. (3.5)

Proof. (i) It is well known that every solution of the system AX(t) = F (t), is given by

X(t) = Z(t)~c+ Z(t)

∫ t

0

Z−1(s)F (s)ds, (3.6)

where ~c is an arbitrary m-dimensional constant column vector. Acting by functional vector Φ on
both sides of (3.6) and taking into account the boundary condition in (3.3) and that Φ(Z) = Im, we
obtain

Φ(X) = ~c+ Φ

(
Z(t)

∫ t

0

Z−1(s)F (s)ds

)
= ~0,

~c = −Φ

(
Z(t)

∫ t

0

Z−1(s)F (s)ds

)
.

Substituting ~c into (3.6), we get (3.4).
(ii) Equation (3.5) is derived directly from (3.4) using Φ(X) = X(0) = ~0.
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Theorem 3.1. Let the operators A and Â, the vector F and the matrix Z be defined as in Lemma
3.1. In addition, let the m × (mn) constant matrix M = (M1, . . . ,Mn), where Mj, j = 1, . . . , n,
are m × m constant matrices, the functionals Φ,Ψj ∈ X ∗, j = 1, . . . , n, and the functional vector
Ψ = col(Ψ1, . . . ,Ψn) are given. Then:

(i) the operator B : Xm → Xm, corresponding to the problem

BX(t) = AX(t) = F (t),

D(B) = {X(t) ∈ D(A) = X 1
m : Φ(X) =

n∑
j=1

MjΨj(X)} (3.7)

is injective if and only if
detW = det[Imn −Ψ(Z)M ] 6= 0, (3.8)

(ii) if the operator B is injective, then it is also correct and the unique solution to problem (3.7) is
given by

X(t) = B−1F (t) = Â−1F (t) + ZMW−1Ψ(Â−1F ), (3.9)

where Â−1F (t) is the solution of system (3.3) given in (3.4).

Proof. (i) Let detW 6= 0 and X(t) ∈ kerB. Then from problem (3.7) we get

AX(t) = ~0, Φ(X) = MΨ(X), (3.10)

which, since Z ∈ kerA and Φ(Z) = Im, can be written as

A (X(t)− ZMΨ(X)) = ~0, Φ(X(t)− ZMΨ(X)) = ~0. (3.11)

From the second equation of (3.11) by taking into account (3.3) we get X(t) − ZMΨ(X) ∈ D(Â)

and then from the first equation of (3.11), since ker Â = {0} and A is the extension of Â, it follows
that

X(t) = ZMΨ(X). (3.12)

Acting by the functional vector Ψ on both sides we get

[Imn −Ψ(Z)M ]Ψ(X) = WΨ(X) = ~0,

and since detW 6= 0, it is implied that Ψ(X) = ~0. Substitution into (3.10) yields ÂX(t) = ~0. This
means that X(t) = ~0 and therefore the operator B is injective.

Conversely, let detW = 0. Then there exists a nonzero vector ~c = col(c1, . . . , cmn), such that
W~c = ~0. Consider the element

X0(t) = Z(t)M~c, (3.13)

and note that X0(t) 6= ~0, since otherwise W~c = [Imn −Ψ(Z)M ]~c = ~c−Ψ(Z)M~c = ~c = ~0. Then

BX0(t) = AX0(t) = ~0,

Φ(X0)−MΨ(X0) = M~c−MΨ(Z)M~c = M [Imn −Ψ(Z)M ]~c = MW~c = ~0,

and, hence, X0(t) ∈ kerB. Therefore, B is not injective. Thus, we proved that if B is injective, then
detW 6= 0.

(ii) Let detW 6= 0, then the operator B is injective. Problem (3.7) can be written as

A (X(t)− Z(t)MΨ(X)) = F (t), Φ (X(t)− Z(t)MΨ(X)) = ~0. (3.14)
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Then, since (3.3) we get X(t)− Z(t)MΨ(X) ∈ D(Â), and from (3.14) it follows that

X(t) = Z(t)MΨ(X) + Â−1F. (3.15)

Acting by the functional vector Ψ on both sides of the above equation we get

[Imn −Ψ(Z)M ]Ψ(X) = Ψ(Â−1F ),

Ψ(X) = [Imn −Ψ(Z)M ]−1Ψ(Â−1F ) = W−1Ψ(Â−1F ).

Substituting into (3.12), we get solution (3.9). Since the functionals Ψ1, . . . ,Ψn and the operator Â−1

in (3.9) are bounded, then the operator B−1 is also bounded. Note that solution (3.9) is obtained
for any arbitrary vector F (t) ∈ Xm. This means that R(B) = Xm, i.e. the operator B is everywhere
solvable. So, the operator B is correct.

Lemma 3.2. Let the operators A, Â and the m×m fundamental matrix Z be defined as in Lemma
3.1. Then:

(i) the set Z ∪ Â−1Z, with Â−1Z = (Â−1Z1(t), . . . , Â−1Zm(t)), is linearly independent,

(ii) the set Z ∪ tZ, 0 < t < 1, is also linearly independent.

Proof. (i) The vectors Z1(t), . . . , Zm(t) are linearly independent since they are the columns of the
fundamental matrix. Furthermore, the vectors Â−1Z1(t), . . . , Â−1Zm(t) are also linearly independent
since ker Â = {0}. Let Z~c1 + Â−1Z~c2 = ~0, where ~c1,~c2 are two m-dimensional constant column
vectors. Then, since kerA ∩ D(Â) = {0} [11], we have Z~c1 = ~0 and Â−1Z~c2 = ~0, and hence
~c1 = ~c2 = ~0 since which since Z1, . . . , Zm and Â−1Z1(t), . . . , Â−1Zm(t) are linealy independent. Thus,
the set Z ∪ Â−1Z is linearly independent.

(ii) Let Φ(X) = X(0). Then from (3.5) and (i) it follows that Â−1Z(t) = tZ(t) and so the set
Z ∪ tZ, 0 < t < 1, is linearly independent.

4 Special type systems of 2m first-order ODEs with constant coefficients

In this section, we consider the solvability and the construction of the exact solution of a special type
of systems of 2m first-order ODEs with constant coefficients.

Lemma 4.1. Let the operator A, where A0 is an m × m nonsingular constant matrix, and the
associated fundamental matrix Z = Z(t) be defined as in Lemma 3.1. Let the operator A : X2m → X2m

be defined by
AU(t) = U ′(t)−D0U(t) = ~0, D(A) = X 1

2m, (4.1)

where the vector U = U(t) = col (u1(t), . . . , u2m(t)) ∈ X 1
2m and the 2m× 2m constant matrix D0 has

the special form

D0 =

(
2A0 −A2

0

Im 0m

)
.

Then the 2m× 2m matrix

Z(t) =

(
Z(t) tZ(t)∫ t

0
Z(s)ds+ A−1

0

∫ t
0
sZ(s)ds− [A−1

0 ]2

)
(4.2)

is a fundamental matrix of the homogeneous system (4.1).
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Proof. The two 2m×m matrices(
Z∫ t

0
Z(s)ds+ A−1

0

)
,

(
tZ∫ t

0
sZ(s)ds− [A−1

0 ]2

)
(4.3)

satisfy equation (4.1). Indeed, since Z ′ = A0Z and Z(0) = Im, we have(
Z∫ t

0
Z(s)ds+ A−1

0

)′
−
(

2A0 −A2
0

Im 0m

)(
Z∫ t

0
Z(s)ds+ A−1

0

)
=

(
−A0Z + A0

∫ t
0
A0Z(s)ds+ A0

Z − Z

)
=

(
−A0Z + A0

∫ t
0
Z ′(s)ds+ A0

0m

)
=

(
0m
0m

)
,

and (
tZ∫ t

0
sZ(s)ds− [A−1

0 ]2

)′
−
(

2A0 −A2
0

Im 0m

)(
tZ∫ t

0
sZ(s)ds− [A−1

0 ]2

)
=

(
Z + tZ ′

tZ

)
−
(

2A0tZ − A0

∫ t
0
sA0Z(s)ds+ Im
tZ

)
=

(
Z + tZ ′ − 2A0tZ + A0

∫ t
0
sZ ′(s)ds− Im

0m

)
=

(
Z + t(Z ′ − A0Z)− A0tZ + A0[sZ(s)]t0 −

∫ t
0
A0Z(s)ds− Im

0m

)
=

(
Z −

∫ t
0
Z ′(s)ds− Im

0m

)
=

(
Z(t)− [Z(t)− Z(0)]− Im

0m

)
=

(
0m
0m

)
.

Furthermore, as shown below, the two matrices in (4.3) are linearly independent. Let(
Z∫ t

0
Z(s)ds+ A−1

0

)
~c1 +

(
tZ∫ t

0
sZ(s)ds− [A−1

0 ]2

)
~c2 = ~0,

where ~c1,~c2 are m-dimensional constant column vectors. Then we have Z~c1 + tZ~c2 = ~0 and since
Z, tZ, are linearly independent by Lemma 3.2, it follows that ~c1 = ~c2 = ~0. Thus, the two matrices in
(4.3) are linearly independent and Z is a fundamental matrix for the system (4.1).

Theorem 4.1. Let the operator A and the 2m×2m fundamental matrix Z be defined as in Lemma 4.1.
Let the vector F = F(t) = col (f1(t), . . . , f2m(t)) ∈ X2m, the vector of functionals Ψ = (Ψ1, . . . ,Ψn),
Ψj ∈ X ∗, j = 1, . . . , n, and M be a 2m× 2mn constant matrix. Then:

(i) the operator B : X2m → X2m defined by the problem

BU(t) = AU(t) = F, D(B) = {U(t) ∈ D(A) : U(0) = MΨ(U)} (4.4)

is injective if and only if
detW = det[Z(0)−MΨ(Z)] 6= 0, (4.5)

where
Z(0) =

(
Im 0m
A−1

0 −[A−1
0 ]2

)
, (4.6)
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(ii) the unique solution of problem (4.4) for every F ∈ X2m is given by

U(t) = ZW−1MΨ

(
Z(t)

∫ t

0

Z−1(s)F(s)ds

)
+ Z(t)

∫ t

0

Z−1(s)F(s)ds. (4.7)

Proof. The proof follows the same procedure as for the proof of Theorem 3.1.

5 Factorization of systems of second-order ODEs

In this section, we present the main results regarding the factorization method for solving nonlocal
systems of second-order linear differential equations.

Lemma 5.1. Let the operators A, Â, where the elements of A0(t) belong to X 1 and the functional
Φ ∈ [X 1]∗, the vectors X,F and the fundamental matrix Z be defined as in Lemma 3.1. Then:

(i) for the operator A2 : Xm → Xm defined as

A2X(t) = X ′′(t)− 2A0(t)X ′(t) + [A2
0(t)− A′0(t)]X(t), D(A2) = X 2

m, (5.1)

(ii) the operator Â2 defined by

Â2X = A2X = F, D(Â2) = {X(t) ∈ D(A2) : Φ(X) = ~0, Φ(AX) = ~0} (5.2)

is correct and the unique solution of system (5.2) is given by

X(t) = Â−2F (t) = Â−1Y (t)

= −Z(t)Φ

(
Z(t)

∫ t

0

Z−1(s)Y (s)ds

)
+ Z(t)

∫ t

0

Z−1(s)Y (s)ds, (5.3)

where

Y (t) = Â−1F (t)

= −Z(t)Φ

(
Z(t)

∫ t

0

Z−1(s)F (s)ds

)
+ Z(t)

∫ t

0

Z−1(s)F (s)ds, (5.4)

(iii) in the case that Φ(X) = X(0), Z, tZ ∈ kerA2 and (Z, tZ), 0 < t < 1, is a fundamental matrix
of the homogeneous system

A2X(t) = ~0, (5.5)

and

Â−2F (t) = Z(t)

∫ t

0

(t− s)Z−1(s)F (s)ds. (5.6)

Proof. (i) Let Y (t) = AX(t) = X ′(t)− A0(t)X(t). Then

A2X(t) = AY (t) = Y ′(t)− A0(t)Y (t)

= [X ′(t)− A0(t)X(t)]′ − A0(t)[X ′(t)− A0(t)X(t)]

= X ′′(t)− A′0(t)X(t)− A0(t)X ′(t)− A0(t)X ′(t) + A2
0(t)X(t)

= X ′′(t)− 2A0(t)X ′(t) + [A2
0(t)− A′0(t)]X(t). (5.7)
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It easily follows that if D(A) = X 1
m, then D(A2) = X 2

m.
(ii) By using (5.7) system (5.2) can be factorized into the following two systems of first order

differential equations

ÂY (t) = AY (t) = Y ′(t)− A0(t)Y (t) = F (t), Φ(Y ) = ~0,

ÂX(t) = AX(t) = X ′(t)− A0(t)X(t) = Y (t), Φ(X) = ~0,

which, by Lemma 3.1, are well-posed and their solutions are given by Y (t) = Â−1F (t) and X(t) =

Â−1Y (t), respectively, from where (5.3) and (5.4) are derived. The operator Â2 is correct because it
is a superposition of two correct operators [14].

(iii) Let A2X = ~0. Setting Y = AX we get AY = ~0. Then Y = Z~c1 or AX = Z~c1, which
gives X = Z~c2 + Â−1Y = Z~c2 + Â−1Z~c1, where ~c1,~c2 are m-dimensional constant column vectors.
From here, taking into account (5.3) and Φ(X) = X(0), for F = Z~c1 we obtain Â−1Z = tZ and
X(t) = Z(t)~c2 + tZ(t)~c1 ∈ ker A2. By Lemma 3.2, the system Z ∪ tZ is linearly independent. Hence
Z, tZ ∈ ker A2 and the system (Z, tZ) constitutes a fundamental solution to (5.5). From (5.3), (5.4),
because of Φ(0) = X(0) = ~0, by Fubini’s theorem, equality (5.6) easily follows.

Theorem 5.1. Let the operator A : Xm → Xm be defined by

AX(t) = X ′′(t)− S(t)X ′(t)−Q(t)X(t), D(A) = X 2
m, (5.8)

where Q(t) and S(t) are m×m matrices with entries from X and X 1, respectively, and the operator
B2 : Xm → Xm be defined as

B2X(t) = AX(t) = F (t),

D(B2) = {X(t) ∈ X 2
m : Φ(X) =

n∑
i=1

MiΨi(X),

Φ(X ′) = Φ(TX) +
r∑
j=1

NjΘj(X)}, (5.9)

where F ∈ Xm, T (t) is an m×m matrix with entries from X , Mj, j = 1, . . . , n, and Nj, j = 1, . . . , r,
are m×m constant matrices, Φ ∈ [X 1]∗, Ψj ∈ X ∗, j = 1, . . . , n, and Θj ∈ X ∗, j = 1, . . . , r. Then:

(i) if

Q(t) =
1

2
S ′(t)− 1

4
S2(t), (5.10)

the operator A can be factorized as follows

AX(t) = A2X(t), X(t) ∈ D(A), (5.11)

where
AX(t) = X ′(t)− 1

2
S(t)X(t), D(A) = X 1

m, (5.12)

(ii) if, in addition to (i), we have T (t) = 1
2
S(t), the operator B2 is injective if and only if

detW2 = det

(
Imn −Ψ(Z)M −Ψ(Â−1Z)N

−Θ(Z)M Imk −Θ(Â−1Z)N

)
6= 0, (5.13)

where W2 is an m(n+ r)×m(n+ r) matrix, Z is a fundamental matrix of the system AX = ~0,

ÂX(t) = AX(t) = F (t), D(Â) = {X(t) ∈ D(A) : Φ(X) = ~0}, (5.14)

and Ψ = col(Ψ1, . . . ,Ψn) and Θ = col(Θ1, . . . ,Θr),
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(iii) under (ii), the operator B2 is correct and the unique solution of system (5.9) is given by

X(t) = B−1
2 F (t) = Â−2F (t) +

(
Z(t)M, Â−1Z(t)N

)
W−1

2

(
Ψ(Â−2F )

Θ(Â−2F )

)
, (5.15)

where Â−2F (t), Â−1F (t) are given by (5.3), (5.4), respectively.

Proof. (i) Denote Y (t) = X ′(t)− 1
2
S(t)X(t). Then since (5.10) and (5.12), we get

AX(t) = X ′′(t)− S(t)X ′(t)−Q(t)X(t)

= X ′′(t)− S(t)X ′(t)−
[

1

2
S ′(t)− 1

4
S2(t)

]
X(t)

= X ′′(t)− 1

2
(S(t)X(t))′ − 1

2
S

(
X ′ − 1

2
SX

)
=

(
X ′ − 1

2
SX

)′
− 1

2
S

(
X ′ − 1

2
SX

)
= Y ′ − 1

2
SY = AY = A2X.

From D(A) = Xm it easily follows that D(A2) = X 2
m. Thus, we proved that B2X(t) = AX(t) =

A2X(t).
(ii) If T (t) = 1

2
S(t), then Φ(X ′) − Φ(TX) = Φ

(
X ′ − 1

2
SX
)

= Φ(AX) and problem (5.9) is
reduced to

B2X(t) = A2X(t) = F (t), Φ(X) = MΨ(X), Φ(AX) = NΘ(X). (5.16)

Let detW2 6= 0 and X(t) ∈ kerB2. Then from problem (5.16) we get

B2X(t) = A2X(t) = ~0, Φ(X) = MΨ(X), Φ(AX) = NΘ(X), (5.17)

which, since Φ(Z) = Im and AZ = 0m, can be represented as

A (AX(t)− ZNΘ(X)) = ~0, (5.18)
Φ(X(t)− ZMΨ(X)) = ~0, (5.19)
Φ(AX(t)− ZNΘ(X)) = ~0. (5.20)

Further taking into account (3.3), we get X(t)− ZMΨ(X), AX(t)− ZNΘ(X) ∈ D(Â) and from
(5.18), because of A is an extension of Â and ker Â = {0}, it follows that

AX(t) = ZNΘ(X),

A(X(t)− ZMΨ(X)) = ZNΘ(X),

Â(X(t)− ZMΨ(X)) = ZNΘ(X),

X(t) = ZMΨ(X) + Â−1ZNΘ(X).

Then acting by functional vectors Ψ,Θ on both sides of the above equation we get

[Imn −Ψ(Z)M ]Ψ(X)−Ψ(Â−1Z)NΘ(X) = ~0, (5.21)
−Θ(Z)MΨ(X) + [Imk −Θ(Â−1Z)N ]Θ(X) = ~0. (5.22)

From the last system, since detW2 6= 0, it follows that Ψ(X) = ~0, Θ(X) = ~0. Substituting these
values into (5.17), we obtain that Â2X(t) = ~0, and so, because Â2 is correct, we have X(t) = ~0.
Then kerB2 = {~0} and B2 is injective.
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Conversely, let detW2 = 0. Then there exists a nonzero constant vector ~c = col(c1, c2), where
c1 = col(c11, . . . , c1,mn), c2 = col(c21, . . . , c2,mk), such that

W2~c =

(
Imn −Ψ(Z)M −Ψ(Â−1Z)N

−Θ(Z)M Imk −Θ(Â−1Z)N

)(
c1

c2

)
=

(
~0
~0

)
. (5.23)

Consider the vector
X0(t) = Z(t)Mc1 + Â−1Z(t)Nc2. (5.24)

Note that X0(t) = ~0, if and only if Mc1 = ~0, Nc2 = ~0, since Z(t) is the fundamental matrix and the
set Z(t) ∪ Â−1Z(t), by Lemma 3.2, is linearly independent. But if Mc1 = ~0, Nc2 = ~0, then from
(5.23) follows that c1 = ~0, c2 = ~0. Thus, we obtain ~c = ~0. But by hypothesis ~c 6= ~0. So X0(t) 6= ~0.
Further using (5.24) and taking into account (5.23), we find

B2X0(t) = A2X0(t) = ~0,

Φ(X0)−MΨ(X0) = M [Imn −Ψ(Z)M ]c1 −MΨ(Â−1Z)Nc2 = ~0,

AX0(t) = Z(t)Nc2,

Φ(AX0)−NΘ(X0) = −NΘ(Z)Mc1 +N [Imk −Θ(Â−1Z)N ]c2 = ~0.

From here it follows that X0(t) ∈ kerB2 and B2 is not injective. Thus, by way of contradiction we
proved that if B2 is injective, then detW 6= 0.

(iii) Let detW2 6= 0, then the operator B2 is injective. From (5.16) we obtain

A (AX(t)− Z(t)NΘ(X)) = F (t), Φ (AX(t)− Z(t)NΘ(X)) = ~0. (5.25)

Then since Â is a restriction of A and (3.3), we get AX(t)−Z(t)NΘ(X) ∈ D(Â). From (5.25) and
first boundary condition (5.16) it follows that

AX(t) = Z(t)NΘ(X) + Â−1F (t), Φ(X(t)− Z(t)MΨ(X)) = ~0. (5.26)

By means (3.3) we get X(t)−Z(t)MΨ(X) ∈ D(Â). Then from (5.26), taking into account that Â is
a restriction of A, we get

Â[X(t)− Z(t)MΨ(X)]− Z(t)NΘ(X) = Â−1F (t),

X(t)− Z(t)MΨ(X)− Â−1Z(t)NΘ(X) = Â−2F (t). (5.27)

Acting by functional vectors Ψ,Θ on both sides of the above equation, obtain

[Imn −Ψ(Z)M ]Ψ(X)−Ψ(Â−1Z)NΘ(X) = Ψ(Â−2F ), (5.28)
−Θ(Z)MΨ(X) + [Imk −Θ(Â−1Z)N ]Θ(X) = Θ(Â−2F ), (5.29)

or

W2

(
Ψ(X)
Θ(X)

)
=

(
Ψ(Â−2F )

Θ(Â−2F )

)
.

The last equation yelds (
Ψ(X)
Θ(X)

)
= W−1

2

(
Ψ(Â−2F )

Θ(Â−2F )

)
.

Substituting this value into (5.27), we get solution (5.15). Since the functionals
Ψ1, . . . ,Ψn,Θ1, . . . ,Θk and the operators Â−1, Â−2 in (5.15) are bounded, then the operator B−1

2

is also bounded. Note that formula (5.15) was proved for any arbitrary vector F (t) ∈ Xm. This
means that R(B2) = Xm, i.e. the operator B2 is everywhere solvable. Before we proved that B2 is
injective and B−1

2 is bounded. Hence, B2 is correct.
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Corollary 5.1. In Theorem 5.1 let Φ(X) = X(t0), t0 ∈ [0, 1], r = n, Ψj,Θj ∈ [X 1]∗, j = 1, . . . , n,
Q(t) satisfies (5.10) and T be a constant matrix. Then

B2X(t) = AX(t) = F (t),

D(B2) = {X(t) ∈ X 2
m : X(t0) =

n∑
j=1

MjΨj(X),

X ′(t0) = TX(t0) +
n∑
j=1

NjΘj(X)}. (5.30)

(i) If

T =
1

2
S(t0), Nj = Mj, Θj(X) = Ψj(AX), i = 1, . . . , n, (5.31)

then there exists an operator B : Xm → Xm defined by

BX(t) = AX(t), D(B) = {X(t) ∈ D(A) : X(t0) =
n∑
j=1

MjΨj(X)}, (5.32)

such that B2 can be factorized into B2 = B2,

(ii) in addition, problem (5.30) is uniquely solvable if and only if

detW3 = det[Imn −Ψ(Z)M ] 6= 0, (5.33)

and its unique solution for all F ∈ Xm is given by

X(t) = B−1
2 F (t) = Â−1Y (t) + ZMW−1

3 Ψ(Â−1Y ), (5.34)

where

Y (t) = Â−1F (t) + ZMW−1
3 Ψ(Â−1F ), (5.35)

Â−1F (t) = −Z(t)Z(t0)
∫ t0

0
Z−1(s)F (s)ds+ Z(t)

∫ t
0
Z−1(s)F (s)ds, (5.36)

Â−1Y (t) = −Z(t)Z(t0)
∫ t0

0
Z−1(s)Y (s)ds+ Z(t)

∫ t
0
Z−1(s)Y (s)ds, (5.37)

Z = Z(t) is a fundamental matrix of AX(t) = ~0, satisfying Z(t0) = Im, and

ÂX(t) = AX(t), D(Â) = {X(t) ∈ D(A) : X(t0) = ~0}. (5.38)

Proof. (i) Consider the operator B defined by (5.32), namely

BX(t) = AX(t) = X ′(t)− 1

2
S(t)X(t), X(t) ∈ D(B).

Then for X(t) ∈ D(B2) ∩D(B2), since (5.10), the following formula is valid

B2X(t) = A2X(t) = X ′′(t)− S(t)X ′(t)−
[

1

2
S ′(t)− 1

4
S2(t)

]
X(t) = B2X(t).

It remains to prove that D(B2) = D(B2) for T,N and Θ(X), satisfying (5.31). Indeed, because of
the equality BX = AX, X ∈ D(B), we obtain

D(B2) = {X(t) ∈ D(B) : BX(t) ∈ D(B)} (5.39)
= {X(t) ∈ D(A2) : X(t0) = MΨ(X), (BX)(t0) = MΨ(BX)}
= {X(t) ∈ D(A2) : X(t0) = MΨ(X), (AX)(t0) = MΨ(AX)},
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where

(AX)(t0) = Φ(AX) = Φ

(
X ′(t)− 1

2
S(t)X(t)

)
= X ′(t0)− 1

2
S(t0)X(t0) = X ′(t0)− TX(t0).

Then from (5.39) we get

D(B2) = {X(t) ∈ D(A2) : X(t0) = MΨ(X), X ′(t0) = TX(t0) +MΨ(AX)}
= D(B2).

(ii) By Theorem 5.1, the operator B2 is injective if and only if (5.13) is fulfilled, where k = n, N =

M, Θ(Z) = Ψ(AZ) and Θ(Â−1Z) = Ψ(AÂ−1Z), or if and only if

detW2 = det

(
Imn −Ψ(Z)M −Ψ(Â−1Z)M

−Ψ(AZ)M Imn −Ψ(AÂ−1Z)M

)
6= 0,

or

det

(
Imn −Ψ(Z)M −Ψ(Â−1Z)M

0mn Imn −Ψ(Z)M

)
= [det (Imn −Ψ(Z)M)]2 = [detW3]2 6= 0.

Thus, B2 = B2 is injective if and only if detW3 6= 0. The problem B2X(t) = F (t) by substituting
BX(t) = Y (t) is reduced to two systems BY (t) = F (t) and BX(t) = Y (t). By Theorem 3.1, a
unique solution to the first system is given by (5.35), where Â−1F (t) is given by (3.4) or (5.36).
Substituting the value Y (t) from (5.35) into the system BX(t) = Y (t) and again using Theorem 3.1,
we obtain (5.34).

6 Examples

Example 1 In the function space C1[0, 1], the following system of four first-order differential equa-
tions with four homogeneous initial conditions

y′1(t) + 2πy2(t) + π2y3(t) = cos πt,

y′2(t) − 2πy1(t)− π2y4(t) = sinπt,

y′3(t) − y1(t) = 2 sin πt,

y′4(t) − y2(t) = − cos πt,

y1(0) = y2(0) = y3(0) = y4(0) = 0, (6.1)

has the unique solution

y1(t) =
1

4

[
t(π + 4) cosπt+

(
πt2(3π − 2)− 1

)
sin πt

]
,

y2(t) =
1

4

[
πt2(2− 3π) cosπt+ t(π + 4) sinπt

]
,

y3(t) =
1

4

[
t2(2− 3π) cosπt+ 7t sin πt

]
,

y4(t) =
1

4π

[(
3− πt2(3π − 2)

)
sin πt− 7πt cos πt

]
. (6.2)

Proof. Let Y = Y (t) = col (y1(t), y2(t), y3(t), y4(t)) and write (6.1) in the matrix form

Y ′(t)−D0Y (t) = F, (6.3)
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where

D0 =


0 −2π π2 0

2π 0 0 π2

1 0 0 0
0 1 0 0

 , F =


cosπt
sin πt

2 sinπt
− cos πt

 .

Note that D0 can be written as

D0 =

(
2A0 −A2

0

I2 02

)
, A0 =

(
0 −π
π 0

)
, A2

0 =

(
−π2 0

0 −π2

)
.

Let X = C[0, 1], X 1 = C1[0, 1], m = 2, X = col (x1(t), x2(t)). Consider the homogeneous system

X ′(t)− A0X(t) = ~0.

It can be easily shown that the fundamental matrix of this system is

Z =

(
cos πt − sin πt
sin πt cos πt

)
.

Then from (4.2) it follows that the fundamental matrix of the homogeneous system

Y ′(t)−D0Y (t) = ~0

is

Z(t) =


cosπt − sinπt t cos πt −t sinπt
sin πt cosπt t sin πt t cos πt

1
π

sin πt 1
π

cosπt 1
π2 cos πt+ t

π
sin πt − 1

π2 sin πt+ t
π

cosπt
− 1
π

cos πt 1
π

sin πt − t
π

cos πt+ 1
π2 sinπt 1

π2 cos πt+ t
π

sin πt

 . (6.4)

Since M ≡ 0 it follows from (4.5) and (6.4) that det W = det Z(0) = 1/π4 6= 0 and hence by
Theorem 4.1 problem (6.3) is uniquely solvable and its solution is given by (4.7), i.e.

Y (t) = Z

∫ t

0

Z−1(s)F(s)ds,

where

Z−1(t) =


cosπt− πt sinπt πt cosπt+ sin πt −π2t cosπt −π2t sinπt
−πt cos πt− sin πt cosπt− πt sin πt π2t sin πt −π2t cos πt

π sin πt −π cosπt π2 cos πt π2 sin πt
π cosπt π sin πt −π2 sin πt π2 cosπt

 .

After performing the calculations, we get solution (6.2).

Example 2 Let X(t) = col (x(t), y(t)) , F (t) = col (f1(t), f2(t)) . Find the unique solution of the
problem B2X(t) = F (t) on C[0, 1] defined by

x′′(t)− 2x′(t)− 4y′(t) + 9x(t) + 8y(t) = f1(t), (6.5)
y′′(t)− 8x′(t)− 6y′(t) + 16x(t) + 17y(t) = f2(t),

x(0) = 3x(1), y(0) = −2y(1),

x′(0) = x(0) + 2y(0) + 3x′(1)− 3x(1)− 6y(1),

y′(0) = 4x(0) + 3y(0)− 2y′(1) + 8x(1) + 6y(1).
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Proof. First we rewrite problem (6.5) in the matrix form

B2

(
x(t)
y(t)

)
=

(
x′′(t)
y′′(t)

)
−
(

2 4
8 6

)(
x′(t)
y′(t)

)
+

(
9 8
16 17

)(
x(t)
y(t)

)
=

(
f1(t)
f2(t)

)
, (6.6)

(
x(0)
y(0)

)
=

(
3 0
0 −2

)(
x(1)
y(1)

)
,(

x′(0)
y′(0)

)
=

(
1 2
4 3

)(
x(0)
y(0)

)
+

(
3 0
0 −2

)(
x′(1)− x(1)− 2y(1)
y′(1)− 4x(1)− 3y(1)

)
.

If we compare problem (6.6) with (5.30), it is natural to take X = C = C[0, 1], X 1 = C1[0, 1] =
C1, X 2 = C2[0, 1], X 1

2 = C1
2 [0, 1] = C1

2 , m = 2, n = 1, t0 = 0,

S(t) =

(
2 4
8 6

)
, Q(t) = −

(
9 8
16 17

)
, T =

(
1 2
4 3

)
,

M = N =

(
3 0
0 −2

)
, X(t0) =

(
x(0)
y(0)

)
, X ′(t0) =

(
x′(0)
y′(0)

)
,

Ψ(X) = X(1) =

(
x(1)
y(1)

)
, Θ(X) =

(
x′(1)− x(1)− 2y(1)
y′(1)− 4x(1)− 3y(1)

)
=

(
x′(1)
y′(1)

)
−
(

1 2
4 3

)(
x(1)
y(1)

)
.

By Remark 1, it follows that Ψ ∈ [C2[0, 1]]∗ and Θ ∈ [C1
2 [0, 1]]∗, since Ψi,Θi, i = 1, 2 are linear and

|Ψ(X)| ≤ ||X(t)||C2 and

|Θ(X)| ≤ 5(||x′(t)||C + ||y′(t)||C + ||x(t)||C + ||y(t)||C) = 5(||X ′(t)||C2 + ||X(t)||C2) = 5||X(t)||C1
2
.

It is easy to verify that Q and S satisfy (5.10), then by Theorem 5.1, there exists the operator A
defined by (5.12), namely

AX(t) = X ′(t)− 1

2
S(t)X(t) =

(
x′(t)
y′(t)

)
−
(

1 2
4 3

)(
x(t)
y(t)

)
.

Note that Θ(X) = Ψ(AX) = (AX)(1), M = N, T = 1
2
S(0), i.e. conditions (5.31) are fulfilled.

Then, by Corollary 5.1, problem (6.6) is uniquelly solved if and only if (5.33) holds, namely detW3 =
det[I2 −Ψ(Z)M ] 6= 0. It is easy to verify that the fundamental matrix Z = Z(t), Z(0) = I2 for the
system AX(t) = ~0 has the form

Z =
1

3

(
e5t + 2e−t e5t − e−t
2e5t − 2e−t 2e5t + e−t

)
, Z−1 =

1

3

(
e−5t + 2et e−5t − et
2e−5t − 2et 2e−5t + et

)
,

Φ(Z) = I2, detW3 6= 0,

W−1
3 =

1

e6 − 18e5 + 3e− 4

(
4e6 + 3e+ 2) 2(1− e6)

6(e6 − 1) −3(e6 − e+ 2)

)
.

By Corollary 5.1, problem (6.5) has the unique solution which is given by (5.34), where
Â−1F (t) = Z(t)

∫ t
0
Z−1(s)F (s)ds, Ψ(Â−1F ) = (Â−1F )(1),

Y (t) = Â−1F (t) + ZMW−1
3 (Â−1F )(1), Â−1Y (t) = Z(t)

∫ t
0
Z−1(s)Y (s)ds,

Ψ(Â−1Y ) = (Â−1Y )(1).
Substituting these values into (5.34), we obtain the unique solution to (6.5)

X(t) = Â−1Y (t) + ZMW−1
3 (Â−1Y )(1).
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Example 3 The following system of two second-order differential equations with nonlocal boundary
conditions

y′′(t) + 2πx′(t)− π2y(t) = sinπt,

x′′(t) − 2πy′(t)− π2x(t) = cos πt,

y(0) = −2y(1) + 2x(1),

x(0) = x(1),

y′(0) = −πx(0)− 2y′(1)− 2πx(1) + 2x′(1)− 2πy(1),

x′(0) = πy(0) + x′(1)− πy(1) (6.7)

has the unique solution

y(t) =
t− 2

2π
cos πt− 1

2π2
sin πt,

x(t) =
t− 2

2π
sin πt. (6.8)

Proof. First we write problem (6.7) in the matrix form(
y′′(t)
x′′(t)

)
−

(
0 −2π

2π 0

)(
y′(t)
x′(t)

)
−
(
π2 0
0 π2

)(
y(t)
x(t)

)
=

(
sin πt
cos πt

)
,(

y(0)
x(0)

)
=

(
−2 2
0 1

)(
y(1)
x(1)

)
,(

y′(0)
x′(0)

)
=

(
0 −π
π 0

)(
y(0)
x(0)

)
+

(
−2 2
0 1

)(
y′(1) + πx(1)
x′(1)− πy(1)

)
. (6.9)

If we compare problem (6.9) with (5.30), it is natural to take X = C[0, 1], X 1 = C1[0, 1], X 2 =
C2[0, 1], m = 2, n = 1, t0 = 0,

S(t) =

(
0 −2π

2π 0

)
, Q(t) =

(
π2 0
0 π2

)
, T =

(
0 −π
π 0

)
,

M = N =

(
−2 2
0 1

)
, X(t) =

(
y(t)
x(t)

)
, X(t0) =

(
y(0)
x(0)

)
, X ′(t0) =

(
y′(0)
x′(0)

)
,

Ψ(X) =

(
y(1)
x(1)

)
, Θ(X) =

(
y′(1) + πx(1)
x′(1)− πy(1)

)
, F (t) =

(
sin πt
cosπt

)
.

By Remark 1, it follows that Ψ ∈ [C1
2 [0, 1]]

∗ and Θ ∈ [C1
2 [0, 1]]

∗
, since Ψi,Θi, i = 1, 2 are linear and

|Ψ(X)| ≤ ||X(t)||C2 , |Θ(X)| ≤ π||X(t)||C1
2
.

It is easy to verify that Q and S satisfy (5.10), then, by Theorem 5.1, there exists the operator A
defined by (5.12), namely

AX(t) = X ′(t)− 1

2
S(t)X(t) =

(
y′(t)
x′(t)

)
−
(

0 −π
π 0

)(
y(t)
x(t)

)
.

Let Z = Z(t), Z(0) = I2 be a fundamental matrix to the system AX(t) = ~0. Note that Θ(X) =
Ψ(AX) = (AX)(1), M = N, T = 1

2
S(0), i.e. conditions (5.31) are fulfilled. Then, by Corollary 5.1,

problem (6.7) is uniquelly solved if and only if (5.33) holds, namely detW3 = det[I2 −Ψ(Z)M ] 6= 0.
It is easy to verify that

Z =

(
cosπt − sin πt
sin πt cos πt

)
, Z−1 =

(
cos πt sin πt
− sin πt cosπt

)
, Ψ(Z) =

(
−1 0
0 −1

)
,
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Φ(Z) = Z(0) = I2, detW3 = det

(
−1 2
0 −2

)
6= 0, W−1

3 = −
(

1 1
0 1/2

)
.

By Corollary 5.1, problem (6.7) has solution given by (5.34), where Â−1F (t) =

Z(t)
∫ t

0
Z−1(s)F (s)ds =

(
0

1
π

sin πt

)
, Ψ(Â−1F ) = (Â−1F )(1) =

(
0
0

)
,

Y (t) = Â−1F (t) + ZMW−1
3 Ψ(Â−1F ) =

(
0

1
π

sin πt

)
,

Â−1Y (t) = Z(t)
∫ t

0
Z−1(s)Y (s)ds =

(
t

2π
cos πt− 1

2π2 sin πt
t

2π
sin πt

)
,

Ψ(Â−1Y ) = (Â−1Y )(1) =

(
− 1

2π

0

)
.

Substituting these values into (5.34) we obtain the unique solution to (6.7)

X(t) = Â−1Y (t) + ZMW−1
3 Ψ(Â−1Y ) =

(
t−2
2π

cos πt− 1
2π2 sin πt

t−2
2π

sin πt

)
,

which gives (6.8).
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