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1 Introduction

In recent years non-associative analogues of classical constructions have become of interest in con-
nection with their applications in many branches of mathematics and physics. The notions of local
and 2-local derivations have also become popular for some non-associative algebras such as Lie and
Leibniz algebras.

The notions of local derivations were introduced in 1990 by R.V. Kadison [17] and D.R. Larson,
A.R. Sourour [18]. Later in 1997, P. Šemrl introduced the notions of 2-local derivations and 2-local
automorphisms on algebras [16]. The main problems concerning these notions are to find conditions
under which all local (2-local) derivations become (global) derivations and to present examples of
algebras with local (2-local) derivations that are not derivations.

Investigation of local derivations on Lie algebras was initiated in papers [7] and [14]. Sh.A. Ayupov
and K.K. Kudaybergenov have proved that every local derivation on a semi-simple Lie algebra is
a derivation and gave examples of nilpotent finite-dimensional Lie algebras with local derivations
which are not derivations. In [8] local derivations and automorphisms of complex finite-dimensional
simple Leibniz algebras are investigated. They proved that all local derivations on finite-dimensional
complex simple Leibniz algebras are automatically derivations and it is shown that filiform Leibniz
algebras admit local derivations which are not derivations.

Several papers have been devoted to similar notions and corresponding problems for 2-local deriva-
tions and automorphisms of finite-dimensional Lie and Leibniz algebras [5, 8, 9, 14]. Namely, in [9]
it is proved that every 2-local derivation on a semi-simple Lie algebra is a derivation and that each
finite-dimensional nilpotent Lie algebra, with dimension larger than two admits a 2-local derivation
which is not a derivation. Concerning 2-local automorphisms, Z. Chen and D. Wang in [14] proved
that if L is a simple Lie algebra of type Al, Dl or Ek, (k = 6, 7, 8) over an algebraically closed field
of characteristic zero, then every 2-local automorphism of L is an automorphism. Finally, in [5]
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Sh.A. Ayupov and K.K. Kudaybergenov generalized this result of [14] and proved that every 2-local
automorphism of a finite-dimensional semi-simple Lie algebra over an algebraically closed field of
characteristic zero is an automorphism. Moreover, they also showed that every nilpotent Lie algebra
of finite dimension greater than two admits a 2-local automorphism which is not an automorphism.

In [3] local derivations of solvable Lie algebras are investigated and it is shown that in the class of
solvable Lie algebras there exist algebras which admit local derivations which are not derivations and
also algebras for which every local derivation is a derivation. Moreover, it is proved that every local
derivation on a finite-dimensional solvable Lie algebra with model nilradical and maximal dimension
of complementary space is a derivation. Sh.A. Ayupov, A.Kh. Khudoyberdiyev and B.B. Yusupov
proved similar results concerning local derivations on solvable Leibniz algebras in their recent paper
[4]. The results of paper [10] show that p-filiform Leibniz algebras as a rule admit local derivations
which are not derivations. Similar results concerning local derivations on direct sum null-filiform
Leibniz algebras were obtained in [2].

In [13], [21] Sh.A. Ayupov and B.B. Yusupov investigated 2-local derivations on infinite-
dimensional Lie algebras over a field of characteristic zero. They proved that all 2-local derivations
on a Witt algebra as well as on a positive Witt algebra are (global) derivations, and gave an example
of an infinite-dimensional Lie algebra with a 2-local derivation which is not a derivation. In [11] they
have proved that every 2-local derivation on a generalized Witt algebraWn(F) over a vector space Fn
is a derivation. In [15] Y. Chen, K. Zhao and Y. Zhao studied local derivations on generalized Witt
algebras. They proved that every local derivation a Witt algebra is a derivation and that every local
derivation on a centerless generalized Virasoro algebra of higher rank is a derivation. In [12] Sh.A.
Ayupov, K.K. Kudaybergenov and B.B. Yusupov studied local and 2-local derivations of locally finite
split simple Lie algebras. They proved that every local and 2-local derivation on a locally finite split
simple Lie algebra is a derivation.

In the present paper we study local and 2-local 1
2
-derivations of solvable Leibniz algebras. We show

that any local 1
2
-derivation on a solvable Leibniz algebra with model or abelian nilradicals, whose

dimension of the complementary space is maximal, is a 1
2
-derivation. Moreover, similar problems

concerning 2-local 1
2
-derivations of such algebras are investigated.

2 Preliminaries

In this section we give some necessary definitions and preliminary results.

Definition 1. A vector space with a bilinear bracket (L, [·, ·]) is called a Leibniz algebra if for any
x, y, z ∈ L the so-called Leibniz identity[

x, [y, z]
]

=
[
[x, y], z

]
−
[
[x, z], y

]
,

holds, or equivalently, [[x, y], z] = [[x, z], y] + [x, [y, z]].

Here, we adopt the right Leibniz identity; since the bracket is not skew-symmetric, there exists
the version corresponding to the left Leibniz identity,[

[x, y], z
]

=
[
x, [y, z]

]
−
[
y, [x, z]

]
.

Let L be a Leibniz algebra. For a Leibniz algebra L consider the following lower central and
derived sequences:

L1 = L, Lk+1 = [Lk,L1], k ≥ 1,

L[1] = L, L[s+1] = [L[s],L[s]], s ≥ 1.
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Definition 2. A Leibniz algebra L is called nilpotent (respectively, solvable), if there exists k ∈ N
(s ∈ N) such that Lk = 0 (respectively, L[s] = 0).The minimal number k (respectively, s) with such
property is said to be the index of nilpotency (respectively, of solvability) of the algebra L.

Note that any Leibniz algebra L contains a unique maximal solvable (respectively nilpotent) ideal,
called the radical (respectively nilradical) of the algebra.

A 1
2
-derivation on a Leibniz algebra L is a linear map D : L → L which satisfies the Leibniz rule:

D([x, y]) =
1

2
([D(x), y] + [x,D(y)]) for any x, y ∈ L. (2.1)

The set of all 1
2
-derivations of a Leibniz algebra L is a Lie algebra with respect to the usual matrix

commutator and it is denoted by 1
2
Der(L).

For a finite-dimensional nilpotent Leibniz algebra N and for the matrix of the linear operator adx
denote by C(x) the descending sequence of its Jordan blocks’ dimensions. Consider the lexicograph-
ical order on the set C(N) = {C(x) | x ∈ N}.

Definition 3. The sequence (
max

x∈N\N2
C(x)

)
is said to be the characteristic sequence of a nilpotent Leibniz algebra N.

Definition 4. A linear operator ∆ is called a local 1
2
-derivation, if for any x ∈ L, there exists a

1
2
-derivation Dx : L → L (depending on x) such that ∆(x) = Dx(x). The set of all local 1

2
-derivations

on L we denote by Loc1
2
Der(L).

Definition 5. A map ∇ : L → L (not necessary linear) is called a 2-local 1
2
-derivation, if for any

x, y ∈ L, there exists a 1
2
-derivation Dx,y ∈ 1

2
Der(L) such that

∇(x) = Dx,y(x), ∇(y) = Dx,y(y).

2.1 Solvable Leibniz algebras with abelian nilradical

Let an be an n-dimensional abelian algebra and let R be a solvable Leibniz algebra with the nilradical
an. Take a basis {f1, f2, . . . , fn, x1, x2, . . . xk} of R, such that {f1, f2, . . . , fn} is a basis of an. In [1]
such solvable algebras in the case of k = n are classified and it is proved that any 2n-dimensional
solvable Leibniz algebra with the nilradical an is isomorphic to the direct sum of two dimensional
algebras, i.e., isomorphic to the algebra

Lt : [fj, xj] = fj, [xj, fj] = αjfj, 1 ≤ j ≤ n,

where αj ∈ {−1, 0} and t is the number of zero parameters αj.
Moreover, in the following theorem a classification of (n+1)-dimensional solvable Leibniz algebras

with n-dimensional abelian nilradical is given.

Theorem 2.1. [1] Let R be an (n + 1)-dimensional solvable Leibniz algebra with n-dimensional
abelian nilradical. If R has a basis {f1, f2, . . . , fn, x} such that the operator adx|an has Jordan block
form, then it is isomorphic to one of the following two non-isomorphic algebras:

R1 :

{
[fi, x] = fi + fi+1, 1 ≤ i ≤ n− 1,

[fn, x] = fn,
R2 :


[fi, x] = fi + fi+1, 1 ≤ i ≤ n− 1,

[fn, x] = fn,

[x, fi] = −fi − fi+1, 1 ≤ i ≤ n− 1,

[x, fn] = −fn.
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2.2 Solvable Leibniz algebras with model nilradical

Let N be a nilpotent Leibniz algebra with the characteristic sequence (m1, . . . ,ms), and with the
table of multiplication

Nm1,...,ms : [eti, e
1
1] = eti+1, 1 ≤ t ≤ s, 1 ≤ i ≤ mt − 1.

The algebra Nm1,...,ms is usually said to be a model Leibniz algebra. For solvable Leibniz algebras
with nilradical Nm1,...,ms and the complement dimension space equal to s, we will use the notation
R(Nm1,...,ms , s).

Theorem 2.2. [20] A solvable Leibniz algebra R(Nm1,...,ms , s) with nilradical Nm1,...,ms , such that
DimR(Nm1,...,ms , s)−DimNm1,...,ms = s, is isomorphic to the algebra:

R(Nm1,...,ms , s) :



[eti, e
1
1] = eti+1, 1 ≤ t ≤ s, 1 ≤ i ≤ mt − 1,

[e1
i , x1] = ie1

i , 1 ≤ i ≤ m1,

[eti, x1] = (i− 1)eti, 2 ≤ t ≤ s, 2 ≤ i ≤ mt,

[eti, xt] = eti, 2 ≤ t ≤ s, 1 ≤ i ≤ mt,

[x1, e
1
1] = −e1

1,

where {x1, . . . xs} is a basis of the complementary vector space.

3 1
2-derivation of solvable Leibniz algebras

In the following propositions, we present a general form of the 1
2
-derivation of the algebras

R(Nm1,...,ms , s), Lt, R1 and R2.

Proposition 3.1. Any 1
2
-derivation D of the algebra 1

2
Der(R(Nm1,...,ms , s)) has the following form:

D(e1
i ) = α1e

1
i , 1 ≤ i ≤ m1,

D(eti) = 1
2i−1 ((2i−1 − 1)α1 + αt)e

t
i, 2 ≤ t ≤ s, 1 ≤ i ≤ mt,

D(xi) = αixi, 1 ≤ i ≤ s.

Proof. Let {e1
1, e

2
1, . . . , e

s
1, x1, . . . , xs} be a basis elements of the algebra R(Nm1,...,ms , s).

Let d be a 1
2
-derivation of the algebra R(Nm1,...,ms , s).

We put

D(ep1) =
s∑
t=1

mt∑
i=1

αpt,ie
t
i +

s∑
i=1

βp1,ixi, D(xp) =
s∑
t=1

mt∑
i=1

γpt,ie
t
i +

s∑
i=1

βp2,ixi, 1 ≤ p ≤ s.

The following restrictions follow from the equality

D([e1
1, x1]) =

1

2
([D(e1

1), x1] + [e1
1, D(x1)]) :

α1
1,i = 0, 3 ≤ i ≤ m1, γ1

1,1 = 0, β1
2,1 = α1

1,1,
α1
t,i = 0, 2 ≤ t ≤ s, i = 1, 2, 4 ≤ i ≤ mt.
β1

1,i = 0, 1 ≤ i ≤ s.
Consider the equality

D([ep1, x1]) =
1

2
([D(e1

p), x1] + [e1
p, D(x1)]), for 2 ≤ p ≤ s.
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Then we get 
αp1,i = 0, 1 ≤ i ≤ m1,

αpt,i = 0, 2 ≤ t ≤ s, 2 ≤ i ≤ mt,

β1
2,p = 0.

Similarly, from the equality

0 = D([xp, x1]) =
1

2
([D(xp), x1] + [xp, D(x1)]),

with 1 ≤ p ≤ s we have {
γpt,i = 0, 1 ≤ t ≤ s, 2 ≤ i ≤ mt, 1 ≤ p ≤ s,

γp1,1 = 0, 2 ≤ p ≤ s.

The equality

D([e1
1, xp]) =

1

2
([D(e1

1), xp] + [e1
1, D(xp)]),

for 2 ≤ p ≤ s which imply
α1
p,3 = βp2,1, 2 ≤ p ≤ s.

Consequently,

D(e1
1) = α1

1,1e
1
1 + α1

1,2e
1
2, D(xp) =

s∑
t=2

γpt,1e
t
1 +

s∑
i=2

βp2,ixi, 2 ≤ p ≤ s.

From the equality

0 = D([xp, xj]) =
1

2
([D(xp), xj] + [xp, D(xj)]),

for 2 ≤ p, j ≤ s we obtain the following restrictions:

γpj,1 = 0, 1 ≤ p, j ≤ s.

From the relations

D([x1, e
1
1]) =

1

2
([D(x1), e1

1] + [x1, D(e1
1)]), D([ep1, xj]) =

1

2
([D(ep1), xj] + [ep1, D(xj)]),

for 2 ≤ p, j ≤ s, we have
α1

1,2 = 0, γ1
t,1 = 0, 2 ≤ t ≤ s,

αpt,1 = 0, 2 ≤ p, t ≤ s, p 6= t,

βp1,j = 0, βp2,p = αpp,1, 2 ≤ p ≤ s, 1 ≤ j ≤ s,

βj2,p = 0, 2 ≤ j, p ≤ s j 6= p.

Consequently, {
D(ep1) = αpp,1e

p
1, 1 ≤ p ≤ s,

D(xp) = αpp,1xp, 1 ≤ p ≤ s.

From the chain of equalities
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D(epi ) = D([epi−1, e
1
1]) =

1

2
[D(epi−1), e1

1] +
1

2
[epi−1, D(e1

1)], 1 ≤ p ≤ s, 2 ≤ i ≤ mp,

and the restrictions obtained above, it is easy to establish that

D(e1
i ) = α1

1,1e
1
i , 1 ≤ i ≤ m1,

D(epi ) = 1
2i−1 ((2i−1 − 1)α1

1,1 + αpp,1)epi , 2 ≤ p ≤ s, 1 ≤ i ≤ mp.

Proposition 3.2. Any 1
2
-derivation D of the algebra Lt has the following form:

D(fj) = ajfj, D(xj) = αjbjfj, 1 ≤ j ≤ n.

Proof. The proof is similar to the proof of Proposition 3.1.

Proposition 3.3. Any 1
2
-derivation D of the algebras R1 and R2 have the following forms, respec-

tively:

Der(R1) :

{
D(fi) = α1fi, 1 ≤ i ≤ n,
D(x) = α1x.

Der(R2) :


D(fi) = α1fi, 1 ≤ i ≤ n,

D(x) =
n∑
j=1

βjfj + α1x.

Proof. The proof is similar to the proof of Proposition 3.1.

4 Local 1
2-derivation of solvable Leibniz algebras

4.1 Local 1
2-derivation of solvable Leibniz algebra R(Nm1,...,ms

, s)

Now we shall give the main result concerning local 1
2
-derivations of the solvable Leibniz algebra

R(Nm1,...,ms , s).

Theorem 4.1. Any local 1
2
-derivation on the solvable Leibniz algebra R(Nm1,...,ms , s) is a

1
2
-derivation.

Proof. Let ∆ be a local 1
2
-derivation on R(Nm1,...,ms , s), then we have

∆(xi) =
s∑
j=1

ai,jxj +
s∑

p=1

mp∑
j=1

bpi,je
p
j , ∆(eti) =

s∑
j=1

cti,jxj +
s∑

p=1

mp∑
j=1

dt,pi,je
p
j .

Let D be a 1
2
-derivation on R(Nm1,...,ms , s), then by Proposition 3.1, we obtain

D(e1
i ) = α1,e1i

e1
i , 1 ≤ i ≤ m1,

D(eti) = 1
2i−1 ((2i−1 − 1)α1,eti

+ αt,eti)e
t
i, 2 ≤ t ≤ s, 1 ≤ i ≤ mt,

D(xi) = αi,xixi, 1 ≤ i ≤ s.

Considering the equalities
∆(xj) = Dxj(xj), 1 ≤ j ≤ s,

∆(eti) = Deti
(eti), 1 ≤ t ≤ s, 1 ≤ i ≤ mt,
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we have

s∑
j=1

c1
i,jxj +

s∑
p=1

mp∑
j=1

d1,p
i,j e

p
j = α1,e1i

e1
i , 1 ≤ i ≤ m1

s∑
j=1

cti,jxj +
s∑

p=1

mp∑
j=1

dt,pi,je
p
j = 1

2i−1 ((2i−1 − 1)α1,eti
+ αt,eti)e

t
i, 2 ≤ t ≤ s, 1 ≤ i ≤ mt,

s∑
j=1

ai,jxj +
s∑

p=1

mp∑
j=1

bpi,je
p
j = αi,xixi, 1 ≤ i ≤ n.

From the previous restrictions, we get that

∆(e1
i ) = d1,1

i,i e
1
i , 1 ≤ i ≤ m1,

∆(eti) = dt,ti,ie
t
i, 2 ≤ t ≤ s, 1 ≤ i ≤ mt,

∆(xi) = ai,ixi 1 ≤ i ≤ s.

Considering ∆(e1
1 + e1

i ) for 2 ≤ i ≤ m1, we have

∆(e1
1 + e1

i ) = d1,1
1,1e

1
1 + d1,1

i,i e
1
i .

On the other hand,

∆(e1
1 + e1

i ) = De11+e1i
(e1

1 + e1
i ) = De11+e1i

(e1
1) +De11+e1i

(e1
i ) =

= α1,e11+e1i
e1

1 + αi,e11+e1i
e1
i

Comparing the coefficients at the basis elements e1
1 and e1

i , we get the equalities α1,e11+e1i
= d1,1

1,1,

α1,e11+e1i
= d1,1

i,i , which imply
d1,1
i,i = d1,1

1,1, 2 ≤ i ≤ m1.

Now for 2 ≤ t ≤ s, 1 ≤ i ≤ mt, we consider

∆(eti + e1
1 + x1 + xt) = dt,ti,ie

t
i + d1,1

1,1e
1
1 + a1,1x1 + at,txt.

On the other hand,

∆(eti + e1
1 + x1 + xt) = Deti+e

1
1+x1+xt(e

t
i + e1

1 + x1 + xt) =

=
1

2i−1
((2i−1 − 1)α1,eti+e

1
1+x1+xt + αi,eti+e11+x1+xt)e

t
i+

+ α1,eti+e
1
1+x1+xte

1
1 + α1,eti+e

1
1+x1+xtx1 + αt,eti+e11+x1+xtxt

Comparing the coefficients at the basis elements eti, e1
1, x1 and xt, we get the equalities

α1,eti+e
1
1+x1+xt = d1,1

1,1 = a1,1,
1

2i−1
((2i−1 − 1)α1,eti+e

1
1+x1+xt + αi,eti+e11+x1+xt) = dt,ti,i,

αt,eti+e11+x1+xt = at,t,

which imply

dt,ti,i =
1

2i−1
((2i−1 − 1)d1,1

1,1 + at,t), a1,1 = d1,1
1,1, 2 ≤ t ≤ s, 1 ≤ i ≤ mt.
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Thus, we obtain that the local 1
2
-derivation ∆ has the following form:

∆(e1
i ) = d1,1

1,1e
1
i , 1 ≤ i ≤ m1,

∆(eti) = 1
2i−1 ((2i−1 − 1)d1,1

1,1 + at,t)e
t
i, 2 ≤ t ≤ s, 1 ≤ i ≤ mt,

∆(x1) = d1,1
1,1x1,

∆(xi) = at,txi, i ≤ t ≤ s.

Proposition 3.1 implies that ∆ is a 1
2
-derivation. Hence, every local 1

2
-derivation on R(Nm1,...,ms , s)

is a 1
2
-derivation.

4.2 Local 1
2-derivation of solvable Leibniz algebras with abelian nilradical

Now we shall give the main result concerning local 1
2
-derivations on solvable Leibniz algebras with

abelian nilradicals.

Theorem 4.2. Any local 1
2
-derivation on the algebra Lt is a 1

2
-derivation.

Proof. For any local 1
2
-derivation ∆ on the algebra Lt, we put the 1

2
-derivation D, such that:

D(fj) = ajfj, D(xj) = αjbjfj, 1 ≤ j ≤ n,

Then, we get
∆(fj) = Dfj(fj) = ajfj, ∆(xj) = Dxj(xj) = αjbjfj.

Hence, ∆ is a 1
2
-derivation.

In the following theorem, we show that (n + 1)-dimensional solvable Leibniz algebras with n-
dimensional abelian nilradical have a local derivation which is not a derivation.

Theorem 4.3. Consider the (n+ 1)-dimensional solvable Leibniz algebras R1 and R2 (see Theorem
2.1). Any local 1

2
-derivation on the algebras R1 and R2 is a 1

2
-derivation.

Proof. We prove the theorem for the algebra R1, and for the algebra R2 the proof is similar.
Let ∆ be a local 1

2
-derivation on R1, then we have

∆(fi) =
n∑
j=1

ai,jfj + cix, 1 ≤ i ≤ n,

∆(x) =
n∑
j=1

bjfj + dx.

(4.1)

Let D be a 1
2
-derivation on R1, then by Proposition 3.3, we obtain{

D(fi) = α1,fifi, 1 ≤ i ≤ n,
D(x) = α1,xx.

Considering the equalities

∆(x) = Dx(x), ∆(fi) = Dfi(fi), 1 ≤ i ≤ n,

we have 
n∑
j=1

ai,jfj + cix = α1,fifi, 1 ≤ i ≤ n

n∑
j=1

bjfj + dx = α1,xx.
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From the previous restrictions, we get that

∆(fi) = ai,ifi, 1 ≤ i ≤ n,

∆(x) = dx.

For 2 ≤ i ≤ n, we have
∆(f1 + fi) = a1,1f1 + ai,ifi.

On the other hand,

∆(f1 + fi) = Df1+fi(f1 + fi) = Df1+fi(f1) +Df1+fi(fi) =

= α1,f1+fif1 + α1,f1+fifi.

Comparing the coefficients at the basis elements f1 and fi, we get the equalities α1,f1+fi = a1,1,
α1,f1+fi = ai,i, which imply

ai,i = a1,1, 2 ≤ i ≤ n.

Similarly, the equalities

∆(f1 + x) = a1,1f + dx

= Df1+x(f1 + x) = Df1+x(f1) +Df1+x(x)

= α1,f1+xf1 + α1,f1+xx,

imply
d = a1,1.

Thus, we obtain that the local 1
2
-derivation ∆ has the following form:

∆(fi) = a1,1fi, 1 ≤ i ≤ n,

∆(x) = a1,1x

Proposition 3.3 implies that ∆ is a 1
2
-derivation. Hence, every local 1

2
-derivation on R1 is a

1
2
-derivation.

5 2-local 1
2-derivation of solvable Leibniz algebras

5.1 2-local 1
2-derivation of solvable Leibniz algebra R(Nm1,...,ms

, s)

Now we shall give the main result concerning of the 2-local 1
2
-derivations of the solvable Leibniz

algebra R(Nm1,...,ms , s).

Consider an element q =
s∑
t=1

xt of R(Nm1,...,ms , s).

Theorem 5.1. Any 2-local 1
2
-derivation of the solvable Leibniz algebra R(Nm1,...,ms , s) is a 1

2
-

derivation.

Proof. Let ∇ be a 2-local 1
2
-derivation on R(Nm1,...,ms , s) such that ∇(q) = 0. Then for any element

p =
s∑
t=1

mt∑
i=1

ξtie
t
i +

s∑
t=1

ζtxt ∈ R(Nm1,...,ms , s),
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there exists a 1
2
-derivation Dq,p(p), such that

∇(q) = Dq,p(q), ∇(p) = Dq,p(p).

Hence,

0 = ∇(q) = Dq,p(q) =
s∑
t=1

αtxt,

which implies, αt = 0, 1 ≤ t ≤ s.
Consequently, from the description of the 1

2
-derivation R(Nm1,...,ms , s), we conclude that Dq,p = 0.

Thus, we obtain that if ∇(q) = 0, then ∇ is a zero.
Let now ∇ be an arbitrary 2-local 1

2
-derivation of R(Nm1,...,ms , s). Take a 1

2
-derivation Dq,p, such

that
∇(q) = Dq,p(q) and ∇(p) = Dq,p(p).

Set ∇1 = ∇−Dq,p. Then ∇1 is a 2-local 1
2
-derivation, such that ∇1(q) = 0. Hence ∇1(p) = 0 for

all ξ ∈ R(Nm1,...,ms , s), which implies ∇ = Dq,p. Therefore, ∇ is a 1
2
-derivation.

5.2 2-local 1
2-derivation of solvable Leibniz algebras with alebian nilradical

Now we shall give the result concerning of 2-local 1
2
-derivations of solvable Leibniz algebras with

abelian nilradical.

Proposition 5.1. Any 2-local 1
2
-derivation of the algebra R1 is a derivation.

Proof. Let ∇ be a 2-local 1
2
-derivation on R1, such that ∇(f1) = 0. Then for any element ξ =

n∑
i=1

ξifi + ξn+1x ∈ R1, there exists a 1
2
-derivation Df1,ξ(ξ), such that

∇(f1) = Df1,ξ(f1), ∇(ξ) = Df1,ξ(ξ).

Hence,
0 = ∇(f1) = Df1,ξ(f1) = α1f1,

which implies, α1 = 0.
Consequently, from the description of the 1

2
-derivation of R1, we conclude that Df1,ξ = 0. Thus,

we obtain that if ∇(f1) = 0, then ∇ is a zero.
Let now ∇ be an arbitrary 2-local 1

2
-derivation of R1. Take a 1

2
-derivation Df1,ξ, such that

∇(f1) = Df1,ξ(f1) and ∇(ξ) = Df1,ξ(ξ).

Set ∇1 = ∇−Df1,ξ. Then ∇1 is a 2-local 1
2
-derivation, such that ∇1(f1) = 0. Hence, ∇1(ξ) = 0

for all ξ ∈ R1, which implies that ∇ = Df1,ξ. Therefore, ∇ is a 1
2
-derivation.

Theorem 5.2. The solvable Leibniz algebra R2 admits a 2-local 1
2
-derivation which is not a 1

2
-

derivation.

Proof. Let us define a homogeneous non-additive function f on C2 as follows

f(z1, z2) =

{
z2
1

z2
, if z2 6= 0,

0, if z2 = 0,
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where (z1, z2) ∈ C2.
Define the operator ∇ on R2, such that

∇(ξ) = f(ξ1, ξn+1)f1, (5.1)

for any element ξ =
n∑
i=1

ξifi +
n∑
i=1

ξn+ixi,

The operator ∇ is not a 1
2
-derivation, since it is not linear.

Let us show that ∇ is a 2-local 1
2
-derivation. For this purpose, define a 1

2
-derivation D on R2 by

D(ξ) = (aξ1 + bξ2)fn.

For each pair of elements ξ and η, we choose a and b, such that ∇(ξ) = D(ξ) and ∇(η) = D(η).
Let us rewrite the above equalities as system of linear equations with respect to the unknowns a, b
as follows {

ξ1a+ ξ2b = f(ξ1, ξ2),

η1a+ η2b = f(η1, η2).
(5.2)

Case 1. ξ1η2 − ξ2η1 = 0. In this case, since the right-hand side of system (5.2) is homogeneous,
it has infinitely many solutions.

Case 2. ξ1η2 − ξ2η1 6= 0. In this case, system (5.2) has a unique solution.

Theorem 5.3. The algebra Lt admits a 2-local 1
2
-derivation which is not a 1

2
-derivation.

Proof. The proof is similar to the proof of Theorem 5.2.
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