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1 Introduction

The theory of embeddings of spaces of differentiable functions originated in the work of S.L. Sobolev
[26]. This theory studies important connections between differential (smoothness) properties of
functions in various metrics. Further development of this theory is assosicated with new classes of
function spaces introduced by S.M. Nikol’skii, O.V. Besov, P.I. Lizorkin, H. Triebel, and others. This
development was driven both by intrinsic questions of the theory and by applications to the theory of
boundary value problems of mathematical physics, approximation theory, and other areas of analysis
(see, for example, monographs [13, 17, 22, 28]).

In the 1960s, the study of spaces with a dominant mixed derivative was initiated in the works of
S.M. Nikol’skii [23], A.D. Dzhabrailov [20], and T.I. Amanov [3]. Further research of these spaces
in connection with the theory of embeddings, interpolation, and approximation theory, is associated
with the works of A.P. Uninskii, O.V. Besov, V.N. Temlyakov, E.D. Nursultanov, D.B. Bazarkhanov,
A.S. Romanyuk, G.A. Akishev, K.A. Bekmaganbetov, Ye. Toleugazy, and others (see, for example,
[29, 30, 15, 16, 27, 24, 5, 6, 25, 1, 2, 12]).

In Section 2, we define Nikol’skii-Besov spaces with a dominant mixed derivative and with a
mixed metric, and study some elementary embedding properties. In Section 3, we study interpolation
properties of these spaces with respect to the anisotropic interpolation method. In Section 4, we prove
sharp embedding theorems of different metrics for the introduced spaces and anisotropic Lorentz
spaces. In Section 5, we prove trace and extension theorems for the spaces under consideration.

2 Main definitions

By generalizing the construction in [22, Chapter 8], we define the Nikol’skii-Besov spaces with a
dominant mixed derivative and with a mixed metric Sαq

p B(Rn).
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Let 1 ≤ p = (p1, . . . , pn) ≤ ∞. The Lebesgue space with a mixed metric Lp(Rn) is the set of
measurable functions for which the following norm is finite

‖f‖Lp(Rn) =

∫ ∞
−∞

(
. . .

(∫ ∞
−∞
|f(x1, . . . , xn)|p1 dx1

)p2/p1

. . .

)pn/pn−1

dxn

1/pn

.

Here, for p =∞ the expression
(∫ ∞
−∞
|f(t)|p dt

)1/p

is understood as esssupt∈R|f(t)|.

A generalized function f is called regular in the sense of Lp(Rn) if for some ρ0 > 0

Iρ0f = F ∈ Lp(Rn),

where
Iρ0f = F−1

((
1 + |ξ|2

)−ρ0/2 F(f)
)
,

and F and F−1 are the direct and inverse Fourier transforms, respectively.
Let f be a regular function in the sense of Lp(Rn). A regular expansion of a function f in the

sense of Lp(Rn) over the Vallee-Poussin sums is the following representation

f =
∑
s∈Zn+

Qs(f),

where

Qs(f) =
1

πn
I−ρ

(
n∏
i=1

(
V2si (xi)− V[2si−1](xi)

)
∗ Iρf

)
,

where ρ > 0 is sufficiently large so that Iρf ∈ Lp(Rn), VM(t) =
1

M

∫ 2M

M

sinλt

t
dλ is an analogue of

the Vallee-Poussin kernel for the parameter M > 0 and V0(t) ≡ 0.
Let further α = (α1, . . . , αn) ∈ Rn and 1 ≤ q = (q1, . . . , qn) ≤ ∞. The Nikol’skii-Besov space

Sαq
p B(Rn) with a dominant mixed derivative and with a mixed metric is the set of regular in the

sense of Lp(Rn) functions f for which the following norm is finite

‖f‖Sαq
p B(Rn) =

∥∥∥{2(α,s)‖Qs(f)‖Lp(Rn)

}
s∈Zn

+

∥∥∥
lq
,

where (α, s) =
n∑
j=1

αjsj is the inner product and ‖ · ‖lq is the norm of the discrete Lebesgue space lq

with a mixed metric.

Remark 1. In the case in which α = (α1, . . . , αn) > 0, these spaces with the parameter q =
(∞, . . . ,∞) were introduced and studied in the works [29, 30]. The case of p = (p, . . . , p) and
q = (q, . . . , q) was considered in the works [23, 20, 3]. Periodic analogues of these spaces were
studied in the series of work by K.A. Bekmaganbetov, K.Ye. Kervenev and Ye. Toleugazy [7, 8, 9].

The following lemma shows some elementary embeddings of Nikol’skii-Besov spaces with a dom-
inant mixed derivative and with a mixed metric.

Lemma 2.1. a) Let 1 ≤ q0 = (q0
1, . . . , q

0
n) ≤ q1 = (q1

1, . . . , q
1
n) ≤ ∞, then

Sαq0
p B(Rn) ↪→ Sαq1

p B(Rn).

b) Let α0 = (α0
1, . . . , α

0
n) < α1 = (α1

1, . . . , α
1
n) and 1 ≤ q0 = (q0

1, . . . , q
0
n),q1 = (q1

1, . . . , q
1
n) ≤ ∞,

then
Sα1q1

p B(Rn) ↪→ Sα0q0
p B(Rn).
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Proof. The proof of statement a) follows from Jensen’s inequality.
Let us prove statement b). According to paragraph a), for α0 < α1 it suffices to prove the

embedding
Sα1∞

p B(Rn) ↪→ Sα01
p B(Rn). (2.1)

We have
‖f‖

S
α01
p B(Rn)

=
∑
s∈Zn+

2(α0,s)‖Qs(f)‖Lp(Rn)

≤ sup
s∈Zn+

2(α1,s)‖Qs(f)‖Lp(Rn)

∑
s∈Zn+

2(α0−α1,s) = C1‖f‖Sα1∞
p B(Rn).

This inequality shows that embedding (2.1) holds.

3 Interpolation

Let us give the definition of the anisotropic interpolation method. Let E = {0, 1}n, A = {Aε}ε∈E be
a family of Banach spaces that are subspaces of some linear Hausdorff space. This family A is called
a compatible family of Banach spaces (see [10, 21, 24]). For t ∈ Rn

+, we define the functional

K(t, a; A) = inf
a=

∑
ε∈E aε

∑
ε∈E

tε‖aε‖Aε ,

where a is an element of the space
∑

ε∈E Aε and tε = tε11 · . . . · tεnn .
Let 0 < θ = (θ1, . . . , θn) < 1 and 0 < r = (r1, . . . , rn) ≤ ∞. Let Aθr = (Aε; ε ∈ E)θr denote the

linear subspace of the space
∑

ε∈E Aε such that

‖a‖Aθr
=

=

∫ ∞
0

(
. . .

(∫ ∞
0

(
t−θ11 . . . t−θnn K(t, a; A)

)r1 dt1
t1

)r2/r1
. . .

)rn/rn−1

dtn
tn

1/rn

<∞.

Lemma 3.1 ([4, 24]). Let 0 < θ < 1, 0 < r ≤ ∞, and let A = {Aε}ε∈E,B = {Bε}ε∈E be
two compatible families of Banach spaces. If there are two vectors M0 = (M0

1 , . . . ,M
0
n),M1 =

(M1
1 , . . . ,M

1
n) with positive components such that for a linear operator T holds T : Aε → Bε with

the operator norm bounded by Cε

n∏
i=1

M εi
i for any ε ∈ E, where Cε > 0 is independent of M εi

i ,

i = 1, . . . , n, then
T : Aθr → Bθr,

with the norm

‖T‖Aθr→Bθr
≤ max

ε∈E
Cε

n∏
i=1

(
M0

i

)1−θi (M1
i

)θi .
Let multi-indices p = (p1, . . . , pn), r = (r1, . . . , rn) be such that if 1 ≤ pi <∞, then 1 ≤ ri ≤ ∞,

and if pi =∞, then ri =∞ (i = 1, . . . , n).
The anisotropic Lorentz space Lpr(Rn) is the set of all functions f(x) = f(x1, . . . , xn) such that

‖f‖Lpr(Rn) =
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=

∫ ∞
0

(
. . .

(∫ ∞
0

(
t
1/p1

1 . . . t1/pnn f ∗1,...,∗n(t1, . . . , tn)
)r1 dt1

t1

)r2/r1
. . .

)rn/rn−1

dtn
tn

1/rn

<∞,

where f ∗(t) = f ∗1,...,∗n(t1, . . . , tn) is the repeated non-increasing rearrangement of the function f (see
[18]).

Let us denote bε = (bε11 , . . . , b
εn
n ) for multi-indices b0 = (b0

1, . . . , b
0
n),b1 = (b1

1, . . . , b
1
n), and ε =

(ε1, . . . , εn) ∈ E.

Lemma 3.2 ([24]). Let 1 ≤ p0 = (p0
1, . . . , p

0
n) 6= p1 = (p1

1, . . . , p
1
n) ≤ ∞. Then for 0 < θ =

(θ1, . . . , θn) < 1 and 1 ≤ r = (r1, . . . , rn) ≤ ∞ holds

(Lpε(Rn); ε ∈ E)θr = Lpr(Rn),

where 1/p = (1− θ)/p0 + θ/p1.

Let α = (α1, . . . , αn) ∈ Rn and 1 ≤ q = (q1, . . . ,qn) ≤ ∞. We will denote by lαq(A) the set of
multi-sequences {ak}k∈Zn with values in a Banach space A for which the following norm is finite:

‖a‖lαq (A) =

(∑
k∈Zn

(
2(α,k)‖ak‖A

)q)1/q

.

Remark 2. The norm of the space Sαq
p B(Rn) can be written as

‖f‖Sαq
p B(Rn) =

∥∥∥{Qs(f)}s∈Zn
+

∥∥∥
lαq (Lp(Rn))

.

We will need this form of the norm when describing interpolation properties of the spaces Sαq
p B(Rn).

Lemma 3.3 ([7]). Let α0 = (α0
1, . . . , α

0
n) 6= α1 = (α1

1, . . . , α
1
n), 1 ≤ q0 = (q0

1, . . . , q
0
n),q1 =

(q1
1, . . . , q

1
n) ≤ ∞. Then for 0 < θ = (θ1, . . . , θn) < 1, 1 ≤ q = (q1, . . . , qn) ≤ ∞(

lαεqε (A); ε ∈ E
)
θq

= lαq(A),

where α = (1− θ)α0 + θα1.

Definition 1. Let A and B be Banach spaces. An operator R ∈ L(A,B) is called a retraction if
there exists an operator S ∈ L(B,A) such that

RS = E (the identity operator in L(B,B)) .

In this case, the operator S is called a coretraction (corresponding to R).

Lemma 3.4. Let −∞ < α = (α1, . . . , αn) < ∞, 1 ≤ p = (p1, . . . , pn) < ∞, and 1 ≤ q =
(q1, . . . , qn) ≤ ∞. Then the space Sαq

p B(Rn) is a retraction of the space lαq(Lp(Rn)).

Proof. First step. For a function f ∈ Sαq
p B(Rn) we define the operator S by

Sf = {Qs(f)}s∈Zn+ .

Therefore, according to the definition, we have

‖Sf‖lαq (Lp(Rn)) = ‖{Qs(f)}‖lαq (Lp(Rn)) = ‖f‖Sαq
p B(Rn) ,
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which means that the S-property is satisfied.
Second step. For a sequence G = {gs}s∈Zn+ , we define the operator R by

RG =
∑
s∈Zn+

Us ∗ gs,

where

Us(x) =
1

πn

n∏
i=1

(
V2si+1(xi)− V[2si−2](xi)

)
.

Since VM ∈ L1(R), we obtain

‖Us ∗ g‖Lp(Rn) ≤ C2 ‖g‖Lp(Rn) ,

where C2 is an absolute constant, and then

‖RG‖Sαq
p B(Rn) = ‖{Qs (Us ∗ gs)}‖lαq (Lp(Rn)) = ‖{Qs (gs)}‖lαq (Lp(Rn)) ≤

≤ C2 ‖{gs}‖lαq (Lp(Rn)) = C2 ‖G‖lαq (Lp(Rn)) .

The last inequality means that the R-property holds.
Third step. Let us show that RS = E. Indeed,

RSf = R ({Qs(f)}) =
∑
s∈Zn+

Us ∗Qs(f) =
∑
s∈Zn+

Qs(f) = f.

Theorem 3.1. Let 1 ≤ p = (p1, . . . , pn) < ∞, α0 = (α0
1, . . . , α

0
n) 6= α1 = (α1

1, . . . , α
1
n), 1 ≤ q0 =

(q0
1, . . . , q

0
n),q1 = (q1

1, . . . , q
1
n) ≤ ∞, ε = (ε1, . . . , εn) ∈ E. Then for 0 < θ = (θ1, . . . , θn) < 1 and

1 ≤ q = (q1, . . . , qn) ≤ ∞ (
Sαεqεp B(Rn); ε ∈ E

)
θq

= Sαq
p B(Rn),

where α = (1− θ)α0 + θα1.

Proof. The proof of the theorem follows by Lemmas 3.3 and 3.4.

4 Embedding theorems

In this section, the sharp embedding theorems for Nikol’skii-Besov spaces with a dominant mixed
derivative and with a mixed metric and for anisotropic Lorentz spaces are proved.

Lemma 4.1 (Inequality of different metrics, [22]). Let Qs(x) be an entire function of exponential type
of order s = (s1, . . . , sn) by x = (x1, . . . , xn). Then for 1 ≤ p0 = (p0

1, . . . , p
0
n) < p1 = (p1

1, . . . , p
1
n) <

∞ holds

‖Qs‖Lp1 (Rn) ≤ C3

n∏
i=1

s
1/p0

i−1/p1
i

i ‖Qs‖Lp0 (Rn) ,

where C3 is a positive constant independent of s.

Theorem 4.1. Let −∞ < α0 = (α0
1, . . . , α

0
n) ≤ α1 = (α1

1, . . . , α
1
n) < ∞, 1 ≤ τ = (τ1, . . . , τn) ≤ ∞,

and 1 ≤ p0 = (p0
1, . . . , p

0
n),p1 = (p1

1, . . . , p
1
n) <∞. Then

Sα1τ
p1

B(Rn) ↪→ Sα0τ
p0

B(Rn)

for α0 − 1/p0 = α1 − 1/p1.
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Proof. Let f ∈ Sα1τ
p1

B(Rn). Then, according to the inequality of different metrics (Lemma 4.1), we
obtain

‖f‖Sα0τ
p0

B(Rn) =
∥∥{2(α0,s)‖Qs(f)‖Lp0 (Rn)

}∥∥
lτ

≤ C3

∥∥{2(α0+1/p1−1/p0,s)‖Qs(f)‖Lp1 (Rn)

}∥∥
lτ

= C3

∥∥{2(α1,s)‖Qs(f)‖Lp1 (Rn)

}∥∥
lτ

= C3‖f‖Sα1τ
p1

B(Rn).

Theorem 4.2. Let 1 ≤ p = (p1, . . . , pn) < q = (q1, . . . , qn) < ∞ and 1 ≤ τ = (τ1, . . . , τn) ≤ ∞.
Then

Sατp B(Rn) ↪→ Lqτ (Rn)

for α = 1/p− 1/q.

Proof. According to Minkowski’s inequality and the inequality of different metrics (Lemma 4.1), we
obtain

‖f‖Lq(Rn) =

∥∥∥∥∥
∞∑

s=0

Qs(f)

∥∥∥∥∥
Lq(Rn)

≤
∞∑

s=0

‖Qs(f)‖Lq(Rn) ≤ C3

∞∑
s=0

2(1/p−1/q,s) ‖Qs(f)‖Lp(Rn) = C3‖f‖Sα1
p B(Rn),

where α = 1/p− 1/q.
Therefore, for α = 1/p− 1/q we get

Sα1
p B(Rn) ↪→ Lq(Rn).

Let us fix p = (p1, . . . , pn) and let us choose αi = (αi1, . . . , α
i
n) and qi = (qi1, . . . , q

i
n) such that

αij = 1/pj − 1/qij, where i = 0, 1 and j = 1, . . . , n. Then for every ε ∈ E we have

Sαε1p B(Rn) ↪→ Lqε(Rn).

According to Lemma 3.2 and Theorem 3.1 we obtain(
Sαε1p B(Rn); ε ∈ E

)
θτ
↪→ (Lqε(Rn); ε ∈ E)θτ

or
Sατp B(Rn) ↪→ Lqτ (Rn),

where α = (1− θ)α0 + θα1, 1/q =(1− θ)/q0 + θ/q1.
Let us check the relationship between the parameters α, p and q

α = (1− θ)α0 + θα1 = (1− θ) (1/p− 1/q0) + θ (1/p− 1/q1) =

= ((1− θ)/p + θ/p)− ((1− θ)/q0 + θ/q1) = 1/p− 1/q.

Theorem 4.3. Let 1 < q = (q1, . . . , qn) < p = (p1, . . . , pn) < ∞ and 1 ≤ τ = (τ1, . . . , τn) ≤ ∞.
Then

Lqτ (Rn) ↪→ Sατp B(Rn),

where α = 1/p− 1/q.
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Proof. According to the inequality of different metrics (Lemma 4.1) since VM ∈ L1(R), we obtain

‖f‖Sα∞p B(Rn) = sup
s≥0

2(α,s) ‖Qs(f)‖Lp(Rn) ≤ C3 sup
s≥0

2(α+1/q−1/p,s) ‖Qs(f)‖Lq(Rn)

= C3 sup
s≥0

∥∥∥∥∥ 1

πn

n∏
i=1

(
V2si (·)− V[2si−1](·)

)
∗ f

∥∥∥∥∥
Lq(Rn)

≤ C4 ‖f‖Lq(Rn) ,

for α = 1/p− 1/q, where C4 > 0 is independent of f .
Thus, for α = 1/p− 1/q we have

Lq(Rn) ↪→ Sα∞p B(Rn).

Let us fix p = (p1, . . . , pn) and let us choose parameters αi = (αi1, . . . , α
i
n) and qi = (qi1, . . . , q

i
n)

such that αij = 1/pj − 1/qij, where i = 0, 1 and j = 1, . . . , n. Then for every ε ∈ E we obtain

Lqε(Rn) ↪→ Sαε∞p B(Rn).

According to Lemma 3.2 and Theorem 3.1 we obtain

(Lqε(Rn); ε ∈ E)θτ ↪→
(
Sαε∞p B(Rn); ε ∈ E

)
θτ

or
Lqτ (Rn) ↪→ Sατp B(Rn),

where α = (1− θ)α0 + θα1, 1/q = (1− θ)/q0 + θ/q1.
Let us check the relationship between the parameters α, p and q

α = (1− θ)α0 + θα1 = (1− θ) (1/p− 1/q0) + θ (1/p− 1/q1) =

= ((1− θ)/p + θ/p)− ((1− θ)/q0 + θ/q1) = 1/p− 1/q.

Remark 3. It is possible to show that the conditions of Theorems 4.1 – 4.3 are sharp. The proof of
these facts can be carried out by analogy with the corresponding proofs in the papers [8, 11].

5 The theorems about trace and extension

In this section, trace and extension theorems for functions belonging to Nikol’skii-Besov spaces with
a dominant mixed derivative and with a mixed metric are proved.

Let 1 ≤ m < n. For a = (a1, . . . , am, am+1, . . . , an), we denote ā = (a1, . . . , am) and ã =
(am+1, . . . , an) .

Lemma 5.1 (Inequality of different dimensions, [22]). Let 1 ≤ p = (p1, . . . , pm, pm+1, . . . , pn) < ∞
and let Qs(x) be an entire function of exponential type of order s = (s1, . . . , sm, sm+1, . . . , sn) by
x = (x1, . . . , xm, xm+1, . . . , xn). Then for an arbitrary fixed point x̃ ∈ Rn−m holds the inequality

‖Qs(·, x̃)‖Lp̄(Rm) ≤ C5

n∏
i=m+1

s
1/pi
i ‖Qs‖Lp(Rn) ,

where C5 is a positive constant independent of s and x̃.
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Theorem 5.1. Let 1 ≤ p = (p1, . . . , pm, pm+1, . . . , pn) < ∞, α = (α1, . . . , αm, αm+1, . . . , αn), and
1 ≤ τ = (τ1, . . . , τm, τm+1, . . . , τn) ≤ ∞ with αi = 1/pi and τi = 1 for i = m + 1, . . . , n. Then the
trace operator T : f 7→ f(·, 0̃) is well-defined and satisfies

T : Sατp B(Rn)→ Sᾱτ̄p̄ B(Rm).

Proof. Fix any f ∈ Sατp B(Rn). We will show that

f ∈ L∞(Rn−m;Sᾱτ̄p̄ B(Rm)) (5.1)

and
‖f(·, ·+ h̃)− f(·, ·)‖L∞(Rn−m;Sᾱτ̄p̄ B(Rm)) → 0 (5.2)

as h̃ → 0̃. By properties (5.1) and (5.2) it follows that f coincides almost everywhere with a
unique bounded uniformly continuous function g : Rn−m → Sᾱτ̄p̄ B(Rm). The trace operator is then
well-defined by Tf := g(0̃).

We now show (5.1). According to the inequality of different dimensions (Lemma 5.1) and
Minkowski’s inequality, for almost everywhere x̃ ∈ Rn−m holds

‖f(·, x̃)‖Sᾱτ̄p̄ B(Rm) =

∥∥∥∥∥∥∥
2(ᾱ,̄s)

∥∥∥∥∥∥
∑

s̃∈Zn−m+

Q(̄s,̃s)(f)(·, x̃)

∥∥∥∥∥∥
Lp̄(Rm)


∥∥∥∥∥∥∥
lτ̄

≤

∥∥∥∥∥∥
 ∑

s̃∈Zn−m+

2(ᾱ,s̄)
∥∥Q(̄s,̃s)(f)(·, x̃)

∥∥
Lp̄(Rm)


∥∥∥∥∥∥
lτ̄

≤
∑

s̃∈Zn−m+

∥∥∥{2(ᾱ,s̄)
∥∥Q(̄s,̃s)(f)(·, x̃)

∥∥
Lp̄(Rm)

}∥∥∥
lτ̄

=
∑

s̃∈Zn−m+

∥∥∥{2(ᾱ,s̄) ‖Qs(f)(·, x̃)‖Lp̄(Rm)

}∥∥∥
lτ̄

≤ C5

∑
s̃∈Zn−m+

2(1/p̃,̃s)
∥∥∥{2(ᾱ,s̄) ‖Qs (f)‖Lp(Rn)

}∥∥∥
lτ̄

= C5

∥∥∥{2(α,s) ‖Qs (f)‖Lp(Rn)

}∥∥∥
lτ

= C5 ‖f‖Sατp B(Rn) . (5.3)

We now show (5.2).
Since f ∈ Sατp B(Rn), for any ε > 0 there exists N(ε) ∈ N such that

I2
N(ε) =

∥∥∥∥{2(α,s) ‖Qs(f)‖Lp(Rn)

}
{s:(s,1)>N(ε)}

∥∥∥∥
lτ

<
ε

3C5

. (5.4)

Applying inequality (5.3) and the Minkowski inequality, according to estimate (5.4) we obtain

‖f(·, ·+ h̃)− f(·, ·)‖L∞(Rn−m;Sᾱτ̄p̄ B(Rm)) ≤ C5‖f(·, ·+ h̃)− f(·, ·))‖Sατp B(Rn)

≤ C5

(∥∥∥∥∥
{

2(α,s)
∥∥∥Qs(f(·, ·+ h̃))−Qs(f(·, ·))

∥∥∥
Lp(Rn)

}
{s:(s,1)≤N(ε)}

∥∥∥∥∥
lτ
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+

∥∥∥∥∥
{

2(α,s)
∥∥∥Qs(f(·, ·+ h̃))−Qs(f(·, ·))

∥∥∥
Lp(Rn)

}
{s:(s,1)>N(ε)}

∥∥∥∥∥
lτ

)

≤ C5

(∥∥∥∥∥
{

2(α,s)
∥∥∥Qs(f(·, ·+ h̃))−Qs(f(·, ·))

∥∥∥
Lp(Rn)

}
{s:(s,1)≤N(ε)}

∥∥∥∥∥
lτ

+ 2

∥∥∥∥{2(α,s) ‖Qs(f)‖Lp(Rn)

}
{s:(s,1)>N(ε)}

∥∥∥∥
lτ

)

= C5

(
I1
N(ε) + 2I2

N(ε)

)
< C5I

1
N(ε) +

2ε

3
. (5.5)

In order to evaluate I1
N(ε), we will use the following inequality (see [3])∥∥∥Qs(f(·, ·+ h̃))−Qs(f(·, ·))

∥∥∥
Lp(Rn)

≤ C62(s̃,1̃) max
i=m+1,...,n

|hi| ‖Qs(f)‖Lp(Rn) ,

where C6 > 0 is independent of f .
Hence, we get

I1 (N(ε)) ≤ C62N(ε) max
i=m+1,...,n

|hi|
∥∥∥∥{2(α,s) ‖Qs(f)‖Lp(Rn)

}
{s:(s,1)≤N(ε)}

∥∥∥∥
lτ

≤ C62N(ε)|h̃|‖f‖Sατp B(Rn).

We now choose |h̃| < ε

3C5C62N(ε)‖f‖Sατp B(Rn)

, then

I1
N(ε) <

ε

3C5

. (5.6)

Plugging estimate (5.6) into (5.5), we obtain

‖f(·, ·+ h̃)− f(·, ·)‖L∞(Rn−m;Sᾱτ̄p̄ B(Rm)) < ε.

Since ε > 0 is arbitrary, (5.2) is proved.

Remark 4. Trace theorems for Nikol’skii-Besov spaces with a dominant mixed derivative were
previously obtained in [23, 20, 3, 30] under the condition αi > 1/pi for i = m+ 1, . . . , n. Compared
to the above mentioned works, in Theorem 5.1 we allow a weaker condition αi = 1/pi with τi = 1
(this effect was previously seen, for instance, in [14, 15] and [11]).

Theorem 5.2. Let α = (α1, . . . , αm, αm+1, . . . , αn), 1 ≤ τ = (τ1, . . . , τm, τm+1, . . . , τn) ≤ ∞ with
αi = 1/pi, τi = 1 for i = m + 1, . . . , n, and 1 ≤ p = (p1, . . . , pm, pm+1, . . . , pn) < ∞. Then for any
function ϕ(x̄) ∈ Sᾱτ̄p̄ B(Rm) there exists a function f(x̄, x̃) having the following properties:

f ∈ Sατp B(Rn);

‖f‖Sατp B(Rn) ≤ C7 ‖ϕ‖Sᾱτ̄p̄ B(Rm) ,

where C7 > 0 is independent of ϕ;

f(x̄, 0̃) = ϕ(x̄), x̄ ∈ Rm.
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Proof. Let ϕ ∈ Sᾱτ̄p̄ B(Rm). This function can be represented as a series

ϕ(x̄) =
∞∑

s̄=0

Qs̄(ϕ)(x̄)

and
‖ϕ‖Sᾱτ̄p̄ B(Rm) =

∥∥∥{2(ᾱ,̄s) ‖Qs̄ (ϕ)‖Lp̄(Rm)

}∥∥∥
lτ̄
.

Fix any functions fi(xi) ∈ C∞0 (R) with fi(0) = 1, i = m+ 1, . . . , n. We introduce a new function
f(x) by

f(x̄, x̃) = ϕ(x̄) ·
n∏

i=m+1

fi(xi).

Clearly, Qs(f) = Qs̄(ϕ)
n∏

i=m+1

Qsi(fi). Therefore,

‖f‖Sατp B(Rn) =
∥∥∥{2(α,s) ‖Qs (f)‖Lp(Rn)

}∥∥∥
lτ

=
∥∥∥{2(ᾱ,s̄) ‖Qs̄ (ϕ)‖Lp̄(Rm)

}∥∥∥
lτ̄

n∏
i=m+1

∥∥∥{2si/pi ‖Qsi(fi)‖Lpi (R)

}∥∥∥
l1

= C7 ‖ϕ‖Sᾱτ̄p̄ B(Rm) .

Here C7 <∞ since the norm
∥∥{2si/pi‖Qsi(·)‖Lpi (R)

}∥∥
l1
is equivalent to the Besov norm ‖ · ‖

B
1/pi,1
pi

(R)

(see [22]), and fi ∈ C∞0 (R) ⊂ B
1/pi,1
pi (R).

Further, we have

lim
h̃→0̃

∥∥∥f(·, h̃)− ϕ(·)
∥∥∥
Sᾱτ̄p̄ B(Rm)

= lim
h̃→0̃

∥∥∥∥∥ϕ(·)

(
n∏

i=m+1

fi(hi)− 1

)∥∥∥∥∥
Sᾱτ̄p̄ B(Rm)

= ‖ϕ‖Sᾱτ̄p̄ B(Rm) · lim
h̃→0̃

∣∣∣∣∣
n∏

i=m+1

fi(hi)− 1

∣∣∣∣∣ = 0.

These arguments show that ϕ is the trace of the function f .

Remark 5. The extension operator constructed in the proof of Theorem 5.2 is linear. It should be
noted that in the work of V.I. Burenkov and M.L. Gol’dman [19] it was shown that in the limiting
case for Nikol’skii-Besov spaces it is possible to construct only a nonlinear extension operator, but
this effect is not observed for Nikol’skii-Besov spaces with a dominant mixed derivative.
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