ISSN (Print]: 2077-9879

EURASIAN MATHEMATICAL JOURNAL

volume 16, number 2, 2025

ISSN (Online): 2617-2658

CONTENTS

A.T Assanova, Z.S. Kobeyeva, R.A. Medetbekova
Boundary value problem for hyperbolic integro-differential equations of mixed type............... 8 E U R A S I A N

Y. Baissalov, R. Nauryzbayev

Notes on the generalized Gauss reduction algorithm...................ocooiiiiiiiiii . 23 M A T H E M A T I c A L

K.A. Bekmaganbetov, K. Ye. Kervenev, E.D. Nursultanov
Nikol'skii-Besov spaces with a dominant mixed derivative and with a mixed metric:

interpolation properties, embedding theorems, trace and extension theorems .................. 30 j 0 U R N A L

U. Mamadaliyev, A. Sattarov, B. Yusupov
Local and 2-local % - derivations of solvable Leibnizalgebras ...................ccccceeieeenn.. 42

LN. Parasidis, E. Providas
Factorization method for solving systems of second-order linear ordinary differential
0| 1310 ) Pt 55

A.A. Rahmonov
An inverse problem for 1D fractional integro-differential wave equation with

B! Fetersburg RUSSIA
fractional time dEIIVATIVE. .. ..ottt ettt ettt e e ettt et e 74 f Yarosiayl  Pem, ALY Lt e
i +Moscow  .Kazan \fa o, ek il
gk r Crelyasiosk 5
4 P —_ g, gﬁﬂys Sarato [ Gl
e ,?, Kiev v,
Events s ™ A g ot | TR e

KAZAKRSTAN

Ao e Ny
International conference "Actual Problems of Analysis, Differential Equations and Algebra" e

(EMJ-2025), dedicated to the 15th anniversary of the Eurasian Mathematical Journal...... 98

uBRRSTAN REISTRL

Tashyerd

Azeg:nkuu TURKMENISTAN

TAIKISTRN
Mosel *Ashkhabad e crind
, IRAQ tTeh"an Kabu\ * *
Uagp noe
i AFGHANISTAN -\'r‘;‘\ 8
ﬂ 1t
New Delnt * Ag"a i gl
PAKISTAN Ja\p\l‘ § '\kan‘?“‘ :
EGypr b \
-'if(;ER
Y

oo Khartoyp,
byjy NDfamena Suban *
"

Add[s Abbaba

CENT
h N R,
A ung, REp, FRchN

SSN 2077-98

VOLUME 16, NUMBER 2 iiri




ISSN (Print): 2077-9879
ISSN (Online): 2617-2658

Eurasian
Mathematical
Journal

2025, Volume 16, Number 2

Founded in 2010 by
the L.N. Gumilyov Eurasian National University
in cooperation with
the M.V. Lomonosov Moscow State University
the Peoples’ Friendship University of Russia (RUDN University)
the University of Padua

Starting with 2018 co-funded
by the L.N. Gumilyov Eurasian National University
and
the Peoples’ Friendship University of Russia (RUDN University)

Supported by the ISAAC
(International Society for Analysis, its Applications and Computation)
and
by the Kazakhstan Mathematical Society

Published by

the L.N. Gumilyov Eurasian National University
Astana, Kazakhstan



EURASIAN MATHEMATICAL JOURNAL
Editorial Board

Editors—in—Chief
V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy
Vice—-Editors—in—Chief
R. Oinarov, K.N. Ospanov, T.V. Tararykova

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (Kazakhstan), O.V. Besov (Russia),
N.K. Bliev (Kazakhstan), N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bour-
daud (France), A. Caetano (Portugal), A.D.R. Choudary (Pakistan), V.N. Chubarikov (Russia),
A.S. Dzhumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia), M.L. Goldman
(Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany), A. Hasanoglu
(Turkey), M. Huxley (Great Britain), P. Jain (India), T.Sh. Kalmenov (Kazakhstan), B.E. Kangyzhin
(Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin (Great Britain),
V.I. Korzyuk (Belarus), A. Kufner (Czech Republic), L.K. Kussainova (Kazakhstan), P.D. Lam-
berti (Italy), M. Lanza de Cristoforis (Italy), F. Lanzara (Italy), V.G. Maz’ya (Sweden), K.T.
Mynbayev (Kazakhstan), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan), I.N. Para-
sidis (Greece), J. Pecari¢ (Croatia), S.A. Plaksa (Ukraine), L.-E. Persson (Sweden), E.L. Presman
(Russia), M.A. Ragusa (Italy), M. Reissig (Germany), M. Ruzhansky (Great Britain), M.A. Sady-
bekov (Kazakhstan), S. Sagitov (Sweden), T.O. Shaposhnikova (Sweden), A.A. Shkalikov (Russia),
V.A. Skvortsov (Russia), G. Sinnamon (Canada), V.D. Stepanov (Russia), Ya.T. Sultanaev (Rus-
sia), D. Suragan (Kazakhstan), [.A. Taimanov (Russia), J.A. Tussupov (Kazakhstan), U.U. Umirbaev
(Kazakhstan), N. Vasilevski (Mexico), Dachun Yang (China), B.T. Zhumagulov (Kazakhstan)

Managing Editor
A.M. Temirkhanova

(© The L.N. Gumilyov Eurasian National University



Aims and Scope

The Eurasian Mathematical Journal (EMJ) publishes carefully selected original research papers
in all areas of mathematics written by mathematicians, principally from Europe and Asia. However
papers by mathematicians from other continents are also welcome.

From time to time the EMJ publishes survey papers.

The EMJ publishes 4 issues in a year.

The language of the paper must be English only.

The contents of the EMJ are indexed in Scopus, Web of Science (ESCI), Mathematical Reviews,
MathSciNet, Zentralblatt Math (ZMATH), Referativnyi Zhurnal — Matematika, Math-Net.Ru.

The EMJ is included in the list of journals recommended by the Committee for Control of
Education and Science (Ministry of Education and Science of the Republic of Kazakhstan) and in
the list of journals recommended by the Higher Attestation Commission (Ministry of Education and
Science of the Russian Federation).

Information for the Authors

Submission. Manuscripts should be written in LaTeX and should be submitted electronically in
DVI, PostScript or PDF format to the EMJ Editorial Office through the provided web interface
(www.enu.kz).

When the paper is accepted, the authors will be asked to send the tex-file of the paper to the
Editorial Office.

The author who submitted an article for publication will be considered as a corresponding author.
Authors may nominate a member of the Editorial Board whom they consider appropriate for the
article. However, assignment to that particular editor is not guaranteed.

Copyright. When the paper is accepted, the copyright is automatically transferred to the EMJ.
Manuscripts are accepted for review on the understanding that the same work has not been already
published (except in the form of an abstract), that it is not under consideration for publication
elsewhere, and that it has been approved by all authors.

Title page. The title page should start with the title of the paper and authors’ names (no degrees).
It should contain the Keywords (no more than 10), the Subject Classification (AMS Mathematics
Subject Classification (2010) with primary (and secondary) subject classification codes), and the
Abstract (no more than 150 words with minimal use of mathematical symbols).

Figures. Figures should be prepared in a digital form which is suitable for direct reproduction.

References. Bibliographical references should be listed alphabetically at the end of the article.
The authors should consult the Mathematical Reviews for the standard abbreviations of journals’
names.

Authors’ data. The authors’ affiliations, addresses and e-mail addresses should be placed after
the References.

Proofs. The authors will receive proofs only once. The late return of proofs may result in the
paper being published in a later issue.

Offprints. The authors will receive offprints in electronic form.




Publication Ethics and Publication Malpractice

For information on Ethics in publishing and Ethical guidelines for journal publication see
http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the EMJ implies that the work described has not been published
previously (except in the form of an abstract or as part of a published lecture or academic thesis or as
an electronic preprint, see http://www.elsevier.com /postingpolicy), that it is not under consideration
for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by
the responsible authorities where the work was carried out, and that, if accepted, it will not be
published elsewhere in the same form, in English or in any other language, including electronically
without the written consent of the copyright-holder. In particular, translations into English of papers
already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent
data, incorrect interpretation of other works, incorrect citations, etc. The EMJ follows the Code
of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts
for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/NewCode.pdf).
To verify originality, your article may be checked by the originality detection service CrossCheck
http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections,
clarifications, retractions and apologies when needed. All authors of a paper should have significantly
contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works
which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be
chosen in such a way that there is no conflict of interests with respect to the research, the authors
and /or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will
only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote
publication of corrections, clarifications, retractions and apologies when needed. The acceptance of
a paper automatically implies the copyright transfer to the EMJ.

The Editorial Board of the EMJ will monitor and safeguard publishing ethics.



The procedure of reviewing a manuscript, established
by the Editorial Board of the Eurasian Mathematical Journal

1. Reviewing procedure

1.1. All research papers received by the Eurasian Mathematical Journal (EMJ) are subject to
mandatory reviewing.

1.2. The Managing Editor of the journal determines whether a paper fits to the scope of the EMJ
and satisfies the rules of writing papers for the EMJ, and directs it for a preliminary review to one
of the Editors-in-chief who checks the scientific content of the manuscript and assigns a specialist for
reviewing the manuscript.

1.3. Reviewers of manuscripts are selected from highly qualified scientists and specialists of the
L.N. Gumilyov Eurasian National University (doctors of sciences, professors), other universities of
the Republic of Kazakhstan and foreign countries. An author of a paper cannot be its reviewer.

1.4. Duration of reviewing in each case is determined by the Managing Editor aiming at creating
conditions for the most rapid publication of the paper.

1.5. Reviewing is confidential. Information about a reviewer is anonymous to the authors and
is available only for the Editorial Board and the Control Committee in the Field of Education and
Science of the Ministry of Education and Science of the Republic of Kazakhstan (CCFES). The
author has the right to read the text of the review.

1.6. If required, the review is sent to the author by e-mail.

1.7. A positive review is not a sufficient basis for publication of the paper.

1.8. If a reviewer overall approves the paper, but has observations, the review is confidentially
sent to the author. A revised version of the paper in which the comments of the reviewer are taken
into account is sent to the same reviewer for additional reviewing.

1.9. In the case of a negative review the text of the review is confidentially sent to the author.

1.10. If the author sends a well reasoned response to the comments of the reviewer, the paper
should be considered by a commission, consisting of three members of the Editorial Board.

1.11. The final decision on publication of the paper is made by the Editorial Board and is recorded
in the minutes of the meeting of the Editorial Board.

1.12. After the paper is accepted for publication by the Editorial Board the Managing Editor
informs the author about this and about the date of publication.

1.13. Originals reviews are stored in the Editorial Office for three years from the date of publica-
tion and are provided on request of the CCFES.

1.14. No fee for reviewing papers will be charged.

2. Requirements for the content of a review

2.1. In the title of a review there should be indicated the author(s) and the title of a paper.

2.2. A review should include a qualified analysis of the material of a paper, objective assessment
and reasoned recommendations.

2.3. A review should cover the following topics:

- compliance of the paper with the scope of the EMJ;

- compliance of the title of the paper to its content;

- compliance of the paper to the rules of writing papers for the EMJ (abstract, key words and
phrases, bibliography etc.);

- a general description and assessment of the content of the paper (subject, focus, actuality of
the topic, importance and actuality of the obtained results, possible applications);

- content of the paper (the originality of the material, survey of previously published studies on
the topic of the paper, erroneous statements (if any), controversial issues (if any), and so on);



- exposition of the paper (clarity, conciseness, completeness of proofs, completeness of biblio-
graphic references, typographical quality of the text);

- possibility of reducing the volume of the paper, without harming the content and understanding
of the presented scientific results;

- description of positive aspects of the paper, as well as of drawbacks, recommendations for
corrections and complements to the text.

2.4. The final part of the review should contain an overall opinion of a reviewer on the paper
and a clear recommendation on whether the paper can be published in the Eurasian Mathematical
Journal, should be sent back to the author for revision or cannot be published.



Web-page

The web-page of the EMJ is www.emj.enu.kz. One can enter the web-page by typing Eurasian
Mathematical Journal in any search engine (Google, Yandex, etc.). The archive of the web-page
contains all papers published in the EMJ (free access).

Subscription
Subscription index of the EMJ 76090 via KAZPOST.
E-mail

eurasianmj@yandex.kz

The Eurasian Mathematical Journal (EMJ)

The Astana Editorial Office

The L.N. Gumilyov Eurasian National University
Building no. 3

Room 306a

Tel.: +7-7172-709500 extension 33312

13 Kazhymukan St

010008 Astana, Republic of Kazakhstan

The Moscow Editorial Office

The Patrice Lumumba Peoples’ Friendship University of Russia
(RUDN University)

Room 473

3 Ordzonikidze St

117198 Moscow, Russian Federation



EURASIAN MATHEMATICAL JOURNAL
ISSN 2077-9879
Volume 16, Number 2 (2025), 23 — 29

NOTES ON THE GENERALIZED GAUSS REDUCTION ALGORITHM
Y. Baissalov, R. Nauryzbayev

Communicated by J.A. Tussupov

Key words: lattice, well-ordered basis, reduced basis, generalized Gaussian algorithm.
AMS Mathematics Subject Classification: 68W40.

Abstract. The hypothetical possibility of building a quantum computer in the near future has forced
a revision of the foundations of modern cryptography. The fact is that many difficult algorithmic
problems, such as the discrete logarithm, factoring a (large) natural number into prime factors, etc.,
on the complexity of which many cryptographic protocols are based these days, have turned out to
be relatively easy to solve using quantum algorithms.

Intensive research is currently underway to find problems that are difficult even for a quantum
computer and have potential applications for cryptographic protocols. Our article contains notes
related to the so-called generalized Gauss algorithm, which calculates the reduced basis of a two-
dimensional lattice [8], [2]. Note that researchers are increasingly putting forward difficult algorithmic
problems from lattice theory as candidates for the foundation of post-quantum cryptography. The
majority of algorithmic problems related to lattice reduction become NP-hard as the lattice dimension
increases [3], [I]. Fundamental problems such as the Shortest Vector Problem (SVP), the Closest
Vector Problem (CVP), and Bounded Distance Decoding (BDD) are conjectured to remain hard
even for quantum algorithms [4], [6]. Although the generalized Gauss reduction algorithm applies to
two-dimensional lattices, where exact analysis is feasible (dimensions 3 and 4 are studied in [7], [5]),
understanding such low-dimensional reductions provides important insights into the structure and
complexity of lattice-based cryptographic constructions.
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1 Preliminaries

All necessary information on the basics of lattice theory can be found in [8]. For those who are
familiar with the group theory, a lattice is a finitely generated subgroup of the additive group of
the Euclidean space R™. In this note we will limit ourselves to considering the 2-generated lattice
L € R". Any pair of vectors generating L is called a basis of the lattice.

The Euclidean space metric R”, obtained by the standard dot product, induces a metric on
L. Let us clarify the notation associated with this metric: for vectors a,b € L, let us denote by
(a,b) their dot pr20duct, by |la|| the length of vector a, and by [a] the square of this length, that is,
la] = (a,a) = [|al

Definition 1. Vectors a,b € L will be called an ordered basis and denoted by (a, b) if the following
conditions are satisfied:

(1) [lall < o[l

(2) [la = bl < lla +b]-
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Note that for any lattice basis it is easy to obtain an ordered basis: if the vectors a,b € L form
a basis, then first we arrange them in increasing length, and if we already have |la|| < [|b]|, and
la —b|| < |la+ b|| is not satisfied, then we change b to —b. Therefore, in what follows only ordered
bases of the lattice L are considered.

Definition 2. (1) If ||a|| < |la — b]| < ||b]], then the ordered basis (a, b) is called well-ordered.
(2) An ordered basis (a, b) is called reduced if ||b|| < ||a — b]|.

In Sections 2 and 3 we present results that are valid for any normed lattices, that is, for lattices
with a norm which their norm is obtained by restricting a certain norm on the space R".

Definition 3. A function || - || : R* — R4, where Ry is the set of all non-negative real numbers, is
called a norm if it satisfies the following conditions for any vectors x,y € R™ and for any real number
acR:

(1) ||z|| = 0 if and only if = is the zero vector;

() =+ yll < llzll + llyll (the triangle inequality);

(3) o] = fe - [|]].

We will call a norm strict if the equality in condition (2) is satisfied only when at least one of the
vectors x,y is the zero vector or the vectors x,y are collinear and co-directional.
The following corollary of the triangle inequality is often useful.

Corollary 1.1. For any x,y € R" we have |||z| — [lyll| < [z — y]|.

Definition 4. (1) A\; = min{||a|| : 0 #a € L}
(2) Ay = min{||b]| : (a, b) is an ordered basis for some a € L}.

The numbers A1, Ay are always defined, since the lattice L is a discrete group: any ball of finite
radius centered at the zero vector contains only a finite number of lattice elements [§].

The following theorem, the proof of which can be found in [8, Theorem 16| (see also |2, Theorem
4]), explains why a reduced basis is sometimes called a minimal basis.

Theorem 1.1. An ordered basis {a,b) is reduced if and only if ||a]| = A1 and ||b|| = Xe.
The following useful lemma was also proven in [8, Lemma 17].

Lemma 1.1. Consider three vectors on a line: x, x+y and x+ ay, where o € (1,00). For any norm
| - || from the inequality ||z|| < ||z + yl|| it follows that |z + y|| < ||x + ayl|, and from the inequality
|z|| < ||z + y|| it follows that ||z + y|| < ||z + ay]|.

Note that using Lemma[l.1one can prove that if a basis (a, b) is well-ordered, then ||a|| < [Ja—b| <
18] < fla + b} (see [2]).

2 About the function [(7) = ||b — Ta|

In this section, we study the properties of the function I(7) = ||b — 7al|, 7 € R, where a,b are
vectors of some real space with the norm || - ||. If a is the zero vector, then () = ||b]| is a constant
function, and if b is the zero vector, then (1) = ||a|| - |7| is the absolute value function multiplied by
the constant ||al|. A similar function will be obtained if the vectors a,b are linearly dependent: for
example, if b = ~va, then [(7) = ||a|| - |7 — |. Therefore, the case is interesting when the vectors a, b
are linearly independent.
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Theorem 2.1. Let a,b be linearly independent vectors of some real space with the norm || - ||. Then
the function (1) = ||b — Tal|, T € R, has the following properties:

(1) 1 is continuous on the entire real line;

(2) 1 is not bounded from above: lim [(7) =400 and lim [(1) = 4o0;

T—>—00 T—r400

(3) there exists g et min{l(7) : 7 € R} > 0 and there exists a closed interval of minimality

def
[10,71] = {7 €R:U(7) = wo};
(4) on the interval (—oo,Ty) the function | strictly decreases, and on the interval (11, +00) it strictly
mereases.

Proof. (1) Let us prove the continuity of the function [ at an arbitrary point 75 € R. By Corollary
L1 we have

U7+ 70) = U(70)| = [[Ib = (7 + To)al] — [|b = 7oall| < [[rall = [[a]| - |7].

Therefore, |I(T + 19) — I(70)| < € holds for |7| < § = =

llall”

(2) Using Corollary again and property (3) of the norm, we obtain
(7)) = b —7all = llal[ - |7] — [|b]l,

which obviously implies lim [(7) = 400 and hlf I(1) = +o0.
T——00 T—400

(3) Let us choose numbers ap < 0 < 5y € R so that (1) > [(0) = ||b]| for any real number 7 lying
outside the interval [«v, 5o]: this is possible according to (2). According to Weierstrass’s theorem, the
function [ reaches its minimum at a point 7y of the interval [y, By], which we denote by 1o = I(70).
Obviously, this po will be the minimum of the function over the entire R.

Let us call 7 € R a point of monotonicity (of the function 1), if I(7) > po. Let v < 75 be a
point of monotonicity. Then note that each 6 < v is a point of monotonicity, since 1(§) > I(y) > uo
holds (apply Lemma for the vectors © = b — 19a and y = (179 — 7y)a). So, the interval (—oo, ]
consists entirely of monotonicity points. In addition, due to the continuity of the function [, some
neighborhood of the point v will consist entirely of monotonicity points. This means that each
monotonicity point v < 7 is contained in a certain interval of the form (—oo, @), consisting entirely
of monotonicity points. Since the union of intervals of this type again gives an open interval of the
same type, we conclude that the monotonicity points located to the left of 7y form an interval of
this type, which we will denote without loss of generality by (—oo, 79). Similar reasoning shows that
monotonicity points located to the right of 7y form an interval (77, 400) for some 7 > 7.

(4) In the last paragraph of the proof of point (3), in fact, it was proven that [(d) > () holds
for § < v < 79, that is, that the function [ strictly decreases on the interval (—oo, 7). Similarly,
using Lemma [1.1| we prove the second statement of this point, namely, that the function [ is strictly
increasing on the interval (71, 4+00). O

Example. The norm defined for R? as follows is not strict: for (a, 3) € R?* we set

(e, )] < max{|al,|5]}.

With a = (0,1),b = (1,0) for the function I(7) = ||b — Tal| we have pq «f min{l(7) : 7 € R} =1, and
the interval of minimality is [—1, 1]. O

Note that it may well be 75 = 71, that is, the interval |1, 71] can consist of only one point. This
situation occurs if the norm || - || on the subspace generated by the vectors a, b is strict. Indeed, if
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7o # 71 and the norm || - || is strict, then the vectors b — mya, b — 7ya are not collinear, therefore the
sum of their lengths is strictly greater than the length of their sum:

To+ T
2u0 = [|b — Toal| + [|b — T1all > |20 — (70 + 71)al| = 2 Hb — o
We obtain I(T237) = || 25 a + b|| < 19, which contradicts the minimality of the value .
In particular, we have 7y = 71, when the norm || - || is generated by the dot product in R™. In

addition, in this case the value of 7 is explicitly calculated. Indeed, we have
I(7)? = [b—7a] = (b—7a,b—7a) = [a]7® — 2(a, b)T + [0],

(ab) _ (ah)

(a,a) [a]

In the next section we use an oracle that solves the following problem.

Problem. For a given ordered basis (a,b), find an integer p = p(a,b) such that ||b — pal| =
min{||b — na|| : n € Z}, where Z is the set of integers.

By Theorem [2.1] for the function I(7) = ||b — 7a|| it follows that the problem is correct, that is, it
always has a solution. In general, if the interval [ry, 71] contains an integer, then any integer from it
will be a solution, if not, then p = [79] or u = [71], where |x] ([x]) is the largest (smallest) integer
from the interval (—oo, z| ([z, +00). Thus, this problem can be solved effectively if we can efficiently
calculate an approximate value of some number from |79, 71]. This is the case when, for example, the
norm || - || is defined by the scalar product in R", in this case 1 = 1 = % = %

As noted in [§], if we know a not very large interval of real numbers containing [y, 71], then the
above problem can be effectively solved using the binary search algorithm. It is also proved there

that pu(a,b) € [1,2[b]|/[|al]) provided |[bl| > [[b — al|

and this quadratic function reaches a minimum at point 75 =

3 On the generalized Gauss reduction algorithm

In this section we will give some notes about the generalized Gaussian reduction algorithm, which
allows to find a minimal lattice basis from an initial ordered basis. This algorithm is described in
sufficient detail in [§] and [2].

First, we will describe the introductory part of the algorithm, during which we obtain from a
given ordered basis, in the worst case, some well-ordered basis, and in the best case, a solution to
our problem, i.e. we find some reduced basis.

Let us assume that an ordered basis (a, b) is given. Recall that by the definition of an ordered
basis we have ||a|| < ||b]| and |ja — b|| < ||a + b||. Let us consider possible cases:

(W)oll < fla — .

In this case, the basis (a,b) is reduced and our problem is solved.

(2) lla =0l <|lall.

If ||a|| = ||b]|, then (a — b, a) is a reduced basis and our problem is solved again:

la = ol < la]l = || = bl = [|(a = b) — al

= 2[la]l — o[l < [[2a = bl = [[(a = b) + al.
If ||a]| < ||b]|, then (b — a,b) is a well-ordered basis:

16— all = lla = bll < lla]l = [| = all = [[(b - a) — ]

< [loll < 2fjbll = flall < []2b = all = [|(b = a) + b]].
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(3) llall < fla— bl <[[b]-
In this case, the basis (a,b) is well-ordered. O

We would like to evaluate the complexity of the generalized Gaussian algorithm, so we must
consider worst-case scenarios in all stages of the algorithm. We assume that having received an
ordered basis at the input, after the introductory part of the algorithm described above, we obtain
a well-ordered basis at the output. The time spent on the introductory part will be short, since the
main operations in it are to compare the lengths of some specific vectors.

We move on to describe the next, main stage of the algorithm, which consists of cyclically re-
peating the same procedure. Let us assume that before the start of this stage we have a well-ordered
basis (a,b). A cyclically repeated procedure updates this basis as follows. First, using the oracle
described in section 2, we find p = u(a,b) and consider the basis consisting of the vectors a and
b — pa. We correct the second vector of this basis, multiplying it by ¢ € {—1,+1} so that the sum
of vectors a and £(b — pa) has a norm no less than the norm of their difference. Further,

(1) if J|a|]| < ||b — pall, then (a,e(b — pa)) is a reduced basis and the algorithm terminates,

(2) if ||b — pal| < ||la||, then according to the analysis from the introductory part of the algo-
rithm, the ordered basis (¢(b — ua), a) will be either reduced or well-ordered, since case (2) from the
introductory part of the algorithm for the basis (¢(b — pa), a) is impossible.

So, the procedure, having obtained a well-ordered basis (a, b) at the input, produces a new well-
ordered basis (¢(b — ua), a) at the output (in an unsuccessful scenario). Since each time the procedure
is executed, the length of one of the vectors of the well-ordered basis decreases, after a certain finite
number of steps the procedure, due to the discreteness of the lattice, will produce the reduced basis
and the algorithm completes its work.

Finally, let us move on to estimating the number of repetitions of the procedure of the main
stage of the algorithm. Let & be the number of repetitions and (a,b) = (ay, ag41) be a well-ordered
basis at the beginning of the stage. Let us represent the results of cyclic procedures as a sequence of
ordered bases

<ak, ak+1>, <ak—17 ak>,-~;<a17 a3>7
0

where (aq, aj) is a reduced basis. Then the following lemma, proven in [§], is true.

Lemma 3.1. Fori > 3, the inequality 2||a;|| < ||a;+1]| holds.

The notation a9 is introduced due to the following circumstances. There are two possibilities

for completing the algorithm by obtaining the reduced basis (a1, a9) from the well-ordered basis

(ag, az). Tt may well be a; = e(az — pay), ad = ay, if case (2) occurred during the last update of the

basis by the main stage procedure. But there could also be case (1), then a; = ag, aJ = e(az — pas).
Note that in any case we have ||a3]| = Ay < ||az||. Therefore, we get

Wl _ Nl 2 laall s
A2 A2 A2

. . . . b
which implies the estimate k£ < 2 + log, (”/\—J> U
Finally, the last remark concerns the minimality intervals of the functions I(7) = ||b — 7d|,
7 € R, for well-ordered bases (a, b). It is clear that long minimality intervals can significantly reduce
the running time of the Gaussian reduction algorithm. Without going into complex computational

analysis, we will limit ourselves to just one simple example confirming this fact.

Lemma 3.2. If the minimality interval of the function I(1) = ||b — 7a||, 7 € R, for the basis (a,b)
contains an integer ng, then ||b — noall = Ay or ||a|| = A1.



28 Y. Baissalov, R. Nauryzbayev

Proof. So, assume that ||b — noa|| = po = min{l/(7) : 7 € R}. On the other hand, for some «, 5 € Z

we have ||aa + Bb]| = A;. If B = 0, then obviously |a| = 1 and |ja]| = A;. Therefore, let us assume
that § 7 0. Then, Ay = |B]- |Ga + bl = [B] - 1(=5) = 8] - po = |B] - Ib — noal|, which implies |5] =1
and ||b — noal| = ;. O

Thus, if during the execution of the procedure of the main stage of the algorithm, a well-ordered
basis (a,b) is given as input, satisfying the condition of Lemma then at the output we obtain
an ordered basis (c,d) with ||c[| = A;, and, if {¢,d) is not a reduced basis, then at the next step
the result of the procedure falling into case (1) will be a reduced basis. Therefore, the number & of
repetitions of the procedure will not exceed 2.
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