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Abstract. The boundary value problem for a system of hyperbolic integro-differential equations of
mixed type with degenerate kernels is considered on a rectangular domain. This problem is reduced
to a family of boundary value problems for a system of integro-differential equations of mixed type
and integral relations. The system of integro-differential equations of mixed type is transferred to a
system of Fredholm integro-differential equations. For solving the family of boundary value problems
for integro-differential equations Dzhumabaev’s parametrization method is applied. A new concept
of a general solution to a system of integro-differential equations with parameter is developed. The
domain is divided into N subdomains by a temporary variable, the values of a solution at the in-
terior lines of the subdomains are considered as additional functional parameters, and a system of
integro-differential equations is reduced to a family of special Cauchy problems on the subdomains for
Fredholm integro-differential equation with functional parameters. Using the solutions to these prob-
lems, a new general solutions to a system of Fredholm integro-differential equations with parameter
is introduced and its properties are established. Based on a general solution, boundary conditions,
and the continuity conditions of a solution at the interior lines of the partition, a system of linear
functional equations with respect to parameters is composed. Its coefficients and right-hand sides
are found by solving the family of special Cauchy problems for Fredholm integro-differential equa-
tions on the subdomains. It is shown that the solvability of the family of boundary value problems
for Fredholm integro-differential equations is equivalent to the solvability of the composed system.
Methods for solving boundary value problems are proposed, which are based on the construction and
solving of these systems. Conditions for the existence and uniqueness of a solution to the boundary
value problem for a system of hyperbolic integro-differential equations of mixed type with degenerate
kernels are obtained.

DOI: https://doi.org/10.32523/2077-9879-2025-16-2-08-22

1 Introduction and statement of problem

Boundary value problems for systems of hyperbolic integro-differential equations of mixed type arise
in various scientific and engineering fields when a phenomena exhibits both hyperbolic and integral
characteristics.

Hyperbolic equations often model wave propagation, and the presence of integro-differential terms
can account for the effects of heterogeneous media. Applications include seismology, acoustics, and
electromagnetic wave propagation in complex environments [13, 31, 32].
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Fluid flow problems involving memory effects, such as viscoelastic or non-Newtonian fluids, can
be described using hyperbolic integro-differential equations. This is relevant in modeling flows with
memory-dependent constitutive relationships [12]. Modeling the dynamic behavior of structures with
distributed parameters, viscoelastic materials, or memory effects in the constitutive relations can lead
to hyperbolic integro-differential equations. This is important in understanding the vibrations and
responses of complex structures [14, 21, 24].

Hyperbolic integro-differential equations with mixed types can appear in the modeling of systems
with time delays, which is common in control theory. These equations can be used to study the
stability and control of systems with delays [22, 23].

The spread of infectious diseases, predator-prey interactions, or other ecological systems may be
modeled using hyperbolic integro-differential equations. The integral terms can represent memory
effects or non-local interactions within populations [25, 33, 34].

Modeling heat conduction in materials with complex structures, like composites or materials with
memory effects, can lead to hyperbolic integro-differential equations. This is crucial in designing
materials with specific thermal properties [5, 26].

In financial mathematics, models with memory effects, stochastic processes, or non-local interac-
tions can be described using hyperbolic integro-differential equations. This is particularly relevant
in option pricing and risk management [29, 30].

Non-local interactions in image processing, such as image denoising or inpainting, can be modeled
using hyperbolic integro-differential equations. These equations allow for the consideration of infor-
mation from distant pixels. Modeling biological systems involving neural dynamics, drug delivery,
or reaction-diffusion processes can lead to hyperbolic integro-differential equations. These equations
can help simulate and understand complex interactions in biological systems [10, 27].

Hyperbolic integro-differential equations are used to model various geophysical phenomena, in-
cluding heat conduction in the Earth’s crust, seismic wave propagation, and groundwater flow in
heterogeneous media [11].

The solutions to these problems provide insights into the behavior of complex systems and aid in
the design and optimization of processes in a wide range of scientific and engineering applications.
Solving these equations often requires a combination of analytical and numerical techniques tailored
to the specific characteristics of the problem at hand.

Therefore, the study of new methods for solving boundary value problems for hyperbolic integro-
differential equations is driven by the need to address the complexities of real-world problems, improve
computational efficiency, enhance accuracy, and adapt to diverse applications across various disci-
plines. It reflects the dynamic nature of scientific inquiry and the ongoing quest to develop more
robust tools for understanding and manipulating complex systems.

This issue can be resolved by developing constructive methods. In present paper we propose an
effective method for solving the boundary value problem for the second order system of hyperbolic
integro-differential equations of mixed type. This method is based on the method of introducing new
unknown functions [3, 7], the parametrization method [15] and a new concept of a general solution
[17].

On the rectangular domain Ω = [0, T ] × [0, ω], we consider the boundary value problem for the
following second order system of hyperbolic integro-differential equations of mixed type:

∂2u

∂x∂t
= A(t, x)

∂u

∂x
+B(t, x)

∂u

∂t
+ C(t, x)u+ f(t, x)+

+Φ1(t, x)

T∫
0

Ψ1(s, x)
∂u(s, x)

∂x
ds+ Ξ1(t, x)

t∫
0

Θ1(s, x)
∂u(s, x)

∂x
ds+
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+ Φ2(t, x)

T∫
0

Ψ2(s, x)u(s, x)ds+ Ξ2(t, x)

t∫
0

Θ2(s, x)u(s, x)ds, (t, x) ∈ Ω, (1.1)

P1(x)
∂u(0, x)

∂x
+ P2(x)u(0, x) + S1(x)

∂u(T, x)

∂x
+ S2(x)u(T, x) = ϕ(x), x ∈ [0, ω], (1.2)

u(t, 0) = ψ(t), t ∈ [0, T ]. (1.3)

Here u = col(u1, u2, ..., un) is the unknown vector-function, the n×n matrices A(t, x), B(t, x), C(t, x)
and n-vector f(t, x) are continuous on Ω; the n × n matrices Φi(t, x), Ψ1(t, x), Ξi(t, x), Θi(t, x),
i = 1, 2, are continuous on Ω; the n × n matrices Pj(x), Sj(x), j = 1, 2, and n-vector ϕ(x) are
continuous on [0, ω]; the n-vector ψ(t) is continuously differentiable on [0, T ].

A vector-function u(t, x) ∈ C(Ω,Rn), which has partial derivatives ∂u(t,x)
∂x
∈ C(Ω,Rn), ∂u(t,x)

∂t
∈

C(Ω,Rn), ∂
2u(t,x)
∂x∂t

∈ C(Ω,Rn), is called a solution to problem (1.1)–(1.3) if it satisfies system (1.1) for
all (t, x) ∈ Ω, the nonlocal condition (1.2) for all x ∈ [0, ω] and the condition on the characteristics
(1.3) for all t ∈ [0, T ].

2 Reduction to a family of problems for first order integro-differential
equations

Previously, the relationship between nonlocal problems for hyperbolic equations and families of prob-
lems for ordinary differential equations was shown in [3, 4, 28]. With the help of new unknown
functions, the problem under consideration was reduced to a family of problems for differential equa-
tions and integral relations. To solve a family of problems for differential equations, Dzhumabaev
parametrization method was used [15] and criteria for the unique solvability of the problem under
investigation were obtained in terms of coefficients and boundary data. This has made it possible
to establish necessary and sufficient conditions for the well-posed solvability of nonlocal problems
for hyperbolic equations in terms of the original data [3, 4]. These results were extended to non-
local problems for loaded hyperbolic equations [19]. An application of this approach to problems
for hyperbolic integro-differential equations leads to a new class of problems for integro-differential
equations of mixed type. This, in turn, requires the development of new approaches and methods
for solving them.

In this Section by method of introduction of new functions we transfer problem (1.1)–(1.3) to a
family of problems for integro-differential equations of mixed type.

We introduce new functions v(t, x) = ∂u(t,x)
∂x

and w(t, x) = ∂u(t,x)
∂t

for all (t, x) ∈ Ω [4]. Problem
(1.1)–(1.3) transfers to a family of boundary value problems for the following integro-differential
equations of mixed type and integral relations

∂v

∂t
= A(t, x)v(t, x) + F (t, x, u, w)+

+ Φ1(t, x)

T∫
0

Ψ1(s, x)v(s, x)ds+ Ξ1(t, x)

t∫
0

Θ1(s, x)v(s, x)ds, (t, x) ∈ Ω, (2.1)

P1(x)v(0, x) + S1(x)v(T, x) = φ(x, u), x ∈ [0, ω], (2.2)

u(t, x) = ψ(t) +

x∫
0

v(t, ξ)dξ, w(t, x) = ψ̇(t) +

x∫
0

∂v(t, ξ)

∂t
dξ, (2.3)
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where
F (t, x, u, w) = f(t, x) +B(t, x)w(t, x) + C(t, x)u+

+Φ2(t, x)

T∫
0

Ψ2(s, x)u(s, x)ds+ Ξ2(t, x)

t∫
0

Θ2(s, x)u(s, x)ds,

φ(x, u) = ϕ(x)− P2(x)u(0, x)− S2(x)u(T, x).

A triple of functions {v(t, x), u(t, x), w(t, x)}, where v(t, x) ∈ C(Ω,Rn), u(t, x) ∈ C(Ω,Rn),
w(t, x) ∈ C(Ω,Rn) is called a solution to problem (2.1)–(2.3) if it satisfies integro-differential equa-
tions of mixed type with parameters (2.1), condition (2.2) and integral relations (2.3).

Let u∗(t, x) be a classical solution to problem (1.1)–(1.3).
We construct a triple of functions {v∗(t, x), u∗(t, x), w∗(t, x)}, where v∗(t, x) = ∂u∗(t,x)

∂x
, w∗(t, x) =

∂u∗(t,x)
∂t

.
Then

u∗(t, x) = u∗(t, 0) +

x∫
0

∂u∗(t, ξ)

∂ξ
dξ = ψ(t) +

x∫
0

v∗(t, ξ)dξ

and taking into account that u∗(t, x) is a solution to problem (1.1)–(1.3), we have

∂2u∗(t, x)

∂x∂t
=
∂2u∗(t, x)

∂t∂x
,

w∗(t, x) =
∂u∗(t, x)

∂t
=
∂u∗(t, 0)

∂t
+

x∫
0

∂2u∗(t, ξ)

∂ξ∂t
dξ =

=
∂u∗(t, 0)

∂t
+

x∫
0

∂2u∗(t, ξ)

∂t∂ξ
dξ = ψ̇(t) +

x∫
0

∂v∗(t, ξ)

∂t
dξ,

∂v∗

∂t
=
∂2u∗

∂t∂x
= A(t, x)

∂u∗

∂x
+B(t, x)

∂u∗

∂t
+ C(t, x)u∗ + f(t, x)+

+Φ1(t, x)

T∫
0

Ψ1(s, x)
∂u∗(s, x)

∂x
ds+ Ξ1(t, x)

t∫
0

Θ1(s, x)
∂u∗(s, x)

∂x
ds+

+Φ2(t, x)

T∫
0

Ψ2(s, x)u∗(s, x)ds+ Ξ2(t, x)

t∫
0

Θ2(s, x)u∗(s, x)ds =

= A(t, x)v∗ + F (t, x, w∗(t, x), u∗(t, x))+

+Φ1(t, x)

T∫
0

Ψ1(s, x)v∗(s, x)ds+ Ξ1(t, x)

t∫
0

Θ1(s, x)v∗(s, x)ds,

P1(x)v∗(0, x) + S1(x)v∗(T, x) = P1(x)
∂u∗(0, x)

∂x
+ S1(x)

∂u∗(T, x)

∂x
=

= ϕ(x)− P2(x)u∗(0, x)− S2(x)u∗(T, x) = φ(x, u∗),

i.e. the triple of functions {v∗(t, x), u∗(t, x), w∗(t, x)} obtained in this way is a solution to problem
(2.1)–(2.3).
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Conversely, if a triple of functions {v∗∗(t, x), u∗∗(t, x), w∗∗(t, x)} is a solution to problem (2.1)–
(2.3), then from functional relations (2.3) we obtain that the function u∗∗(t, x) satisfies the condition
u∗∗(t, 0) = ψ(t) and has continuous partial derivatives of first order

∂u∗∗(t, x)

∂x
= v∗∗(t, x),

∂u∗∗(t, x)

∂t
= ψ̇(t) +

x∫
0

∂v∗∗(t, ξ)

∂t
dξ = w∗∗(t, x),

and continuous partial derivatives of second order

∂2u∗∗(t, x)

∂t∂x
=
∂v∗∗(t, x)

∂t
,

∂2u∗∗(t, x)

∂x∂t
=
∂v∗∗(t, x)

∂t
.

Substituting them into (2.1), (2.2), we obtain that the function u∗∗(t, x) satisfies system of hyper-
bolic integro-differential equations of mixed type (1.1), boundary condition (1.2), respectively for all
(t, x) ∈ Ω, x ∈ [0, ω]. Since it also satisfies initial condition (1.3), then u∗∗(t, x) is a classical solution
to problem (1.1)–(1.3).

Thus, the original problem for the second order system of hyperbolic integro-differential equations
of mixed type (1.1)–(1.3) is reduced to an equivalent family of boundary value problems for integro-
differential equations of mixed type and integral relations (2.1)–(2.3).

Here, the vector-function v(t, x) is a solution to the family of boundary value problems for integro-
differential equations of mixed type with parameters (2.1), (2.2), where the functional parameters
u(t, x) and w(t, x) are related to v(t, x) and ∂v(t,x)

∂t
by integral relations (2.3).

Now, let us introduce the notations

z(1)(t, x) = v(t, x), z(2)(t, x) =

t∫
0

Θ1(s, x)v(s, x)ds, (t, x) ∈ Ω.

Then we move on to a family of two-point boundary value problems for Fredholm integro-differential
equations with unknown parameters:

∂z

∂t
= Ã(t, x)z(t, x) + Φ̃1(t, x)

T∫
0

Ψ̃1(s, x)z(s, x)ds+ F̃ (t, x, ũ, w̃), (t, x) ∈ Ω, (2.4)

P̃1(x)z(0, x) + S̃1(x)z(T, x) = φ̃(x, ũ), x ∈ [0, ω], (2.5)

ũ(t, x) = ψ̃(t) +

x∫
0

z(t, ξ)dξ, w̃(t, x) =
˙̃
ψ(t) +

x∫
0

∂z(t, ξ)

∂t
dξ, (2.6)

where z(t, x) =

(
z(1)(t, x)
z(2)(t, x)

)
is the unknown vector-function,

Ã(t, x) =

(
A(t, x) Ξ1(t, x)
Θ1(t, x) On

)
, Φ̃1(t, x) =

(
Φ1(t, x) On

On On

)
,

Ψ̃1(s, x) =

(
Ψ1(s, x) On

On On

)
, ũ(t, x) =

(
u(t, x)
On

)
, w̃(t, x) =

(
w(t, x)
On

)
,

F̃ (t, x, ũ, w̃) =

(
F (t, x, u, w)

On

)
, P̃1(x) =

(
P1(x) On

On In

)
,
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S̃1(x) =

(
S1(x) On

On On

)
, φ̃(x, ũ) =

(
φ(x, u)
On

)
, ψ̃(t) =

(
ψ(t)
On

)
,

On and In are the zero and identity matrices of dimension n× n.
A triple of functions {z(t, x), ũ(t, x), w̃(t, x)}, where z(t, x) ∈ C(Ω,R2n), ũ(t, x) ∈ C(Ω,R2n),

w̃(t, x) ∈ C(Ω,R2n) is called a solution to problem (2.4)–(2.6) if it satisfies the family of Fredholm
integro-differential equations with parameters (2.4), two-point condition (2.5) and integral relations
(2.6).

For fixed ũ(t, x) and w̃(t, x) problem (2.4), (2.5) is the family of two-point boundary value prob-
lems for first order Fredholm integro-differential equations [8]. The unknown functions ũ(t, x) and
w̃(t, x) are determined from integral relations (2.6).

It is well known that linear ordinary differential equations and Volterra integro-differential equa-
tions are solvable for any right-hand side and have classical general solutions. Note that there are
linear Fredholm integro-differential equations that do not have classical general solutions [16]. An
important problem arises: is it possible to construct general solutions that would exist for all dif-
ferential and integro-differential equations and use them to solve boundary value problems? A new
approach to defining a general solution was proposed in [17]. Based on Dzhumabaev’s parametriza-
tion method [15], a new general solution is proposed, which, unlike the classical general solution,
exists for all linear Fredholm integro-differential equations. Using a new general solution, criteria
for the solvability of linear boundary value problems for Fredholm integro-differential equations were
established and numerical and approximate methods for finding their solutions were constructed [18].
Further, these results were extended to problems with parameter for Fredholm integro-differential
equations [2, 6, 9], problems for a system of differential equations with piecewise-constant argument
of generalized type [1], problems for nonlinear Fredholm integro-differential equations [20].

3 Scheme of the parametrization method and ∆N general solution

Consider the following family of problems for Fredholm integro-differential equations:

∂z

∂t
= Ã(t, x)z(t, x) + Φ̃1(t, x)

T∫
0

Ψ̃1(s, x)z(s, x)ds+ F (t, x), (3.1)

P̃1(x)z(0, x) + S̃1(x)z(T, x) = g(x), x ∈ [0, ω], (3.2)

where z(t, x) = col(z1(t, x), ..., z2n(t, x)) is the unknown vector-function, the 2n vector-function
F (t, x) is continuous on Ω, the 2n vector-function g(x) is continuous on [0, ω].

A vector-function z(t, x) = col(z1(t, x), ..., z2n(t, x)) ∈ C(Ω,Rn), which has a continuous partial
derivative with respect to t is called a solution to the family of problems (3.1), (3.2), if it satisfies
Fredholm integro-differential equations (3.1) for all (t, x) ∈ Ω and two-point conditions (3.2) for all
x ∈ [0, ω].

The domain Ω is divided into subdomains and this partition is denoted by ∆N :

Ω =
N⋃
r=1

Ωr, Ωr = [tr−1, tr)× [0, ω], r = 1, N, 0 = t0 < t1 < ... < tN = T.

Let C(Ω,∆N ,R2nN) be the space of all vector-functions z([t], x) =
col(z1(t, x), z2(t, x), ..., zN(t, x)), where the notation [t] means partition by t, the functions
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zr : Ωr → R2n are continuous and have finite left-sided limits lim
t→tr−0

zr(t, x) uniformly with respect

to x ∈ [0, ω] for all r = 1, N , with the norm

||v([·], x)||2 = max
r=1,N

sup
t→tr−0

||vr(t, x)||.

We denote by zr(t, x) the restriction of the solution z(t, x) to the subdomain Ωr, i.e. zr(t, x) =
z(t, x) for (t, x) ∈ Ωr, r = 1, N .

Then the vector-functions z([t], x) = col(z1(t, x), ..., zN(t, x)) ∈ C(Ω,∆N ,R2nN) with elements
zr(t, x), r = 1, N , satisfy the following Fredholm integro-differential equations

∂zr
∂t

= Ã(t, x)zr(t, x) + Φ̃1(t, x)
N∑
j=1

tj∫
tj−1

Ψ̃1(s, x)zj(s, x)ds+ F (t, x), (3.3)

(t, x) ∈ Ωr, r = 1, N.
Let us introduce functional parameters λr(x) = zr(tr−1, x), r = 1, N , x ∈ [0, ω]. By replacing

z̃r(t, x) = zr(t, x)− λr(x) on each r-th domain Ωr, we obtain the following system Fredholm integro-
differential equations with parameters

∂z̃r
∂t

= Ã(t, x)z̃r(t, x) + Φ̃1(t, x)
N∑
j=1

tj∫
tj−1

Ψ̃1(s, x)z̃j(s, x)ds+ F (t, x)+

+ Ã(t, x)λr(x) + Φ̃1(t, x)
N∑
j=1

tj∫
tj−1

Ψ̃1(s, x)dsλj(x), (t, x) ∈ Ωr, r = 1, N. (3.4)

and initial conditions
z̃r(tr−1, x) = 0, x ∈ [0, ω], r = 1, N. (3.5)

For fixed λr(x) ∈ C([0, ω],R2n), a special Cauchy problem for the system of Fredholm integro-
differential equations (3.4), (3.5) is obtained. The family of problems (3.4), (3.5) has a unique
solution is a system functions z̃([t], x, λ) = col(z̃1(t, x, λ1), z̃2(t, x, λ2), ..., z̃N(t, x, λN)) with elements
z̃r(t, x, λr) belongs to C(Ω,∆N ,R2nN).

A vector-function z̃([t], x, λ) is called a solution special Cauchy problem with parameters (3.4),
(3.5).

Let us now introduce a new general solution to the family of integro-differential equations (3.1).

Definition 1. Let z̃([t], x, λ) = col(z̃1(t, x, λ1), z̃2(t, x, λ2), . . . , z̃N(t, x, λN)) be a solution to a special
Cauchy problem (3.4), (3.5) for the parameter λ(x) = (λ1(x), λ2(x), ..., λN(x)) ∈ C([0, ω],R2nN).
Then the function z(∆N , t, x, λ), given by the equalities

z(∆N , t, x, λ) = λr(x) + z̃r(t, x, λr), for (t, x) ∈ Ωr, r = 1, N,
and

z(∆N , T, x, λ) = λN(x) + lim
t→T−0

z̃N(t, x, λN),

is called a ∆N general solution to family of Fredholm integro-differential equations (3.1).

From Definition 3.1 it is clear that a ∆N general solution depends on N arbitrary functions
λr(x) ∈ C([0, ω],R2n), x ∈ [0, ω], r = 1, N, and satisfies family of integro-differential equations (3.1)
for all (t, x) ∈ (0, T )\{tp, p = 1, N − 1} × [0, ω].
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Using a fundamental matrix Ur(t, x) of the family of differential equations

∂zr
∂t

= Ã(t, x)zr(t, x), (t, x) ∈ Ωr, r = 1, N,

we write the solution to the family of special Cauchy problems with parameters (3.4), (3.5) in the
following form

z̃r(t, x) = Ur(t, x)

t∫
tr−1

U−1
r (τ, x)Φ̃1(τ, x)

N∑
j=1

tj∫
tj−1

Ψ̃1(s, x)z̃j(s, x)dsdτ+

+Ur(t, x)

t∫
tr−1

U−1
r (τ, x)F (τ, x)dτ + Ur(t, x)

t∫
tr−1

U−1
r (τ, x)Ã(τ, x)dτλr(x)+

+ Ur(t, x)

t∫
tr−1

U−1
r (τ, x)Φ̃1(τ, x)

N∑
j=1

tj∫
tj−1

Ψ̃1(s, x)dsλj(x), (t, x) ∈ Ωr, r = 1, N. (3.6)

Consider the following family of Cauchy problems on subdomains

∂zr
∂t

= Ã(t, x)zr(t, x) + P (t, x), z(tr−1, x) = 0, (t, x) ∈ Ωr, r = 1, N, (3.7)

where P (t, x) is a square matrix or a vector of dimension 2n, continuous on Ω.
Let us denote by ar(P, t, x) the unique solution to family of Cauchy problems (3.7) on each r-th

domain. It has the following form

ar(P, t, x) = Ur(t, x)

t∫
tr−1

U−1
r (τ, x)P (τ, x)dτ, (t, x) ∈ Ωr, r = 1, N.

We introduce the notation µ(x) =
N∑
j=1

tj∫
tj−1

Ψ̃1(s, x)z̃j(s, x)ds. Then we can rewrite (3.7) in the form

z̃r(t, x) = ar(Φ̃1, t, x)µ(x) + ar(F, t, x) + ar(Ã, t, x)λr(x)+

+ ar(Φ̃1, t, x)
N∑
j=1

tj∫
tj−1

Ψ̃1(s, x)dsλj(x), (t, x) ∈ Ωr, r = 1, N. (3.8)

First multiplying both sides by Ψ̃1(t, x), integrating over t from tr−1 to tr, summing over r = 1, N ,
we obtain from (3.8) the following system of equations:

[I −G(N, x)]µ(x) =
N∑
r=1

tr∫
tr−1

Ψ̃1(t, x)ar(F, t, x)dt+
N∑
r=1

tr∫
tr−1

Ψ̃1(t, x)ar(Ã, t, x)dtλr(x)+

+
N∑
r=1

tr∫
tr−1

Ψ̃1(t, x)ar(Φ̃1, t, x)dt
N∑
j=1

tj∫
tj−1

Ψ̃1(s, x)dsλj(x), (t, x) ∈ Ωr, r = 1, N, (3.9)
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where I is a unit matrix on dimension 2n, G(N, x) =
N∑
r=1

tr∫
tr−1

Ψ̃1(t, x)ar(Φ̃1, t, x)dt.

Assuming the invertibility of the 2n × 2n matrix I − G(N, x), from (3.9) for all x ∈ [0, ω] we
uniquely define µ(x) in terms of λr(x), r = 1, N , and F (t, x). Then, substituting the found expression
instead of µ(x) in (3.8), we obtain a representation of z̃r(t, x) via λr(x), (t, x) ∈ Ωr, r = 1, N .

Corollary 3.1. Let z∗(t, x) be a solution to system of equations (3.1) and z(∆N , t, x, λ) be a ∆N

general solution to family integro-differential equations (3.1).
Then there exists a unique λ∗(x) = col(λ∗1(x), λ∗2(x), . . . , λ∗N(x)) ∈ C([0, ω],R2nN) such that the

equality z(∆N , t, x, λ
∗) = z∗(t, x) holds for all (t, x) ∈ Ω.

If z(t, x) is a solution to system (3.1), and z([t], x) = col(z1(t, x), z2(t, x), ..., zN(t, x)) is the vector-
function composed of its restrictions to the subdomains Ωr, r = 1, N, then the following equalities

lim
t→tp−0

zp(t, x) = zp+1(tp, x), x ∈ [0, ω], p = 1, N − 1, (3.10)

hold. These equalities are the continuity conditions for the solution to system (3.1) at the interior
lines of the partition ∆N .

Theorem 3.1. Let a vector-function z([t], x) = col(z1(t, x), z2(t, x), ..., zN(t, x)) belong to
C(Ω,∆N ,R2nN). Assume that the functions zr(t, x), r = 1, N, satisfy system (3.1) and continuity
conditions (3.10). Then the function z∗(t, x), given by the equalities

z∗(t, x) = zr(t, x) for t ∈ (t, x) ∈ Ωr, r = 1, N,
and

z∗(T, x) = lim
t→T−0

zN(t, x), x ∈ [0, ω],

is continuously differentiable on Ω and satisfies system (3.1).

Now, we consider family of problems for systems of 2n Fredholm integro-differential equations
(3.1), (3.2). Using notations above, we obtain the following family of problems

∂z̃r
∂t

= Ã(t, x)z̃r(t, x) + Φ̃1(t, x)
N∑
j=1

tj∫
tj−1

Ψ̃1(s, x)z̃j(s, x)ds+ F (t, x)+

+ Ã(t, x)λr(x) + Φ̃1(t, x)
N∑
j=1

tj∫
tj−1

Ψ̃1(s, x)dsλj(x), (t, x) ∈ Ωr, r = 1, N. (3.11)

z̃r(tr−1, x) = 0, x ∈ [0, ω], r = 1, N. (3.12)

P̃1(x)λ1(x) + S̃1(x) lim
t→T−0

z̃N(t, x) + S̃1(x)λN(x) = g(x), x ∈ [0, ω], (3.13)

lim
t→tp−0

z̃p(t, x) + λp(x) = λp+1(x), x ∈ [0, ω], p = 1, N − 1. (3.14)

A solution to problem (3.11)–(3.14) is the pair {z̃([t], x), λ(x)}, where the vector-functions
z̃([t], x) = col(z̃1(t, x), z̃2(t, x), ..., z̃N(t, x)) ∈ C(Ω,∆N ,R2nN), λ(x) = col(λ1(x), λ2(x), ..., λN(x)) ∈
C([0, ω],R2nN) with the elements z̃r(t, x), λr(x), r = 1, N , satisfy system (3.11), initial conditions
(3.12), boundary conditions (3.13), continuity conditions (3.14).

Using the results of this section, we obtain a representation of z̃r(t, x) in terms of λr(x), (t, x) ∈
Ωr, r = 1, N . From the resulting representation, determining the values of the left-hand limits
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lim
t→T−0

z̃N(t, x), lim
t→tp−0

z̃p(t, x), p = 1, N − 1, and substituting into conditions (3.13), (3.14), we obtain

a system of functional equations of the form

Q(∆N , x)λ(x) = −E(∆N , x, g, F ), λ(x) ∈ C([0, ω],R2nN), (3.15)

where Q(∆N , x) is a 2nN × 2nN matrix, composed of the functions λr(x) ∈ C([0, ω],R2n), r = 1, N ,
and E(∆N , x, g, F ) contains the right-hand sides F and g.

Theorem 3.2. Let the 2n×2n matrix I−G(N, x) and the 2nN×2nN matrix Q(∆N , x) be invertible
for all x ∈ [0, ω]. Then family of problems (3.11)− (3.14) has a unique solution {z̃∗([t], x), λ∗(x)}.

From the equivalence of problems (3.1), (3.2) and (3.11)–(3.14) follows

Theorem 3.3. Let the 2n×2n matrix I−G(N, x) and the 2nN×2nN matrix Q(∆N , x) be invertible
for all x ∈ [0, ω]. Then family of boundary value problems for system of Fredholm integro-differential
equations (3.1), (3.2) has a unique solution z∗(t, x).

The proofs of these theorems are similar to the proofs of the corresponding theorems in [8].

4 Algorithm and main results

Based on the results of Section 3, we offer the following algorithm for finding a solution to the family
of two-point boundary value problems for system of Fredholm integro-differential equations with
functional parameters (2.4)–(2.6).

Algorithm.
Step 1. i) Assume that ũ(0)(t, x) = ψ̃(t), w̃(0)(t, x) =

˙̃
ψ(t) in the left-hand side of (2.4), (2.5).

Solving the family of two-point boundary value problems for system of Fredholm integro-differential
equations, we find of a function z(1)(t, x) for all (t, x) ∈ Ω. ii) From integral relations (2.6) we
determine ũ(1)(t, x) and w̃(1)(t, x) for z(t, x) = z(1)(t, x) and ∂z(t,x)

∂t
= ∂z(1)(t,x)

∂t
for all (t, x) ∈ Ω.

And so on.
Step k. i) Assume that ũ(t, x) = ũ(k−1)(t, x), w̃(t, x) = w̃(k−1)(t, x) in the left-hand side of (2.4),

(2.5). Solving the family of two-point boundary value problems for system of Fredholm integro-
differential equations, we find the function z(k)(t, x) for all (t, x) ∈ Ω. ii) From integral relations (2.6)
we determine the functions ũ(k)(t, x) and w̃(k)(t, x) for z(t, x) = z(k)(t, x) and ∂z(t,x)

∂t
= ∂z(k)(t,x)

∂t
for all

(t, x) ∈ Ω.
k = 1, 2, ...,
The algorithm for finding a solution to the family of two-point boundary value problems for

system of Fredholm integro-differential equations with functional parameters (2.4)–(2.6) consists of
two stages: 1) the family of two-point boundary value problems for system of Fredholm integro-
differential equations (2.4), (2.5) is solved and the unknown function z(t, x) is found for fixed ũ(t, x)
and w̃(t, x); 2) ũ(t, x) and w̃(t, x) are determined from integral relations (2.6) by using z(t, x) and
∂z(t,x)
∂t

.
We show that the conditions for unique solvability of the family of two-point boundary value prob-

lems for system of Fredholm integro-differential equations (3.1), (3.2) are the convergence conditions
of the proposed algorithm.

For fixed ũ(t, x) and w̃(t, x) the family of two-point boundary value problems for system
of Fredholm integro-differential equations with functional parameters (2.4)–(2.6) is the family of
boundary value problems for system of Fredholm integro-differential equations (3.1), (3.2) with
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F (t, x) = F̃ (t, x, ũ, w̃), g(x) = φ̃(x, ũ). From Theorem 3.1 it follows that the family of bound-
ary value problems for system of Fredholm integro-differential equations (3.1), (3.2) has a unique
solution z∗(t, x). Moreover, similarly to Theorem 2.1 in [16], the conditions of Theorem 3.1 ensure
that the estimate

max
t∈[0,T ]

||z∗(t, x)|| ≤ N (x) max
(
||g(x)||, max

t∈[0,T ]
||F (t, x)||

)
, (4.1)

holds, where
N (x) =

eα(x)θ
{

Φ̃∗1(x)
[
||[I −G(N, x)]−1||Ψ̃∗1(x)

(
eα(x)θ − 1 + eα(x)θΦ̃∗1(x)Ψ̃∗1(x)

)
+ Ψ̃∗1(x)

]
+ 1
}

×||[Q(∆N , x)]−1||(1 + ||S̃1(x)||) max
{

1, θeα(x)θ
[
1 + eα(x)θΦ̃∗1(x)||[I −G(N, x)]−1||Ψ̃∗1(x)

]}
+eα(x)θ

[
Φ̃∗1(x)||[I −G(N, x)]−1||Ψ̃∗1(x)eα(x)θ + 1

]
,

α(x) = max
t∈[0,T ]

||Ã(t, x)||, θ = max
r=1,N

(tr − tr−1),

Φ̃∗1(x) = max
r=1,N

tr∫
tr−1

||Φ̃1(t, x)||dt, Ψ̃∗1(x) =

T∫
0

||Ψ̃1(t, x)||dt.

Suppose ũ(k−1)(t, x) and w̃(k−1)(t, x) are known. According to the Step k of the algorithm, we
have

max
t∈[0,T ]

||z(k)(t, x)|| ≤ N (x) max
(
||φ̃(x, ũ(k−1))||, max

t∈[0,T ]
||F̃ (t, x, ũ(k−1), w̃(k−1))||

)
, (4.2)

max
t∈[0,T ]

∣∣∣∣∣∣∂z(k)(t, x)

∂t

∣∣∣∣∣∣ ≤ {max
(
α(x) + max

t∈[0,T ]
||Φ̃1(t, x)||Ψ̃∗1(x)

)
N (x) + 1

}
×max

(
||φ̃(x, ũ(k−1))||, max

t∈[0,T ]
||F̃ (t, x, ũ(k−1), w̃(k−1))||

)
, (4.3)

k = 1, 2, ... .
Once z(k)(t, x) is found the successive approximations for ũ(t, x) and ũ(t, x) are found from rela-

tions (2.6):

ũ(k)(t, x) = ψ̃(t) +

x∫
0

z(k)(t, ξ)dξ, w̃(k)(t, x) =
˙̃
ψ(t) +

x∫
0

∂z(k)(t, ξ)

∂t
dξ, (4.4)

We construct the differences ∆z(k)(t, x) = z(k)(t, x)−z(k−1)(t, x), ∆ũ(k)(t, x) = ũ(k)(t, x)− ũ(k−1)(t, x),
∆w̃(k)(t, x) = w̃(k)(t, x) − w̃(k−1)(t, x), and by using the unique solvability of family problems (3.1),
(3.2), and estimates (4.2), (4.3), we establish estimates

max
{

max
t∈[0,T ]

||∆z(k+1)(t, x)||, max
t∈[0,T ]

∣∣∣∣∣∣∂∆z(k+1)(t, x)

∂t

∣∣∣∣∣∣}
≤ max

{
N (x),max

(
α(x) + max

t∈[0,T ]
||Φ̃1(t, x)||Ψ̃∗1(x)

)
N (x) + 1

}
N1(x)

×max
{

max
t∈[0,T ]

||∆w̃(k)(t, x)||, max
t∈[0,T ]

||∆ũ(k)(t, x)||
}
, (4.5)

max
{

max
t∈[0,T ]

||∆w(k)(t, x)||, max
t∈[0,T ]

||∆u(k)(t, x)||
}
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≤
x∫

0

max
{

max
t∈[0,T ]

||∆z(k)(t, ξ)||, max
t∈[0,T ]

∣∣∣∣∣∣∂∆z(k)(t, ξ)

∂t

∣∣∣∣∣∣}dξ, (4.6)

where
N1(x) = max

{
||P2(x)||+ ||S2(x)||, max

t∈[0,T ]
||B(t, x)||+ max

t∈[0,T ]
||C(t, x)||

+ max
t∈[0,T ]

||Φ2(t, x)||T max
t∈[0,T ]

||Ψ2(t, x)||+ max
t∈[0,T ]

||Ξ2(t, x)||T max
t∈[0,T ]

||Θ2(t, x)||
}
.

This implies the main inequality

max
{

max
t∈[0,T ]

||∆z(k+1)(t, x)||, max
t∈[0,T ]

∣∣∣∣∣∣∂∆z(k+1)(t, x)

∂t

∣∣∣∣∣∣}
≤ max

{
N (x),max

(
α(x) + max

t∈[0,T ]
||Φ̃1(t, x)||Ψ̃∗1(x)

)
N (x) + 1

}
N1(x)

×
x∫

0

max
{

max
t∈[0,T ]

||∆z(k)(t, ξ)||, max
t∈[0,T ]

∣∣∣∣∣∣∂∆z(k)(t, ξ)

∂t

∣∣∣∣∣∣}dξ. (4.7)

From (4.7) it follows that the sequences {z(k)(t, x)} and {∂z
(k)(t,x)
∂t
} are convergent in the space

C(Ω,R2n) as k → ∞. Then the uniform convergence on Ω of the sequences {ũ(k)(t, x)} and
{w̃(k)(t, x)} follows from estimate (4.6).

In this case, the limit functions z∗(t, x), ∂z∗(t,x)
∂t

, ũ∗(t, x) and w̃∗(t, x) are continuous on Ω, and
the triple {z∗(t, x), ũ∗(t, x), w̃∗(t, x)} is a solution to problem (2.4)-(2.6).

The uniqueness of a solution to problem (2.4)-(2.6) is proved assuming the contrary.
Now, using the constructed solution to the family of problems (2.4)–(2.6), the triple of functions

{z∗(t, x), ũ∗(t, x), w̃∗(t, x)}, we verify the validity of the following equalities:

z∗(t, x) = col(z∗(1)(t, x), z∗(2)(t, x)),

ũ∗(t, x) = ψ̃(t) +

x∫
0

z∗(t, ξ)dξ, w̃∗(t, x) =
˙̃
ψ(t) +

x∫
0

∂z∗(t, ξ)

∂t
dξ,

u∗(t, x) = ψ(t) +

x∫
0

z∗(1)(t, ξ)dξ for all (t, x) ∈ Ω.

The function u∗(t, x) is the desired solution to problem (1.1)–(1.3).

Theorem 4.1. Let the 2n×2n matrix I−G(N, x) and the 2nN×2nN matrix Q(∆N , x) be invertible
for all x ∈ [0, ω]. Then boundary value problem for system of hyperbolic integro-differential equations
of mixed type (3.1)− (3.3) has the unique solution u∗(t, x).

The proof of this theorem follows from the above algorithm and is similar to the proof of Theorem
3.2 in [4].

Conclusion. In the paper, we propose an effective method of solving the boundary value problem
for a second order system of hyperbolic integro-differential equations of mixed type with degen-
erate kernels. This method is based on the method of introducing new functions, Dzhumabaev’s
parametrization method and a new concept of a general solution to a family Fredholm integro-
differential equations. New general solution enables us to establish qualitative properties of the
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boundary value problems for second order systems of hyperbolic integro-differential equations and to
develop algorithms for solving them. The algorithms are based on constructing and solving systems of
linear functional equations with respect to the new general solution and integral equations. Further,
we will study the boundary value problem for second order systems of hyperbolic integro-differential
equations of mixed type in general case. The obtained results can be used to solve the boundary
value problems for impulsive hyperbolic integro-differential equations of mixed type.
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