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t. In this paper we study weak 
onvergen
e of sequen
es of random prob-ability measures generated by bootstrap bran
hing pro
esses. Let {Z(k), k ≥ 0} bea bran
hing sto
hasti
 pro
ess with non-stationary immigration given by an o�springdistribution {pj(θ), j ≥ 0} depending on the unknown parameter θ ∈ Θ ⊆ R. Weestimate θ by an estimator θ̂n based on a sample {Z(i), i = 1, ..., n}. Given θ̂n, wegenerate the bootstrap bran
hing pro
ess (BBP) {Z θ̂n(k), k ≥ 0} for ea
h n = 1, 2, ...with the o�spring distribution {pj(θ̂n), j ≥ 0}. We derive 
onditions on the estima-tor θ̂n whi
h are su�
ient and ne
essary for the bootstrap pro
ess to have the sameasymptoti
 properties as the original pro
ess. These results allow us to investigate thevalidity of the bootstrap without using an expli
it form of the estimator. In appli
a-tions of bran
hing pro
esses obtaining samples of large sizes is di�
ult. Therefore, thebootstrap pro
ess 
an be used to generate multiple samples of large size.1 Introdu
tionWe 
onsider a dis
rete time bran
hing sto
hasti
 pro
ess Z(k), k ≥ 0, Z(0) = 0. It 
anbe de�ned by two families of independent, nonnegative integer-valued random variables
{Xki, k, i ≥ 1} and {ξk, k ≥ 1} re
ursively as

Z(k) =

Z(k−1)∑

i=1

Xki + ξk, k ≥ 1. (1.1)Assume that Xki have a 
ommon distribution for all k and i, and that the families
{Xki} and {ξk} are independent. The variable Xki will be interpreted as the numberof o�spring of the ith individual in the (k − 1)th generation and ξk as the number ofimmigrating individuals to the kth generation. Then Z(k) 
an be 
onsidered as thesize of kth generation of the population.In this interpretation a = EXki is the mean number of o�spring of a single individ-ual. Pro
ess Z(k) is 
alled sub
riti
al, 
riti
al or super
riti
al depending on a < 1, a = 1
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ess 129or a > 1 respe
tively. The independen
e assumption of families {Xki} and {ξk} meansthat the reprodu
tion and immigration pro
esses are independent. However, in 
on-trast of 
lassi
al models, we do not assume that ξk, k ≥ 1 are identi
ally distributed, i.e. the immigration rate may depend on the time of immigration.The pro
ess with time-dependent immigration is given by the o�spring distributionof Xki, k, i ≥ 1, and by the family of distributions of the number of immigratingindividuals ξk, k ≥ 1. We assume that the o�spring distribution has the probabilitymass fun
tion
pj(θ) = P{Xki = j}, j = 0, 1, ... (1.2)depending on the unknown parameter θ, where θ ∈ Θ ⊆ R. We also assume that ξkfor any k ≥ 1 follows a known distribution with the probability mass fun
tion
qj(k) = P{ξk = j}, j = 0, 1, ...We estimate θ by an estimator θ̂n based on a sample {Z(i), i = 1, ..., n} and generatethe BBP {Z θ̂n(k), k ≥ 0} for ea
h n = 1, 2, ... as follow. Given θ̂n, let {X θ̂n

ki , k, i ≥ 1}be the family of i.i.d. random variables with the probability mass fun
tion {pj(θ̂n), j =

0, 1, ...}. Now we obtain the pro
ess {Z θ̂n(k), k ≥ 0} re
ursively from
Z θ̂n(k) =

Z θ̂n(k−1)∑

i=1

X θ̂n

ki + ξk, n, k ≥ 1, (1.3)with Z θ̂n(0) = 0. As in (1.1), ξk, k ≥ 1, are independent random variables with theprobability mass fun
tions {qj(k), j = 0, 1, ...}.Related to the pro
ess {Z θ̂n(k), k ≥ 0} the following question is of interest. Howgood must be the estimator θ̂n in order that the BBP {Z θ̂n(k), k ≥ 0} has the sameasymptoti
 properties as the pro
ess {Z(k), k ≥ 0}? For example, if we denote
Zn(t) = Z([nt])/E(Z(n)) and {Zn(t), t ∈ R+} 
onverges weakly as n → ∞ to somepro
ess {Z(t), t ∈ R+}, in Skorokhod spa
e D(R+,R+), will the same be true for
Z θ̂n

n (t) = Z θ̂n([nt])/E[Z θ̂n(n)|θ̂n]? A similar question for the pro
ess of �u
tuations of
{Z θ̂n(k), k ≥ 0} 
an also be 
onsidered.To answer these questions without 
on
retization of the pro
ess in the sense of
riti
ality is impossible, be
ause it is well known that the asymptoti
 properties of thepro
ess stri
tly depend on whether the pro
ess is sub
riti
al, 
riti
al or super
riti
al. Asa result, there is no general limit theory for bran
hing pro
esses without a 
riti
alityassumption. In this paper we address the above question in the 
riti
al 
ase. Inappli
ations the question on 
riti
ality of the pro
ess is 
ru
ial. To answer this question,one may test hypothesis H0 : a = 1 against one of a 6= 1, a > 1 or a < 1. Sin
ethe distribution of a test statisti
 is 
omputed under the null hypothesis, the resultsobtained in the 
riti
al 
ase allow to develop reje
tion regions for these hypothesesbased on observed population sizes. On the other hand, the methods and 
on
eptsdeveloped in this paper may also be used in sub
riti
al and super
riti
al 
ases.It is 
lear that the problem, whi
h we are going to 
onsider, is 
losely related to theproblem of validity of the bootstrap pro
edure. In parti
ular, if the pro
ess preserves
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 properties after �bootstrapping", it 
an be used to generate multiplebootstrap samples. These new samples 
an further be used in statisti
al inferen
e forthe pro
ess. This is very important in bran
hing pro
ess models, sin
e in statisti
sof bran
hing pro
esses, usually, the generation number plays the role of the samplesize and, therefore, it is di�
ult to obtain samples of large size. On the other hand,sometimes, in appli
ations (for example, in epidemi
 pro
esses) one needs to make ade
ision on 
riti
ality of the pro
esses when it is still at the early stages.First e�orts for justi�
ation of the validity of the parametri
 bootstrap [15℄ haveshown that in the 
riti
al 
ase the bootstrap pro
edure based on a maximum likelihoodestimator (MLE) of the o�spring mean is asymptoti
ally invalid for the pro
ess withstationary immigration. Later, it was demonstrated [2℄ that for a modi�ed versionof the MLE the parametri
 bootstrap is valid. It has re
ently been shown that inthe pro
ess with non-stationary immigration the validity of the parametri
 bootstrapbased on the 
onditional least squares estimator (CLSE) depends on the relative rateof the immigration mean and varian
e.In present arti
le we obtain su�
ient and ne
essary 
onditions on the estimatorof the o�spring mean for the bootstrap pro
ess and for the pro
ess of �u
tuationsto preserve asymptoti
 properties of the original pro
ess. These 
onditions will beformulated in the form of the rate of 
onvergen
e of the estimator to the true value ofthe parameter when the sample size in
reases and does not require the expli
it formof the estimator. Therefore, our results 
an be used in investigation of the validity ofbootstrap pro
edure when an expli
it form of the estimator is unknown.Statisti
al problems related to bran
hing pro
esses with various appli
ations 
an beseen in [7℄ and [8℄. Investigation of the problems related to the bootstrap methods andtheir appli
ations has been an a
tive area of resear
h sin
e they were introdu
ed byEfron [5℄. As a result a large number of papers and monographs have been published.We note monographs [4℄, [6℄ and [14℄ and the most re
ent review arti
les [3℄ and [9℄ asimportant sour
es of the literature on bootstrap methods.Standing assumptions, ne
essary de�nitions and main theorems are given in Se
tion2. In Se
tion 3 we provide fun
tional limit theorems for an array bran
hing pro
ess,whi
h are ne
essary to prove our main results. Proofs of main theorems are given inSe
tion 4. We note that some of the results of this paper without proofs were announ
edat the Workshop on Bran
hing Pro
esses and their Appli
ations [13℄.We 
on
lude this se
tion with a list of main notation.
• {pj(θ), j ≥ 0} is the o�spring distribution depending on the unknown parameter
θ ∈ Θ, whi
h is taken to be the same for all generations.
• a, b are respe
tively the o�spring mean and varian
e, depending on θ.
• α(n), β(n) are respe
tively the mean and varian
e of the number of immigrants ingeneration n (assumed to be known).
• Rρ is the 
lass of all sequen
es regularly varying at in�nity with exponent ρ.
• α, β are exponents of the sequen
es (α(k))∞k=1 ∈ Rα, (β(k))∞k=1 ∈ Rβ with α, β ≥ 0.
• (Z(k))∞n=1 is the sequen
e of random generation sizes for the bran
hing pro
ess withvariable immigration starting from Z(0) = 0 parti
les.
• θ̂n is the point estimate of the unknown parameter θ based on the sample observation
{Z(i), i = 1, ..., n}.
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• {Z θ̂n(k), k ≥ 0} is the bootstrap bran
hing pro
ess (BBP) generated using the esti-mated parameter value θ̂n.2 Main theorems and examplesIt follows from (1.2) that the quantities a := EθXki = fa(θ) and b = V arθXki = fb(θ)are some fun
tions of θ, when they do exist. Let the following assumptions be satis�ed.A1. The fun
tion fa is a one-to-one mapping of Θ to [0,∞) and is 
ontinuous with
ontinuous inverse (i.e. a homeomorphism between its domain and range).A2. The fun
tion fb is 
ontinuous on its domain.We note that A1 and A2 are satis�ed, for example, for distributions of the powerseries family. Given a sample {Z(i), i = 1, ..., n}, we now estimate the o�spring mean
a by an estimator ân and derive the estimate of parameter θ as θ̂n = f−1

a (ân). Let
{Z θ̂n(k), k ≥ 0} be the BBP de�ned by (1.3). This 
onstru
tion redu
es the problemstated above to �nding 
onditions for estimator ân, whi
h are su�
ient to preserveasymptoti
 properties of the pro
ess. Sin
e the weak 
onvergen
e of the 
onditionedpro
ess {Z θ̂n

n (t), t ∈ R+} given θ̂n is equivalent to 
onvergen
e of the 
onditional proba-bility measures generated by Z θ̂n
n , now we provide ne
essary de�nitions of 
onvergen
eof random probability measures de�ned on Skorokhod spa
e.Let (Ω,A,P) be a probability spa
e and (D,B(D)) be a measurable Skorokhodspa
e, where B(D) is the Borel �eld on D. A fun
tion µ : Ω × B 7→ [0, 1] is 
alled arandom probability measure on D, if(a) for ea
h B ∈ B(D), µ(·, B) is a random variable on (Ω,A);(b) for ea
h ω ∈ Ω, µ(ω, ·) is a probability measure on (D,B(D)).De�nition 2.1. Let µ(n) for ea
h n be a random probability measure on (D,B(D)).(a) We say that µ(n) 
onverges weakly to µ on a set A ∈ A, if for ea
h ω ∈ A

∫

D

g(x)µ(n)(ω, dx) →
∫

D

g(x)µ(ω, dx) (2.1)as n→ ∞ for any fun
tion g = g(x) bounded and 
ontinuous in Skorokhod metri
. If
P{A} = 1, we say that µ(n) 
onverges weakly to µ almost surely.(b) We say that µ(n) 
onverges weakly to µ in probability (in distribution), if as
n→ ∞ 
onvergen
e (2.1) holds in probability (in distribution).Here and throughout the paper ”

D→ ”, ”
d→ ” and ”

P→ ” will denote 
onvergen
eof random fun
tions in Skorokhod topology and 
onvergen
e of random variables indistribution and in probability, respe
tively. Also X d
= Y denotes equality of distribu-tions. In [17℄, the authors dis
ussed the weak 
onvergen
e of distributions of randomprobability measures. We note that in the 
ase of 
onditional distributions De�nition2.1 
oin
ides with their de�nition of weak 
onvergen
e in probability. For di�erentmodes of 
onvergen
e of 
onditional probability distributions see also [16℄.Let X(t), Xn(t), n ≥ 1, be 
onditioned pro
esses with paths on Skorokhod spa
e

D(R+,R) and µ, µ(n), n ≥ 1, be 
orresponding random probability measures. Conver-gen
e of 
onditioned pro
esses 
an now be de�ned as follows.



132 I. RahimovDe�nition 2.2. We say that a sequen
e of 
onditioned pro
esses {Xn, n ≥ 1} 
onvergesweakly as n → ∞ in Skorokhod spa
e D(R+,R) to X on a set A, in probability or indistribution, if the sequen
e of 
orresponding random probability measures {µ(n), n ≥
1} 
onverges weakly to µ on the set A, in probability or in distribution, respe
tively.If a sequen
e (f(k))∞k=1 is regularly varying with exponent ρ, we will write
(f(k))∞k=1 ∈ Rρ. We assume that a = EXij and b = V arXij are �nite. Wealso assume that α(k) := Eξk < ∞, β(k) := V arξk < ∞ for ea
h k ≥ 1 and
(α(k))∞k=1 ∈ Rα, (β(k))∞k=1 ∈ Rβ with α, β ≥ 0. Then A(a, n) = EZ(n) and
B2(a, n) = V arZ(n) are �nite for ea
h n ≥ 1, and by a standard te
hnique we �ndthat

A(a, n) =

n∑

i=1

α(i)an−i, B2(a, n) = ∆2(a, n) + σ2(a, n),where
∆2(a, n) =

n∑

i=1

α(i)V ar(X(n− i)), σ2(a, n) =

n∑

i=1

β(i)a2(n−i),

V ar(X(i)) =
b

1 − a
ai−1(1 − ai), a 6= 1.Here {X(i), i ≥ 0} is the 
orresponding bran
hing pro
ess without immigration witho�spring distribution (1.2) and X(0) = 1.In parti
ular, we denote A(n) = A(1, n), B2(n) = B2(1, n), ∆2(n) =

∆2(1, n), σ2(n) = σ2(1, n) and put
Z θ̂n

n (t) =
Z θ̂n([nt])

A(ân, n)
, Y θ̂n

n (t) =
Z θ̂n([nt]) − A(ân, [nt])

B(ân, n)
.Now we provide the �rst result for the bootstrap pro
ess. We denote A = {ω ∈ Ω :

n(ân − 1) → 0, n→ ∞}, µα(t) = t1+α, t ∈ R+.Theorem 2.1. Let A1 and A2 be satis�ed and α(n) → ∞, β(n) = o(nα2(n)) as
n→ ∞.(a) Conditioned pro
ess {Z θ̂n

n | θ̂n} as n → ∞ 
onverges weakly in Skorokhod spa
e
D(R+,R+) to µα on the set A.(b) If n(ân − 1)

P→ 0, then {Z θ̂n
n | θ̂n} as n → ∞ 
onverges weakly in Skorokhodspa
e D(R+,R+) to µα in probability.The next result is related to the �u
tuations of the bootstrap pro
ess. Let ξ̄k =

ξk − α(k) and
δn(ε) =

1

B2(n)

n∑

k=1

E[(ξ̄k)
2χ(|ξ̄k| > εB(n))].We also denote ψ(t) = γ1t

2+α + γ2t
1+β , where

γ1 = lim
n→∞

∆2(n)

B2(n)
, γ2 = lim

n→∞

σ2(n)

B2(n)
, γ1 + γ2 = 1.
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onditions to be satis�ed.A3. The moment Eθ[(Xki)
2+l] is a 
ontinuous fun
tion of θ for some l > 0.A4. δn(ε) → 0 as n→ ∞ for ea
h ε > 0.Theorem 2.2. Let A1-A4 be satis�ed and α(n) → ∞ as n→ ∞.(a) The 
onditioned pro
ess {Y θ̂n

n | θ̂n} 
onverges weakly in Skorokhod spa
e
D(R+,R) to Y on the set A, where Y(t) = W (ψ(t)) and W (t) is the standard Wienerpro
ess.(b) If n(ân−1)

P→ 0, then {Y θ̂n
n | θ̂n} as n→ ∞ 
onverges weakly in Skorokhod spa
e

D(R+,R) to Y in probability.Remark 2.1. (a) It follows from Theorem 2.1 (a) and Theorem 2.1 in [11℄ that the
onditioned bootstrap pro
ess {Z θ̂n(k)|θ̂n, k ≥ 0} generated by estimator θ̂n su
h that
n(ân − 1) → 0 a.s., under some 
onditions, a.s. has the same asymptoti
 behavior asthe original pro
ess.(b) If we 
ompare Theorem 2.2 (a) with Theorems 1, 2 and 3 in [10℄, we see that thesame is true for �u
tuations of the bootstrap pro
ess. More pre
isely, in [10℄ for asingle 
riti
al pro
ess exa
tly the same limit pro
ess was obtained, 
onsidering three
ases of the relationship between the immigration mean and the varian
e separately.Example 2.1. Now we provide an example of the estimator that satis�es 
onditionsof parts (b) of the above theorems. Let ân be the weighted 
onditional least squaresestimator (WCLSE), derived in [11℄ from a �standardized" sto
hasti
 regression equa-tion. If the sample {Z(i), i = 1, ..., n} is available and the immigration mean is known,it is de�ned as

ân =

∑n
k=1(Z(k) − α(k))∑n

k=1 Z(k − 1)
. (2.2)To provide the asymptoti
 distribution for ân, we assume that there exists c ∈ [0,∞]su
h that

lim
n→∞

β(n)

nα(n)
= c. (2.3)As was proved in [11℄, if a = 1, b ∈ (0,∞), α(n) → ∞, β(n) = o(nα2(n)),
ondition (2.3) is satis�ed and δn(ε) → 0 for ea
h ε > 0 , then as n→ ∞

nA(n)

B(n)
(ân − a)

d→ (2 + α)N (0, 1) (2.4)as n→ ∞. Furthermore, under the above 
onditions, A(n)/B(n) → ∞ as n→ ∞ andwhen c = 0 the 
ondition δn(ε) → 0 is satis�ed automati
ally. More detailed dis
ussionand examples 
an be found in [11℄.From (2.4) we immediately obtain that n(ân−1)
P→ 0 as n→ ∞. Thus the followingresult holds.Corollary 2.1. Let ân be the WCLSE de�ned in (2.2), a = 1, α(n) → ∞ and β(n) =

o(nα2(n)) as n→ ∞.



134 I. Rahimov(a) If A1 and A2 are satis�ed, then {Z θ̂n
n | θ̂n} 
onverges weakly as n → ∞ inSkorokhod spa
e D(R+,R+) to µα in probability.(b) If A1-A4 are satis�ed, then {Y θ̂n

n | θ̂n} 
onverges weakly as n→ ∞ in Skorokhodspa
e D(R+,R) to Y in probability, where Y(t) = W (ψ(t)).The next theorem is related to the 
ase
n(ân − 1)

d→W0 (2.5)as n→ ∞, where W0 is a random variable. We denote
µα(d, t) =

t∫

0

uαed(t−u)du, πα(d, t) =
µα(d, t)

µα(d, 1)
. (2.6)We note that µα(0, t) = µα(t), the limiting �pro
ess" in Theorem 2.1.Theorem 2.3. If A1, A2 and (2.5) are satis�ed and α(n) → ∞, β(n) = o(nα2(n)) as

n→ ∞, then {Z θ̂n
n | θ̂n} 
onverges weakly as n→ ∞ in Skorokhod spa
e D(R+,R+) to

πα(W0, ·) in distribution.Let (an)∞n=1 be a sequen
e of positive numbers, su
h that n(an − 1) → d ∈ R as
n→ ∞. We assume that there exist limits

lim
n→∞

∆2(an, n)

B2(an, n)
= γ1(d), lim

n→∞

σ2(an, n)

B2(an, n)
= γ2(d). (2.7)Naturally γ1(d) + γ2(d) = 1 for ea
h d.To provide the next theorem, we need some additional notation. We denote

να(d, t) =

t∫

0

uαed(t−u)(1 − ed(t−u))du, ∇β(d, t) =

t∫

0

uβe2d(t−u)du,

ψ(d, t) =
γ1(d)d

να(d, 1)

t∫

0

µα(d, u)e2d(t−u)du+
γ2(d)

∇β(d, 1)

t∫

0

uβe2d(t−u)du. (2.8)It is 
lear that the limits in (2.7) do exist, if ratio σ2(an, n)/∆2(an, n) has a (�niteor in�nite) limit as n→ ∞. Using Lemma 3.1, given below, we 
an show that
lim

n→∞

σ2(an, n)

∆2(an, n)
=
bc

d
ν(d, 1)∇β(d, 1)where c is de�ned in (2.3). In parti
ular, it is also useful to note that µα(d, t) =

tα+1/(α+1) and ∇β(d, t) = t1+β/(1+β) when d = 0, and limd→0 να(d, t)/a = tα+2/(α+
1)(α + 2).
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ess 135Theorem 2.4. If A1-A4 and (2.5) are satis�ed and α(n) → ∞ as n → ∞, then
{Y θ̂n

n | θ̂n} 
onverges weakly as n → ∞ in Skorokhod spa
e D(R+,R) to Y(W0, ·) indistribution, where Y(W0, t) = W (ψ(W0, t)).Remark 2.2. Theorems 2.3 and 2.4 show that, when the estimator θ̂n is su
h that(2.5) holds with P (W0 = 0) < 1, then the asymptoti
 behavior of the bootstrap pro
essis di�erent from the behavior of the original pro
ess. In other words, the 
ondition
n(ân − 1) → 0 as n → ∞ a.s. or in probability is ne
essary for the 
onditionedbootstrap pro
ess to have the same asymptoti
 behavior as the initial pro
ess in thesense of 
onvergen
e a.s. or in probability, respe
tively.We 
on
lude this se
tion with a result whi
h is useful in the estimation theory. Let
F θ̂n(k) for ea
h k and n be the sigma-algebra generated by {Z θ̂n(i), i = 1, 2, ..., k} and
M θ̂n(k) = Z θ̂n(k) − E[Z θ̂n(k)|F θ̂n(k − 1)]. Then {M θ̂n(k),F θ̂n(k)}∞k=1 given θ̂n is asequen
e of martingale di�eren
es. We de�ne pro
ess

W θ̂n
n (t) =

[nt]∑

i=1

M θ̂n(i)

B(ân, n)
.Theorem 2.5. Let A1-A4 be satis�ed and α(n) → ∞ as n→ ∞. then(a) 
onditioned pro
ess {W θ̂n

n | θ̂n} 
onverges weakly as n → ∞ in Skorokhod spa
e
D(R+,R) to Y on the set A, where Y(t) = W (ψ(t)), W (t) is the standard Wienerpro
ess and ψ(t) is de�ned just before Theorem 2.2;(b) if n(ân − 1)

P→ 0, then {W θ̂n
n | θ̂n} 
onverges weakly as n → ∞ in Skorokhodspa
e D(R+,R) to Y in probability.Example 2.2. As it was mentioned before, the approximation theorems for the boot-strap pro
ess allow us to investigate the validity of the bootstrap without using anexpli
it form of the estimator. Here we demonstrate it for WCLSE. We use the in-dire
t approa
h suggested by Ch. Ja
ob in a private dis
ussion. We represent thebootstrap pro
ess as

Z θ̂n(k) = E[Z θ̂n(k)| F θ̂n(k − 1)] +M θ̂n(k).Using (Z θ̂n(k − 1))1/2 as a �weight", we de�ne
Sn(a) =

n∑

k=1

(T
(n)
k − gnk(a))

2,where T (n)
k = Z θ̂n(k)(Z θ̂n(k − 1))−1/2 and gnk(a) = E[Z θ̂n(k)| F θ̂n(k − 1)](Z θ̂n(k −

1))−1/2. Then it is 
lear that the bootstrap WCLSE is
âθ̂n

n = arg min
a∈R+

Sn(a).We use the Taylor expansion for S ′
n(a) as follows:

S ′
n(âθ̂n

n ) = S ′
n(ân) + S ′′

n(an)(âθ̂n
n − ân),



136 I. Rahimovwhere ân is the initial WCLSE, an = ân +ε(âθ̂n
n − ân) and ε ∈ (0, 1). Sin
e S ′

n(âθ̂n
n ) = 0,we obtain that

âθ̂n
n − ân = −S

′
n(ân)

S ′′
n(an)

. (2.9)If we take into a

ount that
g′nk(a) = (Z θ̂n(k − 1))1/2, g′′nk(a) = 0, S ′

n(a) = −2
n∑

k=1

(T
(n)
k − gnk(a))g

′
nk(a),

S ′′
n(a) = −2

n∑

k=1

(g′nk(a))
2 = 2

n∑

k=1

Z θ̂n(k − 1),we obtain from (2.9) that
âθ̂n

n − ân =

∑n
k=1M

θ̂n(k)
∑n

k=1Z
θ̂n(k − 1)

.Let n(ân − 1)
P→ 0 as n → ∞. It follows from parts (b) of Theorems 2.1 and 2.5that {

nA(ân, n)

B(ân, n)
(âθ̂n

n − ân)|θ̂n

}
d→ (2 + α)N (0, 1),as in the proof of Theorem 3.1 in [11℄. Using Lemma 3.1, whi
h is given in the nextse
tion, we 
an show that A(ân, n)

P∼ A(n) and B(ân, n)
P∼ B(n) as n→ ∞. Thus, wehave the following result.Theorem 2.6. Let A1-A4 be satis�ed, n(ân − 1)

P→ 0, α(n) → ∞ and β(n) =
o(nα2(n)) as n→ ∞. Then

{
nA(n)

B(n)
(âθ̂n

n − ân)|θ̂n

}
d→ (2 + α)N (0, 1).In parti
ular, Theorem 2.6 shows the validity of the bootstrap for the WCLSEde�ned in Example 2.1.3 Array of pro
essesIn this se
tion we provide fun
tional limit theorems for an array of bran
hing pro
esses,whi
h will be used in the proof of our main theorems. Let {X(n)

ki , k, i ≥ 1} and {ξ(n)
k , k ≥

0} be two families of independent, nonnegative and integer-valued random variablesfor ea
h n ∈ N. We 
onsider a sequen
e of bran
hing pro
esses (Z(n)(k), k ≥ 0)n≥1de�ned re
ursively as
Z(n)(k) =

Z(n)(k−1)∑

i=1

X
(n)
ki + ξ

(n)
k , k, n ≥ 1, (3.1)
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hing pro
ess 137with Z(n)(0) = 0, n ≥ 1. As before, we assume that X(n)
ki have a 
ommon distributionfor all k and i, and families {X(n)

ki } and {ξ(n)
k } are independent. The variables X(n)

kiwill be interpreted as the number of o�spring of the ith individual in the (k − 1)thgeneration and ξ
(n)
k as the number of immigrating individuals in the kth generation.Then Z(n)(k) 
an be 
onsidered as the size of population of kth generation in nthpro
ess.Let an = EX

(n)
ki be the mean number of o�spring of a single individual in the

nth pro
ess. The pro
ess with non-stationary immigration is a natural generalizationof the 
lassi
al model. It turned out that the long run behavior of the pro
ess islargely in�uen
ed by the non-homogeneity of the immigration pro
ess in time. As aresult 
ertain new problems, regarding the asymptoti
 behavior of the pro
ess when theimmigration rate in
reases, de
reases or remains bounded, emerged in the literature.Therefore, in solving these problems one needs 
ertain regularity assumptions for theparameters of the immigration pro
ess. The family of bran
hing pro
esses (3.1) is saidto be nearly 
riti
al if an → 1 as n→ ∞.We assume that an = EX
(n)
ij and bn = V arX

(n)
ij are �nite for ea
h n ≥ 1 and

α(n, i) = Eξ
(n)
i <∞, β(n, i) = V arξ

(n)
i <∞ for all n ≥ 1 and i ≥ 0. Furthermore, weassume that the following 
ondition is satis�ed.C1. There are sequen
es (α(i))∞i=1 ∈ Rα and (β(i))∞i=1 ∈ Rβ with α, β ≥ 0, su
h thatfor ea
h s ∈ R+,

max
1≤k≤ns

|α(n, k) − α(k)| = o(α(n)), max
1≤k≤ns

|β(n, k) − β(k)| = o(β(n))as n→ ∞.In the above assumptions An(an, i) = EZ(n)(i) and B2
n(an, i) = V arZ(n)(i) are�nite for ea
h n ≥ 1, 0 ≤ i ≤ n, and one 
an �nd that An(an, k) =

∑k
i=0 α(n, i)ak−i

nand B2
n(an, k) = ∆2

n(an, k) + σ2
n(an, k), where

∆2
n(an, k) =

k∑

i=1

α(n, i)V ar(X(n)(k − i)), σ2
n(an, k) =

k∑

i=1

β(n, i)a2(k−i)
n ,

V ar(X(n)(i)) =
bn

1 − an
ai−1

n (1 − ai
n), an 6= 1.Here X(n)(i) is the 
orresponding bran
hing pro
ess without immigration and, as usual,it is de�ned by the relation

X(n)(k) =

X(n)(k−1)∑

i=1

X
(n)
ki , X(n)(0) = 1, k, n ≥ 1.In parti
ular, when k = n we use also notation

A(an, n) = An(an, n), B2(an, n) = B2
n(an, n),

∆2(an, n) = ∆2
n(an, n), σ2(an, k) = σ2

n(an, n),
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h is 
onsistent with (2.1).We 
onsider the following pro
esses.
Zn(t) =

Z(n)([nt])

A(an, n)
, Yn(t) =

Z(n)([nt]) −EZ(n)([nt])

B(an, n)
.First we provide a 
onvergen
e theorem for Zn(t). We obtain approximation of thesequen
e {Zn(t), n ≥ 1}, t ∈ R+, satisfying the following 
onditions:C2. for some d ∈ R an = 1 + n−1d+ o(n−1) as n→ ∞.C3. bn → b ∈ R+ as n→ ∞.C4. α(n) → ∞ and β(n) = o(nα2(n)) as n→ ∞.Theorem 3.1. If 
onditions C1-C4 are satis�ed, then Zn

D→ πα as n → ∞ weakly inSkorokhod spa
e D(R+,R), where πα(t) and µα(d, t), t ∈ R+ are de�ned in (2.6).Remark 3.1. The 
ondition C2 is the same as in the study of an array of time-homogeneous pro
esses. The se
ond 
ondition in C4 appeared in the proof of thefun
tional limit theorems for a single bran
hing pro
ess with a non-homogeneous im-migration as well. What 
on
erns C1, the �rst part, related to the immigration mean,is satis�ed when α(n) → ∞, if just limn→∞ max1≤k≤ns |α(n, k) − α(k)| < ∞. In gen-eral, C1 is satis�ed, for example, if there are εi(n) → 0 as n → ∞, i = 1, 2, su
h that
α(n, k) = α(k)(1 + ε1(n)) and β(n, k) = β(k)(1 + ε2(n)).The proof of Theorem 3.1 
an be found in [12℄.Next theorem is related to �u
tuations of the pro
ess. We denote �
entered" o�-spring and immigration variables as X̄(n)

ki = X
(n)
ki − an, ξ̄

(n)
k = ξ

(n)
k − α(n, k) and put

δ(1)
n (ε) = γ1(d)E[(X̄

(n)
ki )2χ(|X̄(n)

ki | > εB(an, n))],

δ(2)
n (ε) =

1

B2(an, n)

n∑

k=1

E[(ξ̄
(n)
k )2χ(|ξ̄(n)

k | > εB(an, n))],where χ(A) stands for the indi
ator of event A and γ1(a) is de�ned in (2.7). We needthe following 
ondition to be satis�ed:C5. δ(i)
n (ε) → 0 as n→ ∞ for ea
h ε > 0 and i = 1, 2.Theorem 3.2. If 
onditions C1-C3 and C5 are satis�ed, then Yn

D→ Y as n → ∞weakly in Skorokhod spa
e D(R+,R), where Y (t) = W (ψ(d, t)), t ∈ R+, W (t) is astandard Brownian motion and ψ(d, t) is de�ned in (2.8).Remark 3.2. (a) Note that the Lindeberg-type 
ondition for the family {X(n)
ki , k, i ≥

1} is trivially satis�ed, if γ1(d) = 0. If γ1(d) 6= 0 and E(X
(n)
ki )2+l < ∞ for all n ∈ Nand some l ∈ R+, then

δ
(1)
n (ε)

γ1(d)
≤ 1

εlBl(an, n)
E|X(n)

ki − an|2+l.
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hing pro
ess 139Sin
e B2(an, n) ≥ ∆2(an, n) ∼ Kn2α(n) as n → ∞ due to Lemma 3.1 below, where
K is a positive 
onstant, the Lindeberg-type 
ondition is satis�ed, for example, if
E|X(n)

ki − an|3 = o(n
√
α(n)) and α(n) → ∞ as n→ ∞.(b) What 
on
erns the Lindeberg-type 
ondition for the immigration variables, itis automati
ally satis�ed when γ1(d) 6= 0, sin
e in this 
ase σ2(an, n) = o(B2(an, n))as n → ∞. If γ1(d) = 0, then it is equivalent to the Lindeberg 
ondition for the array

{ξ(n)
k , k, n ≥ 1}.(
) When pro
esses {Z(n)(k), k ≥ 0}, n ≥ 1, are 
riti
al with the same o�springand immigration distributions, 
onditions C1-C3 are satis�ed with a = 0. Therefore,from Theorem 3.3 we obtain assertions of Theorems 1, 2 and 3 in [10℄ in the 
ases

γ1(0) = 1, γ2(0) = 1 and 0 < γi(0) < 1, i = 1, 2, respe
tively.Theorem 3.2 
an be proved using the same approa
h whi
h was used in the proof ofTheorems 2-4 in [12℄. It needs just a more 
areful analysis in applying the martingale
onvergen
e theorem. Therefore, we do not give a proof of this theorem.We now provide a theorem for the pro
ess of martingale di�eren
es. We de�ne
F (n)(k) = σ{Z(n)(i), i = 1, 2, ..., k} and denoteM (n)(k) = Z(n)(k)−E[Z(n)(k)|F (n)(k−
1)]. We 
onsider the following pro
ess:

Wn(t) =
1

B(dn, n)

[nt]∑

i=1

M (n)(i).Theorem 3.3. If 
onditions C1-C3 and C5 are satis�ed, then Wn
D→ Y (1) as n → ∞weakly in Skorokhod spa
e D(R+,R), where Y (1)(t) = W (ϕ(d, t)), t ∈ R+, W (t) is astandard Brownian motion and

ϕ(d, t) =
γ1(d)d

να(d, 1)

t∫

0

µα(d, u)du+
γ2(d)t

1+β

(1 + β)∇β(d, 1)
.The proof of this theorem is also based on the dire
t use of the martingale-limittheorem and is similar to the proof of Theorems 2-4 in [12℄.We 
on
lude this se
tion with a lemma borrowed from [12℄ whi
h is required forproofs of main theorems.Lemma 3.1. If 
onditions C1 and C2 are satis�ed, then uniformly in s ∈ [0, T ] forea
h �xed T > 0

a) lim
n→∞

An(an, [ns])

nα(n)
= µα(d, s), lim

n→∞

σ2
n(an, [ns])

nβ(n)
= ∇β(d, s),

b) lim
n→∞

∆2
n(an, [ns])

n2α(n)bn
=






(1/d)να(d, s), if d 6= 0

sα+2/(α+ 1)(α + 2), if d = 0
.Lemma 3.1 is also proved in [12℄.



140 I. Rahimov4 Proofs of main theoremsProof of Theorem 2.1. Part (a). Sin
e the bootstrap pro
ess {Z θ̂n
n (t), t ∈ R+} given

θ̂n, 
onstitutes an array of bran
hing pro
esses, we show that 
onditions of Theorem3.1 are satis�ed. It is easy to see that C1 and C4 are trivially satis�ed. Condition C2is also satis�ed on the set A with a = 0. It follows from A1:
B := {ω ∈ Ω : ân → 1} = {ω ∈ Ω : f−1

a (ân) → f−1
a (1)} = {ω ∈ Ω : θ̂n → θ0},where θ0 is the true value of θ. Sin
e bθ̂n := V ar(X θ̂n

ki |θ̂n) = fb(θ̂n), we immediatelyobtain from A2 that bθ̂n → b as n → ∞ for ea
h ω ∈ B. Taking into a

ount that
A ⊂ B, we see that 
ondition C2 is also satis�ed on the set A. Hen
e, the assertion(a) of the theorem follows by Theorem 3.1.Part (b). Let P θ̂n

n and Pα be probability measures generated by {Z θ̂n
n |θ̂n} and µα,respe
tively. Assume that as n→ ∞

n(ân − 1)
P→ 0. (4.1)We prove that any subsequen
e N

′ ⊂ N = {1, 2, ...} 
ontains another subsequen
e
N

′′ ⊂ N
′ su
h that ∫

D

g(x)P θ̂n
n (ω, dx)

a.s.→
∫

D

g(x)Pα(dx) (4.2)along N
′′, for any fun
tion g : D(R+R+) 7→ R bounded and 
ontinuous in Skorokhodmetri
. It follows from (4.1) that n(ân − 1)

P→ 0 along any subsequen
e N
′ ⊂ N.Therefore, there is a subsequen
e N

′′ ⊂ N
′ su
h that n(ân − 1) → 0 along N

′′ for ea
h
ω ∈ A with P (A) = 1. Thus, due to part (a) of Theorem 2.1,

∫

D

g(x)P θ̂n
n (ω, dx) →

∫

D

g(x)Pα(dx)along N
′′ for ea
h ω ∈ A, whi
h implies (4.2). �Proof of Theorem 2.2. Part (a). We show that 
onditions of Theorem 3.2 are satis�ed.Conditions C1-C3 are satis�ed, as in the proof of previous theorem. We just need to
he
k 
ondition C5. For this we denote

Aθ̂n(k) := E[Z θ̂n(k)|θ̂n], B2θ̂n(k) := E[(Z θ̂n(k) −Aθ̂n(k))2|θ̂n]Then we easily obtain that Aθ̂n(n) = A(ân, n), B2θ̂n(n) = B2(ân, n).We apply Lemma 3.1 to get on the set A = {ω ∈ Ω : n(ân − 1) → 0} the following
onvergen
e
A(ân, [ns])

nα(n)
→ s1+α

1 + α
,
σ2(ân, [ns])

nβ(n)
→ s1+β

1 + β

∆2(ân, [ns])

n2α(n)fb(θ̂n)
→ s2+α

(1 + α)(2 + α)
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hing pro
ess 141as n → ∞ for ea
h s ∈ R+. On the other hand, sin
e ∆2(ân, n)/∆2(n) → 1 and
σ2(ân, n)/σ2(n) → 1 as n→ ∞ on the set A, we have B2(ân, n)/B2(n) → 1 on the set
A. We 
on
lude from these arguments that

δ(2)(ε, θ̂n) :=
1

B2(ân, n)

n∑

k=1

E[(ξ̄k)
2χ(|ξ̄k| > εB(ân, n))|θ̂n]tends to zero as n→ ∞ on the set A, due to 
ondition A4.We now 
onsider

δ(1)
n (ε, θ̂n) = γ1(d)E[(X̄ θ̂n

ki )2χ(|X̄ θ̂n

ki | > εB(ân, n))|θ̂n].If γ1(0) = 0, then δ(1)
n (ε, θ̂n) → 0 as n→ ∞ on A. If γ1(0) 6= 0, then
δ
(1)
n (ε, θ̂n)

γ1(0)
≤ 1

εlBl(ân, n)
E[|X θ̂n

ki − ân|2+l|θ̂n]. (4.3)It follows from 
ondition A3 that on the set A ⊂ B = {ω ∈ Ω : θ̂n → θ0} we have
E[(X θ̂n

ki )2+l|θ̂n] → E[(Xki)
2+l] as n → ∞. If we take this into a

ount, we obtain from(4.3) that δ(1)

n (ε, θ̂n) → 0 as n→ ∞ on the set A.Thus, 
ondition C5 of Theorem 3.2 is satis�ed and we have the assertion (a) ofTheorem 2.2.The proof of part (b) repeats the arguments of the proof of 
onvergen
e inprobability in Theorem 2.1. We just need to 
onsider the sequen
e of probabilitymeasures generated by {Y θ̂n
n |θ̂n}. Therefore, we omit the proof of this part. �Proof of Theorem 2.3. We use quite standard te
hnique based on Skorokhod's theorem(see [1℄, Theorem 29.6). We have from (2.5) that n(ân−1)

d→W0 as n→ ∞. Therefore,due to Skorokhod's theorem there exists a sequen
e {â′n, n ≥ 1} of random variablesand a random variableW ′
0 on a 
ommon probability spa
e (Ω′,F , Q) su
h that â′n d

= ânfor all n ≥ 1, W ′
0

d
= W0 and n(â′n(ω′) − 1) →W ′

0 as n→ ∞ for ea
h ω′ ∈ Ω′.For any ω′ ∈ Ω′ we obtain θ̂′n(ω′) from equation a = fa(θ) as θ̂′n(ω′) = f−1
a (â′n(ω′)).Let now {X ′(n)

ki , k, i ≥ 1} be a family of i.i.d. random variables su
h that
P{X ′(n)

ki = j} = pj(θ̂
′
n)for ea
h ω′ ∈ Ω′ and n ≥ 1 and {ξk, k ≥ 1} be a sequen
e of random variables with theprobability distributions {qj(k), j ≥ 0}. We de�ne a new bootstrap pro
ess re
ursivelyby the relation

Z ′(n)(k) =

Z′(n)(k−1)∑

i=1

X
′(n)
ki + ξk, k = 1, 2, ...for ea
h ω′ ∈ Ω′, n ≥ 1 with Z ′(n)(0) = 0. We denote

Z ′
n(t) =

Z ′(n)([nt])

A(â′n, n)
, Y ′

n(t) =
Z ′(n)([nt]) −A(â′n, [nt])

B(â′n, n)
. (4.4)



142 I. RahimovWe introdu
e for ea
h E ∈ B(D) the probability measure Pn(θ, E) := P (Zn ∈ E),where Zn(t) is the normalized original pro
ess. Then it is 
lear that
P (Z θ̂n

n ∈ E|θ̂n) = Pn(θ̂n, E), P (Z ′
n ∈ E|θ̂′n) = Pn(θ̂′n, E).We also denote P (d, E) = P (πα(d, ·) ∈ E). Re
all that n(â′n(ω′)− 1) →W ′

0 as n→ ∞for ea
h ω′ ∈ Ω′. Therefore, repeating the arguments of the proof of Theorem 2.1, weobtain that ∫

D

g(x)Pn(θ̂
′
n, dx) →

∫

D

g(x)P (W ′
0, dx) (4.5)as n→ ∞ for any fun
tion g : D(R+,R+) 7→ R bounded and 
ontinuous in Skorokhodmetri
.Sin
e

∫

D

g(x)Pn(θ̂′n, dx)
d
=

∫

D

g(x)Pn(θ̂n, dx),

∫

D

g(x)P (W ′
0, dx)

d
=

∫

D

g(x)P (W0, dx),we obtain from (4.5) that
∫

D

g(x)Pn(θ̂n, dx)
d→
∫

D

g(x)P (W0, dx).

�Proof of Theorem 2.4. We 
onsider appli
ability of Theorem 3.2 to the pro
ess Y ′
n(t)de�ned in (4.4). It follows from the 
onvergen
e n(â′n(ω′) − 1) → W ′

0 as n → ∞, that
θ̂′n(ω′) → θ0 as n → ∞ for ea
h ω′ ∈ Ω′. Therefore, 
onditions C1-C3 are triviallysatis�ed.We now show that 
ondition C5 is also ful�lled. Sin
e

A′
n(k) := E[Z ′(n)(k)| â′n] = A(â′n, k)and

B′2
n (k) := E[(Z ′(n)(k) −A′

n(k))2| â′n] = B2(â′n, k),applying again Lemma 3.1, we obtain that
A(â′n, [ns])

nα(n)
→ µα(W ′

0, s),
σ2(â′n, [ns])

nβ(n)
→ ∇β(W ′

0, s),

∆2(â′n, [ns])

n2α(n)fb(θ̂′n)
→ 1

W ′
0

να(W ′
0, s)as n→ ∞ for ea
h s ∈ R+ and ω′ ∈ Ω′. It follows from this and Lemma 3 in [10℄ that

∆2(â′n, n)

∆2(1, n)
→ (α + 1)(α+ 2)

W ′
0

να(W ′
0, 1),

σ2(â′n, n)

σ2(1, n)
→ (β + 1)∇β(W ′

0, 1)
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hing pro
ess 143as n → ∞ for ea
h ω′ ∈ Ω′. Therefore, for ea
h �xed ω′ ∈ Ω′ there exists a positive
onstant C(α, β,W ′
0(ω

′)), su
h that
B2(â′n, n)

B2(1, n)
→ C(α, β,W ′

0) (4.6)as n→ ∞. We now 
onsider
δ′(2)(ε, ω′) :=

1

B2(â′n, n)

n∑

k=1

E[(ξ̄k)
2χ(|ξ̄k| > εB(â′n, n))].It follows from (4.6) that, if 
ondition C4 is satis�ed, then δ′(2)(ε, ω′) → 0 as n → ∞for ea
h �xed ω′ ∈ Ω′.To show that

δ′(1)n (ε, ω′) = γ1(W0(ω
′))E[(X̄

′(n)
ki )2χ(|X̄ ′(n)

ki | > εB(â′n, n))]tends to zero as n→ ∞ for ea
h �xed ω′ ∈ Ω′, we repeat the same arguments as in theproof of part (a) of the Theorem 2.2.Hen
e, it follows from Theorem 3.2 that
∫

D

g(x)Qn(θ̂′n, dx) →
∫

D

g(x)Q(W ′
0, dx) (4.7)as n → ∞ for ea
h �xed ω′ ∈ Ω′, for any fun
tion g : D(R+,R+) 7→ R bounded and
ontinuous in Skorokhod metri
, where

Qn(θ, E) := P (Yn ∈ E), Q(d, E) := P (W (ψ(d, ·) ∈ E).On the other hand, sin
e θ̂n
d
= θ̂′n and W0

d
= W ′

0, we have
∫

D

g(x)Qn(θ̂′n, dx)
d
=

∫

D

g(x)Qn(θ̂n, dx),

∫

D

g(x)Q(W ′
0, dx)

d
=

∫

D

g(x)Q(W0, dx).Therefore, we obtain from (4.7) that
∫

D

g(x)Qn(θ̂n, dx)
d→
∫

D

g(x)Q(W0, dx)as n→ ∞. �Proof of Theorem 2.5 is similar to the proof of Theorem 2.2. Here instead of Theorem3.2 we apply Theorem 3.3. Sin
e 
onditions of these two theorems are the same, theappli
ability of the last dire
tly follows from the proof of Theorem 2.2. �A
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iate editor for 
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