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Abstract. In this paper we study weak convergence of sequences of random prob-
ability measures generated by bootstrap branching processes. Let {Z(k),k > 0} be
a branching stochastic process with non-stationary immigration given by an offspring
distribution {p;(#),7 > 0} depending on the unknown parameter # € © C R. We
estimate € by an estimator 0,, based on a sample {Z(i),i = 1,...,n}. Given 0, we
generate the bootstrap branching process (BBP) {Z% (k),k > 0} for each n = 1,2, ...
with the offspring distribution {pj(én),j > 0}. We derive conditions on the estima-
tor 6,, which are sufficient and necessary for the bootstrap process to have the same
asymptotic properties as the original process. These results allow us to investigate the
validity of the bootstrap without using an explicit form of the estimator. In applica-
tions of branching processes obtaining samples of large sizes is difficult. Therefore, the
bootstrap process can be used to generate multiple samples of large size.

1 Introduction

We consider a discrete time branching stochastic process Z(k),k > 0, Z(0) = 0. It can
be defined by two families of independent, nonnegative integer-valued random variables
{Xki, k,i > 1} and {&, k > 1} recursively as

Z(k—1)
Z(k)= > Xpu+& k>1 (1.1)
=1

Assume that Xj; have a common distribution for all £ and 7, and that the families
{X)i} and {&;} are independent. The variable Xj; will be interpreted as the number
of offspring of the ith individual in the (k — 1)th generation and £ as the number of
immigrating individuals to the kth generation. Then Z(k) can be considered as the
size of kth generation of the population.

In this interpretation a = E X}; is the mean number of offspring of a single individ-
ual. Process Z(k) is called subcritical, critical or supercritical depending ona < 1,a =1
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or a > 1 respectively. The independence assumption of families { X};} and {&;} means
that the reproduction and immigration processes are independent. However, in con-
trast of classical models, we do not assume that &, k > 1 are identically distributed, i.
e. the immigration rate may depend on the time of immigration.

The process with time-dependent immigration is given by the offspring distribution
of X, k,2 > 1, and by the family of distributions of the number of immigrating
individuals &,k > 1. We assume that the offspring distribution has the probability
mass function

depending on the unknown parameter 6, where § € ©® C R. We also assume that &
for any k > 1 follows a known distribution with the probability mass function

qj(k) = P{& =3}, 7=0,1,...

We estimate 6 by an estimator 6, based on a sample {Z(i),i = 1,...,n} and generate
the BBP {Zé"(k;),k: > 0} for each n = 1,2, ... as follow. Given 6, let {X,fgl,k:,z’ > 1}
be the family of i.i.d. random variables with the probability mass function {pj(én),j =
0,1,...}. Now we obtain the process {Z% (k), k > 0} recursively from

Z0n (k—1)

20y = 3 XD +&, nk>1, (1.3)

i=1

with Z%(0) = 0. Asin (1.1), &,k > 1, are independent random variables with the
probability mass functions {¢;(k),7 =0,1,...}.

Related to the process {Z% (k),k > 0} the following question is of interest. How
good must be the estimator 6, in order that the BBP {Z%(k),k > 0} has the same
asymptotic properties as the process {Z(k),k > 0}? For example, if we denote
Z,(t) = Z([nt])/E(Z(n)) and {Z,(t),t € R} converges weakly as n — oo to some
process {Z(t),t € R,}, in Skorokhod space D(R,,R;), will the same be true for
Z0n(t) = Z%([nt])/ E[Z%(n)|6,]? A similar question for the process of fluctuations of
{Z%(k), k > 0} can also be considered.

To answer these questions without concretization of the process in the sense of
criticality is impossible, because it is well known that the asymptotic properties of the
process strictly depend on whether the process is subcritical, critical or supercritical. As
a result, there is no general limit theory for branching processes without a criticality
assumption. In this paper we address the above question in the critical case. In
applications the question on criticality of the process is crucial. To answer this question,
one may test hypothesis Hy : a = 1 against one of a # 1,a > 1 or a < 1. Since
the distribution of a test statistic is computed under the null hypothesis, the results
obtained in the critical case allow to develop rejection regions for these hypotheses
based on observed population sizes. On the other hand, the methods and concepts
developed in this paper may also be used in subcritical and supercritical cases.

It is clear that the problem, which we are going to consider, is closely related to the
problem of validity of the bootstrap procedure. In particular, if the process preserves
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its asymptotic properties after “bootstrapping", it can be used to generate multiple
bootstrap samples. These new samples can further be used in statistical inference for
the process. This is very important in branching process models, since in statistics
of branching processes, usually, the generation number plays the role of the sample
size and, therefore, it is difficult to obtain samples of large size. On the other hand,
sometimes, in applications (for example, in epidemic processes) one needs to make a
decision on criticality of the processes when it is still at the early stages.

First efforts for justification of the validity of the parametric bootstrap [15] have
shown that in the critical case the bootstrap procedure based on a maximum likelihood
estimator (MLE) of the offspring mean is asymptotically invalid for the process with
stationary immigration. Later, it was demonstrated [2] that for a modified version
of the MLE the parametric bootstrap is valid. It has recently been shown that in
the process with non-stationary immigration the validity of the parametric bootstrap
based on the conditional least squares estimator (CLSE) depends on the relative rate
of the immigration mean and variance.

In present article we obtain sufficient and necessary conditions on the estimator
of the offspring mean for the bootstrap process and for the process of fluctuations
to preserve asymptotic properties of the original process. These conditions will be
formulated in the form of the rate of convergence of the estimator to the true value of
the parameter when the sample size increases and does not require the explicit form
of the estimator. Therefore, our results can be used in investigation of the validity of
bootstrap procedure when an explicit form of the estimator is unknown.

Statistical problems related to branching processes with various applications can be
seen in [7] and [8]. Investigation of the problems related to the bootstrap methods and
their applications has been an active area of research since they were introduced by
Efron [5]. As a result a large number of papers and monographs have been published.
We note monographs [4], [6] and [14] and the most recent review articles [3] and [9] as
important sources of the literature on bootstrap methods.

Standing assumptions, necessary definitions and main theorems are given in Section
2. In Section 3 we provide functional limit theorems for an array branching process,
which are necessary to prove our main results. Proofs of main theorems are given in
Section 4. We note that some of the results of this paper without proofs were announced
at the Workshop on Branching Processes and their Applications [13].

We conclude this section with a list of main notation.

e {p;(0),j > 0} is the offspring distribution depending on the unknown parameter
0 € O, which is taken to be the same for all generations.

e a, b are respectively the offspring mean and variance, depending on 6.

e a(n), 3(n) are respectively the mean and variance of the number of immigrants in
generation n (assumed to be known).

e 1}, is the class of all sequences regularly varying at infinity with exponent p.

e o, (3 are exponents of the sequences (a(k))?2, € Ra, (6(k))52, € Rz with a, 5 > 0.
o (Z(k))se, is the sequence of random generation sizes for the branching process with
variable immigration starting from Z(0) = 0 particles.

e 0, is the point estimate of the unknown parameter 6 based on the sample observation
{Z(@),i=1,...,n}.
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o {Z%(k),k > 0} is the bootstrap branching process (BBP) generated using the esti-
mated parameter value 6,,.

2 Main theorems and examples

It follows from (1.2) that the quantities a := EpXy; = fo.(0) and b = VaryXy; = f,(6)
are some functions of 6, when they do exist. Let the following assumptions be satisfied.
Al. The function f, is a one-to-one mapping of © to [0,00) and is continuous with
continuous inverse (i.e. a homeomorphism between its domain and range).

A2. The function fy is continuous on its domain.

We note that A1l and A2 are satisfied, for example, for distributions of the power
series family. Given a sample {Z(i),i = 1,...,n}, we now estimate the offspring mean
a by an estimator a, and derive the estimate of parameter 6 as 0, = fi%a,). Let
{Z%(k),k > 0} be the BBP defined by (1.3). This construction reduces the problem
stated above to finding conditions for estimator a,, which are sufficient to preserve
asymptotic properties of the process. Since the weak convergence of the conditioned
process {Z%(t),t € R} given 6, is equivalent to convergence of the conditional proba-
bility measures generated by Z,f", now we provide necessary definitions of convergence
of random probability measures defined on Skorokhod space.

Let (2, A,P) be a probability space and (D, B(D)) be a measurable Skorokhod
space, where B(D) is the Borel field on D. A function p : Q x B +— [0,1] is called a
random probability measure on D, if
(a) for each B € B(D), u(-, B) is a random variable on (Q, A);

(b) for each w € Q, u(w, -) is a probability measure on (D, B(D)).

Definition 2.1. Let x(™ for each n be a random probability measure on (D, B(D)).
(a) We say that ™ converges weakly to y on a set A € A, if for each w € A

[ s@u o)~ [ oy, ds) @.1)

as n — oo for any function g = g(x) bounded and continuous in Skorokhod metric. If
P{A} =1, we say that u(™ converges weakly to u almost surely.

(b) We say that u(™ converges weakly to p in probability (in distribution), if as
n — oo convergence (2.1) holds in probability (in distribution).

» o d 2 7
Y

Here and throughout the paper ” 5 L and 7 £ 7 will denote convergence
of random functions in Skorokhod topology and convergence of random variables in

distribution and in probability, respectively. Also X 2 Y denotes equality of distribu-
tions. In [17], the authors discussed the weak convergence of distributions of random
probability measures. We note that in the case of conditional distributions Definition
2.1 coincides with their definition of weak convergence in probability. For different
modes of convergence of conditional probability distributions see also [16].

Let X (t), X,,(t),n > 1, be conditioned processes with paths on Skorokhod space
D(R,,R) and g, ™, n > 1, be corresponding random probability measures. Conver-
gence of conditioned processes can now be defined as follows.
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Definition 2.2. We say that a sequence of conditioned processes { X,,, n > 1} converges
weakly as n — oo in Skorokhod space D(R,,R) to X on a set A, in probability or in
distribution, if the sequence of corresponding random probability measures {;(™, n >
1} converges weakly to 1 on the set A, in probability or in distribution, respectively.

If a sequence (f(k))72, is regularly varying with exponent p, we will write
(f(k)2, € R,. We assume that a« = FX;; and b = VarX;; are finite. We
also assume that a(k) := E& < oo, B(k) := Var§ < oo for each & > 1 and
(a(k))2, € Ra,(B(k))2, € Rz with a, > 0. Then A(a,n) = EZ(n) and
B?*(a,n) = VarZ(n) are finite for each n > 1, and by a standard technique we find
that

A(a,n) = Z a(i)a"", B*(a,n) = A%a,n)+ o*(a,n),

where
n

A*(a,n) = Z a()Var(X(n—1)), o*(a,n)= Z B(i)a™,
Var(X(i)) = b a1 —a"), a#1.

l1—a

Here {X(i),7 > 0} is the corresponding branching process without immigration with
offspring distribution (1.2) and X (0) = 1.

In particular, we denote A(n) = A(l,n), B?*(n) = B?*1,n), A2%n) =
A%(1,n), o*(n) = o*(1,n) and put

zin(ty = 220D gy

_ Z0 ([nt]) — A(an, [nt])
A(ly,n) ’

B(ap,n)

Now we provide the first result for the bootstrap process. We denote A = {w € 2 :
n(a, —1) — 0,n — 0o}, pa(t) =t t € Ry.

Theorem 2.1. Let A1 and A2 be satisfied and a(n) — oo, (n) = o(na?(n)) as
n — oo. )

(a) Conditioned process {Zi"| én} as n — oo converges weakly in Skorokhod space
DR, ,R,) to pe on the set A.

(b) If n(a, — 1) L0, then {Z%] 6,} as n — oo converges weakly in Skorokhod
space D(Ry,;R.) to p, in probability.

The next result is related to the fluctuations of the bootstrap process. Let &, =
& — a(k) and

n

> Bl&)*x(&] > eB(n)).

k=1
We also denote () = v+ + vt where

A%(n) a*(n)
Remrpel Bz (n) y V2 n1—>nc}o 32 (n> y M1 + 72

!
- B*(n)

On(€)
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We need two more conditions to be satisfied.

A3. The moment Fp[(X};)?*!] is a continuous function of § for some [ > 0.
A4. §,(¢) — 0 as n — oo for each € > 0.

Theorem 2.2. Let A1-A/ be satisfied and a(n) — oo as n — oo.

(a) The conditioned process {Y%| 6,} converges weakly in Skorokhod space
D(R,R) to Y on the set A, where Y(t) =W (¢(t)) and W (t) is the standard Wiener
process.

(b) If n(a, —1) L0, then {yf;"| 0,} asn — oo converges weakly in Skorokhod space
DR, ,R) to Y in probability.

Remark 2.1. (a) It follows from Theorem 2.1 (a) and Theorem 2.1 in [11] that the
conditioned bootstrap process {Z% (k)|6,, k > 0} generated by estimator 6, such that
n(a, — 1) — 0 a.s., under some conditions, a.s. has the same asymptotic behavior as
the original process.

(b) If we compare Theorem 2.2 (a) with Theorems 1, 2 and 3 in [10], we see that the
same is true for fluctuations of the bootstrap process. More precisely, in [10] for a
single critical process exactly the same limit process was obtained, considering three
cases of the relationship between the immigration mean and the variance separately.

Example 2.1. Now we provide an example of the estimator that satisfies conditions
of parts (b) of the above theorems. Let a, be the weighted conditional least squares
estimator (WCLSE), derived in [11] from a “standardized" stochastic regression equa-
tion. If the sample {Z(7),i = 1,...,n} is available and the immigration mean is known,
it is defined as

- 2 (Z(k) — a(k))

S S TR 22

To provide the asymptotic distribution for a,,, we assume that there exists ¢ € [0, o0]

such that
lim B(n) =

n—oo nav(n)

(2.3)

As was proved in [11], if a = 1, b € (0,00), a(n) — oo, B(n) = o(na?(n)),
condition (2.3) is satisfied and 6,,(¢) — 0 for each € > 0, then as n — oo

nA(n)

B (i = @) % 2+ )A(0,1) (2.4)

as n — oo. Furthermore, under the above conditions, A(n)/B(n) — oo as n — oo and
when ¢ = 0 the condition d,,(¢) — 0 is satisfied automatically. More detailed discussion
and examples can be found in [11].

From (2.4) we immediately obtain that n(a, —1) L 0asn — co. Thus the following
result holds.

Corollary 2.1. Let a,, be the WCLSE defined in (2.2), a =1, a(n) — oo and 3(n) =

o(na?(n)) as n — oo.
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(a) If Al and A2 are satisfied, then {Z%| 0, converges weakly as n — oo in
Skorokhod space D(R,R,) to p, in probabzlzty

(b) If A1-A} are satisfied, then {Y%| 6,} converges weakly as n — oo in Skorokhod
space D(R,R) to Y in probability, where Y(t) = W (¢(t)).

The next theorem is related to the case
n(an, — 1) 5 W, (2.5)

as n — 0o, where W, is a random variable. We denote

t

to(d,t) = /uaed(t“)du, To(d, t) =

0

fa(d,t)
fa(d, 1)

(2.6)

We note that 1, (0,t) = pa(t), the limiting “process" in Theorem 2.1.

Theorem 2.3. If A1, A2 and (2.5) are satisfied and a(n) — oo, B(n) = o(na*(n)) as
n — oo, then {Z%|6,} converges weakly as n — oo in Skorokhod space D(Ry,R) to
Ta(Wo, ) in distribution.

Let (a,)22, be a sequence of positive numbers, such that n(a, — 1) — d € R as
n — oo. We assume that there exist limits

AQ
lim (an, 1)

o?(a,,n)
_— 1 ’
n—oo B2 (ana ) /71<d>7 o

lim s = el (2.7)

Naturally v, (d) + 72(d) = 1 for each d.
To provide the next theorem, we need some additional notation. We denote

t t

Va(d, t) _ /uaed(tu)<1 _ €d(t7u)>du, Vg(d, t) _ /uﬁem(t“)du,

0 0

t

2dt u (d) ﬁ 2d(t u)
Y(d,t) I/a(d,l) O/,ua (d,u)e Vdu, 7Vg(d )/ du. (2.8)

It is clear that the limits in (2.7) do exist, if ratio 02(a,,n)/A*(a,,n) has a (finite
or infinite) limit as n — oo. Using Lemma 3.1, given below, we can show that

%(an,n) c
lim ———= = —v(d,1 d, 1

o Koy @ B Vel )
where ¢ is defined in (2.3). In particular, it is also useful to note that p,(d,t) =
t“t/(a+1) and V(d, t) = t'+°/(1+ ) when d = 0, and limg_.q v (d, t)/a = t*72/(a+
1)(a+2).
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Theorem 2.4. If A1-Aj and (2.5) are satisfied and a(n) — oo as n — oo, then
{V0| 0,) converges weakly as n — oo in Skorokhod space D(Ry,R) to Y(Wy,-) in
distribution, where Y(Wy,t) = W (p(Wy, t)).

Remark 2.2. Theorems 2.3 and 2.4 show that, when the estimator én is such that
(2.5) holds with P(Wy = 0) < 1, then the asymptotic behavior of the bootstrap process
is different from the behavior of the original process. In other words, the condition
n(a, — 1) — 0 as n — oo a.s. or in probability is necessary for the conditioned
bootstrap process to have the same asymptotic behavior as the initial process in the
sense of convergence a.s. or in probability, respectively.

~ We conclude this section with a result which is useful in the estimation theory. Let
FO (k) for each k and n be the sigma-algebra generated by {Z%(i),i = 1,2, ..., k} and
MO (k) = 2% (k) — E[Z%(k)|F™(k — 1)]. Then {M% (k), Fo(k)}>>, given 8, is a
sequence of martingale differences. We define process

[nt] b /-
j M (i)
on(t) = :
i=1
Theorem 2.5. Let A1-Aj be satisfied and a(n) — oo as n — oco. then
(a) conditioned process {W%| 0,} converges weakly as n — oo in Skorokhod space
DR, R) to Y on the set A, where Y(t) = W (y(t)), W(t) is the standard Wiener
process and (t) is defined just before Theorem 2.2;
(b) if n(a, — 1) 20, then Wi | 6,} converges weakly as n — oo in Skorokhod
space D(R ., R) to Y in probability.

Example 2.2. As it was mentioned before, the approximation theorems for the boot-
strap process allow us to investigate the validity of the bootstrap without using an
explicit form of the estimator. Here we demonstrate it for WCLSE. We use the in-
direct approach suggested by Ch. Jacob in a private discussion. We represent the
bootstrap process as

7% (k) = E[Z% (k)| Fo(k — 1)] + M (k).

Using (Z%(k — 1))'/2 as a “weight", we define

n

Su(@) = 31" = gurla))?
k=1
where T{" = 70(k)(2%(k — 1))/ and gu(a) = B[Z% (k)] FO(k — 1)](2% (k —
1))~Y/2. Then it is clear that the bootstrap WCLSE is

dﬁ" = arg min S,(a).

acR4

We use the Taylor expansion for S),(a) as follows:

S (@) = S (@) + S"(an)(@% — ay),

n
n
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where @, is the initial WOLSE, a,, = a, +¢(a’" —a,) and € € (0,1). Since S’ (a%) = 0,
we obtain that

(2.9)

If we take into account that

(@) = (2% (k = 1))V2, ghi(a) = 0, Si(a) = =2 (T — gar(a))gpy(a),

Si(a) = =23 (ghpla))? =23 Z0(k - 1),
k=1 k=1
we obtain from (2.9) that

&én o d — ZZ:I Mgn(k) )
> ke 20 (k= 1)

Let n(a, — 1) L 0asn — oo. It follows from parts (b) of Theorems 2.1 and 2.5
that

A, ) o,y LA g
{B(@n,n)(n n)\en} (2 + a)N(0, 1),

as in the proof of Theorem 3.1 in [11|. Using Lemma 3.1, which is given in the next

section, we can show that A(a,,n) L A(n) and B(a,,n) X B(n) as n — oo. Thus, we
have the following result.

Theorem 2.6. Let A1-Aj be satisfied, n(a, — 1) Lo, a(n) — oo and [(n) =
o(na®(n)) as n — oco. Then

nAM) o0 s vig Lo o
{B(n) (a8 n)|9n} (2 + )N (0,1).

In particular, Theorem 2.6 shows the validity of the bootstrap for the WCLSE
defined in Example 2.1.

3 Array of processes

In this section we provide functional limit theorems for an array of branching processes,
which will be used in the proof of our main theorems. Let {Xlg?), k,i > 1} and {fli"), k>
0} be two families of independent, nonnegative and integer-valued random variables
for each n € N. We consider a sequence of branching processes (Z™(k),k > 0),>1
defined recursively as

Z(M) (k—1)
Z0k) = Y X+, kn>1, (3.1)
i=1
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with Z("(0) = 0,n > 1. As before, we assume that X,g?) have a common distribution
for all k and i, and families {X\"} and {€} are independent. The variables X7
will be interpreted as the number of offspring of the ith individual in the (k — 1)th
generation and §,(€") as the number of immigrating individuals in the kth generation.
Then Z™ (k) can be considered as the size of population of kth generation in nth
process.

Let a, = EX,E?) be the mean number of offspring of a single individual in the
nth process. The process with non-stationary immigration is a natural generalization
of the classical model. It turned out that the long run behavior of the process is
largely influenced by the non-homogeneity of the immigration process in time. As a
result certain new problems, regarding the asymptotic behavior of the process when the
immigration rate increases, decreases or remains bounded, emerged in the literature.
Therefore, in solving these problems one needs certain regularity assumptions for the
parameters of the immigration process. The family of branching processes (3.1) is said
to be nearly critical if a,, — 1 as n — oo.

We assume that a, = EXi(f) and b, = VarXi(]m are finite for each n > 1 and
a(n,i) = E&i(") < 00, f(n,i) = Varéi(") < oo for all n > 1 and i > 0. Furthermore, we
assume that the following condition is satisfied.

C1. There are sequences (a(7))°, € R, and (8(i))2, € Rz with a, 5 > 0, such that
for each s € R,

max |a(n, k) — a(k)| = o(a(n)), max |5(n, k) — G(k)| = o(6(n))

1<k<ns 1<k<ns
as n — 00.
In the above assumptions A,(a,,i) = EZ™ (i) and B2(a,,i) = VarZ™ (i) are
finite for each n > 1, 0 < i < n, and one can find that A,(a,, k) = S.F, a(n,i)a
and B2(a,, k) = A% (an, k) + 0%(ay,, k), where

k k

A% (an. k) =D a(n, )Var(XW (k1)) o7 (an, k) = Y Aln )y,

i=1 i=1

by

1—a,

Var(X™ (i) = at(1—d), a, # 1.

Here X (™ (4) is the corresponding branching process without immigration and, as usual,
it is defined by the relation

X (") (k—1)
XMy = 3 X, X"0)=1, kn>1.

i=1
In particular, when & = n we use also notation
Alan,n) = Ap(an,n), B*(an,n) = B(a,,n),

A*(an,n) = A%(an,n), 0*(an, k) = 02(an,n),
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which is consistent with (2.1).
We consider the following processes.

Z™([nt])

Z™([nt]) = EZ™ ([nt))
Alay,n)’ '

Zn(t) = B(a,,n)

Ya(t) =

First we provide a convergence theorem for Z,(t). We obtain approximation of the
sequence {Z,(t),n > 1},t € Ry, satisfying the following conditions:
C2. forsomed € R a, =1+n"*d+o(n') as n — oo.
C3. b, =beR, asn — oo.
C4. a(n) — oo and B(n) = o(na?(n)) as n — co.

Theorem 3.1. If conditions C1-Cj are satisfied, then Z, R To as n — oo weakly in
Skorokhod space D(R,,R), where m,(t) and u,(d,t), t € Ry are defined in (2.6).

Remark 3.1. The condition C2 is the same as in the study of an array of time-
homogeneous processes. The second condition in C4 appeared in the proof of the
functional limit theorems for a single branching process with a non-homogeneous im-
migration as well. What concerns C1, the first part, related to the immigration mean,
is satisfied when a(n) — oo, if just lim,, . maxj<g<ns |a(n, k) — a(k)| < co. In gen-
eral, C1 is satisfied, for example, if there are g;(n) — 0 as n — oo, ¢ = 1,2, such that

a(n, k) = a(k)(1+e1(n)) and 5(n, k) = B(k)(1 + 2(n)).

The proof of Theorem 3.1 can be found in [12].
Next theorem is related to fluctuations of the process. We denote “centered" off-
spring and immigration variables as XIE:?) = XIE:?) — a,, li") = 5,(?") — a(n, k) and put

5 (e) = () EIXG) (X > eBlan,n)),

(n)
)= ZE V(7] > eB(an, )

where y(A) stands for the indicator of event A and ~;(a) is defined in (2.7). We need
the following condition to be satisfied:

C5. (2@(6) — 0 as n — oo for each ¢ > 0 and i = 1, 2.

Theorem 3.2. If conditions C1-C3 and C5 are satisfied, then Y, ZY oasn— oo
weakly in Skorokhod space D(R,,R), where Y (t) = W (¥(d,t)), t € Ry, W(t) is a
standard Brownian motion and ¥(d,t) is defined in (2.8).

Remark 3.2. (a) Note that the Lindeberg-type condition for the family {X,g?), k,i>
1} is trivially satisfied, if v1(d) = 0. If 71(d) # 0 and E(X)*H < oo for all n € N
and some [ € R, then

5(1)(5) 1 (n)
n < E| X" —a,|*t.
m(d) ~ eBYay,n) X an|
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Since B%(an,n) > A%(an,n) ~ Kn?a(n) as n — oo due to Lemma 3.1 below, where
K is a positive constant, the Lindeberg-type condition is satisfied, for example, if
E|X,g?) — a,)* = o(ny/a(n)) and a(n) — oo as n — co.

(b) What concerns the Lindeberg-type condition for the immigration variables, it
is automatically satisfied when ~;(d) # 0, since in this case 0%(a,,n) = o(B*(a,,n))
as n — o00. If y1(d) = 0, then it is equivalent to the Lindeberg condition for the array
{6 kon > 1},

(c) When processes {Z™(k),k > 0},n > 1, are critical with the same offspring
and immigration distributions, conditions C1-C3 are satisfied with a = 0. Therefore,
from Theorem 3.3 we obtain assertions of Theorems 1, 2 and 3 in [10] in the cases
7(0) =1, 7%2(0) =1 and 0 < ;(0) < 1, i = 1,2, respectively.

Theorem 3.2 can be proved using the same approach which was used in the proof of
Theorems 2-4 in [12]. It needs just a more careful analysis in applying the martingale
convergence theorem. Therefore, we do not give a proof of this theorem.

We now provide a theorem for the process of martingale differences. We define
FOUE) = o{Z™(i),i =1,2,...,k} and denote M (k) = ZM (k) — E[Z™ (k)| F™ (k-
1)]. We consider the following process:

[nt]
W“”:E@%BEZMW@)

Theorem 3.3. If conditions C1-C3 and C5 are satisfied, then W, Zym asn — oo
weakly in Skorokhod space D(R,,R), where Y (1) = W(p(d,t)), t € Ry, W(t) is a

standard Brownian motion and

t

_ m(d)d Yo(d)tH P
@MJ%—%MJ)/MJ¢MMHXI+MVM¢D.

The proof of this theorem is also based on the direct use of the martingale-limit
theorem and is similar to the proof of Theorems 2-4 in [12].

We conclude this section with a lemma borrowed from [12| which is required for
proofs of main theorems.

Lemma 3.1. If conditions C1 and C2 are satisfied, then uniformly in s € [0,T)] for
each fized T > 0

o Jim 2B .t P ),
. M B (1/d)va(d, s), if d#0 |
n—oo n2a(n)by 22 (@t D(a+2), if d=0

Lemma 3.1 is also proved in [12].
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4 Proofs of main theorems

Proof of Theorem 2.1. Part (a). Since the bootstrap process {Zfln (t),t € R, } given
én, constitutes an array of branching processes, we show that conditions of Theorem
3.1 are satisfied. It is easy to see that C1 and C4 are trivially satisfied. Condition C2
is also satisfied on the set A with a = 0. It follows from Al:

B={weQ:a, -1} ={weQ: fa) — f;' (1)} ={weQ:0, — b},

where 6 is the true value of . Since b := Var(X0,) = fy(6,), we immediately
obtain from A2 that b’ — b as n — oo for each w € B. Taking into account that
A C B, we see that condition C2 is also satisfied on the set A. Hence, the assertion
(a) of the theorem follows by Theorem 3.1.

Part (b). Let PP and P, be probability measures generated by {Z(d,} and s,
respectively. Assume that as n — oo

n(a, — 1) 5 0. (4.1)

We prove that any subsequence N' C N = {1,2,...} contains another subsequence
N” c N’ such that
[ o@Plw.dn) =% [ gp.in) (12)
D D

along N”, for any function g : D(R,R,) — R bounded and continuous in Skorokhod

metric. It follows from (4.1) that n(a, — 1) L 0 along any subsequence N' C N.
Therefore, there is a subsequence N” C N’ such that n(a, — 1) — 0 along N” for each
w € A with P(A) = 1. Thus, due to part (a) of Theorem 2.1,

[ o@ o)~ [ gw)Patan)

along N” for each w € A, which implies (4.2). O

Proof of Theorem 2.2. Part (a). We show that conditions of Theorem 3.2 are satisfied.
Conditions C1-C3 are satisfied, as in the proof of previous theorem. We just need to
check condition C5. For this we denote

AP (k) = E[Z°(K)|0,), B (k) == E[(Z% (k) — A% (k))?|d,,]

Then we easily obtain that A% (n) = A(an,n), B®(n) = B*(an,n).
We apply Lemma 3.1 to get on the set A ={w € Q2 :n(a, —1) — 0} the following
convergence

Ay, [ns]) st o%(ay, [ns]) slth
na(n) T ltal nB(n) - 1+ 0
A%(ay, [ns]) B s2te

n2a(n)fy(6,) (1+a)2+a)
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as n — oo for each s € R,. On the other hand, since A?(a,,n)/A?*(n) — 1 and
02(Gn,n)/0?*(n) — 1 as n — oo on the set A, we have B?(a,,n)/B?*(n) — 1 on the set
A. We conclude from these arguments that

5 (c,6,) = ZE &)X (&l > £B(an. )16,

a’na

tends to zero as n — oo on the set A, due to condition A4.
We now consider

01 (e, 6,) = N EIX )P X(1X07 | > eB(an,n))[0n).

If v,(0) = 0, then 57(11)<6, 0,) — 0 as n — oo on A. If 4,(0) # 0, then

sV (e,0,) _ 1

W0) = B
Tt follows from condition A3 that on the set A C B = {w € Q: 6, — 6y} we have
E[(X,f;)”ﬂén] — E[(X3;)*™] as n — oo. If we take this into account, we obtain from
(4.3) that 57(11)<6, 0,) — 0 as n — 0o on the set A.

Thus, condition C5 of Theorem 3.2 is satisfied and we have the assertion (a) of
Theorem 2.2.

The proof of part (b) repeats the arguments of the proof of convergence in

probability in Theorem 2.1. We just need to consider the sequence of probability
measures generated by {390, }. Therefore, we omit the proof of this part. O

E[|IX0 — an|**6,). (4.3)

Proof of Theorem 2.3. We use quite standard technique based on Skorokhod’s theorem
(see [1], Theorem 29.6). We have from (2.5) that n(a, —1) <, Wy as n — oco. Therefore,
due to Skorokhod’s theorem there exists a sequence {a/,,n > 1} of random variables
and a random variable W; on a common probability space (', F, Q) such that a;, < (i,
for all n > 1, WO < W, and n(a,(w') — 1) — Wy as n — oo for each o' € (V.

For any w' € ' we obtain @/ (w') from equation a = f,(0) as 0/, (') = f2(d, (w')).
Let now {X,/C(i"), k,i > 1} be a family of i.i.d. random variables such that

PIXL = j} = pi(01)

for each w’ € " and n > 1 and {&;, k > 1} be a sequence of random variables with the
probability distributions {¢;(k),j > 0}. We define a new bootstrap process recursively
by the relation

Z'(") (k—1)
i=1

for each w’ € ', n > 1 with Z'™(0) = 0. We denote

Z'0) ([nd]) Z'™ ([nt]) — A(d! [n1])

A A ATy

(4.4)
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We introduce for each £ € B(D) the probability measure P, (0, E) := P(Z, € E),
where Z,(t) is the normalized original process. Then it is clear that

P(2™ € E|,) = P,(0,,E), P(2, € E|0) = P,(0.,, E).

We also denote P(d, E) = P(m,(d,-) € E). Recall that n(a,(w') —1) — Wjasn — oo
for each w’ € . Therefore, repeating the arguments of the proof of Theorem 2.1, we

obtain that
/g( (6!, de) / P(Wg, dz) (4.5)

D

as n — oo for any function g : D(R;,R;) — R bounded and continuous in Skorokhod
metric.

Since
[o@Puban £ [ ga)Pulndo). [ @) P0Vgda) L [ o) PV do)

we obtain from (4.5) that

/ o(2) (B, d) / () P(Wy, dz).

U

Proof of Theorem 2.4. We consider applicability of Theorem 3.2 to the process V! (¢)
defined in (4.4). It follows from the convergence n(a, (w') — 1) — W} as n — oo, that
0! (W) — 6y as n — oo for each w' € . Therefore, conditions C1-C3 are trivially
satisfied.

We now show that condition C5 is also fulfilled. Since

A (k) = E[Z'"(k)| a,] = Ay, k)

and
B (k) := E[(Z'"™ (k) — A, (k))?| 4] = B*(ay,, k),

applying again Lemma 3.1, we obtain that

A o), T 90,
Aap[ns)) 1
2a(n) fo(60,) W3 «(We, )

as n — oo for each s € R, and o’ € €. It follows from this and Lemma 3 in [10] that

A’@fn) (ot 1)(a+2)

A2<1,n) Wé VQ(W(;71>7 ( ) (5+1)Vﬁ(W671)

2()
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as n — oo for each w’ € V. Therefore, for each fixed w’ € €V there exists a positive

constant C'(«, 5, Wj(w')), such that
B2(aj,, n) /
BQ(L n) - C<057 ﬁu WO) (46)

as n — oco. We now consider
D(e,w) = > E B :
e ) = g §j (&)X (& > B(@,, n)

It follows from (4.6) that, if condition C4 is satisfied, then §®(g,w’) — 0 as n — oo
for each fixed w’ € (V.
To show that

o0 (e,) = 3 (Wo(W)) B PX (XS] > eBlay,,n))]

tends to zero as n — oo for each fixed w’ € €V, we repeat the same arguments as in the
proof of part (a) of the Theorem 2.2.
Hence, it follows from Theorem 3.2 that

/g() (@ dz) / QW dz) (4.7)

D

as n — oo for each fixed ' € ¥, for any function g : D(Ry,R;) +— R bounded and
continuous in Skorokhod metric, where

Qu.0,F) =P, € E), Q(d, E):=PW(((d,-) € E).

A~

On the other hand, since 6,, < 0, and W, = Wé, we have

[ 9@ (6;.d2) / D)Qu(bnede). [ 9@)QWs.d0) L [ ga)QWy.ds).

D D D

Therefore, we obtain from (4.7) that

[ 9@)@u(busdn) % [ g0, d)

as n — oo. O

Proof of Theorem 2.5 is similar to the proof of Theorem 2.2. Here instead of Theorem
3.2 we apply Theorem 3.3. Since conditions of these two theorems are the same, the
applicability of the last directly follows from the proof of Theorem 2.2. O]
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