
EURASIAN MATHEMATICAL JOURNALISSN 2077-9879Volume 2, Number 1 (2011), 128 � 144ASYMPTOTIC BEHAVIOUR OFA BOOTSTRAP BRANCHING PROCESSI. RahimovCommuniated by S. SagitovKey words: random probability measure, weak onvergene, Skorokhod spae,branhing proess, time-dependent immigration, bootstrap, least squares estimator.AMS Mathematis Subjet Classi�ation: 60J80, 62F12, 60G99.Abstrat. In this paper we study weak onvergene of sequenes of random prob-ability measures generated by bootstrap branhing proesses. Let {Z(k), k ≥ 0} bea branhing stohasti proess with non-stationary immigration given by an o�springdistribution {pj(θ), j ≥ 0} depending on the unknown parameter θ ∈ Θ ⊆ R. Weestimate θ by an estimator θ̂n based on a sample {Z(i), i = 1, ..., n}. Given θ̂n, wegenerate the bootstrap branhing proess (BBP) {Z θ̂n(k), k ≥ 0} for eah n = 1, 2, ...with the o�spring distribution {pj(θ̂n), j ≥ 0}. We derive onditions on the estima-tor θ̂n whih are su�ient and neessary for the bootstrap proess to have the sameasymptoti properties as the original proess. These results allow us to investigate thevalidity of the bootstrap without using an expliit form of the estimator. In applia-tions of branhing proesses obtaining samples of large sizes is di�ult. Therefore, thebootstrap proess an be used to generate multiple samples of large size.1 IntrodutionWe onsider a disrete time branhing stohasti proess Z(k), k ≥ 0, Z(0) = 0. It anbe de�ned by two families of independent, nonnegative integer-valued random variables
{Xki, k, i ≥ 1} and {ξk, k ≥ 1} reursively as

Z(k) =

Z(k−1)∑

i=1

Xki + ξk, k ≥ 1. (1.1)Assume that Xki have a ommon distribution for all k and i, and that the families
{Xki} and {ξk} are independent. The variable Xki will be interpreted as the numberof o�spring of the ith individual in the (k − 1)th generation and ξk as the number ofimmigrating individuals to the kth generation. Then Z(k) an be onsidered as thesize of kth generation of the population.In this interpretation a = EXki is the mean number of o�spring of a single individ-ual. Proess Z(k) is alled subritial, ritial or superritial depending on a < 1, a = 1



Asymptoti behaviour of a bootstrap branhing proess 129or a > 1 respetively. The independene assumption of families {Xki} and {ξk} meansthat the reprodution and immigration proesses are independent. However, in on-trast of lassial models, we do not assume that ξk, k ≥ 1 are identially distributed, i.e. the immigration rate may depend on the time of immigration.The proess with time-dependent immigration is given by the o�spring distributionof Xki, k, i ≥ 1, and by the family of distributions of the number of immigratingindividuals ξk, k ≥ 1. We assume that the o�spring distribution has the probabilitymass funtion
pj(θ) = P{Xki = j}, j = 0, 1, ... (1.2)depending on the unknown parameter θ, where θ ∈ Θ ⊆ R. We also assume that ξkfor any k ≥ 1 follows a known distribution with the probability mass funtion
qj(k) = P{ξk = j}, j = 0, 1, ...We estimate θ by an estimator θ̂n based on a sample {Z(i), i = 1, ..., n} and generatethe BBP {Z θ̂n(k), k ≥ 0} for eah n = 1, 2, ... as follow. Given θ̂n, let {X θ̂n

ki , k, i ≥ 1}be the family of i.i.d. random variables with the probability mass funtion {pj(θ̂n), j =

0, 1, ...}. Now we obtain the proess {Z θ̂n(k), k ≥ 0} reursively from
Z θ̂n(k) =

Z θ̂n(k−1)∑

i=1

X θ̂n

ki + ξk, n, k ≥ 1, (1.3)with Z θ̂n(0) = 0. As in (1.1), ξk, k ≥ 1, are independent random variables with theprobability mass funtions {qj(k), j = 0, 1, ...}.Related to the proess {Z θ̂n(k), k ≥ 0} the following question is of interest. Howgood must be the estimator θ̂n in order that the BBP {Z θ̂n(k), k ≥ 0} has the sameasymptoti properties as the proess {Z(k), k ≥ 0}? For example, if we denote
Zn(t) = Z([nt])/E(Z(n)) and {Zn(t), t ∈ R+} onverges weakly as n → ∞ to someproess {Z(t), t ∈ R+}, in Skorokhod spae D(R+,R+), will the same be true for
Z θ̂n

n (t) = Z θ̂n([nt])/E[Z θ̂n(n)|θ̂n]? A similar question for the proess of �utuations of
{Z θ̂n(k), k ≥ 0} an also be onsidered.To answer these questions without onretization of the proess in the sense ofritiality is impossible, beause it is well known that the asymptoti properties of theproess stritly depend on whether the proess is subritial, ritial or superritial. Asa result, there is no general limit theory for branhing proesses without a ritialityassumption. In this paper we address the above question in the ritial ase. Inappliations the question on ritiality of the proess is ruial. To answer this question,one may test hypothesis H0 : a = 1 against one of a 6= 1, a > 1 or a < 1. Sinethe distribution of a test statisti is omputed under the null hypothesis, the resultsobtained in the ritial ase allow to develop rejetion regions for these hypothesesbased on observed population sizes. On the other hand, the methods and oneptsdeveloped in this paper may also be used in subritial and superritial ases.It is lear that the problem, whih we are going to onsider, is losely related to theproblem of validity of the bootstrap proedure. In partiular, if the proess preserves



130 I. Rahimovits asymptoti properties after �bootstrapping", it an be used to generate multiplebootstrap samples. These new samples an further be used in statistial inferene forthe proess. This is very important in branhing proess models, sine in statistisof branhing proesses, usually, the generation number plays the role of the samplesize and, therefore, it is di�ult to obtain samples of large size. On the other hand,sometimes, in appliations (for example, in epidemi proesses) one needs to make adeision on ritiality of the proesses when it is still at the early stages.First e�orts for justi�ation of the validity of the parametri bootstrap [15℄ haveshown that in the ritial ase the bootstrap proedure based on a maximum likelihoodestimator (MLE) of the o�spring mean is asymptotially invalid for the proess withstationary immigration. Later, it was demonstrated [2℄ that for a modi�ed versionof the MLE the parametri bootstrap is valid. It has reently been shown that inthe proess with non-stationary immigration the validity of the parametri bootstrapbased on the onditional least squares estimator (CLSE) depends on the relative rateof the immigration mean and variane.In present artile we obtain su�ient and neessary onditions on the estimatorof the o�spring mean for the bootstrap proess and for the proess of �utuationsto preserve asymptoti properties of the original proess. These onditions will beformulated in the form of the rate of onvergene of the estimator to the true value ofthe parameter when the sample size inreases and does not require the expliit formof the estimator. Therefore, our results an be used in investigation of the validity ofbootstrap proedure when an expliit form of the estimator is unknown.Statistial problems related to branhing proesses with various appliations an beseen in [7℄ and [8℄. Investigation of the problems related to the bootstrap methods andtheir appliations has been an ative area of researh sine they were introdued byEfron [5℄. As a result a large number of papers and monographs have been published.We note monographs [4℄, [6℄ and [14℄ and the most reent review artiles [3℄ and [9℄ asimportant soures of the literature on bootstrap methods.Standing assumptions, neessary de�nitions and main theorems are given in Setion2. In Setion 3 we provide funtional limit theorems for an array branhing proess,whih are neessary to prove our main results. Proofs of main theorems are given inSetion 4. We note that some of the results of this paper without proofs were announedat the Workshop on Branhing Proesses and their Appliations [13℄.We onlude this setion with a list of main notation.
• {pj(θ), j ≥ 0} is the o�spring distribution depending on the unknown parameter
θ ∈ Θ, whih is taken to be the same for all generations.
• a, b are respetively the o�spring mean and variane, depending on θ.
• α(n), β(n) are respetively the mean and variane of the number of immigrants ingeneration n (assumed to be known).
• Rρ is the lass of all sequenes regularly varying at in�nity with exponent ρ.
• α, β are exponents of the sequenes (α(k))∞k=1 ∈ Rα, (β(k))∞k=1 ∈ Rβ with α, β ≥ 0.
• (Z(k))∞n=1 is the sequene of random generation sizes for the branhing proess withvariable immigration starting from Z(0) = 0 partiles.
• θ̂n is the point estimate of the unknown parameter θ based on the sample observation
{Z(i), i = 1, ..., n}.
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• {Z θ̂n(k), k ≥ 0} is the bootstrap branhing proess (BBP) generated using the esti-mated parameter value θ̂n.2 Main theorems and examplesIt follows from (1.2) that the quantities a := EθXki = fa(θ) and b = V arθXki = fb(θ)are some funtions of θ, when they do exist. Let the following assumptions be satis�ed.A1. The funtion fa is a one-to-one mapping of Θ to [0,∞) and is ontinuous withontinuous inverse (i.e. a homeomorphism between its domain and range).A2. The funtion fb is ontinuous on its domain.We note that A1 and A2 are satis�ed, for example, for distributions of the powerseries family. Given a sample {Z(i), i = 1, ..., n}, we now estimate the o�spring mean
a by an estimator ân and derive the estimate of parameter θ as θ̂n = f−1

a (ân). Let
{Z θ̂n(k), k ≥ 0} be the BBP de�ned by (1.3). This onstrution redues the problemstated above to �nding onditions for estimator ân, whih are su�ient to preserveasymptoti properties of the proess. Sine the weak onvergene of the onditionedproess {Z θ̂n

n (t), t ∈ R+} given θ̂n is equivalent to onvergene of the onditional proba-bility measures generated by Z θ̂n
n , now we provide neessary de�nitions of onvergeneof random probability measures de�ned on Skorokhod spae.Let (Ω,A,P) be a probability spae and (D,B(D)) be a measurable Skorokhodspae, where B(D) is the Borel �eld on D. A funtion µ : Ω × B 7→ [0, 1] is alled arandom probability measure on D, if(a) for eah B ∈ B(D), µ(·, B) is a random variable on (Ω,A);(b) for eah ω ∈ Ω, µ(ω, ·) is a probability measure on (D,B(D)).De�nition 2.1. Let µ(n) for eah n be a random probability measure on (D,B(D)).(a) We say that µ(n) onverges weakly to µ on a set A ∈ A, if for eah ω ∈ A

∫

D

g(x)µ(n)(ω, dx) →
∫

D

g(x)µ(ω, dx) (2.1)as n→ ∞ for any funtion g = g(x) bounded and ontinuous in Skorokhod metri. If
P{A} = 1, we say that µ(n) onverges weakly to µ almost surely.(b) We say that µ(n) onverges weakly to µ in probability (in distribution), if as
n→ ∞ onvergene (2.1) holds in probability (in distribution).Here and throughout the paper ”

D→ ”, ”
d→ ” and ”

P→ ” will denote onvergeneof random funtions in Skorokhod topology and onvergene of random variables indistribution and in probability, respetively. Also X d
= Y denotes equality of distribu-tions. In [17℄, the authors disussed the weak onvergene of distributions of randomprobability measures. We note that in the ase of onditional distributions De�nition2.1 oinides with their de�nition of weak onvergene in probability. For di�erentmodes of onvergene of onditional probability distributions see also [16℄.Let X(t), Xn(t), n ≥ 1, be onditioned proesses with paths on Skorokhod spae

D(R+,R) and µ, µ(n), n ≥ 1, be orresponding random probability measures. Conver-gene of onditioned proesses an now be de�ned as follows.



132 I. RahimovDe�nition 2.2. We say that a sequene of onditioned proesses {Xn, n ≥ 1} onvergesweakly as n → ∞ in Skorokhod spae D(R+,R) to X on a set A, in probability or indistribution, if the sequene of orresponding random probability measures {µ(n), n ≥
1} onverges weakly to µ on the set A, in probability or in distribution, respetively.If a sequene (f(k))∞k=1 is regularly varying with exponent ρ, we will write
(f(k))∞k=1 ∈ Rρ. We assume that a = EXij and b = V arXij are �nite. Wealso assume that α(k) := Eξk < ∞, β(k) := V arξk < ∞ for eah k ≥ 1 and
(α(k))∞k=1 ∈ Rα, (β(k))∞k=1 ∈ Rβ with α, β ≥ 0. Then A(a, n) = EZ(n) and
B2(a, n) = V arZ(n) are �nite for eah n ≥ 1, and by a standard tehnique we �ndthat

A(a, n) =

n∑

i=1

α(i)an−i, B2(a, n) = ∆2(a, n) + σ2(a, n),where
∆2(a, n) =

n∑

i=1

α(i)V ar(X(n− i)), σ2(a, n) =

n∑

i=1

β(i)a2(n−i),

V ar(X(i)) =
b

1 − a
ai−1(1 − ai), a 6= 1.Here {X(i), i ≥ 0} is the orresponding branhing proess without immigration witho�spring distribution (1.2) and X(0) = 1.In partiular, we denote A(n) = A(1, n), B2(n) = B2(1, n), ∆2(n) =

∆2(1, n), σ2(n) = σ2(1, n) and put
Z θ̂n

n (t) =
Z θ̂n([nt])

A(ân, n)
, Y θ̂n

n (t) =
Z θ̂n([nt]) − A(ân, [nt])

B(ân, n)
.Now we provide the �rst result for the bootstrap proess. We denote A = {ω ∈ Ω :

n(ân − 1) → 0, n→ ∞}, µα(t) = t1+α, t ∈ R+.Theorem 2.1. Let A1 and A2 be satis�ed and α(n) → ∞, β(n) = o(nα2(n)) as
n→ ∞.(a) Conditioned proess {Z θ̂n

n | θ̂n} as n → ∞ onverges weakly in Skorokhod spae
D(R+,R+) to µα on the set A.(b) If n(ân − 1)

P→ 0, then {Z θ̂n
n | θ̂n} as n → ∞ onverges weakly in Skorokhodspae D(R+,R+) to µα in probability.The next result is related to the �utuations of the bootstrap proess. Let ξ̄k =

ξk − α(k) and
δn(ε) =

1

B2(n)

n∑

k=1

E[(ξ̄k)
2χ(|ξ̄k| > εB(n))].We also denote ψ(t) = γ1t

2+α + γ2t
1+β , where

γ1 = lim
n→∞

∆2(n)

B2(n)
, γ2 = lim

n→∞

σ2(n)

B2(n)
, γ1 + γ2 = 1.



Asymptoti behaviour of a bootstrap branhing proess 133We need two more onditions to be satis�ed.A3. The moment Eθ[(Xki)
2+l] is a ontinuous funtion of θ for some l > 0.A4. δn(ε) → 0 as n→ ∞ for eah ε > 0.Theorem 2.2. Let A1-A4 be satis�ed and α(n) → ∞ as n→ ∞.(a) The onditioned proess {Y θ̂n

n | θ̂n} onverges weakly in Skorokhod spae
D(R+,R) to Y on the set A, where Y(t) = W (ψ(t)) and W (t) is the standard Wienerproess.(b) If n(ân−1)

P→ 0, then {Y θ̂n
n | θ̂n} as n→ ∞ onverges weakly in Skorokhod spae

D(R+,R) to Y in probability.Remark 2.1. (a) It follows from Theorem 2.1 (a) and Theorem 2.1 in [11℄ that theonditioned bootstrap proess {Z θ̂n(k)|θ̂n, k ≥ 0} generated by estimator θ̂n suh that
n(ân − 1) → 0 a.s., under some onditions, a.s. has the same asymptoti behavior asthe original proess.(b) If we ompare Theorem 2.2 (a) with Theorems 1, 2 and 3 in [10℄, we see that thesame is true for �utuations of the bootstrap proess. More preisely, in [10℄ for asingle ritial proess exatly the same limit proess was obtained, onsidering threeases of the relationship between the immigration mean and the variane separately.Example 2.1. Now we provide an example of the estimator that satis�es onditionsof parts (b) of the above theorems. Let ân be the weighted onditional least squaresestimator (WCLSE), derived in [11℄ from a �standardized" stohasti regression equa-tion. If the sample {Z(i), i = 1, ..., n} is available and the immigration mean is known,it is de�ned as

ân =

∑n
k=1(Z(k) − α(k))∑n

k=1 Z(k − 1)
. (2.2)To provide the asymptoti distribution for ân, we assume that there exists c ∈ [0,∞]suh that

lim
n→∞

β(n)

nα(n)
= c. (2.3)As was proved in [11℄, if a = 1, b ∈ (0,∞), α(n) → ∞, β(n) = o(nα2(n)),ondition (2.3) is satis�ed and δn(ε) → 0 for eah ε > 0 , then as n→ ∞

nA(n)

B(n)
(ân − a)

d→ (2 + α)N (0, 1) (2.4)as n→ ∞. Furthermore, under the above onditions, A(n)/B(n) → ∞ as n→ ∞ andwhen c = 0 the ondition δn(ε) → 0 is satis�ed automatially. More detailed disussionand examples an be found in [11℄.From (2.4) we immediately obtain that n(ân−1)
P→ 0 as n→ ∞. Thus the followingresult holds.Corollary 2.1. Let ân be the WCLSE de�ned in (2.2), a = 1, α(n) → ∞ and β(n) =

o(nα2(n)) as n→ ∞.



134 I. Rahimov(a) If A1 and A2 are satis�ed, then {Z θ̂n
n | θ̂n} onverges weakly as n → ∞ inSkorokhod spae D(R+,R+) to µα in probability.(b) If A1-A4 are satis�ed, then {Y θ̂n

n | θ̂n} onverges weakly as n→ ∞ in Skorokhodspae D(R+,R) to Y in probability, where Y(t) = W (ψ(t)).The next theorem is related to the ase
n(ân − 1)

d→W0 (2.5)as n→ ∞, where W0 is a random variable. We denote
µα(d, t) =

t∫

0

uαed(t−u)du, πα(d, t) =
µα(d, t)

µα(d, 1)
. (2.6)We note that µα(0, t) = µα(t), the limiting �proess" in Theorem 2.1.Theorem 2.3. If A1, A2 and (2.5) are satis�ed and α(n) → ∞, β(n) = o(nα2(n)) as

n→ ∞, then {Z θ̂n
n | θ̂n} onverges weakly as n→ ∞ in Skorokhod spae D(R+,R+) to

πα(W0, ·) in distribution.Let (an)∞n=1 be a sequene of positive numbers, suh that n(an − 1) → d ∈ R as
n→ ∞. We assume that there exist limits

lim
n→∞

∆2(an, n)

B2(an, n)
= γ1(d), lim

n→∞

σ2(an, n)

B2(an, n)
= γ2(d). (2.7)Naturally γ1(d) + γ2(d) = 1 for eah d.To provide the next theorem, we need some additional notation. We denote

να(d, t) =

t∫

0

uαed(t−u)(1 − ed(t−u))du, ∇β(d, t) =

t∫

0

uβe2d(t−u)du,

ψ(d, t) =
γ1(d)d

να(d, 1)

t∫

0

µα(d, u)e2d(t−u)du+
γ2(d)

∇β(d, 1)

t∫

0

uβe2d(t−u)du. (2.8)It is lear that the limits in (2.7) do exist, if ratio σ2(an, n)/∆2(an, n) has a (�niteor in�nite) limit as n→ ∞. Using Lemma 3.1, given below, we an show that
lim

n→∞

σ2(an, n)

∆2(an, n)
=
bc

d
ν(d, 1)∇β(d, 1)where c is de�ned in (2.3). In partiular, it is also useful to note that µα(d, t) =

tα+1/(α+1) and ∇β(d, t) = t1+β/(1+β) when d = 0, and limd→0 να(d, t)/a = tα+2/(α+
1)(α + 2).



Asymptoti behaviour of a bootstrap branhing proess 135Theorem 2.4. If A1-A4 and (2.5) are satis�ed and α(n) → ∞ as n → ∞, then
{Y θ̂n

n | θ̂n} onverges weakly as n → ∞ in Skorokhod spae D(R+,R) to Y(W0, ·) indistribution, where Y(W0, t) = W (ψ(W0, t)).Remark 2.2. Theorems 2.3 and 2.4 show that, when the estimator θ̂n is suh that(2.5) holds with P (W0 = 0) < 1, then the asymptoti behavior of the bootstrap proessis di�erent from the behavior of the original proess. In other words, the ondition
n(ân − 1) → 0 as n → ∞ a.s. or in probability is neessary for the onditionedbootstrap proess to have the same asymptoti behavior as the initial proess in thesense of onvergene a.s. or in probability, respetively.We onlude this setion with a result whih is useful in the estimation theory. Let
F θ̂n(k) for eah k and n be the sigma-algebra generated by {Z θ̂n(i), i = 1, 2, ..., k} and
M θ̂n(k) = Z θ̂n(k) − E[Z θ̂n(k)|F θ̂n(k − 1)]. Then {M θ̂n(k),F θ̂n(k)}∞k=1 given θ̂n is asequene of martingale di�erenes. We de�ne proess

W θ̂n
n (t) =

[nt]∑

i=1

M θ̂n(i)

B(ân, n)
.Theorem 2.5. Let A1-A4 be satis�ed and α(n) → ∞ as n→ ∞. then(a) onditioned proess {W θ̂n

n | θ̂n} onverges weakly as n → ∞ in Skorokhod spae
D(R+,R) to Y on the set A, where Y(t) = W (ψ(t)), W (t) is the standard Wienerproess and ψ(t) is de�ned just before Theorem 2.2;(b) if n(ân − 1)

P→ 0, then {W θ̂n
n | θ̂n} onverges weakly as n → ∞ in Skorokhodspae D(R+,R) to Y in probability.Example 2.2. As it was mentioned before, the approximation theorems for the boot-strap proess allow us to investigate the validity of the bootstrap without using anexpliit form of the estimator. Here we demonstrate it for WCLSE. We use the in-diret approah suggested by Ch. Jaob in a private disussion. We represent thebootstrap proess as

Z θ̂n(k) = E[Z θ̂n(k)| F θ̂n(k − 1)] +M θ̂n(k).Using (Z θ̂n(k − 1))1/2 as a �weight", we de�ne
Sn(a) =

n∑

k=1

(T
(n)
k − gnk(a))

2,where T (n)
k = Z θ̂n(k)(Z θ̂n(k − 1))−1/2 and gnk(a) = E[Z θ̂n(k)| F θ̂n(k − 1)](Z θ̂n(k −

1))−1/2. Then it is lear that the bootstrap WCLSE is
âθ̂n

n = arg min
a∈R+

Sn(a).We use the Taylor expansion for S ′
n(a) as follows:

S ′
n(âθ̂n

n ) = S ′
n(ân) + S ′′

n(an)(âθ̂n
n − ân),



136 I. Rahimovwhere ân is the initial WCLSE, an = ân +ε(âθ̂n
n − ân) and ε ∈ (0, 1). Sine S ′

n(âθ̂n
n ) = 0,we obtain that

âθ̂n
n − ân = −S

′
n(ân)

S ′′
n(an)

. (2.9)If we take into aount that
g′nk(a) = (Z θ̂n(k − 1))1/2, g′′nk(a) = 0, S ′

n(a) = −2
n∑

k=1

(T
(n)
k − gnk(a))g

′
nk(a),

S ′′
n(a) = −2

n∑

k=1

(g′nk(a))
2 = 2

n∑

k=1

Z θ̂n(k − 1),we obtain from (2.9) that
âθ̂n

n − ân =

∑n
k=1M

θ̂n(k)
∑n

k=1Z
θ̂n(k − 1)

.Let n(ân − 1)
P→ 0 as n → ∞. It follows from parts (b) of Theorems 2.1 and 2.5that {

nA(ân, n)

B(ân, n)
(âθ̂n

n − ân)|θ̂n

}
d→ (2 + α)N (0, 1),as in the proof of Theorem 3.1 in [11℄. Using Lemma 3.1, whih is given in the nextsetion, we an show that A(ân, n)

P∼ A(n) and B(ân, n)
P∼ B(n) as n→ ∞. Thus, wehave the following result.Theorem 2.6. Let A1-A4 be satis�ed, n(ân − 1)

P→ 0, α(n) → ∞ and β(n) =
o(nα2(n)) as n→ ∞. Then

{
nA(n)

B(n)
(âθ̂n

n − ân)|θ̂n

}
d→ (2 + α)N (0, 1).In partiular, Theorem 2.6 shows the validity of the bootstrap for the WCLSEde�ned in Example 2.1.3 Array of proessesIn this setion we provide funtional limit theorems for an array of branhing proesses,whih will be used in the proof of our main theorems. Let {X(n)

ki , k, i ≥ 1} and {ξ(n)
k , k ≥

0} be two families of independent, nonnegative and integer-valued random variablesfor eah n ∈ N. We onsider a sequene of branhing proesses (Z(n)(k), k ≥ 0)n≥1de�ned reursively as
Z(n)(k) =

Z(n)(k−1)∑

i=1

X
(n)
ki + ξ

(n)
k , k, n ≥ 1, (3.1)



Asymptoti behaviour of a bootstrap branhing proess 137with Z(n)(0) = 0, n ≥ 1. As before, we assume that X(n)
ki have a ommon distributionfor all k and i, and families {X(n)

ki } and {ξ(n)
k } are independent. The variables X(n)

kiwill be interpreted as the number of o�spring of the ith individual in the (k − 1)thgeneration and ξ
(n)
k as the number of immigrating individuals in the kth generation.Then Z(n)(k) an be onsidered as the size of population of kth generation in nthproess.Let an = EX

(n)
ki be the mean number of o�spring of a single individual in the

nth proess. The proess with non-stationary immigration is a natural generalizationof the lassial model. It turned out that the long run behavior of the proess islargely in�uened by the non-homogeneity of the immigration proess in time. As aresult ertain new problems, regarding the asymptoti behavior of the proess when theimmigration rate inreases, dereases or remains bounded, emerged in the literature.Therefore, in solving these problems one needs ertain regularity assumptions for theparameters of the immigration proess. The family of branhing proesses (3.1) is saidto be nearly ritial if an → 1 as n→ ∞.We assume that an = EX
(n)
ij and bn = V arX

(n)
ij are �nite for eah n ≥ 1 and

α(n, i) = Eξ
(n)
i <∞, β(n, i) = V arξ

(n)
i <∞ for all n ≥ 1 and i ≥ 0. Furthermore, weassume that the following ondition is satis�ed.C1. There are sequenes (α(i))∞i=1 ∈ Rα and (β(i))∞i=1 ∈ Rβ with α, β ≥ 0, suh thatfor eah s ∈ R+,

max
1≤k≤ns

|α(n, k) − α(k)| = o(α(n)), max
1≤k≤ns

|β(n, k) − β(k)| = o(β(n))as n→ ∞.In the above assumptions An(an, i) = EZ(n)(i) and B2
n(an, i) = V arZ(n)(i) are�nite for eah n ≥ 1, 0 ≤ i ≤ n, and one an �nd that An(an, k) =

∑k
i=0 α(n, i)ak−i

nand B2
n(an, k) = ∆2

n(an, k) + σ2
n(an, k), where

∆2
n(an, k) =

k∑

i=1

α(n, i)V ar(X(n)(k − i)), σ2
n(an, k) =

k∑

i=1

β(n, i)a2(k−i)
n ,

V ar(X(n)(i)) =
bn

1 − an
ai−1

n (1 − ai
n), an 6= 1.Here X(n)(i) is the orresponding branhing proess without immigration and, as usual,it is de�ned by the relation

X(n)(k) =

X(n)(k−1)∑

i=1

X
(n)
ki , X(n)(0) = 1, k, n ≥ 1.In partiular, when k = n we use also notation

A(an, n) = An(an, n), B2(an, n) = B2
n(an, n),

∆2(an, n) = ∆2
n(an, n), σ2(an, k) = σ2

n(an, n),



138 I. Rahimovwhih is onsistent with (2.1).We onsider the following proesses.
Zn(t) =

Z(n)([nt])

A(an, n)
, Yn(t) =

Z(n)([nt]) −EZ(n)([nt])

B(an, n)
.First we provide a onvergene theorem for Zn(t). We obtain approximation of thesequene {Zn(t), n ≥ 1}, t ∈ R+, satisfying the following onditions:C2. for some d ∈ R an = 1 + n−1d+ o(n−1) as n→ ∞.C3. bn → b ∈ R+ as n→ ∞.C4. α(n) → ∞ and β(n) = o(nα2(n)) as n→ ∞.Theorem 3.1. If onditions C1-C4 are satis�ed, then Zn

D→ πα as n → ∞ weakly inSkorokhod spae D(R+,R), where πα(t) and µα(d, t), t ∈ R+ are de�ned in (2.6).Remark 3.1. The ondition C2 is the same as in the study of an array of time-homogeneous proesses. The seond ondition in C4 appeared in the proof of thefuntional limit theorems for a single branhing proess with a non-homogeneous im-migration as well. What onerns C1, the �rst part, related to the immigration mean,is satis�ed when α(n) → ∞, if just limn→∞ max1≤k≤ns |α(n, k) − α(k)| < ∞. In gen-eral, C1 is satis�ed, for example, if there are εi(n) → 0 as n → ∞, i = 1, 2, suh that
α(n, k) = α(k)(1 + ε1(n)) and β(n, k) = β(k)(1 + ε2(n)).The proof of Theorem 3.1 an be found in [12℄.Next theorem is related to �utuations of the proess. We denote �entered" o�-spring and immigration variables as X̄(n)

ki = X
(n)
ki − an, ξ̄

(n)
k = ξ

(n)
k − α(n, k) and put

δ(1)
n (ε) = γ1(d)E[(X̄

(n)
ki )2χ(|X̄(n)

ki | > εB(an, n))],

δ(2)
n (ε) =

1

B2(an, n)

n∑

k=1

E[(ξ̄
(n)
k )2χ(|ξ̄(n)

k | > εB(an, n))],where χ(A) stands for the indiator of event A and γ1(a) is de�ned in (2.7). We needthe following ondition to be satis�ed:C5. δ(i)
n (ε) → 0 as n→ ∞ for eah ε > 0 and i = 1, 2.Theorem 3.2. If onditions C1-C3 and C5 are satis�ed, then Yn

D→ Y as n → ∞weakly in Skorokhod spae D(R+,R), where Y (t) = W (ψ(d, t)), t ∈ R+, W (t) is astandard Brownian motion and ψ(d, t) is de�ned in (2.8).Remark 3.2. (a) Note that the Lindeberg-type ondition for the family {X(n)
ki , k, i ≥

1} is trivially satis�ed, if γ1(d) = 0. If γ1(d) 6= 0 and E(X
(n)
ki )2+l < ∞ for all n ∈ Nand some l ∈ R+, then

δ
(1)
n (ε)

γ1(d)
≤ 1

εlBl(an, n)
E|X(n)

ki − an|2+l.



Asymptoti behaviour of a bootstrap branhing proess 139Sine B2(an, n) ≥ ∆2(an, n) ∼ Kn2α(n) as n → ∞ due to Lemma 3.1 below, where
K is a positive onstant, the Lindeberg-type ondition is satis�ed, for example, if
E|X(n)

ki − an|3 = o(n
√
α(n)) and α(n) → ∞ as n→ ∞.(b) What onerns the Lindeberg-type ondition for the immigration variables, itis automatially satis�ed when γ1(d) 6= 0, sine in this ase σ2(an, n) = o(B2(an, n))as n → ∞. If γ1(d) = 0, then it is equivalent to the Lindeberg ondition for the array

{ξ(n)
k , k, n ≥ 1}.() When proesses {Z(n)(k), k ≥ 0}, n ≥ 1, are ritial with the same o�springand immigration distributions, onditions C1-C3 are satis�ed with a = 0. Therefore,from Theorem 3.3 we obtain assertions of Theorems 1, 2 and 3 in [10℄ in the ases

γ1(0) = 1, γ2(0) = 1 and 0 < γi(0) < 1, i = 1, 2, respetively.Theorem 3.2 an be proved using the same approah whih was used in the proof ofTheorems 2-4 in [12℄. It needs just a more areful analysis in applying the martingaleonvergene theorem. Therefore, we do not give a proof of this theorem.We now provide a theorem for the proess of martingale di�erenes. We de�ne
F (n)(k) = σ{Z(n)(i), i = 1, 2, ..., k} and denoteM (n)(k) = Z(n)(k)−E[Z(n)(k)|F (n)(k−
1)]. We onsider the following proess:

Wn(t) =
1

B(dn, n)

[nt]∑

i=1

M (n)(i).Theorem 3.3. If onditions C1-C3 and C5 are satis�ed, then Wn
D→ Y (1) as n → ∞weakly in Skorokhod spae D(R+,R), where Y (1)(t) = W (ϕ(d, t)), t ∈ R+, W (t) is astandard Brownian motion and

ϕ(d, t) =
γ1(d)d

να(d, 1)

t∫

0

µα(d, u)du+
γ2(d)t

1+β

(1 + β)∇β(d, 1)
.The proof of this theorem is also based on the diret use of the martingale-limittheorem and is similar to the proof of Theorems 2-4 in [12℄.We onlude this setion with a lemma borrowed from [12℄ whih is required forproofs of main theorems.Lemma 3.1. If onditions C1 and C2 are satis�ed, then uniformly in s ∈ [0, T ] foreah �xed T > 0

a) lim
n→∞

An(an, [ns])

nα(n)
= µα(d, s), lim

n→∞

σ2
n(an, [ns])

nβ(n)
= ∇β(d, s),

b) lim
n→∞

∆2
n(an, [ns])

n2α(n)bn
=






(1/d)να(d, s), if d 6= 0

sα+2/(α+ 1)(α + 2), if d = 0
.Lemma 3.1 is also proved in [12℄.



140 I. Rahimov4 Proofs of main theoremsProof of Theorem 2.1. Part (a). Sine the bootstrap proess {Z θ̂n
n (t), t ∈ R+} given

θ̂n, onstitutes an array of branhing proesses, we show that onditions of Theorem3.1 are satis�ed. It is easy to see that C1 and C4 are trivially satis�ed. Condition C2is also satis�ed on the set A with a = 0. It follows from A1:
B := {ω ∈ Ω : ân → 1} = {ω ∈ Ω : f−1

a (ân) → f−1
a (1)} = {ω ∈ Ω : θ̂n → θ0},where θ0 is the true value of θ. Sine bθ̂n := V ar(X θ̂n

ki |θ̂n) = fb(θ̂n), we immediatelyobtain from A2 that bθ̂n → b as n → ∞ for eah ω ∈ B. Taking into aount that
A ⊂ B, we see that ondition C2 is also satis�ed on the set A. Hene, the assertion(a) of the theorem follows by Theorem 3.1.Part (b). Let P θ̂n

n and Pα be probability measures generated by {Z θ̂n
n |θ̂n} and µα,respetively. Assume that as n→ ∞

n(ân − 1)
P→ 0. (4.1)We prove that any subsequene N

′ ⊂ N = {1, 2, ...} ontains another subsequene
N

′′ ⊂ N
′ suh that ∫

D

g(x)P θ̂n
n (ω, dx)

a.s.→
∫

D

g(x)Pα(dx) (4.2)along N
′′, for any funtion g : D(R+R+) 7→ R bounded and ontinuous in Skorokhodmetri. It follows from (4.1) that n(ân − 1)

P→ 0 along any subsequene N
′ ⊂ N.Therefore, there is a subsequene N

′′ ⊂ N
′ suh that n(ân − 1) → 0 along N

′′ for eah
ω ∈ A with P (A) = 1. Thus, due to part (a) of Theorem 2.1,

∫

D

g(x)P θ̂n
n (ω, dx) →

∫

D

g(x)Pα(dx)along N
′′ for eah ω ∈ A, whih implies (4.2). �Proof of Theorem 2.2. Part (a). We show that onditions of Theorem 3.2 are satis�ed.Conditions C1-C3 are satis�ed, as in the proof of previous theorem. We just need tohek ondition C5. For this we denote

Aθ̂n(k) := E[Z θ̂n(k)|θ̂n], B2θ̂n(k) := E[(Z θ̂n(k) −Aθ̂n(k))2|θ̂n]Then we easily obtain that Aθ̂n(n) = A(ân, n), B2θ̂n(n) = B2(ân, n).We apply Lemma 3.1 to get on the set A = {ω ∈ Ω : n(ân − 1) → 0} the followingonvergene
A(ân, [ns])

nα(n)
→ s1+α

1 + α
,
σ2(ân, [ns])

nβ(n)
→ s1+β

1 + β

∆2(ân, [ns])

n2α(n)fb(θ̂n)
→ s2+α

(1 + α)(2 + α)



Asymptoti behaviour of a bootstrap branhing proess 141as n → ∞ for eah s ∈ R+. On the other hand, sine ∆2(ân, n)/∆2(n) → 1 and
σ2(ân, n)/σ2(n) → 1 as n→ ∞ on the set A, we have B2(ân, n)/B2(n) → 1 on the set
A. We onlude from these arguments that

δ(2)(ε, θ̂n) :=
1

B2(ân, n)

n∑

k=1

E[(ξ̄k)
2χ(|ξ̄k| > εB(ân, n))|θ̂n]tends to zero as n→ ∞ on the set A, due to ondition A4.We now onsider

δ(1)
n (ε, θ̂n) = γ1(d)E[(X̄ θ̂n

ki )2χ(|X̄ θ̂n

ki | > εB(ân, n))|θ̂n].If γ1(0) = 0, then δ(1)
n (ε, θ̂n) → 0 as n→ ∞ on A. If γ1(0) 6= 0, then
δ
(1)
n (ε, θ̂n)

γ1(0)
≤ 1

εlBl(ân, n)
E[|X θ̂n

ki − ân|2+l|θ̂n]. (4.3)It follows from ondition A3 that on the set A ⊂ B = {ω ∈ Ω : θ̂n → θ0} we have
E[(X θ̂n

ki )2+l|θ̂n] → E[(Xki)
2+l] as n → ∞. If we take this into aount, we obtain from(4.3) that δ(1)

n (ε, θ̂n) → 0 as n→ ∞ on the set A.Thus, ondition C5 of Theorem 3.2 is satis�ed and we have the assertion (a) ofTheorem 2.2.The proof of part (b) repeats the arguments of the proof of onvergene inprobability in Theorem 2.1. We just need to onsider the sequene of probabilitymeasures generated by {Y θ̂n
n |θ̂n}. Therefore, we omit the proof of this part. �Proof of Theorem 2.3. We use quite standard tehnique based on Skorokhod's theorem(see [1℄, Theorem 29.6). We have from (2.5) that n(ân−1)

d→W0 as n→ ∞. Therefore,due to Skorokhod's theorem there exists a sequene {â′n, n ≥ 1} of random variablesand a random variableW ′
0 on a ommon probability spae (Ω′,F , Q) suh that â′n d

= ânfor all n ≥ 1, W ′
0

d
= W0 and n(â′n(ω′) − 1) →W ′

0 as n→ ∞ for eah ω′ ∈ Ω′.For any ω′ ∈ Ω′ we obtain θ̂′n(ω′) from equation a = fa(θ) as θ̂′n(ω′) = f−1
a (â′n(ω′)).Let now {X ′(n)

ki , k, i ≥ 1} be a family of i.i.d. random variables suh that
P{X ′(n)

ki = j} = pj(θ̂
′
n)for eah ω′ ∈ Ω′ and n ≥ 1 and {ξk, k ≥ 1} be a sequene of random variables with theprobability distributions {qj(k), j ≥ 0}. We de�ne a new bootstrap proess reursivelyby the relation

Z ′(n)(k) =

Z′(n)(k−1)∑

i=1

X
′(n)
ki + ξk, k = 1, 2, ...for eah ω′ ∈ Ω′, n ≥ 1 with Z ′(n)(0) = 0. We denote

Z ′
n(t) =

Z ′(n)([nt])

A(â′n, n)
, Y ′

n(t) =
Z ′(n)([nt]) −A(â′n, [nt])

B(â′n, n)
. (4.4)



142 I. RahimovWe introdue for eah E ∈ B(D) the probability measure Pn(θ, E) := P (Zn ∈ E),where Zn(t) is the normalized original proess. Then it is lear that
P (Z θ̂n

n ∈ E|θ̂n) = Pn(θ̂n, E), P (Z ′
n ∈ E|θ̂′n) = Pn(θ̂′n, E).We also denote P (d, E) = P (πα(d, ·) ∈ E). Reall that n(â′n(ω′)− 1) →W ′

0 as n→ ∞for eah ω′ ∈ Ω′. Therefore, repeating the arguments of the proof of Theorem 2.1, weobtain that ∫

D

g(x)Pn(θ̂
′
n, dx) →

∫

D

g(x)P (W ′
0, dx) (4.5)as n→ ∞ for any funtion g : D(R+,R+) 7→ R bounded and ontinuous in Skorokhodmetri.Sine

∫

D

g(x)Pn(θ̂′n, dx)
d
=

∫

D

g(x)Pn(θ̂n, dx),

∫

D

g(x)P (W ′
0, dx)

d
=

∫

D

g(x)P (W0, dx),we obtain from (4.5) that
∫

D

g(x)Pn(θ̂n, dx)
d→
∫

D

g(x)P (W0, dx).

�Proof of Theorem 2.4. We onsider appliability of Theorem 3.2 to the proess Y ′
n(t)de�ned in (4.4). It follows from the onvergene n(â′n(ω′) − 1) → W ′

0 as n → ∞, that
θ̂′n(ω′) → θ0 as n → ∞ for eah ω′ ∈ Ω′. Therefore, onditions C1-C3 are triviallysatis�ed.We now show that ondition C5 is also ful�lled. Sine

A′
n(k) := E[Z ′(n)(k)| â′n] = A(â′n, k)and

B′2
n (k) := E[(Z ′(n)(k) −A′

n(k))2| â′n] = B2(â′n, k),applying again Lemma 3.1, we obtain that
A(â′n, [ns])

nα(n)
→ µα(W ′

0, s),
σ2(â′n, [ns])

nβ(n)
→ ∇β(W ′

0, s),

∆2(â′n, [ns])

n2α(n)fb(θ̂′n)
→ 1

W ′
0

να(W ′
0, s)as n→ ∞ for eah s ∈ R+ and ω′ ∈ Ω′. It follows from this and Lemma 3 in [10℄ that

∆2(â′n, n)

∆2(1, n)
→ (α + 1)(α+ 2)

W ′
0

να(W ′
0, 1),

σ2(â′n, n)

σ2(1, n)
→ (β + 1)∇β(W ′

0, 1)



Asymptoti behaviour of a bootstrap branhing proess 143as n → ∞ for eah ω′ ∈ Ω′. Therefore, for eah �xed ω′ ∈ Ω′ there exists a positiveonstant C(α, β,W ′
0(ω

′)), suh that
B2(â′n, n)

B2(1, n)
→ C(α, β,W ′

0) (4.6)as n→ ∞. We now onsider
δ′(2)(ε, ω′) :=

1

B2(â′n, n)

n∑

k=1

E[(ξ̄k)
2χ(|ξ̄k| > εB(â′n, n))].It follows from (4.6) that, if ondition C4 is satis�ed, then δ′(2)(ε, ω′) → 0 as n → ∞for eah �xed ω′ ∈ Ω′.To show that

δ′(1)n (ε, ω′) = γ1(W0(ω
′))E[(X̄

′(n)
ki )2χ(|X̄ ′(n)

ki | > εB(â′n, n))]tends to zero as n→ ∞ for eah �xed ω′ ∈ Ω′, we repeat the same arguments as in theproof of part (a) of the Theorem 2.2.Hene, it follows from Theorem 3.2 that
∫

D

g(x)Qn(θ̂′n, dx) →
∫

D

g(x)Q(W ′
0, dx) (4.7)as n → ∞ for eah �xed ω′ ∈ Ω′, for any funtion g : D(R+,R+) 7→ R bounded andontinuous in Skorokhod metri, where

Qn(θ, E) := P (Yn ∈ E), Q(d, E) := P (W (ψ(d, ·) ∈ E).On the other hand, sine θ̂n
d
= θ̂′n and W0

d
= W ′

0, we have
∫

D

g(x)Qn(θ̂′n, dx)
d
=

∫

D

g(x)Qn(θ̂n, dx),

∫

D

g(x)Q(W ′
0, dx)

d
=

∫

D

g(x)Q(W0, dx).Therefore, we obtain from (4.7) that
∫

D

g(x)Qn(θ̂n, dx)
d→
∫

D

g(x)Q(W0, dx)as n→ ∞. �Proof of Theorem 2.5 is similar to the proof of Theorem 2.2. Here instead of Theorem3.2 we apply Theorem 3.3. Sine onditions of these two theorems are the same, theappliability of the last diretly follows from the proof of Theorem 2.2. �AknowledgmentsI thank the referee and the assoiate editor for areful reading the �rst version of thepaper and for valuable omments. My sinere thanks to University College of ZayedUniversity, Dubai, UAE, for all the support and failities I had.
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