EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879

Volume 2, Number 1 (2011), 112 – 119

ON SCORES IN MULTIPARTITE HYPERTOURNAMENTS

S. Pirzada

Communicated by M. Otelbaev

Key words: hypergraph, hypertournament, multipartite hypertournament, score, losing score.

AMS Mathematics Subject Classification: 05C20.

Abstract. In this paper, we discuss two types of hypertournaments, one $[\alpha_i]_1^k$ -multipartite hypertournament ($[\alpha_i]_1^k$ -MHT) and the second $(\alpha_i)_1^k$ -multipartite hypertournament ($(\alpha_i)_1^k$ -MHT). We obtain necessary and sufficient conditions for the k lists of non-negative integers in non-decreasing order to be the losing score lists (score lists) of $[\alpha_i]_1^k$ -MHT and that of $(\alpha_i)_1^k$ -MHT. We extend this concept to more general class of $[\alpha_i]_1^k$ -multipartite multihypertournament ($[\alpha_i]_1^k$ -MMHT) and $(\alpha_i)_1^k$ -multipartite multihypertournament ($(\alpha_i)_1^k$ -MMHT).

1 Introduction

A hypergraph is a generalization of a graph [1]. While an edge of a graph is a pair of vertices, an edge of a hypergraph is a subset of the vertex set. An edge consisting of k vertices is called a k-edge and a hypergraph whose all edges are k-edges is called a k-hypergraph. A k-hypertournament is a complete k-hypergraph with each k-edge endowed with an orientation, that is, a linear arrangement of the vertices contained in the hyperedge. In a k-hypertournament, the score $s(v_i)$ or s_i of a vertex v_i is the number of arcs containing v_i and in which v_i is not the last element, the losing score $r(v_i)$ or r_i of a vertex v_i is the number of arcs containing v_i and in which v_i is the last element. The score sequence (losing score sequence) is formed by listing the scores (losing scores) in non-decreasing order.

The following characterization of score sequences and losing score sequences in k-hypertournaments are due to Zhou, Yao and Zhang [12]. These results are analogous to Landau's theorem [4] on tournament scores.

Theorem 1. Given two non-negative integers n and k with $n \ge k > 1$, a non-decreasing sequence $R = [r_i]_1^n$ of non-negative integers is a losing score sequence of some k-hypertournament if and only if for each p,

$$\sum_{i=1}^{p} r_i \ge \binom{p}{k},$$

with equality when p = n.

Theorem 2. Given non-negative integers n and k with $n \geq k > 1$, a non-decreasing sequence $S = [s_i]_1^n$ of non-negative integers is a score sequence of some k-hypertournament if and only if for each p,

$$\sum_{i=1}^{p} s_i \ge p \binom{n-1}{k-1} + \binom{n-p}{k} - \binom{n}{k},$$

with equality when p = n.

A new and short proof of Theorem 1 can be seen in Pirzada and Zhou [9]. Koh and Ree [2, 3] have given some properties of the hypertournament matrix and have also found some conditions for the existence of k-hypertournament matrix with constant score sequence. Various results on scores in bipartite, tripartite and multipartite hypertournament scores can be found in [5, 6, 7, 10]. The extension of score structure to oriented hypergraphs can be found in Pirzada and Zhou [8]. Further, various results on degrees and degree sequences in hypertournaments can be found in Wang and Zhou [11], and the extension of degrees to oriented hypergraphs can be seen in Zhou and Pirzada [13].

2 Scores in $[\alpha_i]_1^k$ -multipartite hypertournaments

Given non-negative integers n_i and $\alpha_i (i = 1, 2, \dots, k)$ with $n_i \geq \alpha_i \geq 1$ for each i, an $[\alpha_1, \alpha_2, \dots, \alpha_k]$ -k-partite hypertournament (or $[\alpha_i]_1^k$ -multipartite hypertournament or $[\alpha_i]_1^k$ -MHT) of order $\sum_1^k n_i$ consists of k vertex set U_i with $|U_i| = n_i$ for each i $(1 \leq i \leq k)$ together with an arc set E, a set of $\sum_1^k \alpha_i$ tuples of vertices, with exactly α_i vertices from U_i , called arcs such that any $\sum_1^k \alpha_i$ subset $\bigcup_1^k U_i'$ of $\bigcup_1^k U_i$, E contains exactly one of the $(\sum_1^k \alpha_i)! \sum_1^k \alpha_i$ -tuples whose α_i entries belong to U_i' . The score and losing score of a vertex in $[\alpha_i]_1^k$ -hypertournament is defined in the same way as in k-hypertournaments. The following two results [7] characterize losing score lists and score lists in $[\alpha_i]_1^k$ -MHT.

Theorem 3. Given k non-negative integers n_i and k non-negative integers α_i with $n_i \geq \alpha_i \geq 1$, for each $i(1 \leq i \leq k)$, the k non-decreasing lists $R_i = [r_{ij_i}]_{j_i}^{n_i}$ of non-negative integers are the losing score lists of $[\alpha_i]_1^k$ - MHT if and only if for each $p_i(1 \leq i \leq k)$ with $p_i \leq n_i$,

$$\sum_{i=1}^{k} \sum_{j_i=1}^{p_i} r_{ij_i} \ge \prod_{i=1}^{k} \binom{p_i}{\alpha_i} \tag{2.1}$$

with equality when $p_i = n_i$.

Theorem 4. Given non-negative integers n_i and α_i with $n_i \geq \alpha_i \geq 1$, for each $i(1 \leq i \leq k)$, the k non-decreasing lists $S_i = [s_{ij_i}]_{j_i}^{n_i}$ of non-negative integers are the losing score lists of $[\alpha_i]_1^k$ - MHT if and only if for each $p_i \leq n_i$ ($1 \leq i \leq k$) with $p_i \leq n_i$,

$$\sum_{i=1}^{k} \sum_{i=1}^{p_i} s_{ij_i} \ge \left(\sum_{i=1}^{k} \frac{\alpha_i p_i}{n_i}\right) \left(\prod_{i=1}^{k} \binom{n_i}{\alpha_i}\right) + \prod_{i=1}^{k} \left(\frac{n_i - p_i}{\alpha_i}\right) - \prod_{i=1}^{k} \binom{n_i}{\alpha_i}$$
(2.2)

with equality when $p_i = n_i$.

114 S. Pirzada

If in $[\alpha_i]_1^k$ -MHT H, the arc set E contains at most $(\sum_1^k \alpha_i)! \sum_1^k \alpha_i$ -tuples (but at least one), then it is called $[\alpha_i]_1^k$ -multipartite multihypertournament(or briefly $[\alpha_i]_1^k$ -MMHT). If E contains exactly $(\sum_1^k \alpha_i)! \sum_1^k \alpha_i$ -tuples, then $[\alpha_i]_1^k$ -MMHT is said to be complete. The score and losing score of a vertex in an $[\alpha_i]_1^k$ -MMHT is defined in the same way as in $[\alpha_i]_1^k$ -MHT. The losing score lists R_i , $i=1,2,\cdots,k$ of an $[\alpha_i]_1^k$ -MMHT H are the k non-decreasing sequences $R_i = [r_{ij_i}]_{j_i=1}^{n_i}$, where r_{ij_i} is the losing score of a vertex u_{ij_i} in U_i . Similarly the score lists S_i , $i=1,2,\cdots,k$ of an $[\alpha_i]_1^k$ -MMHT H are the k non-decreasing sequences $S_i = [s_{ij_i}]_{j_i=1}^{n_i}$, where s_{ij_i} is the score of a vertex u_{ij_i} in U_i . We note that there are exactly $(\sum_1^k \alpha_i)! \prod_{i=1}^k \binom{n_i}{\alpha_i}$ arcs in a complete $[\alpha_i]_1^k$ -MMHT, and therefore

$$\sum_{i=1}^{k} \sum_{j_{i}=1}^{n_{i}} d_{H}^{-}(u_{ij_{i}}) = \left(\sum_{i=1}^{k} \alpha_{i}\right)! \prod_{i=1}^{k} \binom{n_{i}}{\alpha_{i}}$$

where $d_H^-(u_{ij_i})$ denotes the number of arcs in which u_{ij_i} is at the last entry and thus

$$\sum_{i=1}^{k} \sum_{j_i=1}^{p_i} r_{ij_i} = \left(\sum_{i=1}^{k} \alpha_i\right)! \prod_{i=1}^{k} \binom{n_i}{\alpha_i}.$$
 (2.3)

Now we have the following result.

Theorem 5. If H is a complete $[\alpha_i]_1^k$ -MMHT of order $\sum_{i=1}^k n_i$ with score lists $S_i = [s_{ij_i}]_{j_i=1}^{n_i}$ for each $i, 1 \leq i \leq k$, then

$$\sum_{i=1}^{k} \sum_{j_i=1}^{n_i} s_{ij_i} = \left[\left(\sum_{i=1}^{k} \alpha_i \right) - 1 \right] \left(\sum_{i=1}^{k} \alpha_i \right)! \left[\prod_{i=1}^{k} \binom{n_i}{\alpha_i} \right].$$

Proof. Since there are $(\sum_{i=1}^k \alpha_i)!\binom{n_i-1}{\alpha_i-1}[\prod_{i=1,t\neq i}^k \binom{n_t}{\alpha_t}]$ arcs containing a vertex $u_{ij_i} \in U_i$, for each $i, 1 \leq i \leq k$ and $1 \leq j_i \leq n_i$, using equation (3), we get

$$\sum_{i=1}^{k} \sum_{j_{i}=1}^{n_{i}} s_{ij_{i}} = \left[\sum_{i=1}^{k} \left(\sum_{i=1}^{k} \alpha_{i}\right)! \binom{n_{i}-1}{\alpha_{i}-1}\right] \left[\prod_{i=1,t\neq i}^{k} \binom{n_{t}}{\alpha_{t}}\right] - \left(\sum_{i=1}^{k} \alpha_{i}\right)! \prod_{i=1}^{k} \binom{n_{i}}{\alpha_{i}}\right]$$

$$= \left(\sum_{i=1}^{k} \alpha_{i}\right)! \sum_{i=1}^{k} \binom{n_{i}-1}{\alpha_{i}-1} \prod_{i=1,t\neq i}^{k} \binom{n_{t}}{\alpha_{t}} - \left(\sum_{i=1}^{k} \alpha_{i}\right)! \prod_{i=1}^{k} \binom{n_{i}}{\alpha_{i}}\right]$$

$$= \left(\sum_{i=1}^{k} \alpha_{i}\right)! \left[\alpha_{1} \prod_{t=1}^{k} \binom{n_{t}}{\alpha_{t}} + \alpha_{2} \prod_{t=1}^{k} \binom{n_{t}}{\alpha_{t}} + \cdots + \alpha_{k} \prod_{t=1}^{k} \binom{n_{t}}{\alpha_{t}}\right]$$

$$= \left(\sum_{i=1}^{k} \alpha_{i}\right)! \left[\left(\alpha_{1} + \alpha_{2} + \cdots + \alpha_{k} - 1\right) \prod_{i=1}^{k} \binom{n_{i}}{\alpha_{i}}\right]$$

$$= \left(\sum_{i=1}^{k} \alpha_{i}\right)! \left[\left(\sum_{i=1}^{k} \alpha_{i}\right) - 1\right] \prod_{i=1}^{k} \binom{n_{i}}{\alpha_{i}},$$

and the proof is complete.

The following two results are immediate consequences of the above observations.

Theorem 6. The lists $R_i = [r_{ij_i}]_{j_i=1}^{n_i}$ are the losing score lists of a complete $[\alpha_i]_1^k$ -MMHT if and only if for each p_i , $1 \le i \le k$

$$\sum_{i=1}^{k} \sum_{j_i=1}^{p_i} r_{ij_i} = \left[\left(\sum_{i=1}^{k} \alpha_i \right) - 1 \right]! \left[p_i \binom{n_i - 1}{\alpha_i - 1} \prod_{t=1, t \neq i}^{k} \binom{n_t}{\alpha_t} \right].$$

Theorem 7. The lists $S_i = [s_{ij_i}]_{j_i=1}^{n_i}$ are the score lists of a complete $[\alpha_i]_1^k$ -MMHT if and only if for each p_i , $1 \le i \le k$

$$\sum_{i=1}^{k} \sum_{j_i=1}^{p_i} s_{ij_i} = \left[\left(\sum_{i=1}^{k} \alpha_i \right) - 1 \right]! \left[\left(\sum_{i=1}^{k} \alpha_i \right) - 1 \right] \left[p_i \binom{n_i - 1}{\alpha_i - 1} \prod_{t=1, t \neq i}^{k} \binom{n_t}{\alpha_t} \right].$$

3 Scores in $(\alpha_i)_1^k$ -multipartite hypertournaments

Let n_i and α_i $(i = 1, 2, \dots, k)$ be non-negative integers with $n_i \geq \alpha_i \geq 1$ for each i. An $(\alpha_1, \alpha_2, \dots, \alpha_k)$ -k-partite hypertournament (or $(\alpha_i)_1^n$ -multipartite hypertournament or $(\alpha_i)_1^n$ -MHT) of order $\sum_{i=1}^k n_i$ consists of k vertex sets U_i with $|U_i| = n_i$ for each $i(1 \leq i \leq k)$ together with an arc set E, a set of $\sum_{i=1}^k \alpha_i$ tuples of vertices, with β_i vertices from U_i , for every $\beta_i = 1, 2, \dots, \alpha_i$ and for every $i = 1, 2, \dots, n$, called arcs such that any $\sum_{i=1}^k \beta_i$ subset $\bigcup_{i=1}^k U_i'$ of $\bigcup_{i=1}^k U_i$, E contains exactly one of the $(\sum_{i=1}^k \beta_i)$! $\sum_{i=1}^k \beta_i$ -tuples whose β_i entries belong to U_i' . We denote an $(\sum_{i=1}^k \beta_i)$ -arc by e.

If H is an $(\alpha_i)_1^n$ -MHT, for a given vertex $u_{ij_i} \in U_i$ for each $i(1 \leq i \leq k, 1 \leq j \leq \alpha_i)$, the score $d_H^+(u_{ij_i})$ or simply $d^+(u_{ij_i})$ respectively, is the number of $(\sum_{i=1}^k \beta_i)$ -arcs containing u_{ij_i} as not the last element (as the last element). The score lists (losing score lists) of $(\alpha_i)_1^k$ -MHT are k non-decreasing sequences of non-negative integers $Q_i = [q_{ij_i}]_{j_i}^{n_i}$ ($T_i = [t_{ij_i}]_{j_i}^{n_i}$) where q_{ij_i} (t_{ij_i}) is the score (losing score) of some vertex $u_{ij_i} \in U_i$, for each i ($1 \leq i \leq k$).

Evidently, in $(\alpha_i)_1^k$ -MHT H there are exactly

$$\sum_{t_1=1}^{\alpha_1} \sum_{t_2=1}^{\alpha_2} \cdots \sum_{t_k=1}^{\alpha_k} \binom{n_1}{t_1} \binom{n_2}{t_2} \cdots \binom{n_k}{t_k}$$

arcs, and in each arc only one vertex is at the last entry. Therefore,

$$\sum_{t_1=1}^{\alpha_1} d_H^-(u_{t_1}) + \sum_{t_2=1}^{\alpha_2} d_H^-(u_{t_2}) + \dots + \sum_{t_k=1}^{\alpha_k} d_H^-(u_{i_k})$$

$$= \sum_{t_1=1}^{\alpha_1} \sum_{t_2=1}^{\alpha_2} \dots \sum_{t_k=1}^{\alpha_k} \binom{n_1}{t_1} \binom{n_2}{t_2} \dots \binom{n_k}{t_k}.$$

Now, we have the following observation about the score lists of $(\alpha_i)_1^k$ -MHT of order $\sum_{i=1}^k n_i$.

116 S. Pirzada

Theorem 8. If H is $(\alpha_i)_1^k$ -MHT of order $\sum_{i=1}^k n_i$ with score lists $Q_i = [q_{ij_i}]_{j_i}^{n_i}$ for each $i, i \leq i \leq k$, then

$$\sum_{i=1}^{k} \sum_{j_i=1}^{n_i} q_{ij_i} = \left[\sum_{\beta_1=1}^{\alpha_1} \sum_{\beta_2=1}^{\alpha_2} \cdots \sum_{\beta_k=1}^{\alpha_k} \left(\left(\sum_{i=1}^{k} \beta_i \right) - 1 \right) \left(\prod_{i=1}^{k} \binom{n_i}{\beta_i} \right) \right].$$

Proof. Let H be an $(\alpha_i)_1^k$ -MHT of order $\sum_{i=1}^k n_i$ with score lists $Q_i = [q_{ij_i}]_{j_i}^{n_i}$ with $1 \leq i \leq k, 1 \leq j \leq \alpha_i$. Therefore, clearly

$$\sum_{i=1}^{k} \sum_{j_i=1}^{n_i} q_{ij_i} = \sum_{A} \left(\sum_{i=1}^{k} \sum_{j_i=1}^{n_i} s_{ij_i} \right),$$

where \sum_{A} is the sum of scores of $[\beta_i]_1^k$ -MHT for all $\beta_i = 1, 2, \dots, \alpha_i$ and for all $i = 1, 2, \dots, k$.

Therefore,

$$\sum_{i=1}^{k} \sum_{j_{i}=1}^{n_{i}} q_{ij_{i}} = \sum_{A} \left(\left(\sum_{i=1}^{k} \beta_{i} \right) - 1 \right) \left(\prod_{i=1}^{k} \binom{n_{i}}{\beta_{i}} \right)$$

$$= \sum_{\beta_{1}=1}^{\alpha_{1}} \sum_{\beta_{2}=1}^{\alpha_{2}} \cdots \sum_{\beta_{k}=1}^{\alpha_{k}} \left(\left(\sum_{i=1}^{k} \beta_{i} \right) - 1 \right) \left(\prod_{i=1}^{k} \binom{n_{i}}{\beta_{i}} \right),$$

completing the proof.

The following result provides a characterization of losing score lists in $(\alpha_i)_1^k$ -multipartite hypertournaments.

Theorem 9. Given non-negative integers n_i and α_i with $n_i \geq \alpha_i \geq 1$, for each $i \in (1 \leq i \leq k)$, the k non-decreasing lists $T_i = [t_{ij_i}]_{j_i}^{n_i}$ of non-negative integers are the losing score lists of $[\alpha_i]_1^k$ - MHT H if and only if for each $p_i \leq n_i$ $(1 \leq i \leq k)$ with $p_i \leq n_i$,

$$\sum_{i=1}^{k} \sum_{j_i=1}^{p_i} t_{ij_i} \ge \sum_{\beta_1=1}^{\alpha_1} \sum_{\beta_2=1}^{\alpha_2} \cdots \sum_{\beta_k=1}^{\alpha_k} \left(\prod_{i=1}^{k} {p_i \choose \beta_i} \right),$$

with equality when $p_i = n_i$.

Proof. Obviously for $[\alpha_i]_1^k$ - MHT H, we have

$$\sum_{i=1}^{k} \sum_{i_i=1}^{p_i} t_{ij_i} = \sum_{A} \left(\sum_{i=1}^{k} \sum_{j_i=1}^{p_i} r_{ij_i} \right),$$

where \sum_{A} is the sum of losing scores of all $[\beta_i]_1^k$ -MHT for all $\beta_i = 1, 2, \dots, \alpha_i$ and for all $i = 1, 2, \dots, k$. By Theorem 3, T_i are score lists of $(\alpha_i)_1^k$ -MHT if and only if

$$\sum_{i=1}^{k} \sum_{i=1}^{p_i} t_{ij_i} \ge \sum_{A} \left(\prod_{i=1}^{k} \binom{p_i}{\beta_i} \right)$$

that is if and only if

$$\sum_{i=1}^{k} \sum_{j_{i}=1}^{p_{i}} t_{ij_{i}} \ge \sum_{\beta_{1}=1}^{\alpha_{1}} \sum_{\beta_{2}=1}^{\alpha_{2}} \cdots \sum_{\beta_{k}=1}^{\alpha_{k}} \left(\prod_{i=1}^{k} {p_{i} \choose \beta_{i}} \right),$$

and the proof is complete.

By using the same argument as in Theorem 9, we have the following result on scores in $(\alpha_i)_{1}^{k}$ -MHT.

Theorem 10. Given non-negative integers n_i and α_i with $n_i \geq \alpha_i \geq 1$, $i = 1, 2, \dots, k$, the k non-decreasing lists $Q_i = [q_{ij_i}]_{j_i}^{n_i}$ of non-negative integers are the score lists of some $(\alpha_i)_1^k$ -MHT if and only if for each $p_i \leq n_i$ ($1 \leq i \leq k$) with $p_i \leq n_i$

$$\sum_{i=1}^{k} \sum_{j_{i}=1}^{p_{i}} q_{ij_{i}} \ge \sum_{\beta_{1}=1}^{\alpha_{1}} \sum_{\beta_{2}=1}^{\alpha_{2}} \cdots \sum_{\beta_{k}=1}^{\alpha_{k}} \left[\left(\sum_{i=1}^{k} \frac{\beta_{i} p_{i}}{n_{i}} \right) \left(\prod_{i=1}^{k} \binom{p_{i}}{\beta_{i}} \right) + \prod_{i=1}^{k} \left(\frac{n_{i} - p_{i}}{\beta_{i}} \right) - \prod_{i=1}^{k} \binom{p_{i}}{\beta_{i}} \right]$$

with equality when $p_i = n_i$.

If in $(\alpha_i)_1^k$ -multipartite hypertournament H, the arc set E contains at most(at least one) $(\sum_{i=1}^k \alpha_i)! \sum_{i=1}^k \alpha_i$ -tuples, then H is said to be $[\alpha_i]_1^k$ -multipartite multi hypertournament (or briefly $(\alpha_i)_1^k$ -MMHT). In case E contains exactly $(\sum_{i=1}^k \alpha_i)! \sum_{i=1}^k \alpha_i$ -tuples, then H is said to be complete $(\alpha_i)_1^k$ -MMHT. The score and losing score of a vertex in an $(\alpha_i)_1^k$ -MMHT is defined in the same way as in $(\alpha_i)_1^k$ -MHT. The scores (losing scores) arranged in k lists in non-decreasing order are then the score (losing score) lists of $(\alpha_i)_1^k$ -MMHT and are denoted by $Q_i = [q_{ij_i}]_{j_i=1}^{n_i}$ and $T_i = [t_{ij_i}]_{j_i=1}^{n_i}$. Evidently there are exactly

$$\left(\sum_{i=1}^{k} \alpha_i\right)! \left[\sum_{\beta_1=1}^{\alpha_1} \sum_{\beta_2=1}^{\alpha_1} \cdots \sum_{\beta_k=1}^{\alpha_k} \prod_{i=1}^{k} \binom{n_i}{\beta_i}\right]$$

arcs in a complete $(\alpha_i)_1^k$ -MMHT H, and therefore

$$\sum_{i=1}^k \sum_{j_i=1}^{n_i} d_H^-(u_{ij_i}) = \left(\sum_{i=1}^k \alpha_i\right)! \left[\sum_{\beta_1=1}^{\alpha_1} \sum_{\beta_2=1}^{\alpha_2} \cdots \sum_{\beta_k=1}^{\alpha_k} \prod_{i=1}^k \binom{n_i}{\beta_i}\right].$$

So,

$$\sum_{i=1}^{k} \sum_{j_{i}=1}^{n_{i}} t_{ij_{i}} = \left[\left(\sum_{i=1}^{k} \alpha_{i} \right) - 1 \right] \left(\sum_{i=1}^{k} \alpha_{i} \right)! \left[\sum_{\beta_{1}=1}^{\alpha_{1}} \sum_{\beta_{2}=1}^{\alpha_{2}} \cdots \sum_{\beta_{k}=1}^{\alpha_{k}} \prod_{i=1}^{k} \binom{n_{i}}{\beta_{i}} \right].$$
(3.1)

Now, since there are

$$\left(\sum_{i=1}^{k} \alpha_i\right)! \left[\sum_{t_1=1}^{\alpha_1} \sum_{t_2=1}^{\alpha_1} \cdots \sum_{t_k=1}^{\alpha_k} \binom{n_i-1}{\alpha_i-1} \prod_{i=1,t\neq i}^{k} \binom{n_t}{\alpha_t}\right]$$

118 S. Pirzada

arcs containing a vertex $u_{ij_i} \in U_i$, by using equation (4), we obtain

$$\sum_{i=1}^k \sum_{j_i=1}^{n_i} q_{ij_i} = \left(\sum_{i=1}^k \alpha_i\right)! \left[\sum_{\beta_1=1}^{\alpha_1} \sum_{\beta_2=1}^{\alpha_1} \cdots \sum_{\beta_k=1}^{\alpha_k} \left(\left(\sum_{i=1}^k \beta_i\right) - 1\right) \prod_{i=1}^k \binom{n_i}{\beta_i}\right].$$

The above observations lead to the following results, the proofs are immediate consequences.

Theorem 11. The lists $T_i = [t_{ij_i}]_{j_i=1}^{n_i}$ are the losing score lists of a complete $(\alpha_i)_1^k$ -MMHT if and only if

$$\sum_{i=1}^{k} \sum_{j_{i}=1}^{n_{i}} t_{ij_{i}} = \left[\left(\sum_{i=1}^{k} \alpha_{i} \right) - 1 \right]! \left[\sum_{\beta_{1}=1}^{\alpha_{1}} \sum_{\beta_{2}=1}^{\alpha_{1}} \cdots \sum_{\beta_{k}=1}^{\alpha_{k}} p_{i} \binom{n_{i}-1}{\beta_{i}-1} \prod_{t=1, t \neq i}^{k} \binom{n_{t}}{\beta_{t}} \right],$$

for each p_i , $1 \le i \le k$.

Theorem 12. The lists $Q_i = [q_{ij_i}]_{j_i=1}^{n_i}$ are the score lists of a complete $(\alpha_i)_1^k$ -MMHT if and only if

$$\sum_{i=1}^{k} \sum_{j_i=1}^{n_i} q_{ij_i} = \left[\left(\sum_{i=1}^{k} \alpha_i \right) - 1 \right]! \left[\left(\sum_{i=1}^{k} \alpha_i \right) - 1 \right] X$$
$$\left[\sum_{\beta_1=1}^{\alpha_1} \sum_{\beta_2=1}^{\alpha_1} \cdots \sum_{\beta_k=1}^{\alpha_k} p_i \binom{n_i-1}{\beta_i-1} \prod_{t=1, t \neq i}^{k} \binom{n_t}{\beta_t} \right],$$

for each p_i , $1 \le i \le k$.

References

- [1] C. Berge, Graphs and Hypergraphs. North-Holland Mathematical Library 6, North-Holland Publishing Co., Amsterdam, London, 1973.
- [2] Y. Koh, S. Ree, Score sequences of hypertournament matrices. J. Korea Soc. Math. Educ. Ser. B: Pure and Applied Math., 8, no. 2 (2001), 185 – 191.
- [3] Y. Koh, S. Ree, On k-hypertournament matrices. Linear Algebra and its Applications, 373 (2003), 183 - 195.
- [4] H.G. Landau, On dominance relations and the structure of animal societies. The condition for a score structure. Bull. Math. Biophys., 15 (1953), 143 – 148.
- [5] S. Pirzada, T.A. Chishti, T.A. Naikoo, Score lists in [h,k]-bipartite hypertournaments. Disc. Math. and Appl., 19, no. 3 (2009), 321 - 328.
- [6] S. Pirzada, G. Zhou, Score lists in (h, k)-bipartite hypertournaments. Applied Mathematics, J. Chinese Universities, 22, no. 4 (2007), 485 - 489.
- [7] S. Pirzada, T.A. Naikoo, G. Zhou, Score lists in tripartite hypertournaments. Graphs and Combinatorics, 23 (2007), 445 - 454.
- [8] S. Pirzada, G. Zhou, Score sequences in oriented k-hypergraphs. European J. Pure and Appl. Math., 1, no. 3 (2008), 10 - 20.
- [9] S. Pirzada, G. Zhou, On k-hypertournament losing scores. Acta Univ. Sapientiae, Informatica, 2, no. 1 (2010), 5-9.
- [10] S. Pirzada, G. Zhou, A. Ivanyi, Score lists of multipartite hypertournaments. Acta Univ. Sapien. Informatica, 2, no. 2 (2010), 184 - 193.
- [11] C. Wang, G. Zhou, Note on the degree sequences of k-hypertournaments. Discrete Math., 308, no. 11 (2008), 2292 – 2296.
- [12] G. Zhou, T. Yao, K. Zhang, On score sequences of k-hypertournaments. European J. Combin., 21, no. 8 (2000), 993 – 1000.
- [13] G. Zhou, S. Pirzada, Degree sequences in oriented k-hypergraphs. J. Appl. Math. and Computing, 27 (2008), 149 - 158.

Shariefuddin Pirzada Department of Mathematics University of Kashmir 190006 Srinagar, India

E-mail: sdpirzada@yahoo.co.in

Received: 18.06.2010