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t. We derive a new three-dimensional Hardy-type inequality for a 
ube forthe 
lass of fun
tions from the Sobolev spa
e H1 having zero tra
e on small holesdistributed periodi
ally along the boundary. The proof is based on a 
areful analysisof the asymptoti
 expansion of the �rst eigenvalue of a related spe
tral problem andthe best 
onstant of the 
orresponding Friedri
hs-type inequality.1 Introdu
tionIntegral inequalities of Friedri
hs and Hardy types are very important for di�erentappli
ations. In parti
ular, they are often used for deriving some estimates for operatornorms, for proving some embedding theorems, for solving various problems for partialdi�erential equations, homogenization theory, spe
tral theory et
. In this paper weprove and dis
uss some new integral inequalities of Hardy-type for a domain withmi
roinhomogeneous stru
ture in a neighborhood of the boundary.Let Ω ⊆ R
n. A Hardy-type inequality is an integral inequality of the form


∫

Ω

|U(x)|qV (x) dx




1
q

≤ C



∫

Ω

|∇U(x)|pW (x) dx




1
p

, (1.1)where U ∈ C∞
0 (Ω), V (x) ≥ 0,W (x) ≥ 0, 1 ≤ p, q < ∞, and the 
onstant C does notdepend on the fun
tion U. There are several results 
on
erning Hardy-type inequalities(see e.g. the books [19℄, [25℄, [26℄ and [31℄ and the referen
es given therein).One main aim of this paper (
.f. also [23, Paper F℄) is to derive the Hardy-typeinequality ∫

Ω

|U(x)|2ρα−2(x) dx ≤ C

∫

Ω

|∇U(x)|2ρα(x) dx, (1.2)where Ω is bounded and has nontrivial mi
rostru
ture. More pre
isely, we assume that
Ω is a 
ube with perforation along a part of the boundary and that the weight fun
tion
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ρ de
reases to zero as x approa
hes the part of the boundary whi
h is asso
iated withthe perforation. It should be mentioned that results in this dire
tion are 
ompletelynew in the theory of Hardy-type inequalities. In parti
ular, it gives us possibilityto use ideas developed within the homogenization theory to obtain estimates for thebest 
onstant in di�erent Hardy-type inequalities. The �rst step in this dire
tion wasre
ently done in [21℄, where the inequality (1.2) was proved under the assumption thatthe fun
tion U vanishes on small alternating pie
es of a part of the boundary.Note that some analogous results 
on
erning Friedri
hs-type inequality for perfo-rated domains were studied earlier in a number of papers. Some examples of perforateddomains with the Friedri
h's 
onstant of order ε were given in [12℄ and [13℄. Here εis a small parameter 
hara
terizing the perforation. One su
h example is the domainperforated by an aperiodi
 latti
e of holes studied by M. Briane, A.Damlamian andP.Donato in [3℄ for the homogenization of the Lapla
e equation with the Neumannboundary 
ondition. The authors used the new generalized de�nition of aperiodi
allyperforated material introdu
ed by M. Briane in [2℄. Another example is the domainperforated by quasi-periodi
 holes 
onsidered by L. Mas
arenhas and D.Polisevski in[27℄ and D.Chenas, L. Mas
arenhas and L.Trabu
ho in [11℄.However, in all these examples it was assumed that the 
onsidered fun
tion haszero tra
e both on boundaries of the small sets and on the boundary of the domain.The Diri
hlet 
ondition on boundary of the domain was repla
ed by the Neumannboundary 
ondition in papers [6℄ and [22℄. The main result of these publi
ations wasthe validity of the Friedri
hs inequality for perforated domains under the assumptionthat the diameters of small sets, the distan
es between them and the distan
e to theboundary are of order ε. Moreover, the 
onvergen
e of the Friedri
hs 
onstant to the
onstant in the limit inequality was established in these papers. Estimates of thedi�eren
e between these 
onstants were derived later on in [10℄ for two-dimensionalperforated domain. In the present paper we also derive the error estimate for thedi�eren
e between the 
onstants in the Friedri
hs inequalities in the three-dimensional
ase. We use this result to prove Hardy-type inequality (1.2) for a perforated domain.Also we note that domains perforated along the boundary were 
onsidered in [1℄,[7℄. The paper is organized as follows: In Se
tion 2 we give some ne
essary de�nitionsand formulate the main results, whi
h are proved in Se
tion 4. The proofs of themain results in Se
tion 2 are based on some auxiliary lemmas, whi
h are proved anddis
ussed in Se
tion 3. Finally, we reserve Se
tion 5 for some 
on
luding remarks andresults.2 Statement of the problem and the main resultLet Ω ⊂ R

3 be the 
ube
{

0 < x1 < 1, −1

2
< x2 <

1

2
, −1

2
< x3 <

1

2

}
.
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onstant 83We denote by ∂Ω the boundary of Ω, and by
Γ :=

{
x1 = 0, −1

2
< x2 <

1

2
, −1

2
< x3 <

1

2

}and
Γ̃ :=

{
x1 = 1, −1

2
< x2 <

1

2
, −1

2
< x3 <

1

2

}
.Assume that 0 < c < 1

2
is a positive number. Here and further on ε > 0 is a smallparameter. Denote

Bij
ε = {x ∈ Ω : (x1 − ε)2 + (x2 − iε)2 + (x3 − jε)2 < (cε)2},

i, j ∈ Z, Bε =
⋃
i,j

Bij
ε , Γε = ∂Bε. Finally, we de�ne the domain Ωε := Ω\Bε (see Figure2). Fix a parameter 0 < θ < 1. De�ne the set Ωθ := {x ∈ Ω : x1 > θ}. Consider the

Figure 2: Domain Ωε perforated along part Γ of the boundary.Sobolev-type spa
es
H1(Ωε,Γε) = {U ∈ H1(Ωε) : U |Γε = 0},where U |Γε is the tra
e of the fun
tion U on Γε.Remark 2.1. Without loss of generality we 
an assume that U ∈ H1(Ωε,Γε) is ex-tended to be U ≡ 0 in Bε, and we denote by H1(Ω,Γε) the spa
e of all su
h extensionsof fun
tions U ∈ H1(Ωε,Γε).
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hkin, Yu.O. Koroleva, L.-E. Persson, P. WallAnalogously, we de�ne H1(Ω,Γ) = {U ∈ H1(Ω) : U |Γ = 0}, H1(Ω,Γε ∪ Γ̃) = {U ∈
H1(Ω) : U |Γε∪eΓ = 0} and H1(Ω,Γ ∪ Γ̃) = {U ∈ H1(Ω) : U |Γ∪eΓ = 0}. Let ρ(x) :=
dist(x, Γ) for x ∈ Ωε. Our new Hardy-type inequality has the following form.Theorem 2.1. Let 0 ≤ α < α0 = 2θ√

K0
, where K0 > 0 is the best 
onstant in theFriedri
hs-type inequality ∫

Ωθ

U2dx ≤ K0

∫

Ωθ

|∇U |2dx (2.1)for fun
tions from H1(Ω,Γ ∪ Γ̃). Then the Hardy-type inequality
∫

Ωθ

U2ρα−2 dx ≤ C(θ, α)

∫

Ωθ

|∇U |2ρα dx (2.2)holds for any fun
tion U ∈ H1(Ω,Γε ∪ Γ̃), where C(θ, α) = 4K0

(2θ−
√

K0α)2
.Our next main result is the 
orresponding Friedri
hs-type inequality whi
h is ofindependent interest and is 
ru
ial for the proof of Theorem 2.1.Theorem 2.2. Let 0 < ε << 1. Then the Friedri
hs-type inequality

∫

Ω

U2 dx ≤ Kε

∫

Ω

|∇U |2 dx (2.3)holds for any fun
tion U ∈ H1(Ω,Γε), where for any su�
iently small µ > 0

Kε =
4

π2
+ εK + o

(
ε

3
2
−µ
) (2.4)as ε→ 0+. Here Kε is the best 
onstant in Friedri
hs-type inequality (2.3). The pre
iseformula for the 
onstant K < 0 is given by (4.38) later on.It is well known that the best 
onstant in Friedri
hs-type inequalities 
an be ex-pressed via the �rst eigenvalue of the 
orresponding spe
tral problem. This is why we�rst study an auxiliary spe
tral problem and 
onstru
t the asymptoti
 expansion forits �rst eigenvalue via the method of mat
hing of asymptoti
 expansions. After thatwe derive the asymptoti
s (2.4) for the 
onstant Kε in Friedri
hs-inequality (2.3) byusing the relations between it and the �rst eigenvalue. More exa
tly, we 
onsider thefollowing spe
tral problem:





−∆uε = λεuε in Ωε,

uε = 0 on Γε,
∂uε

∂ν
= 0 on ∂Ω. (2.5)Here and in the sequel we denote by ν the outward unit ve
tor.
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onstant 85The problem 



−∆u0 = λ0u0 in Ω,

u0 = 0 on Γ,
∂u0

∂ν
= 0 on ∂Ω \ Γ

(2.6)is the limit problem for (1.1). This fa
t 
an be established analogously as in [9℄ forthe two-dimensional 
ase. In parti
ular, the 
onvergen
e of any eigenvalue λε of theproblem (1.1) to the 
orresponding eigenvalue λ0 of the problem (1.3) as ε → 0+ wasproved. Moreover, the 
onvergen
e of the 
orresponding eigenfun
tions in the normof Sobolev spa
e H1 was derived. The next result gives a more exa
t des
ription ofthe asymptoti
s of all eigenvalues of the problem (1.1) and is 
ru
ial for the proof ofTheorem 2.2 (and, thus, of Theorem 2.1) and also of independent interest. Due to thegeometry of our domain it is not di�
ult to derive that all eigenvalues of the problem(1.3) (and, hen
e, of the problem (1.1)) are positive and simple. In parti
ular, the nextresult is valid for the �rst eigenvalue of (1.1).Theorem 2.3. The following asymptoti
s holds for the �rst eigenvalue of (1.1)
λε = λ0 + ελ1 + o(ε

3
2
−µ), (2.7)where 0 < µ is an arbitrary small real number,

λ1 = −C(B)

∫

Γ

(
∂u0

∂ν

)2

ds < 0, (2.8)
(λ0, u0) is the 
orresponding eigenelement of (1.3) and C(B) is a stri
tly positive 
on-stant (the pre
ise formula for C(B) is given by (3.8) in Se
tion 3). Here λ0 = π2

4
.Remark 2.2. The 
orresponding two-dimensional result was proved in [9℄.3 Some auxiliary resultsDe�ne the sets

Π =

{
ξ1 > 0, −1

2
< ξ2 <

1

2
, −1

2
< ξ3 <

1

2

}
,

γ =

{
ξ1 = 0, −1

2
< ξ2 <

1

2
, −1

2
< ξ3 <

1

2

}
,

B := {(ξ1 − 1)2 + ξ2
2 + ξ2

3 < c2, 0 < c < 1}(see Figure 3). The following three auxiliary Lemmas are ne
essary for our proofs ofthe main results.
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Figure 3: Cell of periodi
ity.Lemma 3.1. The following boundary-value problem




∆X1 = 0 in Π\B,
X1 = 0 on ∂B,

∂X1

∂ξ1
= 0 on γ,

∂X1

∂ξ2
= 0 as ξ2 = ±1

2
,

∂X1

∂ξ3
= 0 as ξ3 = ±1

2
,

X1 ∼ ξ1 as ξ1 → +∞

(3.1)
has a unique even solution with respe
t to the variables ξ2 and ξ3.Moreover, this solutionhas the asymptoti
s

X1(ξ) = ξ1 + C(B) +O(e−2πξ1) as ξ1 → +∞, (3.2)where C(B) is a stri
tly positive 
onstant (the pre
ise formula for C(B) is given lateron in the proof of Lemma 3.1 (see (3.8))).Lemma 3.2. Let X1 be the solution of (3.1). The boundary-value problem





∆X2 = ∂X1

∂ξ2
in Π\B,

X2 = 0 on ∂B,
∂X2

∂ξ1
= 0 on γ,

X2 = 0 as ξ2 = ±1
2
,

X2 = 0 as ξ3 = ±1
2

(3.3)
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h is odd with respe
t to ξ2 and even with respe
t to ξ3 andsatis�es the following asymptoti
s
X2(ξ) = O(e−ξ1) as ξ1 → +∞. (3.4)Lemma 3.3. Let X1 be the solution of (3.1). The boundary-value problem




∆ξX3 = ∂X1

∂ξ3
in Π\B,

X3 = 0 on ∂B,
∂X3

∂ξ1
= 0 on γ,

X3 = 0 as ξ2 = ±1
2
,

X3 = 0 as ξ3 = ±1
2

(3.5)has a unique solution whi
h is even with respe
t to ξ2, odd with respe
t to ξ3 and hasthe following asymptoti
s
X3(ξ) = O(e−ξ1) as ξ1 → +∞. (3.6)Due to 1-periodi
ity, with respe
t to ξ2 and ξ3, of the right-hand side of the equationin problem (3.3) and the boundary 
onditions we 
an extend X2 and X3 1-periodi
ally.We will use the same notation for the extended fun
tions.In the remaining part of this se
tion we des
ribe how these lemmas 
an be proved.Proof of Lemma 3.1. First we note that the proof of Lemma 3.1 is based on the fol-lowing Lemma whi
h 
an be proved exa
tly in the same way as Proposition 1.2 from[29℄ was proved. We omit the details.Lemma 3.4. Assume that eδ0ξ1F ∈ L2(Π \ B), eδ0ξ1H ∈ L2(∂Π), G ∈ H

1
2 (∂B)and δ0 > 0. Then there exists a unique weak solution of the following boundary-valueproblem: 





−∆Z = F in Π \B
Z = G on ∂B,
∂Z

∂ν
= H on ∂Π.This solution is given by the formula

Z(ξ) = C + Z̃(ξ),where C is a 
onstant, eδξ1Z̃ ∈ H1(Π\B) and δ is an arbitrary number satisfying the
onditions δ ≤ δ0 and δ < π.Consider now the boundary-value problem





∆Y = 0 in Π\B,
Y = −ξ1 on ∂B,
∂Y
∂ξ1

= −1 on γ,
∂Y
∂ξ2

= 0 as ξ2 = ±1
2
,

∂Y
∂ξ3

= 0 as ξ3 = ±1
2
.

(3.7)
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hkin, Yu.O. Koroleva, L.-E. Persson, P. WallDue to Lemma 3.4 there exists a unique weak solution of this boundary-value problemof the form
Y (ξ) = C(B) + Z̃(ξ),where C(B) is a 
onstant and the fun
tion Z̃(ξ) satis�es the 
onditions of Lemma 3.4.The fun
tion Y is even with respe
t to ξ2 and ξ3 due to the symmetry of B. Denoteby ΠR = Π ∩ {ξ1 > R}, γR = {ξ ∈ Π, ξ1 = R}, yR = Y

∣∣
γR
. Obviously, the fun
tion Yis also a unique 
lassi
al bounded solution of the following boundary-value problem





∆Y = 0 in ΠR,
∂Y
∂ξ1

= yR on γR,
∂Y
∂ξ2

= 0 as ξ2 = ±1
2
,

∂Y
∂ξ3

= 0 as ξ3 = ±1
2when R is a su�
iently large number. Hen
e, taking into a

ount that Y is an evenfun
tion with respe
t to ξ2 and ξ3 we 
on
lude that the asymptoti
s has the followingstru
ture:

Y (ξ) = C(B) +O(e−2πξ1) as ξ1 → +∞,and, 
onsequently, (3.2) holds.It only remains to prove that
C(B) =

∫

Π\B

|∇Y |2dξ + |B|. (3.8)Denote by ΠR = Π ∩ {ξ1 < R}. Multiplying the equation of the problem (3.7) by
X1, integrating over ΠR \B and taking into a

ount the properties of the fun
tion X1we obtain that

0 =

∫

ΠR\B

X1∆Y dξ =

∫

γR

X1
∂Y

∂ξ1
dξ2 dξ3−

−
∫

γ

X1
∂Y

∂ξ1
dξ2 dξ3 −

∫

ΠR\B

∇Y∇X1 dξ.

(3.9)By �rst using integration by parts to rewrite the right-hand side of (3.9) and there-after passing to the limit as R→ ∞, we �nd that
0 = −

∫

γ

∂Y

∂ξ1
X1 dξ2 dξ3 +

∫

∂B

Y
∂X1

∂ν
dsξ − C(B)

=

∫

γ

Y dξ2 dξ3 +

∫

∂B

Y
∂Y

∂ν
dsξ −

∫

∂B

ξ1
∂ξ1
∂ν

dsξ − C(B).

(3.10)Analogously, multiplying (3.7) by Y , integrating the obtained formula by parts over
ΠR \B and passing to the limit as R→ +∞, we have that

0 = −
∫

Π\B

|∇Y |2 dξ +

∫

∂B

∂Y

∂ν
Y dsξ +

∫

γ

Y dξ2 dξ3. (3.11)
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onstant 89The estimates (3.10) and (3.11) lead to
C(B) =

∫

Π\B

|∇Y |2 dξ −
∫

∂B

ξ1
∂ξ1
∂ν

dsξ. (3.12)By integrating by parts the left-hand side of the formula
∫

B

ξ1∆ξ1dξ = 0,we get that ∫

∂B

ξ1
∂ξ1
∂νB

dsξ = |B|, (3.13)where νB is an outward normal ve
tor to B. The formula (3.8) follows from (3.12) and(3.13).Proof of Lemma 3.2. The proof of this Lemma is based on the following Lemma from[29℄:Lemma 3.5. Assume that eδ0ξ1F ∈ L2(Π \B) and δ0 > 0. Then there exists a uniquesolution of the following boundary-value problem:





−∆Z = F in Π \B
Z = 0 on ∂B ∪ ∂Π\γ,
∂Z

∂ν
= 0 on γ,where eδξ1Z ∈ H1(Π\B) and δ is an arbitrary number satisfying the 
onditions δ ≤ δ0and δ < π.By applying this Lemma with Z = X2 and F = ∂X1

∂ξ2
, we 
on
lude that X2 has theasymptoti
s (3.4). The solution X2 is odd with respe
t to ξ2 and even with respe
t to

ξ3 due to the equation of the boundary-value problem (3.3) and the properties of itsright-hand side.Proof of Lemma 3.3. This Lemma 
an be proved analogously to Lemma 3.2, so weomit the details.4 Proofs of the main resultsProof of Theorem 2.3.Proof. The proof is based on several steps, whi
h sometimes are stated as Lemmas ofindependent interest. Our aim is to 
onstru
t the �rst two terms of the asymptoti
expansion for simple eigenvalues of the spe
tral problem (1.1).



90 G.A. Che
hkin, Yu.O. Koroleva, L.-E. Persson, P. WallThe behavior of uε in a boundary layer 
lose to Γ strongly di�ers from the behavioroutside the boundary layer. We will use the method of mat
hing of inner and outerexpansions of uε. The inner expansion is valid in the boundary layer and the outerexpansion is valid outside the boundary layer (for more information 
on
erning themethod of mat
hing expansions see e.g. [17℄).Without loss of generality we may assume that the fun
tion u0 is normalized in
L2(Ω).It is natural to 
onstru
t the asymptoti
 expansion for λε in the form

λε ≈ λ̂ε = λ0 + ελ1 + ε2λ2, (4.1)while we use the formula
uε(x) ≈ ûε = u0(x) + εu1(x) + ε2u2(x) (4.2)for the asymptoti
s of uε.We have that u0 ∈ C∞(Ω), see [9℄. If we substitute the expansions (4.1) and (4.2)into the spe
tral problems (1.1) and 
olle
t terms of the same order of ε, then, bytaking into a

ount (1.3), we obtain the expansion

u0(x) = α1
0(x2, x3)x1 + O(x3

1) (4.3)as x1 → 0, where
α1

0 =
∂u0

∂x1

∣∣∣∣∣
x1=0

∈ C∞
[
−1

2
,
1

2

]
×
[
−1

2
,
1

2

] (4.4)and
∂2j+1α1

0

∂x2j+1
2

(
±1

2
, x3

)
= 0,

∂2j+1α1
0

∂x2j+1
3

(
x2,±

1

2

)
= 0, (4.5)for j = 0, 1, 2, . . . .We 
hoose the fun
tions u1 and u2 satisfying the boundary-value problems






−∆u1 = λ0u1 + λ1u0 in Ω,
∂u1

∂ν
= 0 on ∂Ω \ Γ,

u1 = α0
1 on Γ,

(4.6)




−∆u2 = λ0u2 + λ1u1 + λ2u0 in Ω,
∂u2

∂ν
= 0 on ∂Ω \ Γ,

u2 = α0
2 on Γ,

(4.7)where α0
1(x2, x3), α

0
2(x2, x3) are unknown fun
tions, whi
h will be de�ned later on.Remark 4.1. The equations of the boundary-value problems (4.6) and (4.7) togetherwith the boundary 
onditions (ex
ept 
ondition on Γ) are just the result of substitutingthe expansions (4.1) and (4.2) into (1.1) and 
olle
ting terms of the same order of ε.The validity of the following Lemma 
an be established by using the same te
hniqueas in the proof of the analogous result in [4℄. We omit the details.
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onstant 91Lemma 4.1. Assume that α0
1, α

0
2 ∈ C∞ [−1

2
, 1

2

]
×
[
−1

2
, 1

2

] and that odd derivativesof the fun
tions α0
1 and α0

2 with respe
t to x2, x3 vanish as x2 = ±1
2
, x3 = ±1

2
.Then there exist 
onstants λ1, λ2 and fun
tions u1(x), u2(x) ∈ C∞(Ω), whi
h are thesolutions of problems (4.6) and (4.7), respe
tively. Moreover, λ1 satis�es that

λ1 = −

1
2∫

− 1
2

1
2∫

− 1
2

α0
1(x2, x3)α

1
0(x2, x3) dx2 dx3. (4.8)By using a Taylor expansion we obtain that

u1(x) = α0
1(x2, x3) + α1

1(x2, x3)x1 +O(x2
1),

u2(x) = α0
2(x2, x3) +O(x1)

(4.9)as x1 → 0, where α1
1 ∈ C∞ [−1

2
, 1

2

]
×
[
−1

2
, 1

2

] and
∂2j+1α1

1

∂x2j+1
2

(
±1

2
, x3

)
= 0,

∂2j+1α1
1

∂x2j+1
2

(
x2,±

1

2

)
= 0, (4.10)for j = 0, 1, 2, . . . due to (4.6).Taking into a

ount Remark 4.1 and Lemma 4.1 we 
on
lude that the followingLemma holds:Lemma 4.2. Assume that α0

1, α
0
2 ∈ C∞ [−1

2
, 1

2

]
×
[
−1

2
, 1

2

] and odd derivatives of thefun
tions α0
1 and α0

2 with respe
t to x2 and x3 vanish at the points (±1
2
, x3

) and(
x2,±1

2

)
. Then ûε ∈ C∞(Ω) and the formulas





−∆ûε = λ̂εûε +O(ε3) in Ω,
∂ûε

∂ν
= 0 on ∂Ω \ Γare valid.We 
onstru
t another interpolation for the fun
tion uε in a small neighborhood of

Γ (inner expansion) sin
e the fun
tion ûε(x) does not satisfy the boundary 
onditionsof the problem (1.1) on Γ and on Γε.The formulas (4.2), (4.3) and (4.9) lead to the following:
ûε(x) =α1

0(x2, x3)x1 + ε(α0
1(x2, x3) + α1

1(x2, x3)x1) + ε2α0
2(x2, x3)

+O(x3
1 + εx2

1 + ε2x1) as x1 → 0.Put ξ1 = x1

ε
. Then we 
on
lude that

ûε(x) =εV1(ξ1; x2, x3) + ε2V2(ξ1; x2, x3)

+O(x3
1 + εx2

1 + ε2x1) as x1 → 0,
(4.11)where

V1(ξ1; x2, x3) = α1
0(x2, x3)ξ1 + α0

1(x2, x3),

V2(ξ1; x2, x3) = α1
1(x2, x3)ξ1 + α0

2(x2, x3).
(4.12)
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ording to the method of mat
hing of asymptoti
 expansions we 
on
lude thatthe internal expansion have to be of the following stru
ture in a neighborhood of Γ:
uε(x) ≈ v̂ε(x) = εv1 (ξ; x2, x3) + ε2v2 (ξ; x2, x3) , (4.13)where ξ = x

ε
and
vq(ξ; x2, x3) ∼ Vq(ξ1; x2, x3) as ξ1 → +∞, q = 1, 2. (4.14)Here x2, x3 are so 
alled �slow� variables while ξ is the �fast� variable.The equation of the problem (1.1) with respe
t to the variables (ξ; x2, x3) has thefollowing form:

−ε−2∆ξuε − 2ε−1 ∂2uε

∂x2∂ξ2
− 2ε−1 ∂2uε

∂x3∂ξ3
− ∂2uε

∂x2
2

− ∂2uε

∂x2
3

= λεuε. (4.15)The boundary 
onditions on the lateral surfa
e of the 
ell of periodi
ity Π ex
ept γ are
∂uε

∂ν
= ±ε−1∂uε

∂ξ2
± ∂uε

∂x2
= 0, (4.16)

∂uε

∂ν
= ±ε−1∂uε

∂ξ3
± ∂uε

∂x3
= 0, (4.17)and on γ it yields that

∂uε

∂ν
= −ε−1∂uε

∂ξ1
− ∂uε

∂x1
= 0. (4.18)Next, we 
onstru
t the internal expansion for (4.13) as 1-periodi
 fun
tion with respe
tto ξ2 and ξ3. In order to do this, we rewrite the equation and boundary 
onditions in ξvariables (see (4.15) � (4.18)), substitute (4.13) and (4.1) in (1.1) and, �nally, equateterms at εq 
orresponding to the same q. Then, by taking into a

ount (4.14), (4.12)and Remark 4.1, we get the following boundary-value problem for v1:





∆ξv1 = 0 in Π\B,
v1 = 0 on ∂B,
∂v1

∂ξ1
= 0 on γ,

∂v1

∂ξ2
(ξ;±1

2
, x3) = 0 as ξ2 = ±1

2
,

∂v1

∂ξ3
(ξ; x2,±1

2
) = 0 as ξ3 = ±1

2
,

v1 ∼ V1 as ξ1 → +∞

(4.19)
and for v2: 





−∆ξv2 = 2 ∂2v1

∂x2∂ξ2
+ 2 ∂2v1

∂x3∂ξ3
in Π\B,

v2 = 0 on ∂B,
∂v2

∂ξ1
= 0 on γ,

∂v2

∂ξ2
(ξ;±1

2
, x3) = − ∂v1

∂x2
(ξ;±1

2
, x3) as ξ2 = ±1

2
,

∂v2

∂ξ3
(ξ; x2,±1

2
) = − ∂v1

∂x3
(ξ; x2,±1

2
) as ξ3 = ±1

2
,

v2 ∼ V2 as ξ1 → +∞.

(4.20)Due to the boundary-value problems (4.19) and (4.20) we 
on
lude that the follow-ing Lemma is valid:
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onstant 93Lemma 4.3. Assume that the solutions to problems (4.19) and (4.20) exist and are
1-periodi
 fun
tions with respe
t to ξ2 and ξ3. Then the fun
tions v̂ε and λ̂ε, whi
hare given by (4.13) and (4.1), respe
tively, satisfy to the following formulas for ea
hsu�
iently small h > 0 :

−∆v̂ε = λ̂εv̂ε + F̂ v
ε in Ωε ∩ {x1 < h},

v̂ε = 0 on Γε,

∂v̂ε

∂ν
= 0 on ∂Ω,

∂v̂ε

∂xj

= ε2 ∂v2

∂xj

, j = 2, 3, on (∂Ω \ Γ) ∩ {x1 < h},
(4.21)where

F̂ v
ε = − ε

(
∂2v1

∂x2
2

+
∂2v1

∂x2
3

+ λ0v1 + 2
∂2v2

∂x2∂ξ2
+ 2

∂2v2

∂x3∂ξ3

)
−

− ε2

(
λ1v1 +

∂2v2

∂x2
2

+
∂2v2

∂x2
3

+ λ0v2

)
− ε3

(
λ1v2 + λ2v1

)
− ε4λ2v2.

(4.22)Now we study the solvability of the boundary-value problem (4.19) and determinea formula for the fun
tion α0
1(x2, x3).It should be noted that the fun
tion X1, de�ned in (3.1), 
an be extended 1-periodi
ally with respe
t to ξ2 and ξ3. We save the same notation for the extendedfun
tion. Put
v1(ξ; x2, x3) = α1

0(x2, x3)X1(ξ). (4.23)Due to (3.2) this fun
tion has the following asymptoti
s
v1(ξ; x2, x3) = α1

0(x2, x3)ξ1 + α1
0(x2, x3)C(B) +O(e−2πξ1) (4.24)as ξ1 → +∞. Consequently, by using Lemma 3.1 and assuming that

α0
1(x2, x3) = α1

0(x2, x3)C(B), (4.25)we 
on
lude that the fun
tion v1 is a solution of (4.19). Moreover,
v1(ξ; x2, x3) = V1(ξ1; x2, x3) +O(e−2πξ1) as ξ1 → +∞, (4.26)

α0
1 ∈ C∞ [−1

2
, 1

2

]
×
[
−1

2
, 1

2

] and, a

ording to (4.5), it yields that
∂2j+1α0

1

∂x2j+1
2

(
±1

2
, x3

)
= 0,

∂2j+1α0
1

∂x2j+1
3

(
x2,±

1

2

)
= 0, j = 0, 1, 2, . . .Summarizing all results, we dedu
e that the 
ondition of solvability for (4.19) leadus to get the pre
ise formula for the fun
tion α0

1(x2, x3) in the boundary-value problem(4.6), whi
h satis�es the 
onditions of Lemma 4.1. On the other hand, the formula(2.8) follows dire
tly from (4.8) and (4.25).
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hkin, Yu.O. Koroleva, L.-E. Persson, P. WallNote that, due to (4.5) and (4.23), we have that
∂v1

∂x2

(ξ; x2, x3) = 0,
∂v1

∂x3

(ξ; x2, x3) = 0, (4.27)as x2 = ±1
2
, x3 = ±1

2
, respe
tively.Now we begin to study the problem (4.20). Put

v2(ξ; x2, x3) = α1
1(x2, x3)X1(ξ) − 2

∂α1
0

∂x2
(x2, x3)X2(ξ) − 2

∂α1
0

∂x3
(x2, x3)X3(ξ).This fun
tion is 1-periodi
 with respe
t to ξ2 and ξ3 and, in view of (3.2), (3.4) and(3.6), it has the asymptoti
s

v2(ξ; x2, x3) = α1
1(x2, x3)ξ1 + C(B)α1

1(x2, x3) +O(ξ1e
−ξ1) (4.28)as ξ1 → ∞. Hen
e, taking into a

ount Lemmas 3.1, 3.2, 3.3 and formulas (4.24),(4.5) and (4.27), we dedu
e that v2 is a solution of (4.20) if

α0
2(x2, x3) = α1

1(x2, x3)C(B).Moreover,
v2(ξ; x2, x3) = V2(ξ1; x2, x3) +O(ξ1e

−ξ1) as ξ1 → ∞, (4.29)
α0

2 ∈ C∞ [−1
2
, 1

2

] and, due to (4.10), we have that
∂2j+1α0

2

∂x2j+1
2

(
±1

2
, x3

)
= 0,

∂2j+1α0
2

∂x2j+1
3

(
x2,±

1

2

)
= 0, j = 0, 1, 2, . . .Hen
e, the solvability 
onditions for the boundary-value problem (4.20) determinethe fun
tion α0

2(x2, x3), whi
h satis�es the 
onditions of Lemma 4.1.Note that, a

ording to (4.10) and the boundary 
onditions X2 = X3 = 0 on ∂Π,it yields that
∂v2

∂x2

(
ξ1,±

1

2
, ξ3; x2, x3

)
= 0 as x2 = ±1

2
,

∂v2

∂x3

(
ξ1, ξ2,±

1

2
; x2, x3

)
= 0 as x3 = ±1

2
.

(4.30)Consequently, taking into a

ount (4.30) and (4.21), we obtain that
∂v̂ε

∂ν

(x
ε
; x2, x3

)
= 0 on Γ ∪ ((∂Ω \ Γ) ∩ {x1 < h}) .We have 
ompleted the 
onstru
tion of the asymptoti
al expansions. Now we haveto prove that the 
onstru
ted expansion interpolates the limit element. Lemma 4.3together with the formulas (4.24) and (4.28) lead to the following result:Lemma 4.4. If 0 < β < 1, then the estimate

‖F̂ v
ε ‖L2(Ωε∩{x1<2εβ}) = O

(
ε

3
2
β
)holds for the fun
tion F̂ v

ε given by (4.22).
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ount (4.24) and (4.28), we have that
‖F̂ v

ε ‖2
L2(Ωε∩{x1<2εβ}) =

∫

Ωε∩{x1<2εβ}

[
−ε
(
∂2v1

∂x2
2

+
∂2v1

∂x2
3

+ λ0v1+

+2
∂2v2

∂x2∂ξ2
+ 2

∂2v2

∂x3∂ξ3

)
−ε2

(
λ1v1 +

∂2v2

∂x2
2

+
∂2v2

∂x2
3

+ λ0v2

)
−

−ε3

(
λ1v2 + λ2v1

)
− ε4λ2v2

]2

dx =

∫

Ωε∩{x1<2εβ}

[
−ε
(
∂2v1

∂x2
2

+
∂2v1

∂x2
3

+

+λ0v1 + 2
∂2v2

∂x2∂ξ2
+ 2

∂2v2

∂x3∂ξ3

)
+O(ε2)

]2

dx =

∫

Ωε∩{x1<2εβ}

[
−ε
(

(ξ1+

+C(B))

(
∂2α1

0

∂x2
2

+
∂2α1

0

∂x2
3

)
+λ0[α

1
0(ξ1 + C(B)) +O(ξ1e

−ξ1))]

)
+

+O(ε2)

]2

dx =

∫

Ωε∩{x1<2εβ}

[
εξ1(λ0α

1
0 − 1) +O(ε) +O(ε2)

]2

dx =

=

∫

Ωε∩{x1<2εβ}

[
x1(λ0α

1
0 − 1) +O(ε)

]2
dx.Finally, we dedu
e that

‖F̂ v
ε ‖L2(Ωε∩{x1<2εβ}) =




∫

Ωε∩{x1<2εβ}

O(x2
1)




1
2

= O(ε
3
2
β).

On the other hand, the formulas (4.11), (4.26) and (4.29) give us the validity of thefollowing Lemma:Lemma 4.5. Assume that 0 < β < 1. Then the estimates
v̂ε − ûε = O(ε3β),

∂

∂x1

(v̂ε − ûε) = O(ε2β)hold as εβ < x1 < 2εβ (εβ−1 < ξ1 < 2εβ−1).Proof. By applying (4.11), (4.26) and (4.29), we get that
v̂ε − ûε = εV1(ξ1; x2, x3) + ε2V2(ξ1; x2, x3) − εV1(ξ1; x2, x3)−
− ε2V2(ξ1; x2, x3) +O(εe−2πξ1 + ε2ξ1e

−πξ1 + x3
1 + εx2

1 + ε2x1) =

= O(x3
1) = O(ε3β) as εβ < x1 < 2εβ.
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∂

∂x1
(v̂ε − ûε) = O(x2

1) = O(ε2β)as εβ < x1 < 2εβ.Let χ(t) ∈ C∞ be a 
uto� fun
tion, whi
h equals to zero as t < 1 and equals to 1as t > 2, χβ(x1) = χ
(

x1

εβ

)
.Lemma 4.6. Suppose that 0 < β < 1. Then the fun
tion

Ûε(x) = χβ (x1) ûε(x) + (1 − χβ (x1)) v̂ε(x).is a solution of the following boundary-value problem:




−∆Ûε = λ̂εÛε + f̂ε in Ωε,

Ûε = 0 on Γε,
∂ bUε

∂ν
= 0 on ∂Ω, (4.31)where
‖f̂ε‖L2(Ωε) = O(ε

3
2
β), (4.32)and, moreover,

lim
ε→0

‖Ûε‖0 ≥ 1. (4.33)Proof. The validity of (4.33) is obvious. The fun
tion Ûε satis�es the boundary 
on-ditions of problem (3.1) due to Lemmas 4.2, 4.3 and formula (4.30). By applying theoperator −(△ + λ̂ε) to Ûε we get that
f̂ε = I1 + I2 + I3,where

I1 = − χβ(△ûε + λ̂εûε),

I2 = − (1 − χβ)(△v̂ε + λ̂εv̂ε) = −(1 − χβ)F̂ v
ε ,

I3 =(v̂ε − ûε)△χβ + 2∇χβ∇x(v̂ε − ûε)

=ε−2βχ′′
(x1

εβ

)
(v̂ε − ûε) + 2ε−βχ′

(x1

εβ

) ∂

∂x1

(v̂ε − ûε) .Using Lemma 4.2, we obtain that
‖I1‖L2(Ωε) =



∫

Ωε

I2
1 (x) dx




1
2

=
(
O(ε6)

) 1
2 = O(ε3). (4.34)Lemma 4.4 together with the de�nition of fun
tion χβ give the following asymptoti
s:

‖I2‖L2(Ωε) =




∫

Ωε

I2
2 (x) dx





1
2

=




∫

Ωε∩{x1<2εβ}

I2
2 (x) dx




1
2

=

=
(
O(ε3β)

) 1
2 = O

(
ε

3
2
β
)
.
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ount the fa
t that the support of I3 belongs to the set
{x : εβ < x1 < 2εβ} and using Lemma 4.5, we have that

‖I3‖L2(Ωε) = O
(
ε

3
2
β
)
. (4.35)Finally, the asymptoti
s (4.34)�(4.35) lead us to (4.32).The estimate

‖Ûε‖L2(Ωε) ≤ C
‖f̂‖L2(Ωε)∣∣∣λε − λ̂ε

∣∣∣
an be proved exa
tly in the same way as it was done in paper the [8℄ for the two-dimensional 
ase. Here Ûε is a solution of the boundary-value problem (3.1) and the
onstant C does not depend on ε. This fa
t together with (4.32) and (4.33) give us thefollowing formula:
|λε − λ̂ε| = O(ε

3
2
β). (4.36)The formula (2.7) holds due to (4.1) and (4.36) sin
e β is an arbitrary number in theinterval (0, 1). The proof of Theorem 2.3 is 
omplete.Proof of Theorem 2.2.Proof. Note that the validity of (2.3) and the 
onvergen
e Kε to K0 as ε → 0 areproved in paper [20℄ (see also [22℄ for an aperiodi
al 
ase). Taking into a

ount thevariational de�nition of Kε, we have that

1

Kε

= inf
Uε∈H1(Ω,Γε)\{0}

∫
Ωε

|∇Uε|2 dx
∫
Ωε

U2
ε dx

= λ1
ε,where λ1

ε is the �rst eigenvalue of spe
tral problem (1.1).Finally, by using the asymptoti
s (2.7) for the �rst eigenvalue we get that
Kε =

(
π2

4
+ ελ1

1 + o(ε
3
2
−µ)

)−1

. (4.37)Denote by
K =

π2

4
λ1

1. (4.38)The formula (2.4) follows dire
tly from (4.37) and (4.38). The proof of Theorem 2.2 is
omplete.
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hkin, Yu.O. Koroleva, L.-E. Persson, P. WallProof of Theorem 2.1.Proof. First we 
onsider the 
ase α = 0. By using the de�nition of the domain Ωθ, theFriedri
hs-inequality (2.1) and the respe
tive asymptoti
s we �nd that
∫

Ωθ

ρ−2U2
ε dx ≤ K0

θ2

∫

Ωθ

|∇Uε|2 dx. (4.39)The next step is to prove (2.2) for α > 0. Choose σ > 0 and put Vε = Uερ
σ. It is notdi�
ult to derive that

|∇Vε|2 =

(
∂Uε

∂x1

ρσ + σρσ−1 ∂ρ

∂x1

Uε

)2

+ ρ2σ|∇x2x3Uε|2 ≤

≤
(

1 +
1

̟

)
ρ2σ|∇Uε|2 + (1 +̟)σ2ρ2σ−2U2

ε

(4.40)with arbitrary ̟. By applying (4.39) to Vε, we obtain that
∫

Ωθ

ρ−2+2σU2
ε dx ≤ K0

θ2




(

1 +
1

̟

)∫

Ωθ

ρ2σ|∇Uε|2 dx+ σ2(1 +̟)

∫

Ωθ

ρ2(σ−1)U2
ε dx



 .If 1 − (1+̟)K0

θ2 σ2 > 0, then
∫

Ωθ

ρ−2+2σU2
ε dx ≤ (1 + 1

̟
)K0

θ2 − (1 +̟)K0σ2

∫

Ωθ

ρ2σ|∇Uε|2 dx.Finally, 
hoosing α = 2σ and the 
onstant ̟ = 2θ√
K0α

− 1, we obtain (2.2).5 Con
luding remarks and resultRemark 5.1. Note that in (2.2) we have di�erent domains on the right and left handsides. By using well-known theorems from the theory of Hardy type inequalities we
an derive inequalities with the same domain on both sides but then we must repla
e
Uε by another fun
tion Uε −Mε. For example the following result holds:Theorem 5.1. Assume that ρ(x) = dist(x,Γ), 0 ≤ α 6= 1, Uε ∈ H1(Ω,Γε). Thenthere exists a fun
tion Mε = Mε(x2, x3),

‖Mε‖L2(Γ) ≤ C√ε, (5.1)su
h that the Hardy-type inequality
∫

Ω

|Uε −Mε|2ρα−2 dx ≤ 4

(α− 1)2

∫

Ω

|∇Uε|2ρα dx (5.2)holds.
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1∫

0

v2(x1)

x2−α
1

dx1 ≤
4

(α− 1)2

1∫

0

xα
1 (v′)2 dx1,where v ∈ AC[0, 1] and v(0) = 0. By applying this inequality to the fun
tion v(x1) =

Uε(x1, ·, ·)− Uε(0, ·, ·), we obtain that
1∫

0

(Uε(x1, x2, x3) − Uε(0, x2, x3))
2ρα−2 dx1 ≤

4

(α− 1)2

1∫

0

ρα|∇Uε|2 dx1. (5.3)Denote by Mε(x2, x3) := Uε(0, x2, x3). By integrating the inequality (5.3) with respe
tto x2 and x3, we dedu
e that
∫

Ω

(Uε −Mε)
2ρα−2 dx ≤ 4

(α− 1)2

∫

Ω

ρα|∇Uε|2 dx. (5.4)Finally, we approximate the fun
tions Uε ∈ H1(Ω,Γε) by smooth fun
tions from
C∞(Ω,Γε) and 
on
lude that (5.4) is valid also for Uε ∈ H1(Ω,Γε). The next stepis to derive the estimate (5.1).There exists a sequen
e of fun
tions Uk

ε ∈ C∞(Ω,Γε) su
h that Uk
ε 
onverges to Uεin H1 as k → ∞. Denote by Mk

ε := Uk
ε (0, x2, x3). Consequently, Mk

ε 
onverges to Mεas k → ∞ in H 1
2 . Choose a number K su
h that

‖Mε −Mk
ε ‖L2(Γ) ≤ C

√
ε for any k > K. (5.5)Let us prove that there is a 
onstant C su
h that

‖Mk
ε ‖L2(Γ) ≤ C

√
ε. (5.6)Suppose that there exists a subsequen
e εn, n→ ∞, su
h that

‖Mk
εn
‖2

L2(Γ)
> n2εn.Hen
e, max

Γ
|Mk

εn
| > n

√
εn. Consequently,
∫

L2(Ω∩{x1≤εn})

∣∣∇Uk
εn

∣∣2 dx > εn




max
Γ

|Mk
εn
|

εn




2

> n2,that is Uk
ε does not belong to H1. This 
ontradi
tion proves (5.6).Taking into a

ount (5.6) and (5.5) we dedu
e that

‖Mε‖L2(Γ) ≤ ‖Mε −Mk
ε ‖L2(Γ) + ‖Mk

ε ‖L2(Γ) ≤ 2C
√
ε.The last estimate with 2C = C proves (5.1).
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hkin, Yu.O. Koroleva, L.-E. Persson, P. WallRemark 5.2. We have shown in our proof that the estimate (5.1) is the best possiblein the sense that Cε 1
2 on the right-hand side 
an not be repla
ed by Cεq for any q > 1

2
.In fa
t, it even yields that ‖Mε‖L2(Γ) > Cεq for q > 1

2
and any C.Remark 5.3. We have proved the inequalities (2.2) and (2.3) and have 
onstru
ted theasymptoti
s for the best 
onstants only in the 
ase p = q = 2. However, by using thete
hniques in this paper an analogous result for arbitrary p, q > 1 
an also be proved,but here it is not so easy to 
onstru
t the asymptoti
s for the best 
onstant, sin
e wehave to 
onsider a nonlinear spe
tral problem for −∆p operator. This is an interestingquestion to study in the future.Remark 5.4. An interesting extension of the results in this paper would be to 
onsiderdomains with more general mi
rostru
ture.A
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