
EURASIAN MATHEMATICAL JOURNALISSN 2077-9879Volume 2, Number 1 (2011), 81 � 103A NEW WEIGHTED FRIEDRICHS�TYPE INEQUALITYFOR A PERFORATED DOMAIN WITH A SHARP CONSTANTG.A. Chehkin, Yu.O. Koroleva, L.-E. Persson, P. WallCommuniated by V.I. BurenkovKey words: partial di�erential equations, funtional analysis, spetral theory, homog-enization theory, Hardy-type inequalities, Friedrihs-type inequalities.AMS Mathematis Subjet Classi�ation: 35B27, 39A10, 39A11, 39A70, 39B62,41A44, 45A05.Abstrat. We derive a new three-dimensional Hardy-type inequality for a ube forthe lass of funtions from the Sobolev spae H1 having zero trae on small holesdistributed periodially along the boundary. The proof is based on a areful analysisof the asymptoti expansion of the �rst eigenvalue of a related spetral problem andthe best onstant of the orresponding Friedrihs-type inequality.1 IntrodutionIntegral inequalities of Friedrihs and Hardy types are very important for di�erentappliations. In partiular, they are often used for deriving some estimates for operatornorms, for proving some embedding theorems, for solving various problems for partialdi�erential equations, homogenization theory, spetral theory et. In this paper weprove and disuss some new integral inequalities of Hardy-type for a domain withmiroinhomogeneous struture in a neighborhood of the boundary.Let Ω ⊆ R
n. A Hardy-type inequality is an integral inequality of the form


∫

Ω

|U(x)|qV (x) dx




1
q

≤ C



∫

Ω

|∇U(x)|pW (x) dx




1
p

, (1.1)where U ∈ C∞
0 (Ω), V (x) ≥ 0,W (x) ≥ 0, 1 ≤ p, q < ∞, and the onstant C does notdepend on the funtion U. There are several results onerning Hardy-type inequalities(see e.g. the books [19℄, [25℄, [26℄ and [31℄ and the referenes given therein).One main aim of this paper (.f. also [23, Paper F℄) is to derive the Hardy-typeinequality ∫

Ω

|U(x)|2ρα−2(x) dx ≤ C

∫

Ω

|∇U(x)|2ρα(x) dx, (1.2)where Ω is bounded and has nontrivial mirostruture. More preisely, we assume that
Ω is a ube with perforation along a part of the boundary and that the weight funtion
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ρ dereases to zero as x approahes the part of the boundary whih is assoiated withthe perforation. It should be mentioned that results in this diretion are ompletelynew in the theory of Hardy-type inequalities. In partiular, it gives us possibilityto use ideas developed within the homogenization theory to obtain estimates for thebest onstant in di�erent Hardy-type inequalities. The �rst step in this diretion wasreently done in [21℄, where the inequality (1.2) was proved under the assumption thatthe funtion U vanishes on small alternating piees of a part of the boundary.Note that some analogous results onerning Friedrihs-type inequality for perfo-rated domains were studied earlier in a number of papers. Some examples of perforateddomains with the Friedrih's onstant of order ε were given in [12℄ and [13℄. Here εis a small parameter haraterizing the perforation. One suh example is the domainperforated by an aperiodi lattie of holes studied by M. Briane, A.Damlamian andP.Donato in [3℄ for the homogenization of the Laplae equation with the Neumannboundary ondition. The authors used the new generalized de�nition of aperiodiallyperforated material introdued by M. Briane in [2℄. Another example is the domainperforated by quasi-periodi holes onsidered by L. Masarenhas and D.Polisevski in[27℄ and D.Chenas, L. Masarenhas and L.Trabuho in [11℄.However, in all these examples it was assumed that the onsidered funtion haszero trae both on boundaries of the small sets and on the boundary of the domain.The Dirihlet ondition on boundary of the domain was replaed by the Neumannboundary ondition in papers [6℄ and [22℄. The main result of these publiations wasthe validity of the Friedrihs inequality for perforated domains under the assumptionthat the diameters of small sets, the distanes between them and the distane to theboundary are of order ε. Moreover, the onvergene of the Friedrihs onstant to theonstant in the limit inequality was established in these papers. Estimates of thedi�erene between these onstants were derived later on in [10℄ for two-dimensionalperforated domain. In the present paper we also derive the error estimate for thedi�erene between the onstants in the Friedrihs inequalities in the three-dimensionalase. We use this result to prove Hardy-type inequality (1.2) for a perforated domain.Also we note that domains perforated along the boundary were onsidered in [1℄,[7℄. The paper is organized as follows: In Setion 2 we give some neessary de�nitionsand formulate the main results, whih are proved in Setion 4. The proofs of themain results in Setion 2 are based on some auxiliary lemmas, whih are proved anddisussed in Setion 3. Finally, we reserve Setion 5 for some onluding remarks andresults.2 Statement of the problem and the main resultLet Ω ⊂ R

3 be the ube
{

0 < x1 < 1, −1

2
< x2 <

1

2
, −1

2
< x3 <

1

2

}
.



A new weighted Friedrihs�type inequality for a perforated domain with a sharp onstant 83We denote by ∂Ω the boundary of Ω, and by
Γ :=

{
x1 = 0, −1

2
< x2 <

1

2
, −1

2
< x3 <

1

2

}and
Γ̃ :=

{
x1 = 1, −1

2
< x2 <

1

2
, −1

2
< x3 <

1

2

}
.Assume that 0 < c < 1

2
is a positive number. Here and further on ε > 0 is a smallparameter. Denote

Bij
ε = {x ∈ Ω : (x1 − ε)2 + (x2 − iε)2 + (x3 − jε)2 < (cε)2},

i, j ∈ Z, Bε =
⋃
i,j

Bij
ε , Γε = ∂Bε. Finally, we de�ne the domain Ωε := Ω\Bε (see Figure2). Fix a parameter 0 < θ < 1. De�ne the set Ωθ := {x ∈ Ω : x1 > θ}. Consider the

Figure 2: Domain Ωε perforated along part Γ of the boundary.Sobolev-type spaes
H1(Ωε,Γε) = {U ∈ H1(Ωε) : U |Γε = 0},where U |Γε is the trae of the funtion U on Γε.Remark 2.1. Without loss of generality we an assume that U ∈ H1(Ωε,Γε) is ex-tended to be U ≡ 0 in Bε, and we denote by H1(Ω,Γε) the spae of all suh extensionsof funtions U ∈ H1(Ωε,Γε).



84 G.A. Chehkin, Yu.O. Koroleva, L.-E. Persson, P. WallAnalogously, we de�ne H1(Ω,Γ) = {U ∈ H1(Ω) : U |Γ = 0}, H1(Ω,Γε ∪ Γ̃) = {U ∈
H1(Ω) : U |Γε∪eΓ = 0} and H1(Ω,Γ ∪ Γ̃) = {U ∈ H1(Ω) : U |Γ∪eΓ = 0}. Let ρ(x) :=
dist(x, Γ) for x ∈ Ωε. Our new Hardy-type inequality has the following form.Theorem 2.1. Let 0 ≤ α < α0 = 2θ√

K0
, where K0 > 0 is the best onstant in theFriedrihs-type inequality ∫

Ωθ

U2dx ≤ K0

∫

Ωθ

|∇U |2dx (2.1)for funtions from H1(Ω,Γ ∪ Γ̃). Then the Hardy-type inequality
∫

Ωθ

U2ρα−2 dx ≤ C(θ, α)

∫

Ωθ

|∇U |2ρα dx (2.2)holds for any funtion U ∈ H1(Ω,Γε ∪ Γ̃), where C(θ, α) = 4K0

(2θ−
√

K0α)2
.Our next main result is the orresponding Friedrihs-type inequality whih is ofindependent interest and is ruial for the proof of Theorem 2.1.Theorem 2.2. Let 0 < ε << 1. Then the Friedrihs-type inequality

∫

Ω

U2 dx ≤ Kε

∫

Ω

|∇U |2 dx (2.3)holds for any funtion U ∈ H1(Ω,Γε), where for any su�iently small µ > 0

Kε =
4

π2
+ εK + o

(
ε

3
2
−µ
) (2.4)as ε→ 0+. Here Kε is the best onstant in Friedrihs-type inequality (2.3). The preiseformula for the onstant K < 0 is given by (4.38) later on.It is well known that the best onstant in Friedrihs-type inequalities an be ex-pressed via the �rst eigenvalue of the orresponding spetral problem. This is why we�rst study an auxiliary spetral problem and onstrut the asymptoti expansion forits �rst eigenvalue via the method of mathing of asymptoti expansions. After thatwe derive the asymptotis (2.4) for the onstant Kε in Friedrihs-inequality (2.3) byusing the relations between it and the �rst eigenvalue. More exatly, we onsider thefollowing spetral problem:





−∆uε = λεuε in Ωε,

uε = 0 on Γε,
∂uε

∂ν
= 0 on ∂Ω. (2.5)Here and in the sequel we denote by ν the outward unit vetor.
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−∆u0 = λ0u0 in Ω,

u0 = 0 on Γ,
∂u0

∂ν
= 0 on ∂Ω \ Γ

(2.6)is the limit problem for (1.1). This fat an be established analogously as in [9℄ forthe two-dimensional ase. In partiular, the onvergene of any eigenvalue λε of theproblem (1.1) to the orresponding eigenvalue λ0 of the problem (1.3) as ε → 0+ wasproved. Moreover, the onvergene of the orresponding eigenfuntions in the normof Sobolev spae H1 was derived. The next result gives a more exat desription ofthe asymptotis of all eigenvalues of the problem (1.1) and is ruial for the proof ofTheorem 2.2 (and, thus, of Theorem 2.1) and also of independent interest. Due to thegeometry of our domain it is not di�ult to derive that all eigenvalues of the problem(1.3) (and, hene, of the problem (1.1)) are positive and simple. In partiular, the nextresult is valid for the �rst eigenvalue of (1.1).Theorem 2.3. The following asymptotis holds for the �rst eigenvalue of (1.1)
λε = λ0 + ελ1 + o(ε

3
2
−µ), (2.7)where 0 < µ is an arbitrary small real number,

λ1 = −C(B)

∫

Γ

(
∂u0

∂ν

)2

ds < 0, (2.8)
(λ0, u0) is the orresponding eigenelement of (1.3) and C(B) is a stritly positive on-stant (the preise formula for C(B) is given by (3.8) in Setion 3). Here λ0 = π2

4
.Remark 2.2. The orresponding two-dimensional result was proved in [9℄.3 Some auxiliary resultsDe�ne the sets

Π =

{
ξ1 > 0, −1

2
< ξ2 <

1

2
, −1

2
< ξ3 <

1

2

}
,

γ =

{
ξ1 = 0, −1

2
< ξ2 <

1

2
, −1

2
< ξ3 <

1

2

}
,

B := {(ξ1 − 1)2 + ξ2
2 + ξ2

3 < c2, 0 < c < 1}(see Figure 3). The following three auxiliary Lemmas are neessary for our proofs ofthe main results.
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Figure 3: Cell of periodiity.Lemma 3.1. The following boundary-value problem




∆X1 = 0 in Π\B,
X1 = 0 on ∂B,

∂X1

∂ξ1
= 0 on γ,

∂X1

∂ξ2
= 0 as ξ2 = ±1

2
,

∂X1

∂ξ3
= 0 as ξ3 = ±1

2
,

X1 ∼ ξ1 as ξ1 → +∞

(3.1)
has a unique even solution with respet to the variables ξ2 and ξ3.Moreover, this solutionhas the asymptotis

X1(ξ) = ξ1 + C(B) +O(e−2πξ1) as ξ1 → +∞, (3.2)where C(B) is a stritly positive onstant (the preise formula for C(B) is given lateron in the proof of Lemma 3.1 (see (3.8))).Lemma 3.2. Let X1 be the solution of (3.1). The boundary-value problem





∆X2 = ∂X1

∂ξ2
in Π\B,

X2 = 0 on ∂B,
∂X2

∂ξ1
= 0 on γ,

X2 = 0 as ξ2 = ±1
2
,

X2 = 0 as ξ3 = ±1
2

(3.3)



A new weighted Friedrihs�type inequality for a perforated domain with a sharp onstant 87has a unique solution whih is odd with respet to ξ2 and even with respet to ξ3 andsatis�es the following asymptotis
X2(ξ) = O(e−ξ1) as ξ1 → +∞. (3.4)Lemma 3.3. Let X1 be the solution of (3.1). The boundary-value problem




∆ξX3 = ∂X1

∂ξ3
in Π\B,

X3 = 0 on ∂B,
∂X3

∂ξ1
= 0 on γ,

X3 = 0 as ξ2 = ±1
2
,

X3 = 0 as ξ3 = ±1
2

(3.5)has a unique solution whih is even with respet to ξ2, odd with respet to ξ3 and hasthe following asymptotis
X3(ξ) = O(e−ξ1) as ξ1 → +∞. (3.6)Due to 1-periodiity, with respet to ξ2 and ξ3, of the right-hand side of the equationin problem (3.3) and the boundary onditions we an extend X2 and X3 1-periodially.We will use the same notation for the extended funtions.In the remaining part of this setion we desribe how these lemmas an be proved.Proof of Lemma 3.1. First we note that the proof of Lemma 3.1 is based on the fol-lowing Lemma whih an be proved exatly in the same way as Proposition 1.2 from[29℄ was proved. We omit the details.Lemma 3.4. Assume that eδ0ξ1F ∈ L2(Π \ B), eδ0ξ1H ∈ L2(∂Π), G ∈ H

1
2 (∂B)and δ0 > 0. Then there exists a unique weak solution of the following boundary-valueproblem: 





−∆Z = F in Π \B
Z = G on ∂B,
∂Z

∂ν
= H on ∂Π.This solution is given by the formula

Z(ξ) = C + Z̃(ξ),where C is a onstant, eδξ1Z̃ ∈ H1(Π\B) and δ is an arbitrary number satisfying theonditions δ ≤ δ0 and δ < π.Consider now the boundary-value problem





∆Y = 0 in Π\B,
Y = −ξ1 on ∂B,
∂Y
∂ξ1

= −1 on γ,
∂Y
∂ξ2

= 0 as ξ2 = ±1
2
,

∂Y
∂ξ3

= 0 as ξ3 = ±1
2
.

(3.7)



88 G.A. Chehkin, Yu.O. Koroleva, L.-E. Persson, P. WallDue to Lemma 3.4 there exists a unique weak solution of this boundary-value problemof the form
Y (ξ) = C(B) + Z̃(ξ),where C(B) is a onstant and the funtion Z̃(ξ) satis�es the onditions of Lemma 3.4.The funtion Y is even with respet to ξ2 and ξ3 due to the symmetry of B. Denoteby ΠR = Π ∩ {ξ1 > R}, γR = {ξ ∈ Π, ξ1 = R}, yR = Y

∣∣
γR
. Obviously, the funtion Yis also a unique lassial bounded solution of the following boundary-value problem





∆Y = 0 in ΠR,
∂Y
∂ξ1

= yR on γR,
∂Y
∂ξ2

= 0 as ξ2 = ±1
2
,

∂Y
∂ξ3

= 0 as ξ3 = ±1
2when R is a su�iently large number. Hene, taking into aount that Y is an evenfuntion with respet to ξ2 and ξ3 we onlude that the asymptotis has the followingstruture:

Y (ξ) = C(B) +O(e−2πξ1) as ξ1 → +∞,and, onsequently, (3.2) holds.It only remains to prove that
C(B) =

∫

Π\B

|∇Y |2dξ + |B|. (3.8)Denote by ΠR = Π ∩ {ξ1 < R}. Multiplying the equation of the problem (3.7) by
X1, integrating over ΠR \B and taking into aount the properties of the funtion X1we obtain that

0 =

∫

ΠR\B

X1∆Y dξ =

∫

γR

X1
∂Y

∂ξ1
dξ2 dξ3−

−
∫

γ

X1
∂Y

∂ξ1
dξ2 dξ3 −

∫

ΠR\B

∇Y∇X1 dξ.

(3.9)By �rst using integration by parts to rewrite the right-hand side of (3.9) and there-after passing to the limit as R→ ∞, we �nd that
0 = −

∫

γ

∂Y

∂ξ1
X1 dξ2 dξ3 +

∫

∂B

Y
∂X1

∂ν
dsξ − C(B)

=

∫

γ

Y dξ2 dξ3 +

∫

∂B

Y
∂Y

∂ν
dsξ −

∫

∂B

ξ1
∂ξ1
∂ν

dsξ − C(B).

(3.10)Analogously, multiplying (3.7) by Y , integrating the obtained formula by parts over
ΠR \B and passing to the limit as R→ +∞, we have that

0 = −
∫

Π\B

|∇Y |2 dξ +

∫

∂B

∂Y

∂ν
Y dsξ +

∫

γ

Y dξ2 dξ3. (3.11)
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C(B) =

∫

Π\B

|∇Y |2 dξ −
∫

∂B

ξ1
∂ξ1
∂ν

dsξ. (3.12)By integrating by parts the left-hand side of the formula
∫

B

ξ1∆ξ1dξ = 0,we get that ∫

∂B

ξ1
∂ξ1
∂νB

dsξ = |B|, (3.13)where νB is an outward normal vetor to B. The formula (3.8) follows from (3.12) and(3.13).Proof of Lemma 3.2. The proof of this Lemma is based on the following Lemma from[29℄:Lemma 3.5. Assume that eδ0ξ1F ∈ L2(Π \B) and δ0 > 0. Then there exists a uniquesolution of the following boundary-value problem:





−∆Z = F in Π \B
Z = 0 on ∂B ∪ ∂Π\γ,
∂Z

∂ν
= 0 on γ,where eδξ1Z ∈ H1(Π\B) and δ is an arbitrary number satisfying the onditions δ ≤ δ0and δ < π.By applying this Lemma with Z = X2 and F = ∂X1

∂ξ2
, we onlude that X2 has theasymptotis (3.4). The solution X2 is odd with respet to ξ2 and even with respet to

ξ3 due to the equation of the boundary-value problem (3.3) and the properties of itsright-hand side.Proof of Lemma 3.3. This Lemma an be proved analogously to Lemma 3.2, so weomit the details.4 Proofs of the main resultsProof of Theorem 2.3.Proof. The proof is based on several steps, whih sometimes are stated as Lemmas ofindependent interest. Our aim is to onstrut the �rst two terms of the asymptotiexpansion for simple eigenvalues of the spetral problem (1.1).



90 G.A. Chehkin, Yu.O. Koroleva, L.-E. Persson, P. WallThe behavior of uε in a boundary layer lose to Γ strongly di�ers from the behavioroutside the boundary layer. We will use the method of mathing of inner and outerexpansions of uε. The inner expansion is valid in the boundary layer and the outerexpansion is valid outside the boundary layer (for more information onerning themethod of mathing expansions see e.g. [17℄).Without loss of generality we may assume that the funtion u0 is normalized in
L2(Ω).It is natural to onstrut the asymptoti expansion for λε in the form

λε ≈ λ̂ε = λ0 + ελ1 + ε2λ2, (4.1)while we use the formula
uε(x) ≈ ûε = u0(x) + εu1(x) + ε2u2(x) (4.2)for the asymptotis of uε.We have that u0 ∈ C∞(Ω), see [9℄. If we substitute the expansions (4.1) and (4.2)into the spetral problems (1.1) and ollet terms of the same order of ε, then, bytaking into aount (1.3), we obtain the expansion

u0(x) = α1
0(x2, x3)x1 + O(x3

1) (4.3)as x1 → 0, where
α1

0 =
∂u0

∂x1

∣∣∣∣∣
x1=0

∈ C∞
[
−1

2
,
1

2

]
×
[
−1

2
,
1

2

] (4.4)and
∂2j+1α1

0

∂x2j+1
2

(
±1

2
, x3

)
= 0,

∂2j+1α1
0

∂x2j+1
3

(
x2,±

1

2

)
= 0, (4.5)for j = 0, 1, 2, . . . .We hoose the funtions u1 and u2 satisfying the boundary-value problems






−∆u1 = λ0u1 + λ1u0 in Ω,
∂u1

∂ν
= 0 on ∂Ω \ Γ,

u1 = α0
1 on Γ,

(4.6)




−∆u2 = λ0u2 + λ1u1 + λ2u0 in Ω,
∂u2

∂ν
= 0 on ∂Ω \ Γ,

u2 = α0
2 on Γ,

(4.7)where α0
1(x2, x3), α

0
2(x2, x3) are unknown funtions, whih will be de�ned later on.Remark 4.1. The equations of the boundary-value problems (4.6) and (4.7) togetherwith the boundary onditions (exept ondition on Γ) are just the result of substitutingthe expansions (4.1) and (4.2) into (1.1) and olleting terms of the same order of ε.The validity of the following Lemma an be established by using the same tehniqueas in the proof of the analogous result in [4℄. We omit the details.
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1, α

0
2 ∈ C∞ [−1

2
, 1

2

]
×
[
−1

2
, 1

2

] and that odd derivativesof the funtions α0
1 and α0

2 with respet to x2, x3 vanish as x2 = ±1
2
, x3 = ±1

2
.Then there exist onstants λ1, λ2 and funtions u1(x), u2(x) ∈ C∞(Ω), whih are thesolutions of problems (4.6) and (4.7), respetively. Moreover, λ1 satis�es that

λ1 = −

1
2∫

− 1
2

1
2∫

− 1
2

α0
1(x2, x3)α

1
0(x2, x3) dx2 dx3. (4.8)By using a Taylor expansion we obtain that

u1(x) = α0
1(x2, x3) + α1

1(x2, x3)x1 +O(x2
1),

u2(x) = α0
2(x2, x3) +O(x1)

(4.9)as x1 → 0, where α1
1 ∈ C∞ [−1

2
, 1

2

]
×
[
−1

2
, 1

2

] and
∂2j+1α1

1

∂x2j+1
2

(
±1

2
, x3

)
= 0,

∂2j+1α1
1

∂x2j+1
2

(
x2,±

1

2

)
= 0, (4.10)for j = 0, 1, 2, . . . due to (4.6).Taking into aount Remark 4.1 and Lemma 4.1 we onlude that the followingLemma holds:Lemma 4.2. Assume that α0

1, α
0
2 ∈ C∞ [−1

2
, 1

2

]
×
[
−1

2
, 1

2

] and odd derivatives of thefuntions α0
1 and α0

2 with respet to x2 and x3 vanish at the points (±1
2
, x3

) and(
x2,±1

2

)
. Then ûε ∈ C∞(Ω) and the formulas





−∆ûε = λ̂εûε +O(ε3) in Ω,
∂ûε

∂ν
= 0 on ∂Ω \ Γare valid.We onstrut another interpolation for the funtion uε in a small neighborhood of

Γ (inner expansion) sine the funtion ûε(x) does not satisfy the boundary onditionsof the problem (1.1) on Γ and on Γε.The formulas (4.2), (4.3) and (4.9) lead to the following:
ûε(x) =α1

0(x2, x3)x1 + ε(α0
1(x2, x3) + α1

1(x2, x3)x1) + ε2α0
2(x2, x3)

+O(x3
1 + εx2

1 + ε2x1) as x1 → 0.Put ξ1 = x1

ε
. Then we onlude that

ûε(x) =εV1(ξ1; x2, x3) + ε2V2(ξ1; x2, x3)

+O(x3
1 + εx2

1 + ε2x1) as x1 → 0,
(4.11)where

V1(ξ1; x2, x3) = α1
0(x2, x3)ξ1 + α0

1(x2, x3),

V2(ξ1; x2, x3) = α1
1(x2, x3)ξ1 + α0

2(x2, x3).
(4.12)



92 G.A. Chehkin, Yu.O. Koroleva, L.-E. Persson, P. WallAording to the method of mathing of asymptoti expansions we onlude thatthe internal expansion have to be of the following struture in a neighborhood of Γ:
uε(x) ≈ v̂ε(x) = εv1 (ξ; x2, x3) + ε2v2 (ξ; x2, x3) , (4.13)where ξ = x

ε
and
vq(ξ; x2, x3) ∼ Vq(ξ1; x2, x3) as ξ1 → +∞, q = 1, 2. (4.14)Here x2, x3 are so alled �slow� variables while ξ is the �fast� variable.The equation of the problem (1.1) with respet to the variables (ξ; x2, x3) has thefollowing form:

−ε−2∆ξuε − 2ε−1 ∂2uε

∂x2∂ξ2
− 2ε−1 ∂2uε

∂x3∂ξ3
− ∂2uε

∂x2
2

− ∂2uε

∂x2
3

= λεuε. (4.15)The boundary onditions on the lateral surfae of the ell of periodiity Π exept γ are
∂uε

∂ν
= ±ε−1∂uε

∂ξ2
± ∂uε

∂x2
= 0, (4.16)

∂uε

∂ν
= ±ε−1∂uε

∂ξ3
± ∂uε

∂x3
= 0, (4.17)and on γ it yields that

∂uε

∂ν
= −ε−1∂uε

∂ξ1
− ∂uε

∂x1
= 0. (4.18)Next, we onstrut the internal expansion for (4.13) as 1-periodi funtion with respetto ξ2 and ξ3. In order to do this, we rewrite the equation and boundary onditions in ξvariables (see (4.15) � (4.18)), substitute (4.13) and (4.1) in (1.1) and, �nally, equateterms at εq orresponding to the same q. Then, by taking into aount (4.14), (4.12)and Remark 4.1, we get the following boundary-value problem for v1:





∆ξv1 = 0 in Π\B,
v1 = 0 on ∂B,
∂v1

∂ξ1
= 0 on γ,

∂v1

∂ξ2
(ξ;±1

2
, x3) = 0 as ξ2 = ±1

2
,

∂v1

∂ξ3
(ξ; x2,±1

2
) = 0 as ξ3 = ±1

2
,

v1 ∼ V1 as ξ1 → +∞

(4.19)
and for v2: 





−∆ξv2 = 2 ∂2v1

∂x2∂ξ2
+ 2 ∂2v1

∂x3∂ξ3
in Π\B,

v2 = 0 on ∂B,
∂v2

∂ξ1
= 0 on γ,

∂v2

∂ξ2
(ξ;±1

2
, x3) = − ∂v1

∂x2
(ξ;±1

2
, x3) as ξ2 = ±1

2
,

∂v2

∂ξ3
(ξ; x2,±1

2
) = − ∂v1

∂x3
(ξ; x2,±1

2
) as ξ3 = ±1

2
,

v2 ∼ V2 as ξ1 → +∞.

(4.20)Due to the boundary-value problems (4.19) and (4.20) we onlude that the follow-ing Lemma is valid:
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1-periodi funtions with respet to ξ2 and ξ3. Then the funtions v̂ε and λ̂ε, whihare given by (4.13) and (4.1), respetively, satisfy to the following formulas for eahsu�iently small h > 0 :

−∆v̂ε = λ̂εv̂ε + F̂ v
ε in Ωε ∩ {x1 < h},

v̂ε = 0 on Γε,

∂v̂ε

∂ν
= 0 on ∂Ω,

∂v̂ε

∂xj

= ε2 ∂v2

∂xj

, j = 2, 3, on (∂Ω \ Γ) ∩ {x1 < h},
(4.21)where

F̂ v
ε = − ε

(
∂2v1

∂x2
2

+
∂2v1

∂x2
3

+ λ0v1 + 2
∂2v2

∂x2∂ξ2
+ 2

∂2v2

∂x3∂ξ3

)
−

− ε2

(
λ1v1 +

∂2v2

∂x2
2

+
∂2v2

∂x2
3

+ λ0v2

)
− ε3

(
λ1v2 + λ2v1

)
− ε4λ2v2.

(4.22)Now we study the solvability of the boundary-value problem (4.19) and determinea formula for the funtion α0
1(x2, x3).It should be noted that the funtion X1, de�ned in (3.1), an be extended 1-periodially with respet to ξ2 and ξ3. We save the same notation for the extendedfuntion. Put
v1(ξ; x2, x3) = α1

0(x2, x3)X1(ξ). (4.23)Due to (3.2) this funtion has the following asymptotis
v1(ξ; x2, x3) = α1

0(x2, x3)ξ1 + α1
0(x2, x3)C(B) +O(e−2πξ1) (4.24)as ξ1 → +∞. Consequently, by using Lemma 3.1 and assuming that

α0
1(x2, x3) = α1

0(x2, x3)C(B), (4.25)we onlude that the funtion v1 is a solution of (4.19). Moreover,
v1(ξ; x2, x3) = V1(ξ1; x2, x3) +O(e−2πξ1) as ξ1 → +∞, (4.26)

α0
1 ∈ C∞ [−1

2
, 1

2

]
×
[
−1

2
, 1

2

] and, aording to (4.5), it yields that
∂2j+1α0

1

∂x2j+1
2

(
±1

2
, x3

)
= 0,

∂2j+1α0
1

∂x2j+1
3

(
x2,±

1

2

)
= 0, j = 0, 1, 2, . . .Summarizing all results, we dedue that the ondition of solvability for (4.19) leadus to get the preise formula for the funtion α0

1(x2, x3) in the boundary-value problem(4.6), whih satis�es the onditions of Lemma 4.1. On the other hand, the formula(2.8) follows diretly from (4.8) and (4.25).
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∂v1

∂x2

(ξ; x2, x3) = 0,
∂v1

∂x3

(ξ; x2, x3) = 0, (4.27)as x2 = ±1
2
, x3 = ±1

2
, respetively.Now we begin to study the problem (4.20). Put

v2(ξ; x2, x3) = α1
1(x2, x3)X1(ξ) − 2

∂α1
0

∂x2
(x2, x3)X2(ξ) − 2

∂α1
0

∂x3
(x2, x3)X3(ξ).This funtion is 1-periodi with respet to ξ2 and ξ3 and, in view of (3.2), (3.4) and(3.6), it has the asymptotis

v2(ξ; x2, x3) = α1
1(x2, x3)ξ1 + C(B)α1

1(x2, x3) +O(ξ1e
−ξ1) (4.28)as ξ1 → ∞. Hene, taking into aount Lemmas 3.1, 3.2, 3.3 and formulas (4.24),(4.5) and (4.27), we dedue that v2 is a solution of (4.20) if

α0
2(x2, x3) = α1

1(x2, x3)C(B).Moreover,
v2(ξ; x2, x3) = V2(ξ1; x2, x3) +O(ξ1e

−ξ1) as ξ1 → ∞, (4.29)
α0

2 ∈ C∞ [−1
2
, 1

2

] and, due to (4.10), we have that
∂2j+1α0

2

∂x2j+1
2

(
±1

2
, x3

)
= 0,

∂2j+1α0
2

∂x2j+1
3

(
x2,±

1

2

)
= 0, j = 0, 1, 2, . . .Hene, the solvability onditions for the boundary-value problem (4.20) determinethe funtion α0

2(x2, x3), whih satis�es the onditions of Lemma 4.1.Note that, aording to (4.10) and the boundary onditions X2 = X3 = 0 on ∂Π,it yields that
∂v2

∂x2

(
ξ1,±

1

2
, ξ3; x2, x3

)
= 0 as x2 = ±1

2
,

∂v2

∂x3

(
ξ1, ξ2,±

1

2
; x2, x3

)
= 0 as x3 = ±1

2
.

(4.30)Consequently, taking into aount (4.30) and (4.21), we obtain that
∂v̂ε

∂ν

(x
ε
; x2, x3

)
= 0 on Γ ∪ ((∂Ω \ Γ) ∩ {x1 < h}) .We have ompleted the onstrution of the asymptotial expansions. Now we haveto prove that the onstruted expansion interpolates the limit element. Lemma 4.3together with the formulas (4.24) and (4.28) lead to the following result:Lemma 4.4. If 0 < β < 1, then the estimate

‖F̂ v
ε ‖L2(Ωε∩{x1<2εβ}) = O

(
ε

3
2
β
)holds for the funtion F̂ v

ε given by (4.22).
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‖F̂ v

ε ‖2
L2(Ωε∩{x1<2εβ}) =

∫

Ωε∩{x1<2εβ}

[
−ε
(
∂2v1

∂x2
2

+
∂2v1

∂x2
3

+ λ0v1+

+2
∂2v2

∂x2∂ξ2
+ 2

∂2v2

∂x3∂ξ3

)
−ε2

(
λ1v1 +

∂2v2

∂x2
2

+
∂2v2

∂x2
3

+ λ0v2

)
−

−ε3

(
λ1v2 + λ2v1

)
− ε4λ2v2

]2

dx =

∫

Ωε∩{x1<2εβ}

[
−ε
(
∂2v1

∂x2
2

+
∂2v1

∂x2
3

+

+λ0v1 + 2
∂2v2

∂x2∂ξ2
+ 2

∂2v2

∂x3∂ξ3

)
+O(ε2)

]2

dx =

∫

Ωε∩{x1<2εβ}

[
−ε
(

(ξ1+

+C(B))

(
∂2α1

0

∂x2
2

+
∂2α1

0

∂x2
3

)
+λ0[α

1
0(ξ1 + C(B)) +O(ξ1e

−ξ1))]

)
+

+O(ε2)

]2

dx =

∫

Ωε∩{x1<2εβ}

[
εξ1(λ0α

1
0 − 1) +O(ε) +O(ε2)

]2

dx =

=

∫

Ωε∩{x1<2εβ}

[
x1(λ0α

1
0 − 1) +O(ε)

]2
dx.Finally, we dedue that

‖F̂ v
ε ‖L2(Ωε∩{x1<2εβ}) =




∫

Ωε∩{x1<2εβ}

O(x2
1)




1
2

= O(ε
3
2
β).

On the other hand, the formulas (4.11), (4.26) and (4.29) give us the validity of thefollowing Lemma:Lemma 4.5. Assume that 0 < β < 1. Then the estimates
v̂ε − ûε = O(ε3β),

∂

∂x1

(v̂ε − ûε) = O(ε2β)hold as εβ < x1 < 2εβ (εβ−1 < ξ1 < 2εβ−1).Proof. By applying (4.11), (4.26) and (4.29), we get that
v̂ε − ûε = εV1(ξ1; x2, x3) + ε2V2(ξ1; x2, x3) − εV1(ξ1; x2, x3)−
− ε2V2(ξ1; x2, x3) +O(εe−2πξ1 + ε2ξ1e

−πξ1 + x3
1 + εx2

1 + ε2x1) =

= O(x3
1) = O(ε3β) as εβ < x1 < 2εβ.
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∂

∂x1
(v̂ε − ûε) = O(x2

1) = O(ε2β)as εβ < x1 < 2εβ.Let χ(t) ∈ C∞ be a uto� funtion, whih equals to zero as t < 1 and equals to 1as t > 2, χβ(x1) = χ
(

x1

εβ

)
.Lemma 4.6. Suppose that 0 < β < 1. Then the funtion

Ûε(x) = χβ (x1) ûε(x) + (1 − χβ (x1)) v̂ε(x).is a solution of the following boundary-value problem:




−∆Ûε = λ̂εÛε + f̂ε in Ωε,

Ûε = 0 on Γε,
∂ bUε

∂ν
= 0 on ∂Ω, (4.31)where
‖f̂ε‖L2(Ωε) = O(ε

3
2
β), (4.32)and, moreover,

lim
ε→0

‖Ûε‖0 ≥ 1. (4.33)Proof. The validity of (4.33) is obvious. The funtion Ûε satis�es the boundary on-ditions of problem (3.1) due to Lemmas 4.2, 4.3 and formula (4.30). By applying theoperator −(△ + λ̂ε) to Ûε we get that
f̂ε = I1 + I2 + I3,where

I1 = − χβ(△ûε + λ̂εûε),

I2 = − (1 − χβ)(△v̂ε + λ̂εv̂ε) = −(1 − χβ)F̂ v
ε ,

I3 =(v̂ε − ûε)△χβ + 2∇χβ∇x(v̂ε − ûε)

=ε−2βχ′′
(x1

εβ

)
(v̂ε − ûε) + 2ε−βχ′

(x1

εβ

) ∂

∂x1

(v̂ε − ûε) .Using Lemma 4.2, we obtain that
‖I1‖L2(Ωε) =



∫

Ωε

I2
1 (x) dx




1
2

=
(
O(ε6)

) 1
2 = O(ε3). (4.34)Lemma 4.4 together with the de�nition of funtion χβ give the following asymptotis:

‖I2‖L2(Ωε) =




∫

Ωε

I2
2 (x) dx





1
2

=




∫

Ωε∩{x1<2εβ}

I2
2 (x) dx




1
2

=

=
(
O(ε3β)

) 1
2 = O

(
ε

3
2
β
)
.
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{x : εβ < x1 < 2εβ} and using Lemma 4.5, we have that

‖I3‖L2(Ωε) = O
(
ε

3
2
β
)
. (4.35)Finally, the asymptotis (4.34)�(4.35) lead us to (4.32).The estimate

‖Ûε‖L2(Ωε) ≤ C
‖f̂‖L2(Ωε)∣∣∣λε − λ̂ε

∣∣∣an be proved exatly in the same way as it was done in paper the [8℄ for the two-dimensional ase. Here Ûε is a solution of the boundary-value problem (3.1) and theonstant C does not depend on ε. This fat together with (4.32) and (4.33) give us thefollowing formula:
|λε − λ̂ε| = O(ε

3
2
β). (4.36)The formula (2.7) holds due to (4.1) and (4.36) sine β is an arbitrary number in theinterval (0, 1). The proof of Theorem 2.3 is omplete.Proof of Theorem 2.2.Proof. Note that the validity of (2.3) and the onvergene Kε to K0 as ε → 0 areproved in paper [20℄ (see also [22℄ for an aperiodial ase). Taking into aount thevariational de�nition of Kε, we have that

1

Kε

= inf
Uε∈H1(Ω,Γε)\{0}

∫
Ωε

|∇Uε|2 dx
∫
Ωε

U2
ε dx

= λ1
ε,where λ1

ε is the �rst eigenvalue of spetral problem (1.1).Finally, by using the asymptotis (2.7) for the �rst eigenvalue we get that
Kε =

(
π2

4
+ ελ1

1 + o(ε
3
2
−µ)

)−1

. (4.37)Denote by
K =

π2

4
λ1

1. (4.38)The formula (2.4) follows diretly from (4.37) and (4.38). The proof of Theorem 2.2 isomplete.



98 G.A. Chehkin, Yu.O. Koroleva, L.-E. Persson, P. WallProof of Theorem 2.1.Proof. First we onsider the ase α = 0. By using the de�nition of the domain Ωθ, theFriedrihs-inequality (2.1) and the respetive asymptotis we �nd that
∫

Ωθ

ρ−2U2
ε dx ≤ K0

θ2

∫

Ωθ

|∇Uε|2 dx. (4.39)The next step is to prove (2.2) for α > 0. Choose σ > 0 and put Vε = Uερ
σ. It is notdi�ult to derive that

|∇Vε|2 =

(
∂Uε

∂x1

ρσ + σρσ−1 ∂ρ

∂x1

Uε

)2

+ ρ2σ|∇x2x3Uε|2 ≤

≤
(

1 +
1

̟

)
ρ2σ|∇Uε|2 + (1 +̟)σ2ρ2σ−2U2

ε

(4.40)with arbitrary ̟. By applying (4.39) to Vε, we obtain that
∫

Ωθ

ρ−2+2σU2
ε dx ≤ K0

θ2




(

1 +
1

̟

)∫

Ωθ

ρ2σ|∇Uε|2 dx+ σ2(1 +̟)

∫

Ωθ

ρ2(σ−1)U2
ε dx



 .If 1 − (1+̟)K0

θ2 σ2 > 0, then
∫

Ωθ

ρ−2+2σU2
ε dx ≤ (1 + 1

̟
)K0

θ2 − (1 +̟)K0σ2

∫

Ωθ

ρ2σ|∇Uε|2 dx.Finally, hoosing α = 2σ and the onstant ̟ = 2θ√
K0α

− 1, we obtain (2.2).5 Conluding remarks and resultRemark 5.1. Note that in (2.2) we have di�erent domains on the right and left handsides. By using well-known theorems from the theory of Hardy type inequalities wean derive inequalities with the same domain on both sides but then we must replae
Uε by another funtion Uε −Mε. For example the following result holds:Theorem 5.1. Assume that ρ(x) = dist(x,Γ), 0 ≤ α 6= 1, Uε ∈ H1(Ω,Γε). Thenthere exists a funtion Mε = Mε(x2, x3),

‖Mε‖L2(Γ) ≤ C√ε, (5.1)suh that the Hardy-type inequality
∫

Ω

|Uε −Mε|2ρα−2 dx ≤ 4

(α− 1)2

∫

Ω

|∇Uε|2ρα dx (5.2)holds.



A new weighted Friedrihs�type inequality for a perforated domain with a sharp onstant 99Proof. We assume at �rst that Uε ∈ C∞(Ω,Γε). Fix the variables x2, x3 and use �rstthe following one-dimensional Hardy-type inequality:
1∫

0

v2(x1)

x2−α
1

dx1 ≤
4

(α− 1)2

1∫

0

xα
1 (v′)2 dx1,where v ∈ AC[0, 1] and v(0) = 0. By applying this inequality to the funtion v(x1) =

Uε(x1, ·, ·)− Uε(0, ·, ·), we obtain that
1∫

0

(Uε(x1, x2, x3) − Uε(0, x2, x3))
2ρα−2 dx1 ≤

4

(α− 1)2

1∫

0

ρα|∇Uε|2 dx1. (5.3)Denote by Mε(x2, x3) := Uε(0, x2, x3). By integrating the inequality (5.3) with respetto x2 and x3, we dedue that
∫

Ω

(Uε −Mε)
2ρα−2 dx ≤ 4

(α− 1)2

∫

Ω

ρα|∇Uε|2 dx. (5.4)Finally, we approximate the funtions Uε ∈ H1(Ω,Γε) by smooth funtions from
C∞(Ω,Γε) and onlude that (5.4) is valid also for Uε ∈ H1(Ω,Γε). The next stepis to derive the estimate (5.1).There exists a sequene of funtions Uk

ε ∈ C∞(Ω,Γε) suh that Uk
ε onverges to Uεin H1 as k → ∞. Denote by Mk

ε := Uk
ε (0, x2, x3). Consequently, Mk

ε onverges to Mεas k → ∞ in H 1
2 . Choose a number K suh that

‖Mε −Mk
ε ‖L2(Γ) ≤ C

√
ε for any k > K. (5.5)Let us prove that there is a onstant C suh that

‖Mk
ε ‖L2(Γ) ≤ C

√
ε. (5.6)Suppose that there exists a subsequene εn, n→ ∞, suh that

‖Mk
εn
‖2

L2(Γ)
> n2εn.Hene, max

Γ
|Mk

εn
| > n

√
εn. Consequently,
∫

L2(Ω∩{x1≤εn})

∣∣∇Uk
εn

∣∣2 dx > εn




max
Γ

|Mk
εn
|

εn




2

> n2,that is Uk
ε does not belong to H1. This ontradition proves (5.6).Taking into aount (5.6) and (5.5) we dedue that

‖Mε‖L2(Γ) ≤ ‖Mε −Mk
ε ‖L2(Γ) + ‖Mk

ε ‖L2(Γ) ≤ 2C
√
ε.The last estimate with 2C = C proves (5.1).



100 G.A. Chehkin, Yu.O. Koroleva, L.-E. Persson, P. WallRemark 5.2. We have shown in our proof that the estimate (5.1) is the best possiblein the sense that Cε 1
2 on the right-hand side an not be replaed by Cεq for any q > 1

2
.In fat, it even yields that ‖Mε‖L2(Γ) > Cεq for q > 1

2
and any C.Remark 5.3. We have proved the inequalities (2.2) and (2.3) and have onstruted theasymptotis for the best onstants only in the ase p = q = 2. However, by using thetehniques in this paper an analogous result for arbitrary p, q > 1 an also be proved,but here it is not so easy to onstrut the asymptotis for the best onstant, sine wehave to onsider a nonlinear spetral problem for −∆p operator. This is an interestingquestion to study in the future.Remark 5.4. An interesting extension of the results in this paper would be to onsiderdomains with more general mirostruture.AknowledgmentsThe work was partially supported by RFBR (projet 09-01-00353) and by Lule�a Uni-versity of Tehnology (Sweden).
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