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Abstract. We derive a new three-dimensional Hardy-type inequality for a cube for
the class of functions from the Sobolev space H! having zero trace on small holes
distributed periodically along the boundary. The proof is based on a careful analysis
of the asymptotic expansion of the first eigenvalue of a related spectral problem and
the best constant of the corresponding Friedrichs-type inequality.

1 Introduction

Integral inequalities of Friedrichs and Hardy types are very important for different
applications. In particular, they are often used for deriving some estimates for operator
norms, for proving some embedding theorems, for solving various problems for partial
differential equations, homogenization theory, spectral theory etc. In this paper we
prove and discuss some new integral inequalities of Hardy-type for a domain with
microinhomogeneous structure in a neighborhood of the boundary.

Let €2 C R™. A Hardy-type inequality is an integral inequality of the form

/|U(:E)|qV(x) de | <C /|VU($)|”W(:E) dx | (1.1)
Q Q

where U € C°(Q2), V(z) > 0,W(x) > 0,1 < p,q < o0, and the constant C does not
depend on the function U. There are several results concerning Hardy-type inequalities
(see e.g. the books [19], [25], [26] and [31] and the references given therein).

One main aim of this paper (c.f. also [23, Paper F|) is to derive the Hardy-type
inequality

/ U ()P (x) de < C / VU (@) p*(x) do, (1.2)

where €2 is bounded and has nontrivial microstructure. More precisely, we assume that
() is a cube with perforation along a part of the boundary and that the weight function
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p decreases to zero as x approaches the part of the boundary which is associated with
the perforation. It should be mentioned that results in this direction are completely
new in the theory of Hardy-type inequalities. In particular, it gives us possibility
to use ideas developed within the homogenization theory to obtain estimates for the
best constant in different Hardy-type inequalities. The first step in this direction was
recently done in [21], where the inequality (1.2) was proved under the assumption that
the function U vanishes on small alternating pieces of a part of the boundary.

Note that some analogous results concerning Friedrichs-type inequality for perfo-
rated domains were studied earlier in a number of papers. Some examples of perforated
domains with the Friedrich’s constant of order £ were given in [12] and [13]. Here ¢
is a small parameter characterizing the perforation. One such example is the domain
perforated by an aperiodic lattice of holes studied by M. Briane, A.Damlamian and
P.Donato in [3]| for the homogenization of the Laplace equation with the Neumann
boundary condition. The authors used the new generalized definition of aperiodically
perforated material introduced by M. Briane in [2]. Another example is the domain
perforated by quasi-periodic holes considered by L. Mascarenhas and D. Polisevski in
[27] and D. Chenas, L. Mascarenhas and L. Trabucho in [11].

However, in all these examples it was assumed that the considered function has
zero trace both on boundaries of the small sets and on the boundary of the domain.
The Dirichlet condition on boundary of the domain was replaced by the Neumann
boundary condition in papers [6] and [22]. The main result of these publications was
the validity of the Friedrichs inequality for perforated domains under the assumption
that the diameters of small sets, the distances between them and the distance to the
boundary are of order €. Moreover, the convergence of the Friedrichs constant to the
constant in the limit inequality was established in these papers. Estimates of the
difference between these constants were derived later on in [10] for two-dimensional
perforated domain. In the present paper we also derive the error estimate for the
difference between the constants in the Friedrichs inequalities in the three-dimensional
case. We use this result to prove Hardy-type inequality (1.2) for a perforated domain.

Also we note that domains perforated along the boundary were considered in [1],
[7].

The paper is organized as follows: In Section 2 we give some necessary definitions
and formulate the main results, which are proved in Section 4. The proofs of the
main results in Section 2 are based on some auxiliary lemmas, which are proved and
discussed in Section 3. Finally, we reserve Section 5 for some concluding remarks and
results.

2 Statement of the problem and the main result

Let 2 C R? be the cube

0< <1 1< <1 1< <1
T ) 2 ) 2, 2 Zs3 2 .
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We denote by 0f) the boundary of €2, and by

1 1 1 1
FI:{I‘lzo, —§<SL’2<§, —§<ZL’3<§}

and

r TP S N
= €T = —_— T -, — = X — .
1 ) 9 2 27 9 3 9

Assume that 0 < ¢ < % is a positive number. Here and further on ¢ > 0 is a small
parameter. Denote

B9 ={zx € Q: (v —e)® + (1 —ie)* + (x5 — je)* < (ce)?},
i,j €7Z, B. =|JBY, T. = 0B.. Finally, we define the domain Q. := Q\ B. (see Figure

0,
2). Fix a parameter 0 < 6 < 1. Define the set QY := {x € Q: x; > 0}. Consider the
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Figure 2: Domain (). perforated along part I' of the boundary.

Sobolev-type spaces
H'Y(Q.,T.)={U € H'() : Ulp, =0},
where U|r, is the trace of the function U on I'..

Remark 2.1. Without loss of generality we can assume that U € H'(Q.,T.) is ex-
tended to be U = 0 in B., and we denote by H*(£2,T.) the space of all such extensions
of functions U € H' (., T.).
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Analogously, we define H'(Q,T') = {U € H'(Q) : Ulr = 0}, H'(Q,T. U I)={Uce
HYQ) : Ulpr = 0} and HY(Q,TUT) = {U € HY(Q) : Ul s = 0}. Let p(z) =
dist(z, I') for x € Q.. Our new Hardy-type inequality has the following form.

Theorem 2.1. Let 0 < o < a9 = %, where Ky > 0 s the best constant in the
Friedrichs-type inequality
/Ude < K0/|VU|2da; (2.1)
Qf Qf

for functions from H(Q,T U f) Then the Hardy-type inequality

/ U202 4z < C(0, ) / VU da (2.2)
Qo el
holds for any function U € HY(Q,T. U f), where C(0, a) = 2K

(20— Koa)? "

Our next main result is the corresponding Friedrichs-type inequality which is of
independent interest and is crucial for the proof of Theorem 2.1.

Theorem 2.2. Let 0 < e << 1. Then the Friedrichs-type inequality

/U2 dr < KE/WUPd:c (2.3)
Q Q

holds for any function U € HY(Q,T.), where for any sufficiently small > 0
4 E
K. = —2+8K—|—0<82 “) (2.4)
T

as e — 0%, Here K. is the best constant in Friedrichs-type inequality (2.3). The precise
formula for the constant K < 0 is given by (4.38) later on.

It is well known that the best constant in Friedrichs-type inequalities can be ex-
pressed via the first eigenvalue of the corresponding spectral problem. This is why we
first study an auxiliary spectral problem and construct the asymptotic expansion for
its first eigenvalue via the method of matching of asymptotic expansions. After that
we derive the asymptotics (2.4) for the constant K. in Friedrichs-inequality (2.3) by
using the relations between it and the first eigenvalue. More exactly, we consider the
following spectral problem:

—Au, = Aeu,  in €,

ue = 0 on Feu (25)
% =0 on 0f).

Here and in the sequel we denote by v the outward unit vector.
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The problem
—AUQ = )\OUO in Q,

ug =0 on I, (2.6)
Quo — () on I\ I

is the limit problem for (1.1). This fact can be established analogously as in [9] for
the two-dimensional case. In particular, the convergence of any eigenvalue \. of the
problem (1.1) to the corresponding eigenvalue A\ of the problem (1.3) as e — 01 was
proved. Moreover, the convergence of the corresponding eigenfunctions in the norm
of Sobolev space H! was derived. The next result gives a more exact description of
the asymptotics of all eigenvalues of the problem (1.1) and is crucial for the proof of
Theorem 2.2 (and, thus, of Theorem 2.1) and also of independent interest. Due to the
geometry of our domain it is not difficult to derive that all eigenvalues of the problem
(1.3) (and, hence, of the problem (1.1)) are positive and simple. In particular, the next
result is valid for the first eigenvalue of (1.1).

Theorem 2.3. The following asymptotics holds for the first eigenvalue of (1.1)
Ao = Ao + €A1 + 0(e27H), (2.7)

where 0 < w is an arbitrary small real number,

A = —C(B)/ (%)2 ds < 0, (2.8)

(Ao, uo) s the corresponding eigenelement of (1.3) and C(B) is a strictly positive con-
stant (the precise formula for C(B) is given by (3.8) in Section 3). Here \g = %2.

Remark 2.2. The corresponding two-dimensional result was proved in [9].

3 Some auxiliary results

Define the sets

1 1 1 1
II = — R Z
{£1>O7 2<£2<27 2<£3<2}7

1 1 1 1
’Y—{ﬁl—oa—§<§2<§a—§<§3<§}7

B={(& -1 +&+&6 < 0<ce< 1}

(see Figure 3). The following three auxiliary Lemmas are necessary for our proofs of
the main results.
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Figure 3: Cell of periodicity.

Lemma 3.1. The following boundary-value problem

(

AXl = mn H\E,
X1=0 on 0B,
0X1 __
=0 on 7,

! 3.1
%—; =0 as &= i%, (3.1)
W; =0 as §3 = :ti’

Xi~& as & — +oo

\

has a unique even solution with respect to the variables & and &s. Moreover, this solution
has the asymptotics

X(6) =6 +C(B)+0(e™*%) as & — +oo, (3.2)

where C(B) is a strictly positive constant (the precise formula for C(B) is given later
on in the proof of Lemma 3.1 (see (3.8))).

Lemma 3.2. Let X; be the solution of (3.1). The boundary-value problem

;

AX, =25 in TI\B,

(o}
Xo=0 on 0B,
%—)&(12 =0 on 7, (3.3)
X2 =0 as 62 == ﬂ:%,

X, =0 as & = +1
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has a unique solution which is odd with respect to & and even with respect to &3 and
satisfies the following asymptotics

X5(8) = 0(e™) as & — +oo. (3.4)

Lemma 3.3. Let X, be the solution of (3.1). The boundary-value problem

’Ang = %—)él mn H\F,
X3=0 on 0B,
%—)& =0 on v, (3.5)
Xg =0 as 62 = ﬂ:%,
Xg =0 as 53 = ﬂ:%

\

has a unique solution which is even with respect to &, odd with respect to &3 and has
the following asymptotics

X3(6) =0(e™) as & — +oo. (3.6)

Due to 1-periodicity, with respect to & and &3, of the right-hand side of the equation
in problem (3.3) and the boundary conditions we can extend X, and X3 1-periodically.
We will use the same notation for the extended functions.

In the remaining part of this section we describe how these lemmas can be proved.

Proof of Lemma 3.1. First we note that the proof of Lemma 3.1 is based on the fol-
lowing Lemma which can be proved exactly in the same way as Proposition 1.2 from
[29] was proved. We omit the details.

Lemma 3.4. Assume that ¢4 F € Ly(I1\ B), e H € Ly(dll), G € Hz2(dB)
and o9 > 0. Then there exists a unique weak solution of the following boundary-value
problem:

—AZ =F mH\F
Z == on 0B,
a—Z:H on OI1.
ov

This solution is given by the formula
Z(€) = C + Z(¢),

where C' is a constant, %17 € HY(II\B) and 6 is an arbitrary number satisfying the
conditions 6 < 0y and § < 7.

Consider now the boundary-value problem

(AY =0 in I1\B,

Y =-¢& on 0B,

g—g =—1 on~, (3.7)
B0 meld

\ 9¢5 3— +32
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Due to Lemma 3.4 there exists a unique weak solution of this boundary-value problem
of the form

Y(€) = C(B) + Z(¢),

where C(B) is a constant and the function Z(€) satisfies the conditions of Lemma 3.4.
The function Y is even with respect to & and &5 due to the symmetry of B. Denote
by It =TIN{& > Ry, yvp={£ €1l,& = R}, yr = Y},YR. Obviously, the function Y

is also a unique classical bounded solution of the following boundary-value problem
AY =0 in II%,
3—2 =Yr OL VR,
oY _ _ a1
8_52 =0 as §2 :l:—
Y _
96 0 as §3 :l:—
when R is a sufficiently large number. Hence, taking into account that Y is an even
function with respect to & and &3 we conclude that the asymptotics has the following
structure:
Y(€)=C(B)+0(e™™™) as & — +oo,
and, consequently, (3.2) holds.
It only remains to prove that

C(B) = / VY |?d¢ + |B]. (3.8)
m\B
Denote by IIg = I N {& < R}. Multiplying the equation of the problem (3.7) by

X1, integrating over IIz \ B and taking into account the properties of the function X
we obtain that

()_/XlAng /X1 d&s d&s—

IIz\B

/X18§1 d&y dés — / VY VX, d¢.

z\B

(3.9)

By first using integration by parts to rewrite the right-hand side of (3.9) and there-
after passing to the limit as R — oo, we find that

oy 0%,
0= 7, X, d§y d&s + 8

Y 0B

/Y dgg d€3+/y— ng /51% ng - C(B)
0B

v

ng C(B)

(3.10)

Analogously, multiplying (3.7) by Y, integrating the obtained formula by parts over
Iz \ B and passing to the limit as R — +o0, we have that

/ VY2 dé + aYY dse + /Y dg, dés. (3.11)

I\B 0B v
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The estimates (3.10) and (3.11) lead to

0
/ [VY[* d€ — /El L e, (3.12)

mB

By integrating by parts the left-hand side of the formula

/ QAGdE = 0,
B

we get that
98
/51 ds¢ = |B|, (3.13)
where vg is an outward normal vector to B. The formula (3.8) follows from (3.12) and
(3.13). O

Proof of Lemma 3.2. The proof of this Lemma is based on the following Lemma from
[29]:

Lemma 3.5. Assume that e F € Ly(IT1\ B) and 8y > 0. Then there exists a unique
solution of the following boundary-value problem:

~AZ=F inlI\B

Z=0 on 0B U 0I1\7,
07z 0
o on 7,

where e’ 7 € HY(II\B) and § is an arbitrary number satisfying the conditions § < &
and § < .

By applying this Lemma with Z = X, and F = %—2, we conclude that X5 has the
asymptotics (3.4). The solution X5 is odd with respect to & and even with respect to
&3 due to the equation of the boundary-value problem (3.3) and the properties of its

right-hand side. 0
Proof of Lemma 3.3. This Lemma can be proved analogously to Lemma 3.2, so we

omit the details. O

4 Proofs of the main results

Proof of Theorem 2.3.

Proof. The proof is based on several steps, which sometimes are stated as Lemmas of
independent interest. Our aim is to construct the first two terms of the asymptotic
expansion for simple eigenvalues of the spectral problem (1.1).
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The behavior of u. in a boundary layer close to I' strongly differs from the behavior
outside the boundary layer. We will use the method of matching of inner and outer
expansions of u.. The inner expansion is valid in the boundary layer and the outer
expansion is valid outside the boundary layer (for more information concerning the
method of matching expansions see e.g. [17]).

Without loss of generality we may assume that the function wug is normalized in
Lo (£2).

It is natural to construct the asymptotic expansion for A, in the form

Ae & Ao = Ao+ EA + €20, (4.1)
while we use the formula
U (1) & U = ug(z) + ur(x) + *us(z) (4.2)

for the asymptotics of u..
We have that uy € C*(2), see [9]. If we substitute the expansions (4.1) and (4.2)
into the spectral problems (1.1) and collect terms of the same order of e, then, by

taking into account (1.3), we obtain the expansion

uo(7) = aj(xe, x3)11 + O(27) (4.3)
as r1 — 0, where
Ju 11 11
1 0 00
_ o C® =2, 2| x |-=, = 4.4
R € { 2’2} 8 { 2’2} (44)
and HiH1 L H2it1 1
Ty 1 Ty 1
— | = = — +-— ) = 4.5
o (3 =0 55 (rat3) =0 49)
for j=0.1,2,....

We choose the functions u; and s satisfying the boundary-value problems

—Aul = )\Oul + )\1UO in Q,

%g —0 ondQ\T, (4.6)
u, =a) onT,

—AUQ = )\0’&2 —+ )\1U1 —+ )\QUO in Q,

%f —0 ondQ\T, (4.7)
us =aj onT,

where af(z,, 13), (29, 3) are unknown functions, which will be defined later on.

Remark 4.1. The equations of the boundary-value problems (4.6) and (4.7) together
with the boundary conditions (except condition on I') are just the result of substituting
the expansions (4.1) and (4.2) into (1.1) and collecting terms of the same order of .

The validity of the following Lemma can be established by using the same technique
as in the proof of the analogous result in [4]. We omit the details.
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Lemma 4.1. Assume that of,0 € C*[-1, 1] x [-1,3] and that odd derivatives

of the functions af and oS with respect to xy,x3 vanish as vy = j:%, ry = j:%.

Then there exist constants A1, Ao and functions ui(x),us(x) € C°°(Q), which are the
solutions of problems (4.6) and (4.7), respectively. Moreover, A\ satisfies that

11
A = —//O[?(l’g,l‘g)aé(l’g,l’g) dxs dxs. (4.8)

=
SIS

By using a Taylor expansion we obtain that

ui () = af (29, 23) + ay (12, 23) 11 + O(27),

4.9
us () = a2, x3) + O(x1) (4.9)
51— 0, where o] € % [4,4] x [ 2] nd
§¥ gl /1 9t 1
?ﬁ?Ir(iﬁ”ﬁ)::Q ?%?If(x%ié)zza (4.10)

for j =0,1,2,... due to (4.6).
Taking into account Remark 4.1 and Lemma 4.1 we conclude that the following
Lemma holds:

Lemma 4.2. Assume that o?, oy € C* [—%, %} X [—%, %] and odd derivatives of the
functions o and oY with respect to xy and x3 vanish at the points (:t%,l’g) and

(z2,£1) . Then . € C=(Q) and the formulas

AT =M.+ 0D in Q,

ou,
< = O\ T
5 0 ondQ\

are valid.

We construct another interpolation for the function u. in a small neighborhood of
[ (inner expansion) since the function u.(z) does not satisfy the boundary conditions
of the problem (1.1) on I' and on I'..

The formulas (4.2), (4.3) and (4.9) lead to the following:

U.(7) =ap(z, 3)71 + e(al (2, 13) + af (22, 13)71) + %0 (T2, 3)
+ 023 +ex? + %)) asx; — 0.

Put & = £. Then we conclude that

U (x) =eVi(&1; @2, 3) + 62‘/2(51; To, T3)

4.11
+O(z} + ex] + %x1) as x; — 0, (4.11)

where . 0
Vi(&r; 20, 23) = ag(w2, 3)& + o (22, x3),

4.12
V(&1 19, m3) = il (19, 13)&1 + a (29, 23). ( )
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According to the method of matching of asymptotic expansions we conclude that
the internal expansion have to be of the following structure in a neighborhood of I':

U (1) = V() = evy (& 2, 13) + %0y (€ 72, 73) (4.13)
where { = £ and
Vg(&; o, w3) ~ Vy(&ryx0,23)  as & — +oo, ¢ =1,2. (4.14)

Here x5, x3 are so called “slow” variables while £ is the “fast” variable.
The equation of the problem (1.1) with respect to the variables (;xo, x3) has the
following form:
., QP - 0%u, B 0%u, B 0%u,
01,0€s Ors06; 013 O

The boundary conditions on the lateral surface of the cell of periodicity II except v are
1 0ue | Oue

Ous B
o = e T 5 =0 (4.16)

—e 2 Agu, — 2¢

= At (4.15)

ou ou ou
C— el 4 = 4.1
B g T om, (4.17)

and on v it yields that
Ou.  _0u. Ou.

v 0 om
Next, we construct the internal expansion for (4.13) as 1-periodic function with respect
to & and &3. In order to do this, we rewrite the equation and boundary conditions in &
variables (see (4.15) — (4.18)), substitute (4.13) and (4.1) in (1.1) and, finally, equate
terms at €? corresponding to the same g. Then, by taking into account (4.14), (4.12)
and Remark 4.1, we get the following boundary-value problem for v;:

= 0. (4.18)

([ Aevy =0 in I\ B,
v7=0 onJdB,
v
== =0 on~
géL ’ 4.19
G (& E5,m3) =0 as& = il (4.19)
Bvl (5 T2, —) =0 as& =
\ vl ~V as & — +oo
and for vy: ) " » o
—Aevy =255 + 25 5 in II\B,
v, =0 on 0B,
v
=2 =0 onvy
ge1 ’ Y 4.20
g (&£, m3) = —52(&; %x) as & = +3, (420
8”2 (& xz,i%) = —Ju(&wa, £5) as &y =+,
v2~V2 as£1H+oo.

\

Due to the boundary-value problems (4.19) and (4.20) we conclude that the follow-
ing Lemma is valid:
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Lemma 4.3. Assume that the solutions to problems (4.19) and (4.20) exist and are
1-periodic functions with respect to & and &. Then the functions U, and /):6, which
are given by (4.13) and (4.1), respectively, satisfy to the following formulas for each
sufficiently small h > 0 :

AT = AD 4+ Fin Qon {ay < b,

v.=0 onT,,

8;; =0 on 0,
8@5 261}2 i (421)
=2 = =9 Q\D
o, £ oz, J 3, on (0Q\T)N{x < h},
where
-~ 821)1 82 821)2 821]2 )
F! = ——5 t =5 T Aov1 + 2 +2 —
( 8372 6 o 01208 023083 (4.22)
0? 0? '
<)\1U1 + 02 U; + 02 U; + )\002) - & ()\1'1}2 + )\201) — ' \,.

Now we study the solvability of the boundary-value problem (4.19) and determine
a formula for the function af(zq,x3).

It should be noted that the function X, defined in (3.1), can be extended 1-
periodically with respect to & and &. We save the same notation for the extended
function. Put

’U1<§;SL’2,SL’3) = Oéé(.flfg,.fl]g)Xl(é). (423)
Due to (3.2) this function has the following asymptotics

v1 (& 29, 13) = (w2, 13)&1 + af (T, 23)C(B) + Oe ™) (4.24)
as & — +oo. Consequently, by using Lemma 3.1 and assuming that
(g, 13) = (22, 23)C(B), (4.25)
we conclude that the function v, is a solution of (4.19). Moreover,
v1(&; 22, w3) = V(13 22, 23) + O(e7?™1)  as & — +o0, (4.26)

al e C* [—%, %] X [—%, %] and, according to (4.5), it yields that

82j+1a(1] 1 82j+1a(1) 1 .
92t (i57x3) =0, W (3627 2) =0, 7=0,1,2,
2 3

Summarizing all results, we deduce that the condition of solvability for (4.19) lead
us to get the precise formula for the function (3, z3) in the boundary-value problem
(4.6), which satisfies the conditions of Lemma 4.1. On the other hand, the formula
(2.8) follows directly from (4.8) and (4.25).
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Note that, due to (4.5) and (4.23), we have that

61)1 82}1

0—:702(5; 3727373) =0, 8—x3<§; T2, 1’3) =0, (4.27)

as Ty = j:%, xr3 = j:%, respectively.
Now we begin to study the problem (4.20). Put

1 1
V9(&; 9, 3) = ] (29, 73) X1 (€) — 2%@2, x3)X2(§) — 2%@2, r3) X3(&).

This function is 1-periodic with respect to & and &3 and, in view of (3.2), (3.4) and
(3.6), it has the asymptotics

(&3 w9, m3) = (2, 23)&1 + C(B)ay(z2, 23) + O(&1e7%) (4.28)

as & — oo. Hence, taking into account Lemmas 3.1, 3.2, 3.3 and formulas (4.24),
(4.5) and (4.27), we deduce that vy is a solution of (4.20) if

ag(:cg, x3) = ai (29, 23)C(B).

Moreover,
V(& 9, 3) = Vo(€1; 29, 23) + O(£167) as & — o0, (4.29)
oy € C* [—1, 1] and, due to (4.10), we have that
0%+ 1 0%+ 1
—= | £= =0 —_— +-]1 =0 ) =0,1,2,...
a{Eg]—H ( 2,1‘3) ) 8$‘§]+1 (.I’Q, 2) ) J )

Hence, the solvability conditions for the boundary-value problem (4.20) determine
the function af(wzy, z3), which satisfies the conditions of Lemma 4.1.

Note that, according to (4.10) and the boundary conditions Xy = X3 = 0 on OII,
it yields that

0 1 1
o= (&17:&57&3;1‘27'%‘3) =0aszy ==,

0 2

2 (4.30)
— —To, w3 | =0 as x3 = +—.
afL'g 1,82, 27 2,43 3 2

Consequently, taking into account (4.30) and (4.21), we obtain that

85;6 <§;IE2,!E3) =0onTU((OQ\T)N{zy < h}).

We have completed the construction of the asymptotical expansions. Now we have
to prove that the constructed expansion interpolates the limit element. Lemma 4.3
together with the formulas (4.24) and (4.28) lead to the following result:

Lemma 4.4. If 0 < § < 1, then the estimate
’)

W

1 E2 | La(0enfar<2eny) = O (5

holds for the function F\f given by (4.22).
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Proof. Taking into account (4.24) and (4.28), we have that

v 621)1 82’01
| F2 ||%2(Qsﬂ{xl<2gﬁ}) = / [—6( + == + A1+

ox3  Ox3
Q. ﬁ{a)l <26f8}

82’02 62’02 2 821)2 62’02
5 5 2y 2 0
06 axgagg) € ( R = 0”2>

2
vy O™
—g3 ()\11}2 + )\201) - 54)‘27}2} dr = / {_E< 8;1,’%1 * 8:631 -

Qen{z1<2eP}

621)2 821)2

+Xovy + 2 +2 ) + 0(32)] i dor = / |:—g ((§1+

3552352 31’3853
Qeﬁ{xl <266}
D*af 0%

+C(B))( o2 + o2 )+Ao[aé(£l +C(B)) + O(élefl))])+

2 2
+ 0(52)} dx = / [5510\0045 —1)+0(e) + 0(52)} dr =
QN{z1<2eP}
Qeﬁ{$1<2&‘ﬁ}

Finally, we deduce that

T / 02 | =0

Qeﬁ{xl <266}
]

On the other hand, the formulas (4.11), (4.26) and (4.29) give us the validity of the
following Lemma:

Lemma 4.5. Assume that 0 < 3 < 1. Then the estimates

d

i)\e — @5 = 0(536), 87('115 — ﬂg) = 0(525)
1

hold as €’ < xy < 2e° (971 < & < 2e871).

Proof. By applying (4.11), (4.26) and (4.29), we get that

~

Ve — U = eVi(&1; 2, 23) + €°Va(&1; 2, w3) — eVA(E15 22, 3)—
— 2V, (&1; g, 23) + O(ee™¥™ 4 26107 ™ 4 23 ea? 4 &%) =
= 0(23) = O(e%) as ¥ < x; < 268
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From this it follows that

9 G — ) = 0(a) = O
50— 1) = 0(a3) = O(¥)

as e < x; < 2eP. O

Let x(t) € C™ be a cutoff function, which equals to zero as ¢t < 1 and equals to 1
as t > 2, xg(z1) = x (j—g) )
Lemma 4.6. Suppose that 0 < 3 < 1. Then the function
Us(x) = xp (21) () + (1 = xp (21)) Ve(2).
is a solution of the following boundary-value problem:

AU =NU + [ in Q.

U =0 on I, (4.31)
%—% =0 on 052,
where ~
1F: ] Loy = O(e%7), (4.32)
and, moreover,
lim [z lo > 1. (4.33)

Proof. The validity of (4.33) is obvious. The function U. satisfies the boundary con-
ditions of problem (3.1) due to Lemmas 4.2, 4.3 and formula (4.30). By applying the
operator —(A + A.) to U. we get that

~

fe=5hL+ 1+ I,

where R
[1 = - Xﬁ(Aa&: + )‘eas)a

Iy=— (1= x)(AT + A\0.) = —(1 — xp)F2,
I3 :(@\5 - af—:)AXﬁ + QVXBVm@\E - ﬂe)

_ T —~ —~ - 1
=c 2Py (5_5) (0. — ) + 27y (5_5) —

Using Lemma 4.2, we obtain that

111]| 100y = (7/112(33) dr | = (0(56))% = 0(%). (4.34)

Lemma 4.4 together with the definition of function xz give the following asymptotics:

2

1Bl (ﬁ/ B(x)de | = / B(a)de | =

c)
QN{x1<2ePf}
= (0(=%))* =0 (=4).
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Taking into account the fact that the support of I35 belongs to the set
{x: &’ < x; < 2¢°} and using Lemma 4.5, we have that

sl = 0 (37) (4.35)
Finally, the asymptotics (4.34)—(4.35) lead us to (4.32). O
The estimate
/1 (020)

el oy < CT—"7

o~

Ae — Ac

can be proved exactly in the same way as it was done in paper the [8] for the two-

dimensional case. Here U, is a solution of the boundary-value problem (3.1) and the
constant C' does not depend on €. This fact together with (4.32) and (4.33) give us the
following formula:

A — A| = O(29). (4.36)

The formula (2.7) holds due to (4.1) and (4.36) since [ is an arbitrary number in the
interval (0, 1). The proof of Theorem 2.3 is complete. O

Proof of Theorem 2.2.

Proof. Note that the validity of (2.3) and the convergence K. to Ky as ¢ — 0 are
proved in paper [20] (see also [22] for an aperiodical case). Taking into account the
variational definition of K., we have that

[ IVU|? dz

L = inf e AL
K. uveem@rono [ U2dx ¢
Qe

where \! is the first eigenvalue of spectral problem (1.1).
Finally, by using the asymptotics (2.7) for the first eigenvalue we get that

2 —1
K. = (% +eM 4 0(»3%_“)) . (4.37)
Denote by
K = Z)\l' (4.38)

The formula (2.4) follows directly from (4.37) and (4.38). The proof of Theorem 2.2 is
complete. 0
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Proof of Theorem 2.1.

Proof. First we consider the case o = 0. By using the definition of the domain Q?, the
Friedrichs-inequality (2.1) and the respective asymptotics we find that

K
/p—2U§ dr < 9—20/|VU6|2dx. (4.39)
el 0o

The next step is to prove (2.2) for & > 0. Choose o > 0 and put V. = U.p°. It is not
difficult to derive that

2
v = (520 + 0 0 (U <
= T (4.40)

1
S (1 + E>p20|VUE|2 + (1 +zE)O_QpQU—QUg
with arbitrary . By applying (4.39) to V., we obtain that

K, 1

/p2+20U€2 da < 9_20 (1 - —) /pz"\VU€|2d:c+o—2(1 +w)/p2(”1)Uf da
w

0 Qo o

If1-— %’%02 > 0, then

1+ 1)K,
—2+20’U2d < ( w / 20 VU 2d ]
Qf 0
Finally, choosing @ = 20 and the constant @ = \/%a — 1, we obtain (2.2). O

5 Concluding remarks and result

Remark 5.1. Note that in (2.2) we have different domains on the right and left hand
sides. By using well-known theorems from the theory of Hardy type inequalities we
can derive inequalities with the same domain on both sides but then we must replace
U. by another function U, — M.. For example the following result holds:

Theorem 5.1. Assume that p(z) = dist(z,T), 0<a#1,U. € HY(Q,T.). Then
there exists a function M. = M, (x4, x3),

M| o) < CVE, (5.1)
such that the Hardy-type inequality

_ 4 o
/|U5—M5|2pa 2dr < m/|VUE|2p dx (5.2)
Q Q

holds.
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Proof. We assume at first that U. € C*(,T.). Fix the variables x5, x3 and use first
the following one-dimensional Hardy-type inequality:

1 1

'U2('I1) 4 a 2
/ EE (oz—l)Q/“T1 W) dan,
0

0

where v € AC[0, 1] and v(0) = 0. By applying this inequality to the function v(x;) =
Us(zy,-,-) — U0, -, ), we obtain that

1

4
fl)z/pa‘VUeFdxl- (53)

(o /

1
/ (Un (1, 9, ) — U.(0, 23, 25))2p°2 day <
0

Denote by M. (2, x3) := U.(0, z2, x3). By integrating the inequality (5.3) with respect
to xo and z3, we deduce that

- 4 o
/(Ue_M€>2pa 2d$’§ m/ﬂ |VU€|2dZZ' (54)

Q Q

Finally, we approximate the functions U. € H'(Q,T.) by smooth functions from
C>(Q,T.) and conclude that (5.4) is valid also for U. € H'(,T.). The next step
is to derive the estimate (5.1).

There exists a sequence of functions U* € C>(€, T.) such that U* converges to U.
in H' as k — oo. Denote by MF := UF(0, x4, z3). Consequently, M* converges to M.
as k — oo in Hz. Choose a number K such that

|M. — MF|| ) < Cy/e forany k > K. (5.5)
Let us prove that there is a constant C' such that
[ ME|| oy < CVe. (5.6)

Suppose that there exists a subsequence ¢,, n — oo, such that

2
IMEIE, ) > ne,.
Hence, max |MF | > ny/e,. Consequently,
) max | M7 | ’
IVUE | de > e, | ——— | >n?
En

Ly (Qn{z1<en})

that is U* does not belong to H'. This contradiction proves (5.6).
Taking into account (5.6) and (5.5) we deduce that

I Mc|| oy < || M — ME|| Ly + | ME| oy < 2CVe.

The last estimate with 2C' = C proves (5.1). O
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Remark 5.2. We have shown in our proof that the estimate (5.1) is the best possible
in the sense that C'=2 on the right-hand side can not be replaced by Ce? for any ¢ > %
In fact, it even yields that ||M.||r,r) > Ce? for ¢ > 1 and any C.

Remark 5.3. We have proved the inequalities (2.2) and (2.3) and have constructed the
asymptotics for the best constants only in the case p = ¢ = 2. However, by using the
techniques in this paper an analogous result for arbitrary p,q¢ > 1 can also be proved,
but here it is not so easy to construct the asymptotics for the best constant, since we
have to consider a nonlinear spectral problem for —A, operator. This is an interesting
question to study in the future.

Remark 5.4. An interesting extension of the results in this paper would be to consider

domains with more general microstructure.
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