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Abstract. The motive of this note is twofold. Inspired by the recent development of a new kind of
Hardy inequality, here we discuss the corresponding Hardy�Rellich and Rellich inequality versions in
the integral form. The obtained sharp Hardy�Rellich type inequality improves the previously known
result. Meanwhile, the established sharp Rellich type integral inequality seems new.
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1 Introduction

In the celebrated paper, [9], Godfrey H. Hardy �rst stated the famous inequality. The result reads
as follows. For any 1 < p < ∞ and f be a p-integrable function on (0,∞), then the function
r 7−→ 1

r

∫ r
0
f(t) dt is p-integrable over (0,∞) and there holds∫ ∞

0

∣∣∣∣1r
∫ r

0

f(t) dt

∣∣∣∣p dr ≤
(

p

p− 1

)p ∫ ∞
0

|f(r)|p dr. (1.1)

The constant on the right-hand side of (1.1) is sharp. The development of the famous Hardy inequal-
ity (1.1) during the period 1906�1928 has its own history and we refer to [12] (also, see the preface of
[22]). Recent progress by Frank�Laptev�Weidl [10] presents a novel one-dimensional inequality with
the same sharp constant, which improves the classical Hardy inequality (1.1).

This new version looks as follows. For any 1 < p <∞ and for any f ∈ Lp(0,∞), which vanishes
at zero, there holds∫ ∞

0

sup
0<s<∞

∣∣∣∣min

{
1

r
,
1

s

}∫ s

0

f(t) dt

∣∣∣∣p dr ≤
(

p

p− 1

)p ∫ ∞
0

|f(r)|p dr. (1.2)

Certainly, (1.2) gives an improvement of (1.1). Recently, the multidimensional version in the
supercritical case and the discrete version of (1.2) have been established in [20] and [19], respectively.
In the same spirit, one may ask about the possible structure of Hardy�Rellich and Rellich type
inequalities. In this short note, we obtain the possible form of these two types of inequalities.

Let us recall the one-dimensional Hardy�Rellich inequality. For f ∈ C1[0,∞) with f(0) = 0,
there holds ∫ ∞

0

|f(r)|2

r2
dr ≤ 4

∫ ∞
0

|f ′(r)|2 dr. (1.3)

Starting from it, there have been several articles in which the authors studied many improvements
in inequality (1.3). Here we mention only a few of them [3, 6, 7, 11, 13, 16, 17, 24, 23] and references
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therein. Now let us write (1.3) in the integral form. Note that it can be derived from the weighted
one-dimensional classical Hardy inequality. This reads as follows. Let f ∈ C1(0,∞), then there holds∫ ∞

0

|
∫ r

0
f ′(t) dt|2

r2
dr ≤ 4

∫ ∞
0

|f ′(r)|2 dr. (1.4)

Here the constant 4 is sharp. We give an improved version of this inequality in Theorem 2.1.
Let us brie�y mention another important function inequality the so-called Rellich inequality which

was �rst introduced in [18]. It is worth recalling the one-dimensional Rellich inequality. The classical
one-dimensional Rellich inequality states that for f ∈ C2[0,∞) with f(0) = 0 and f ′(0) = 0, there
holds ∫ ∞

0

|f(r)|2

r4
dr ≤ C

∫ ∞
0

|f ′′(r)|2 dr, (1.5)

where C > 0 is independent of f . Over the past few decades, there has been a constant e�ort to
improve (1.5). Here are some closely related papers [8, 14, 1, 15, 4, 21, 5]. In this short contribution,
we also obtain another type of Rellich inequality (see Theorem 2.2 with p = 2). To the best of our
knowledge, the most recent progress in this direction was made in [4]. However, a one-dimensional
study is still missing. As far as we know, a sharp constant in this inequality was not found. Thus,
trying to �ll this gap is another motivation for the present paper. Taking inspiration from there we
obtain the following version of Rellich inequality. For any f ∈ L2(0,∞) there holds∫ ∞

0

1

r4

(∫ r

0

∫ τ

0

|f(t)| dt dτ

)2

dr

≤
∫ ∞

0

1

r4

(∫ r

0

sup
0<s<∞

min

{
1,
τ

s

}∫ s

0

|f(t)| dt dτ

)2

dr

≤ 16

9

∫ ∞
0

|f(r)|2 dr. (1.6)

Moreover, we will show that the constant 16/9 is a sharp constant. Therefore, (1.6) can be compared
with (1.5). Note that we have mentioned only the L2(0,∞) case but we will discuss the result for
the general Lp(0,∞) case.

2 Preliminaries and main results

Let us begin this section with basic facts about a decreasing rearrangement. For more details, we
refer to [2, Section 2.1]. The decreasing rearrangement of f is the function f ∗ de�ned on [0,∞) by

f ∗(x) = inf{λ : µf (λ) ≤ x}, x ≥ 0,

where µf (λ) = |{x ∈ R : |f(x)| > λ}|, λ ≥ 0. Here |J | is the Lebesgue measure of the set J ⊂ R. It
is well known that f ∗ is a nonnegative and nonincreasing function. Irrespective of several properties
of f ∗, the useful property in our context is the equimeasurability property, i.e.

|{|f | > τ}| = |{f ∗ > τ}| for all τ ≥ 0. (2.1)

By using the layer cake representation and the above property, we have the following helpful identity:∫ ∞
0

|f(t)|p dt =

∫ ∞
0

|f ∗(t)|p dt for all p ≥ 1. (2.2)
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Also, for any s > 0 there holds ∫ s

0

|f(t)| dt ≤
∫ s

0

f ∗(t) dt. (2.3)

These relations will be valuable in the proofs.
Now, we are ready to state the following important observation.

Lemma 2.1. For any r>0 and f ∈ L1(0, r), the following identity holds:

sup
0<s<∞

min

{
1,
r

s

}∫ s

0

f ∗(t) dt =

∫ r

0

f ∗(t) dt. (2.4)

Proof. We wish to calculate the supremum by using the monotonicity of f ∗. For any �xed r > 0, we
consider the following two cases:

Case 1. Let 0 < s ≤ r. Then we obtain

min

{
1,
r

s

}∫ s

0

f ∗(t) dt =

∫ s

0

f ∗(t) dt ≤
∫ r

0

f ∗(t) dt.

Case 2. Let r ≤ s <∞. Then we have by change of variable

min

{
1,
r

s

}∫ s

0

f ∗(t) dt =
r

s

∫ s

0

f ∗(t) dt ≤ r

s

∫ s

0

f ∗(tr/s) dt =

∫ r

0

f ∗(v) dv.

In both cases, we get

min

{
1,
r

s

}∫ s

0

f ∗(t) dt ≤
∫ r

0

f ∗(t) dt.

Hence, the supremum is attained at s = r and we arrive at

sup
0<s<∞

min

{
1,
r

s

}∫ s

0

f ∗(t) dt =

∫ r

0

f ∗(t) dt.

Now, we are ready to present an improvement of (1.4). That is, this gives a natural improvement
of the Hardy�Rellich inequality in the integral form. Below we will describe the corresponding
di�erential form which improves the original Hardy�Rellich inequality (1.3) in a simple form.

Theorem 2.1. Let f ∈ L2(0,∞), then there holds∫ ∞
0

sup
0<s<∞

∣∣∣∣min

{
1

r
,
1

s

}∫ s

0

f(t) dt

∣∣∣∣2 dr ≤ 4

∫ ∞
0

|f(r)|2 dr. (2.5)

Moreover, the constant 4 in the above inequality is sharp in the sense that no inequality of the form∫ ∞
0

sup
0<s<∞

∣∣∣∣min

{
1

r
,
1

s

}∫ s

0

f(t) dt

∣∣∣∣2 dr ≤ C

∫ ∞
0

|f(r)|2 dr

holds, for f ∈ L2(0,∞) such that f 6∼ 0 on (0,∞), when C < 4.
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Now, we are going to discuss the second main result of this note. Before presenting the statement
�rst let us recall the classical one-dimensional Lp-Rellich inequality (see, e.g. [1]). This reads as
follows. Let p > 1, f ∈ C2[0,∞) with f(0) = 0 and f ′(0) = 0 there holds∫ ∞

0

|f(r)|p

r2p
dr ≤ p2p

(p− 1)p(2p− 1)p

∫ ∞
0

|f ′′(r)|p dr. (2.6)

Now, we are ready to demonstrate the one-dimensional Rellich-type inequality in the following
integral form.

Theorem 2.2. Let f ∈ Lp(0,∞), p > 1. Then we have∫ ∞
0

1

r2p

(∫ r

0

∫ τ

0

|f(t)| dt dτ

)p
dr

≤
∫ ∞

0

1

r2p

(∫ r

0

sup
0<s<∞

min

{
1,
τ

s

}∫ s

0

|f(t)| dt dτ

)p
dr

≤ p2p

(p− 1)p(2p− 1)p

∫ ∞
0

|f(r)|p dr. (2.7)

Moreover, the constant p2p

(p−1)p(2p−1)p
in the above inequality turns out to be sharp in the sense that no

inequality of the form ∫ ∞
0

1

r2p

(∫ r

0

∫ τ

0

|f(t)| dt dτ

)p
dr ≤ C

∫ ∞
0

|f(r)|p dr.

for all f ∈ Lp(0,∞) such that f 6∼ 0 on (0,∞), when C < p2p

(p−1)p(2p−1)p
.

3 Proofs of Theorems 2.1 and 2.2

This section is concerned with the proofs of Theorems 2.1 and 2.2. Before going further let us recall
the following lemma.

Lemma 3.1. [20, Lemma 3.1] Let 1 < p < ∞. Let w be any nonnegative measurable function on
(0,∞). Assume h is a strictly positive non-decreasing function on (0,∞) such that sh(r) ≤ rh(s)
for any r, s ∈ (0,∞) with r ≤ s. Let f ∈ L1(0, r) for any r > 0. Then we have∫ ∞

0

w(r) sup
0<s<∞

∣∣∣∣min

{
1

h(r)
,

1

h(s)

}∫ s

0

f(t) dt

∣∣∣∣p dr ≤
∫ ∞

0

w(r)

∣∣∣∣ 1

h(r)

∫ r

0

f ∗(t) dt

∣∣∣∣p dr.

Now, as a direct corollary of Lemma 3.1, we derive the proof of Theorem 2.1.
Proof of Theorem 2.1. Let us consider w(r) = 1 and h(r) = r to be functions on (0,∞) and

substitute these in Lemma 3.1 with p = 2, then we have∫ ∞
0

sup
0<s<∞

∣∣∣∣min

{
1

r
,
1

s

}∫ s

0

f(t) dt

∣∣∣∣2 dr ≤
∫ ∞

0

1

r2

∣∣∣∣ ∫ r

0

f ∗(t) dt

∣∣∣∣2 dr.

By using the Hardy�Rellich inequality in form (1.4) for the function f ∗, we obtain∫ ∞
0

sup
0<s<∞

∣∣∣∣min

{
1

r
,
1

s

}∫ s

0

f(t) dt

∣∣∣∣2 dr ≤ 4

∫ ∞
0

|f ∗(r)|2 dr

= 4

∫ ∞
0

|f(r)|2 dr.
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In the last step, we have used norm preserving property (2.2). The sharpness follows from the
optimality of the constant in (1.4). This completes the proof.

Proof of Theorem 2.2. The �rst inequality follows from the property of the supremum. Now
taking the integral of (2.4) from 0 to r we have∫ r

0

sup
0<s<∞

min

{
1,
τ

s

}∫ s

0

f ∗(t) dt dτ =

∫ r

0

∫ τ

0

f ∗(t) dt dτ. (3.1)

Then ∫ ∞
0

1

r2p

(∫ r

0

sup
0<s<∞

min

{
1,
τ

s

}∫ s

0

|f(t)| dt dτ

)p
dr

(2.3)

≤
∫ ∞

0

1

r2p

(∫ r

0

sup
0<s<∞

min

{
1,
τ

s

}∫ s

0

f ∗(t) dt dτ

)p
dr

(3.1)
=

∫ ∞
0

1

r2p

(∫ r

0

∫ τ

0

f ∗(t) dt dτ

)p
dr

(2.6)

≤ p2p

(p− 1)p(2p− 1)p

∫ ∞
0

|f ∗(r)|p dr

(2.2)
=

p2p

(p− 1)p(2p− 1)p

∫ ∞
0

|f(r)|p dr.

Optimality. We set

Cp := sup
f∈Lp(0,∞)\{0}

∫∞
0

1
r2p

( ∫ r
0

∫ τ
0
|f(t)| dt dτ

)p
dr∫∞

0
|f(r)|p dr

. (3.2)

The validity of (2.7) immediately implies

Cp ≤
p2p

(p− 1)p(2p− 1)p
.

So, it remains to show the reverse inequality and this will be done by giving a proper minimizing
sequence. We divide the proof into some steps.

Step 1. Let us start with a cut-o� function χ : [0,∞)→ R with the following properties:

1. χ(r) ∈ [0, 1] for all r ∈ [0,∞) and χ is smooth;

2. χ satis�es the following

χ(r) =

{
1, 0 ≤ r ≤ 1,
0, 2 ≤ r <∞

3. χ is decreasing function, i.e. χ′(r) ≤ 0 for all r ∈ (0,∞).

Now for a small ε > 0, let us de�ne the minimizing functions {fε} as follows:

fε(r) := r
ε−1
p χ(r).

Step 2. In this step we will estimate the right-hand side of (2.7). The denominator of (3.2) gives∫ ∞
0

|fε(r)|p dr =

∫ ∞
0

rε−1χp(r) dr

=

∫ 1

0

rε−1 dr +

∫ 2

1

rε−1χp(r) dr

=
1

ε
+O(1). (3.3)
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Therefore, for a �xed positive ε, we have fε ∈ Lp(0,∞).
Step 3. In this part we will evaluate the numerator of (3.2). Using the integration by parts, we

have ∫ ∞
0

1

r2p

(∫ r

0

∫ τ

0

|fε(t)| dtdτ
)p

dr

=

∫ ∞
0

1

r2p

(∫ r

0

∫ τ

0

t
ε−1
p χ(t) dtdτ

)p
dr

=

(
p

ε− 1 + p

)p ∫ ∞
0

1

r2p

[ ∫ r

0

χ(τ)τ
ε−1+p
p dτ −

∫ r

0

∫ τ

0

t
ε−1+p
p χ′(t) dt dτ

]p
dr

≥
(

p

ε− 1 + p

)p ∫ ∞
0

1

r2p

[ ∫ r

0

χ(τ)τ
ε−1+p
p dτ

]p
dr

=

(
p

ε− 1 + p

)p(
p

ε− 1 + 2p

)p ∫ ∞
0

1

r2p

[
χ(r)r

ε−1+2p
p −

∫ r

0

τ
ε−1+2p

p χ′(τ) dτ

]p
dr

≥
(

p

ε− 1 + p

)p(
p

ε− 1 + 2p

)p ∫ ∞
0

rε−1χp(r) dr

=

(
p

ε− 1 + p

)p(
p

ε− 1 + 2p

)p[ ∫ 1

0

rε−1 dr +

∫ 2

1

rε−1χp(r) dr

]
=

1

ε

(
p

ε− 1 + p

)p(
p

ε− 1 + 2p

)p
+O(1). (3.4)

In between, exploiting χ′ ≤ 0, we used an obvious inequality (a + b)p ≥ ap twice, for nonnegative
real numbers a and b.

Step 4. Finally, by using (3.3) and (3.4) we estimate the ratio∫∞
0

1
r2p

( ∫ r
0

∫ τ
0
|f(t)| dt dτ

)p
dr∫∞

0
|f(r)|p dr

≥
1
ε

(
p

ε−1+p

)p( p
ε−1+2p

)p
+O(1)

1
ε

+O(1)
→ p2p

(p− 1)p(2p− 1)p
for ε→ 0.

Hence {fε} is a required minimizing sequence and, in turn, we have

Cp =
p2p

(p− 1)p(2p− 1)p
.
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