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TWO-WEIGHT HARDY INEQUALITY ON TOPOLOGICAL MEASURE SPACES
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Abstract We consider a Hardy type integral operator T associated with a family of open subsets
Ω(t) of an open set Ω in a Hausdor� topological space X. In the inequality(∫

Ω

|Tf(x)|qu(x)dµ(x)

)1/q

≤ C

(∫
Ω

|f(x)|pv(x)dν(x)

)1/p

,

the measures µ, ν are σ-additive Borel measures; the weights u, v are positive and �nite almost
everywhere, 1 < p < ∞, 0 < q < ∞, and C > 0 is independent of f , u, v, µ, ν. We �nd necessary
and su�cient conditions for the boundedness and compactness of the operator T and obtain two-
sided estimates for its approximation numbers. All results are proved using domain partitions, thus
providing a roadmap for generalizing many one-dimensional results to a Hausdor� topological space.

DOI: https://doi.org/10.32523/2077-9879-2025-16-1-60-85

1 Introduction

A one-dimensional Hardy inequality[∫ ∞
0

u(x)

(∫ x

0

f (y) dy

)q
dµ (x)

]1/q

≤ C

(∫ ∞
0

fp (y) v (y) dν (y)

)1/p

has been studied in detail and complete characterizations of its validity for all non-negative functions
f have been obtained in terms of pairs of weights u, v and measures µ, ν for all pairs of exponents
p, q, see [11], [12], [13], [14], [20] for the history and extensive references. By a characterization
we mean obtaining a functional Φ (u, v, µ, ν) such that for all weights and measures the inequality
c1C ≤ Φ (u, v, µ, ν) ≤ c2C is true, where C is the best constant in the above inequality and c1, c2 > 0
can depend on p, q but are not allowed to depend on u, v, µ, ν. Those characterizations are very
di�erent for the cases p ≤ q and q < p.

In the one-dimensional case most researchers have used tools of one-dimensional calculus, such
as integration by parts [33]. The lack of such tools has been the main obstacle on the way to
multidimensional results. Some general results for p ≤ q and for Banach function spaces have been
established in [7]. Obtaining full characterizations has been facilitated by the possibility to reduce
the multidimensional case to the one-dimensional, by using spherical coordinates [31], [4], the polar
decomposition [26], [27] or assuming that the weights are products of functions of one variable [35],
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[36]. The result by Sawyer [29] does not allow reduction to dimension one but is limited to a quadrant
on the plane R2.

In a recent paper Sinnamon [32] suggested a very general method that covers totally ordered sets
of domains on a measure space. The method relies on a non-increasing rearrangement involving the
weights and measures and reduces the multidimensional case to the one-dimensional. Apart from
generality, the method allows Sinnamon to improve the constants c1, c2. The analysis of ordered
cores is of independent interest.

For applications it is desirable to have everything to be expressed in terms of original weights and
measures, the most important examples being the Hardy-Steklov type operator [9] and the Hardy
inequality on cones of monotone functions [30], [34]. In Sinnamon's method one additional step is
required to derive the criteria in terms of original weights and measures from his one-dimensional
formulations. K. Mynbaev [21] has obtained results in terms of original weights and measures under
the assumptions on the domains that are close to the ones imposed by Sinnamon (see [21, Remark
1] for a more detailed comparison with Sinnamon's paper).

Here we develop a di�erent approach to the norm estimation, compactness conditions and bounds
for approximation numbers using domain partitions. The boundedness criteria obtained below can
be derived from both [32] and [21]. Nevertheless, we give full proofs of boundedness, compactness and
estimates of approximation numbers to show that domain partitions combined with the conditions
on the operator T imposed here allow one to extend many of the existing one-dimensional results to
the current setup in a Hausdor� space. Possible extensions include results that employ the Oinarov
condition [22], [15]. Since Sinnamon's approach covers also discrete Hardy inequalities, it would be
interesting to see if the results of [16] can deduced following Sinnamon.

We consider integration over expanding subsets Ω(t) of an arbitrary open set Ω in a Hausdor�
topological space X with σ-additive Borel measures µ, ν. As in [32] and [21], neither Ω(t) nor their
complements Ω\Ω(t) need to be connected and there are no requirements on the shape of Ω(t) when
X is a linear space. In the classical case one can notice that the subdomain Ω (t) = (0, t) of Ω = (0,∞)
has ω (t) = t as the boundary in the relative topology and that Ω (t) = {s ∈ Ω : ω (s) < ω (t)} . Our
conditions on the family {Ω (t)} are based on this observation.

The existing results on integral Hardy inequalities for Rn or measure metric spaces (in which Ω(t)
are balls, see [4], [2], [26], [27], [28]) follow from ours, as well as from [32] and [21]. Product weights
are not included as well as Sawyer's result [29] (his rectangles do not satisfy condition (2.1) below).
In papers [26], [27], [28] a metric is required to generate balls and a polar decomposition to use
the one-dimensional techniques, while we avoid these requirements. There is a number of situations
(homogeneous groups, hyperbolic spaces, Cartan-Hadamard manifolds, and connected Lie groups)
when the polar decomposition is available, see also [1] for a study of polarizable metric measure
spaces. All such situations are covered by our statements. The authors of the article [28] employ the
results from [21].

Unlike [32] and [21], our approach is elementary and does not require any advanced measure
theory beyond σ-additivity. Note that binary partitions were used to prove su�ciency for the Hardy
operator in the one-dimensional case in [3]. Unlike [3], we avoid their auxiliary functions Φ and Φ1

and apply discretization both for the upper and lower bounds in terms of the same functional of the
weights.

Note that we provide two di�erent proofs of the su�ciency of the compactness conditions: in
Sections 3 and 4. Both employ an explicit �nite-rank approximation to the Hardy operator.

The study of the approximation numbers (a-numbers) of the Hardy operator in the Lebesgue
spaces on the half-line for parameters satisfying 1 < p ≤ q < ∞ started with the papers by D.E.
Edmunds, W.D. Evans, D.J. Harris [5], [6]. They found implicit and asymptotic bounds for a-
numbers of the operator T : Lp(R+) → Lp(R+). Next D.E. Edmunds, V.D. Stepanov [8] obtained
the bounds for singular numbers of the Hardy type operator with a polynomial kernel acting in
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the spaces L2(R+). Those results were extended by E.N. Lomakina, V.D. Stepanov [19] to the
case 1 < p, q < ∞; besides, two-sided bounds for the Schatten�von-Neumann norm were proved.
However, in the case 1 < q < p <∞ the upper bound for the a-numbers aN(T ) ≤ N1/q−1/pε was not
informative because of its dependence on N . In this paper for 1 < q < p < ∞ we derive an upper
bound that does not depend on N . We do not consider the case 0 < q < 1 < p <∞ studied by E.N.
Lomakina [17], nor do we attempt to study the Hardy operator acting from the Lebesgue spaces to
the Lorentz spaces in the spirit of [18].

2 Hardy operator boundedness

We write A � B to mean that c1A ≤ B ≤ c2A with constants c1, c2 that do not depend on weights
and measures.

Assumption 1. Let Ω be an open subset of a Hausdor� topological space X with σ-additive measures
µ, ν. The measures are de�ned on a σ-algebra M that contains the Borel-measurable sets. The weights
u, v are assumed to be positive and �nite almost everywhere.

Assumption 2. a) {Ω(t) : t ≥ 0} is a one-parametric family of open subsets of Ω which satisfy
monotonicity

for t1 < t2, Ω(t1) is a proper subset of Ω(t2). (2.1)

b) Ω(t) start at the empty set and eventually cover almost all Ω:

Ω(0) =
⋂
t>0

Ω(t) = ∅, ν

(
Ω \

⋃
t>0

Ω(t)

)
= 0.

c) Further, denote by ω(t) = Ω(t)
⋂

(Ω\Ω(t)) the boundary of Ω(t) in the relative topology. We
require the boundaries to be disjoint and cover almost all Ω:

ω(t1)
⋂

ω(t2) = ∅, t1 6= t2, ν(Ω \
⋃
t>0

ω(t)) = 0. (2.2)

d) Passing to a di�erent parametrization, if necessary, we can assume that

ν

(
Ω \

⋃
t≤N

ω(t)

)
> 0 for any N <∞. (2.3)

e) Finally, we assume that boundaries are thin in the sense that

ν(ω(t)) = 0 for all t > 0. (2.4)

This Assumption has simple implications.
1) (2.2) implies that for ν-almost each y ∈ Ω there exists a unique τ(y) > 0 such that y ∈ ω(τ(y)),

which allows us to de�ne

Tf(y) =

∫
Ω(τ(y))

fdν, y ∈ Ω, (2.5)

for any non-negative M-measurable f. On the set Ω0 ⊂ Ω of those y for which τ(y) is not de�ned
we can put τ(Ω0) = ∅. (A more general de�nition of a Hardy-type operator is given in [7]. That
de�nition is more di�cult to work with what we call slices.)

2) (2.3) and the fact that ω(t) 6= ∅, t > 0, lead to the equality τ(Ω) = (0,∞).
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3) Because of (2.4)

∫
Ω(t)

fdν =

∫
Ω(t)

fdν and up to a set of ν-measure zero

{x ∈ Ω : τ(x) > τ(y)} = Ω\Ω(τ(y)). (2.6)

For 0 ≤ a < b ≤ ∞ we denote Ω([a, b]) = Ω(b) \ Ω(a).
Since τ(y1) = τ(y2) for any y1, y2 ∈ ω(t), the value Tf(y) is the same for all y ∈ ω(t) and we can

de�ne Sf(t) = Tf(y) if y ∈ ω(t). For a non-negative f, the function Sf is non-decreasing and its
jumps are zero due to (2.4). Thus,

for each f ≥ 0, Sf is continuous where it is �nite, including t = 0. (2.7)

Let Lpvdν(Ω) denote the space with the norm ‖f‖Lpvdν(Ω) =

(∫
Ω

|f |pvdν
)1/p

where v is a weight

function and let ‖T‖ = ‖T‖Lpvdν(Ω)→Lqudµ(Ω) be the norm of a linear operator T acting from Lpvdν(Ω) to

Lqudµ(Ω), hence [∫
Ω

∣∣∣∣∫
Ω(τ(x))

fdν

∣∣∣∣q u(x)dµ(x)

]1/q

≤ ‖T‖
(∫

Ω

|f |p vdν
)1/p

.

Denote

Ψ(t) =

(∫
Ω\Ω(t)

udµ

)1/q (∫
Ω(t)

v−p
′/pdν

)1/p′

.

Theorem 2.1. If 1 < p ≤ q <∞, then (2.5) is bounded if and only if A <∞, where A = sup
t>0

Ψ(t).

Moreover, A ≤ ‖T‖ ≤ 4A.

Proof. Lower bound. Let an operator T : Lpvdν(Ω) → Lqudµ(Ω) be bounded, then there exists a
constant C > 0 such that ‖Tf‖Lqudµ(Ω) ≤ C‖f‖Lpvdν(Ω).

Put fy(z) = v−p
′/p(z)χΩ(τ(y))(z), y ∈ Ω. Then

Tfy(x) =

∫
Ω(τ(x))∩Ω(τ(y))

v−p
′/pdν =

∫
Ω(τ(y))

v−p
′/pdν, for τ(x) > τ(y)

and
C‖fy‖Lpvdν(Ω) ≥ ‖Tfy‖Lqudµ(Ω).

Therefore, by applying (2.6) and τ(Ω) = (0,∞) we see that

C ≥ sup
y∈Ω

(∫
Ω

(Tfy)
qudµ

)1/q(∫
Ω
fpy vdν

)1/p
≥ sup

y∈Ω

(∫
{x:τ(x)>τ(y)} udµ

)1/q ∫
Ω(τ(y))

v−p
′/pdν(∫

Ω(τ(y))
v−p′/pdν

)1/p

= sup
y∈Ω

(∫
Ω\Ω(τ(y))

udµ

)1/q (∫
Ω(τ(y))

v−p
′/pdν

)1/p′

= A

and ‖T‖Lpvdν(Ω)→Lqudµ(Ω) = inf C ≥ A.

Upper bound. Without loss of generality we suppose that 0 < sup
y∈Ω

Tf(y) < ∞. Put t0 = ∞,

Ω(∞) = Ω. By (2.7) Sf(t)→ 0, t→ 0, so the de�nition t1 = sup{t > 0 : 2Sf(t) ≤ Sf(t0)} is correct.
By the continuity of Sf, we have 2Sf(t1) = Sf(t0) and t1 < t0. By induction, if tk has been de�ned,
we put tk+1 = sup{t > 0 : 2Sf(t) ≤ Sf(tk)}. Then

2Sf(tk+1) = Sf(tk), tk+1 < tk. (2.8)
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This can be called a sliding property because it allows us to pass from Sf(tk) to Sf(tk+j). De�ning
slices

sk+1 = Ω(tk)\Ω(tk+1), k ≥ 0,

we have

Sf(tk+1) = 2Sf(tk+1)− Sf(tk+1)

= Sf(tk)− Sf(tk+1) =

∫
sk+1

fdν, k ≥ 0. (2.9)

Let y ∈ sk+1 or, equivalently, tk+1 ≤ τ(y) < tk. Using (2.8), (2.9) and H�older's inequality we have

Tf(y) =

∫
Ω(τ(y))

fdν ≤ Sf(tk) = 2Sf(tk+1) = 4Sf(tk+2)

= 4

∫
sk+2

fdν ≤ 4

(∫
sk+2

fpvdν

)1/p(∫
sk+2

v−p
′/pdν

)1/p′

. (2.10)

Denote

αk =

(∫
sk+1

udµ

)1/q(∫
sk+2

v−p
′/pdν

)1/p′

.

We can use (2.10) and the inequality p ≤ q to estimate

(∫
Ω

(Tf)qudµ

)1/q

=

(∑
k≥0

∫
sk+1

(Tf)qudµ

)1/q

≤ 4

∑
k≥0

∫
sk+1

udµ

(∫
sk+2

fpvdν

)q/p(∫
sk+2

v−p
′/pdν

)q/p′
1/q

= 4

∑
k≥0

αqk

(∫
sk+2

fpvdν

)q/p
1/q

≤ 4 sup
k
αk

(∑
k≥0

∫
sk+2

fpvdν

)1/p

(2.11)

≤ 4A ‖f‖Lpvdν(Ω) .

The last transition uses the following inclusions

sk+1 = Ω(tk)\Ω(tk+1) ⊂ Ω\Ω(tk+1) and sk+2 = Ω(tk+1)\Ω(tk+2) ⊂ Ω(tk+1).

If sup
y∈Ω

Tf (y) = ∞ we can choose t < ∞ such that

∫
Ω(t)

fdν < ∞, put ft (x) = χΩ(t) (x) f (x) ,

and do all calculations leading to (2.11) with ft in place of f. Since the constant in (2.11) does not
depend on t, then we can let t→∞ thus completing the proof.

Let u0, v0 be non-negative integrable functions such that u0 ≤ u, v0 ≤ v1−p′ . We can assume

that 0 <

∫
Ω

v0dν < ∞ and by analogy with (2.8) de�ne the points t0 = ∞ > t1 > ..., where t1 =

sup {t > 0 : 2Sv0 (t) ≤ Sv0 (t0)} , ..., tk+1 = sup {t > 0 : 2Sv0 (t) ≤ Sv0 (tk)} such that Ω(∞) = Ω and∫
Ω(tk)

v0dν = 2−k
∫

Ω

v0dν, k ≥ 0. (2.12)
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This implies the following equality (as before, sk+1 = Ω(tk)\Ω(tk+1) ):∫
sk+1

v0dν = 2

∫
sk+2

v0dν.

The partition {tk} generates non-negative numbers

Vk =

∫
sk+1

v0dν, Uk =

∫
sk+1

u0dµ,

xk =

∫
Ω(tk)

v0dν =
∑
j≥k

Vj, yk =

∫
Ω\Ω(tk+1)

u0dµ =
∑
j≤k

Uj, k ≥ 0.

Here {xk} is non-increasing and {yk} is non-decreasing. We need the identities

r

q
− 1 =

r

p
,

r

p′q
− 1 =

r

pq′
,

r

p′
− 1 =

r

q′
. (2.13)

The next lemma provides a replacement for the one-dimensional techniques mentioned in the
Introduction.

Lemma 2.1. Let a ≥ 1.
a) We have ∑

j≥k

(∑
i≥j+1

Vi

)a−1

Vj+1 ≥
1

a

(∑
i≥k+1

Vi

)a

for any non-negative numbers Vi such that the left side is �nite.
b) Moreover, (∑

i≥k

Vi

)a−1

Vk−1 ≤
1

a

[(∑
i≥k−1

Vi

)a

−

(∑
i≥k

Vi

)a]
, k ≥ 1.

For this inequality to be true for k = 0 we formally put V−1 = 0 so that

x−1 =
∑
i≥−1

Vi =
∑
i≥0

Vi = x0

and the inequality holds trivially.
c) For the partition {tk} one has

y
r/q
k+1 − y

r/q
k ≤ r

q

(∫
Ω\Ω(tk+2)

u0dµ

)r/p ∫
sk+2

u0dµ.

Proof. Let g(x) = xa.
a) By the mean value theorem with some θ ∈ (xj+2, xj+1)(∑

i≥j+1

Vi

)a−1

Vj+1 =
1

a
g′(xj+1)(xj+1 − xj+2)

≥ 1

a
g′(θ)(xj+1 − xj+2) =

1

a
(g(xj+1)− g(xj+2)) .
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It follows that

∑
j≥k

(∑
i≥j+1

Vi

)a−1

Vj+1 ≥
1

a

∑
j≥k

(g(xj+1)− g(xj+2))

=
1

a
g(xk+1) =

1

a

(∑
i≥k+1

Vi

)a

.

b) Similarly, with some θ ∈ (xk, xk−1)(∑
i≥k

Vi

)a−1

Vk−1 =
1

a
g′(xk)(xk−1 − xk)

≤ 1

a
g′(θ)(xk−1 − xk) =

1

a
(g(xk−1)− g(xk)).

c) With a = r/q and θ ∈ (yk, yk+1) by the �rst identity (2.13)(∫
Ω\Ω(tk+2)

u0dµ

)r/q

−

(∫
Ω\Ω(tk+1)

u0dµ

)r/q

= g(yk+1)− g(yk) = g′(θ)(yk+1 − yk) ≤ g′(yk+1)

∫
sk+2

u0dµ

=
r

q

(∫
Ω\Ω(tk+2)

u0dµ

)r/p ∫
sk+2

u0dµ.

Let 0 < q < p, 1 < p <∞ and put 1/r = 1/q − 1/p,

Φ(y) =

(∫
Ω\Ω(τ(y))

udµ

)1/p(∫
Ω(τ(y))

v−p
′/pdν

)1/p′

.

For Ω = (0,∞) [20], [33] have shown that c1 ‖Φ‖Lrudµ(Ω) ≤ ‖T‖ ≤ c2 ‖Φ‖Lrudµ(Ω) with constants c1, c2

that depend on p, q and do not depend on the weights and measures.

Theorem 2.2. If 1 < p <∞, 0 < q < p and
1

q
− 1

p
=

1

r
, then (2.5) is bounded if and only if B <∞,

where B =

(∫
Ω

Φrudµ

)1/r

. Moreover,

q (p′/r)1/p′ 21−2r/p′q((
1 + r

q

)
2r+r/p′

)1/p
B ≤ ‖T‖ ≤ 22+1/q B.

Proof. Upper bound. As in the proof of Theorem 2.1, it su�ces to consider the case 0 < sup
y∈Ω

Tf(y) <

∞. Begin with applying H�older's inequality with exponents p/q and r/q in (2.11):

‖Tf‖Lqudµ(Ω) ≤ 4

∑
k≥0

αqk

(∫
sk+2

fpvdν

)q/p
1/p

≤ 4

(∑
k≥0

αrk

)1/r(∑
k≥0

∫
sk+2

fpvdν

)1/p

.
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We want to bound

αrk =

(∫
sk+1

udµ

)r/q(∫
sk+2

v−p
′/pdν

)r/p′

=

∫
sk+1

udµ

(∫
sk+1

udµ

)r/p(∫
sk+2

v−p
′/pdν

)r/p′

by an integral. Select t′k ∈ (tk+1, tk) so that∫
s′k+1

udµ =

∫
s′′k+1

udµ =
1

2

∫
sk+1

udµ, where s′k+1 = Ω(tk)\Ω(t′k), s
′′
k+1 = Ω(t′k)\Ω(tk+1).

First, we replace integrals and explicitly write out the domains of integration:

αrk ≡
∫
sk+1

udµ

(∫
sk+1

udµ

)r/p(∫
sk+2

v−p
′/pdν

)r/p′

= 2r/q
∫
s′′k+1

udµ

(∫
s′k+1

udµ

)r/p(∫
sk+2

v−p
′/pdν

)r/p′

= 2r/q
∫
tk+1≤τ(y)<t′k

u(y)dµ(y)

(∫
t′k≤τ(z)<tk

u(z)dµ(z)

)r/p

×

(∫
tk+2≤τ(z)<tk+1

v−p
′/p(z)dν(z)

)r/p′

.

Next, we increase the domains of integration in the last two integrals:

αrk ≤ 2r/q
∫
tk+1≤τ(y)<t′k

u(y)dµ(y)

(∫
τ(y)≤τ(z)<∞

u(z)dµ(z)

)r/p
×
(∫

τ(z)<τ(y)

v−p
′/p(z)dν(z)

)r/p′
.

Finally, we increase the domain of integration in the outer integral:

αrk ≤ 2r/q
∫
sk+1

u(y)dµ(y)

(∫
Ω\Ω(τ(y))

udµ)

)r/p(∫
Ω(τ(y))

v−p
′/pdν

)r/p′
= 2r/q

∫
sk+1

Φrudµ.

Thus,

‖Tf‖Lqudµ(Ω) ≤ 22+1/q ‖f‖Lpvdν(Ω)

(∑
k≥0

∫
sk+1

Φrudµ

)1/r

= 22+1/q ‖f‖Lpvdν(Ω) ‖Φ‖Lrudµ(Ω) .

Lower bound. Inspired by [33] we de�ne

f(t) =

(∫
Ω\Ω(τ(t))

u0dµ

)r/(pq)(∫
Ω(τ(t))

v0dν

)r/(p′q)−1

v0(t).
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Then ∫
Ω(τ(x))

fdν ≥
(∫

Ω\Ω(τ(x))

u0dµ

)r/(pq) [∫
Ω(τ(x))

(∫
Ω(τ(t))

v0dν

)r/(p′q)−1

v0(t)dν(t)

]
. (2.14)

Let k = min {j : tj ≤ τ(x)} , for which tk ≤ τ(x) < tk−1, and consider the integral in the square
brackets:

I ≡
∫

Ω(τ(x))

(∫
Ω(τ(t))

v0dν

)r/(p′q)−1

v0(t)dν(t)

≥
∫

Ω(tk)

(∫
Ω(τ(t))

v0dν

)r/(p′q)−1

v0(t)dν(t)

=
∑
j≥k

∫
sj+1

(∫
Ω(τ(t))

v0dν

)r/(p′q)−1

v0(t)dν(t)

≥
∑
j≥k

∫
sj+1

(∫
Ω(tj+1)

v0dν

)r/(p′q)−1

v0(t)dν(t) =
∑
j≥k

(∑
i≥j+1

Vi

)r/(p′q)−1

Vj.

By the sliding property and Lemma 2.1 a) with a =
r

p′q

I ≥ 2
∑
j≥k

(∑
i≥j+1

Vi

)r/(p′q)−1

Vj+1 ≥
2p′q

r

(∑
i≥k+1

Vi

)r/(p′q)

.

(2.14), (2.12) and this bound give

∫
Ω(τ(x))

fdν ≥ 2p′q

r

(∫
Ω\Ω(τ(x))

u0dµ

)r/(pq)(∫
Ω(tk+1)

v0dν

)r/(p′q)

=
2p′q

r
4−r/(p

′q)

(∫
Ω\Ω(τ(x))

u0dµ

)r/(pq)(∫
Ω(tk−1)

v0dν

)r/(p′q)

≥ c1

(∫
Ω\Ω(τ(x))

u0dµ

)r/(pq)(∫
Ω(τ(x))

v0dν

)r/(p′q)
= c1Φ

r/q
0 (x),

where c1 =
p′q

r
21−2r/(p′q) and we have denoted

Φ0(x) =

(∫
Ω\Ω(τ(x))

u0dµ

)1/p(∫
Ω(τ(x))

v0dν

)1/p′

.

Assuming that ‖T‖ <∞ we have

cq1

∫
Ω

Φr
0u0dµ ≤

∫
Ω

(∫
Ω(τ(x))

fdν

)q
u(x)dµ(x) ≤ ‖T‖q

(∫
Ω

fpvdν

)q/p
≤ ‖T‖q

[∫
Ω

(∫
Ω\Ω(τ(x))

u0dµ

)r/q (∫
Ω(τ(x))

v0dν

)r/q′
v0(x)dν(x)

]q/p
. (2.15)
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We have applied the inequality vp0v ≤ v
p+1/(1−p′)
0 = v

p−p/p′
0 = v0. Further, we need to bound

I ≡
∫

Ω

(∫
Ω\Ω(τ(x))

u0dµ

)r/q (∫
Ω(τ(x))

v0dν

)r/q′
v0(x)dν(x)

=
∑
k≥0

∫
sk+1

(∫
Ω\Ω(τ(x))

u0dµ

)r/q (∫
Ω(τ(x))

v0dν

)r/q′
v0(x)dν(x)

≤
∑
k≥0

(∫
Ω\Ω(tk+1)

u0dµ

)r/q (∫
Ω(tk)

v0dν

)r/q′ ∫
sk+1

v0dν. (2.16)

Using the third identity in (2.13) and Lemma 2.1 b) with a = r/p′ we can write(∫
Ω(tk)

v0dν

)r/q′ ∫
sk+1

v0dν =

(∑
j≥k

Vj

)r/p′−1

Vk =
1

2

(∑
j≥k

Vj

)r/p′−1

Vk−1

≤ p′

2r

(∑
i≥k−1

Vi

)r/p′

−

(∑
i≥k

Vi

)r/p′


=
p′

2r

(
x
r/p′

k−1 − x
r/p′

k

)
. (2.17)

Next combine (2.16) and (2.17), denoting c2 =
p′

2r
and keeping in mind that x−1 = x0 :

I/c2 ≤
∑
k≥0

y
r/q
k

(
x
r/p′

k−1 − x
r/p′

k

)
=
∑
k≥1

y
r/q
k

(
x
r/p′

k−1 − x
r/p′

k

)
+ y

r/q
0

(
x0

r/p′ − x0
r/p′
)

= y
r/q
0 x0

r/p′ +
∑
k≥0

(
y
r/q
k+1 − y

r/q
k

)
x
r/p′

k .

By Lemma 2.1 c)

I/c2 ≤ y
r/q
0 x0

r/p′ +
r

q

∑
k≥0

(∫
Ω\Ω(tk+2)

u0dµ

)r/p(∫
Ω(tk)

v0dν

)r/p′ ∫
sk+2

u0dµ. (2.18)

Let t′k+1 ∈ (tk+2, tk+1) satisfy the following equality∫
Ω(t′k+1)\Ω(tk+2)

u0dµ =

∫
Ω(tk+1)\Ω(t′k+1)

u0dµ.

Then (∫
Ω\Ω(tk+2)

u0dµ

)r/p ∫
sk+2

u0dµ

= 2

(
2

∫
Ω(tk+1)\Ω(t′k+1)

u0dµ+

∫
Ω\Ω(tk+1)

u0dµ

)r/p ∫
Ω(t′k+1)\Ω(tk+2)

u0dµ

≤ 21+r/p

(∫
Ω\Ω(t′k+1)

u0dµ

)r/p ∫
Ω(t′k+1)\Ω(tk+2)

u0dµ

≤ 21+r/p

∫
sk+2

(∫
Ω\Ω(τ(t))

u0dµ

)r/p
u0(t)dµ(t).
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Besides, ∫
Ω(tk)

v0dν = 2−k
∫

Ω

v0dν = 4 · 2−(k+2)

∫
Ω

v0dν = 4

∫
Ω(tk+2)

v0dν.

Hence, the big sum in (2.18) is bounded since

∑
k≥0

(∫
Ω\Ω(tk+2)

u0dµ

)r/p(∫
Ω(tk)

v0dν

)r/p′ ∫
sk+2

u0dµ

≤ 21+r+r/p′
∑
k≥0

(∫
Ω(tk+2)

v0dν

)r/p′ ∫
sk+2

(∫
Ω\Ω(τ(t))

u0dµ

)r/p
u0(t)dµ(t)

≤ 21+r+r/p′
∑
k≥0

∫
sk+2

(∫
Ω\Ω(τ(t))

u0dµ

)r/p(∫
Ω(τ(t))

v0dν

)r/p′
u0(t)dµ(t)

≤ 21+r+r/p′
∫

Ω

Φr
0u0dµ. (2.19)

The �rst term in (2.18) has to be treated separatel. Note that

y
r/q
0 x0

r/p′ =

(∫
Ω\Ω(t1)

u0dµ

)r/p(∫
Ω

v0dν

)r/p′ ∫
Ω\Ω(t1)

u0dµ.

Let t′ ∈ [t1,∞) satisfy
∫

Ω(t′)\Ω(t1)
u0dµ =

∫
Ω\Ω(t′)

u0dµ. Then,

y
r/q
0 x0

r/p′ = 2r/p+r/p
′+1

(∫
Ω\Ω(t′)

u0dµ

)r/p(∫
Ω(t1)

v0dν

)r/p′ ∫
Ω(t′)\Ω(t1)

u0dµ

≤ 21+r

∫
Ω(t′)\Ω(t1)

(∫
Ω\Ω(τ(t))

u0dµ

)r/p(∫
Ω(τ(t))

v0dν

)r/p′
u0(t)dµ(t)

≤ 21+r

∫
Ω

Φr
0u0dµ. (2.20)

Equations (2.18), (2.19) and (2.20) are summarized to give

I ≤ p′

r

(
1 +

r

q

)
2r+r/p

′
∫

Ω

Φr
0u0dµ.

Recalling also (2.15) we get

c1

(∫
Ω

Φr
0u0dµ

)1/q

≤ ‖T‖ I1/p ≤ ‖T‖
(
p′

r

(
1 +

r

q

)
2r+r/p

′
)1/p(∫

Ω

Φr
0u0dµ

)1/p

.

It remains to divide both sides by

(∫
Ω

Φr
0u0dµ

)1/p

. Finally, choose u0, v0 monotonously approaching

to u, v1−p′ , respectively, and apply Fatou's lemma, which holds on a general measure space (no
topology is needed) [10].

With simple changes in the proofs, analogues of Theorems 2.1 and 2.2 hold for the adjoint operator
T ∗ : Lpvdν(Ω)→ Lqudµ(Ω),

T ∗f (y) =

∫
Ω\Ω(y)

fdν.
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Denote

Ψ∗(t) =

(∫
Ω(t)

udµ

)1/q (∫
Ω\Ω(t)

v−p
′/pdν

)1/p′

, t > 0,

Φ∗(y) =

(∫
Ω(τ(y))

udµ

)1/p(∫
Ω\Ω(τ(y))

v−p
′/pdν

)1/p′

, y ∈ Ω,

and consider the inequality[∫
Ω

∣∣∣∣∫
Ω\Ω(τ(x))

fdν

∣∣∣∣q u(x)dµ(x)

]1/q

≤ ‖T ∗‖
(∫

Ω

|f |p vdν
)1/p

.

Theorem 2.3. 1) If 1 < p ≤ q <∞, then T ∗ is bounded if and only if A∗ <∞ where A∗ = sup
t>0

Ψ∗(t),

and A∗ ≤ ‖T ∗‖ ≤ 4A∗.
2) If 0 < q < p, 1 < p < ∞, then T ∗ is bounded if and only if B∗ < ∞ where B∗ =(∫
Ω

(Φ∗)r udµ

)1/r

, 1/r = 1/q − 1/p. Moreover,

q (p′/r)1/p′ 21−2r/p′q((
1 + r

q

)
2r+r/p′

)1/p
B∗ ≤ ‖T ∗‖ ≤ 22+1/q B∗.

Remark 1. Instead of being parameterized by t ∈ (0,∞) the family {Ω(t)} can be parameterized
by t ∈ [a, b] with −∞ ≤ a < b ≤ ∞. The resulting bounds will be applied below.

3 Hardy operator compactness

The next subject is the compactness of T. The notation below allows one to trace similarity with
[32]. Denote

a (x) =

∫
Ω\Ω(x)

udµ, b (x) =

∫
Ω(x)

v−p
′/pdν, 0 < x <∞,

li = lim sup
x→i

a (x)1/q b (x)1/p′ , for i = 0,∞, l = max {l0, l∞} .

Lemma 3.1. Suppose that a (x) <∞, b (x) <∞ on (0,∞) . If l > ε > 0, then there exists a sequence
{gn} such that ‖gn‖Lpvdν(Ω) = 1, ‖Tgn − Tgm‖Lqudµ(Ω) > ε.

Proof. Let fx (z) = b (x)−1/p χΩ(x) (z) v−p
′/p (z) , x ∈ Ω. Then

‖fx‖p,vdν = b (x)−1/p

(∫
Ω(x)

v1−p′dν

)1/p

= 1 (3.1)

and

Tfx (y) = b (x)−1/p

∫
Ω(τ(y))

χΩ(x)v
−p′/pdν = b (x)−1/p

∫
Ω(min{τ(y),x})

v−p
′/pdν. (3.2)

Case i = 0. Suppose that l0 > ε > 0. Choose x1 > 0 for which

a (x1)1/q b (x1)1/p′ > ε. (3.3)



72 K.T. Mynbaev, E.N. Lomakina

Since b (x)→ 0 as x→ 0, we can select x2 < x1 so that

a (x2)1/q b (x2)1/p′ > ε and a (x1)1/q
(
b (x1)1/p′ − b (x2)1/p′

)
> ε.

Similarly, we can choose x1 > x2 > ... recursively so that for each n

a (xn)1/q b (xn)1/p′ > ε and a (xn)1/q
(
b (xn)1/p′ − b (xn+1)1/p′

)
> ε. (3.4)

If m > n then xn > xn+1 ≥ xm and

b (xn) > b (xn+1) ≥ b (xm) . (3.5)

If τ (y) ≥ xn, then by (3.2) and (3.5)

Tfxn − Tfxm ≥ b (xn)1/p′ − b (xm)1/p′ ≥ 0.

Hence, by (3.4)

‖Tfxn − Tfxm‖Lqudµ(Ω) ≥
(
b (xn)1/p′ − b (xm)1/p′

)(∫
{y:τ(y)≥xn}

udµ

)1/q

≥ a (xn)1/q
(
b (xn)1/p′ − b (xn+1)1/p′

)
> ε.

This and (3.1) show that the functions gn = fxn possess the required properties.
Case i = ∞. Suppose l∞ > ε. Choose x1 satisfying (3.3). Obviously, a (x) → 0 as x → ∞ and,

therefore, b (x)→∞. Using (3.3) we can choose z1 > x1 such that

(a (x1)− a (z1))1/q b (x1)1/p′ > ε. (3.6)

The inequality l∞ > ε and (3.6) imply that we can select x2 > z1 with a (x2)1/q b (x2)1/p′ > ε and

(a (x1)− a (z1))1/q
(
b (x1)1/p′ − b (z1) b (x2)−1/p

)
> ε.

Continuing in this way, we obtain points x1 < z1 < x2 < z2 < ... such that for each n

a (xn)1/q b (xn)1/p′ > ε, (a (xn)− a (zn))1/q b (xn)1/p′ > ε,

(a (xn)− a (zn))1/q
(
b (xn)1/p′ − b (zn) b (xn+1)−1/p

)
> ε. (3.7)

If m > n, then xn < zn < xn+1 ≤ xm, leading to the inequlities

b (xn) ≤ b (zn) ≤ b (xn+1) ≤ b (xm) . (3.8)

Let xn ≤ τ (y) ≤ zn. Then by (3.2)

Tfxn (y) = b (xn)1/p′ , T fxm (y) = b (xm)−1/p b (τ (y)) .

Because of (3.7) and (3.8) this implies

Tfxn (y)− Tfxm (y) = b (xn)1/p′ − b (xm)−1/p b (τ (y))

≥ b (xn)1/p′ − b (xm)−1/p b (zn)

≥ b (xn)1/p′ − b (xn+1)−1/p b (zn) > 0.
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Now we apply (3.7) to get

‖Tfxn − Tfxm‖Lqudµ(Ω) ≥
(∫
{y:xn≤τ(y)≤zn}

(Tfxn (y)− Tfxm (y))q u (y) dµ (y)

)1/q

≥ (a (xn)− a (zn))1/q
(
b (xn)1/p′ − b (zn) b (xn+1)−1/p

)
> ε.

Denoting gn = fxn we see that this bound and (3.1) complete the proof of the lemma.

Theorem 3.1. a) If 1 < p ≤ q <∞, then T is compact if and only if l = 0. b) If 1 < q < p and T
is bounded, then T is compact.

Proof. Approximation to T. The points tk = k2−n, k = 0, ..., n2n, tn2n+1 =∞, lead to two partitions:
one of (0,∞), consisting of the intervals

∆k = (tk, tk+1) , k = 0, ..., n2n − 1, ∆n2n = (tn2n , tn2n+1) = (n,∞) ,

and the another one of Ω, consisting of the sets

Ωk = Ω (tk+1) \Ω (tk) , k = 0, ..., n2n.

De�ne κn (t) =
n2n∑
k=0

tkχ∆k
(t) , t > 0. Since x ∈ Ωk is equivalent to τ (x) ∈ ∆k we have

κn (τ (x)) = tk < τ (x) < tk + 2−n for x ∈ Ωk, k = 0, ..., n2n − 1,

κn (τ (x)) = n < τ (x) for x ∈ Ωn2n .

Put

Tnf (y) =

∫
Ω(κn(τ(y)))

fdν =

∫
Ω(
∑n2n

k=0 tkχΩk
(y))

fdν =
n2n∑
k=0

∫
Ω(tk)

fdνχΩk (y) .

Obviously Tn is a �nite-rank operator.

For the di�erence T − Tn we have the representation

Tf (y)− Tnf (y) =
n2n∑
k=0

(∫
Ω(τ(y))

fdν −
∫

Ω(tk)

fdν

)
χΩk (y)

=
n2n∑
k=0

∫
Ω(τ(y))\Ω(tk)

fdνχΩk (y) . (3.9)

Case p ≤ q. Su�ciency. By Theorem 2.1[∫
Ωk

∣∣∣∣∫
Ω(τ(y))\Ω(tk)

fdν

∣∣∣∣q u(y)dµ(y)

]1/q

≤ cak

(∫
Ωk

|f |p vdν
)1/p

(3.10)

where

ak = sup
tk<t<tk+1

(∫
Ω(tk+1)\Ω(t)

udµ

)1/q (∫
Ω(t)\Ω(tk)

v−p
′/pdν

)1/p′

.
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Since p ≤ q we see by (3.9)-(3.10) that

(∫
Ω

|Tf − Tnf |q udµ
)1/q

=

[
n2n∑
k=0

∫
Ωk

|Tf − Tnf |q udµ

]1/q

≤ c

[
n2n∑
k=0

aqk

(∫
Ωk

|fp| vdν
)q/p

udµ

]1/q

≤ c sup
k
ak ‖f‖Lpvdν(Ω) . (3.11)

Let us prove the compactness of T assuming that l = 0. For any ε > 0 we can choose x1 < x2

such that
a (x)1/q b (x)1/p′ < ε, x ∈ (0, x1] ∪ [x2,∞). (3.12)

Since v−p
′/p and u are positive almost everywhere, this implies that a (x) and b (x) are positive in

the range in (3.12) and then a (x) ≤ a (x1) < ∞, b (x) ≤ b (x2) < ∞ for x ∈ [x1, x2]. This justi�es
the calculations that yielded (3.11).

We want to evaluate the sets

Ω̃1 =
⋃

tk+1<x1

Ωk, Ω̃2 =
⋃

x1≤tk+1≤2x2

Ωk, Ω̃3 =
⋃

tk+1>2x2

Ωk.

Obviously, Ω̃1 ⊆ Ω (x1) . Assuming that 2−n ≤ x2 we see that tk+1 > 2x2 implies that tk > x2 and

Ω̃3 ⊆ Ω\Ω (x2) . Further, provided that 2−n ≤ x1/2 from x1 ≤ tk+1 ≤ 2x2 we have tk ≥ x1/2 and

Ω̃2 ⊆ Ω (2x2) \Ω (x1/2) . We have shown that

Ω̃1 ⊆ Ω (x1) , Ω̃2 ⊆ Ω (2x2) \Ω (x1/2) , Ω̃3 ⊆ Ω\Ω (x2) . (3.13)

Since ak ≤ sup
tk<t<tk+1

Ψ (t) , the inclusions in (3.13) and (3.12) give

sup
tk+1<x1

ak < ε, sup
tk+1>2x2

ak < ε. (3.14)

For ∆k with x1 ≤ tk+1 ≤ 2x2 we have

ak ≤
(∫

Ω(tk+2−n)\Ω(tk)

udµ

)1/q (∫
Ω(tk+2−n)\Ω(tk)

v−p
′/pdν

)1/p′

= ψ
(
tk, 2

−n) (3.15)

where ψ is de�ned as

ψ (x, δ) =

(∫
Ω(x+δ)\Ω(x)

udµ

)1/q (∫
Ω(x+δ)\Ω(x)

v−p
′/pdν

)1/p′

,

(x, δ) ∈
[x1

2
, 2x2

]
× [0, δ0]

for some δ0 > 0. This function is continuous on a compact domain and has the property that
lim
δ→0

ψ (x, δ) = 0 for any x ∈ [x1/2, 2x2] . Hence, there exists δ1 ∈ (0, δ0] such that

ak ≤ sup
(x,δ)∈[x1/2,2x2]×(0,δ1]

ψ (x, δ) < ε.

If we choose n satisfying the inequalities 2−n ≤ x1/2 < x2 and 2−n ≤ δ1 then (3.11), (3.14), (3.15)
give the desired bound from above: ‖T − Tn‖ ≤ cε and T is compact.
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Necessity. Suppose that T is compact, which implies that ‖T‖ <∞ and A <∞ by Theorem 2.1.
As above, it follows that a and b are �nite on (0,∞) and we can use Lemma 3.1. Suppose l > 0. Taking
ε = l/2 in Lemma 3.1 we obtain a sequence {gn} such that ‖gn‖Lpvdν(Ω) = 1, ‖Tgn− Tgm‖Lqudµ(Ω) > ε.

This shows that T cannot be compact and that the condition l = 0 is necessary.
Case q < p. Let ‖T‖ <∞. By Theorem 2.2, instead of (3.11) we have

(∫
Ω

|Tf − Tnf |q udµ
)1/q

≤ c

(
n2n∑
k=0

brk

)1/r

‖f‖Lpvdν(Ω) , (3.16)

where

bk =

∫
Ωk

(∫
Ω(tk+1)\Ω(τ(y))

udµ

)r/p(∫
Ω(τ(y))\Ω(tk)

v−p
′/pdν

)r/p′
u (y) dµ (y)

1/r

.

Also B <∞. Therefore, we can select x1 < x2 so that

(∫
Ω̃

Φrudµ

)1/r

< ε for both Ω̃ = Ω (x1) and

Ω̃ = Ω\Ω (x2) . This implies that∑
tk+1<x1

brk ≤
∑

tk+1<x1

∫
Ωk

Φrudµ ≤
∫

Ω(x1)

Φrudµ < ε. (3.17)

Assuming that 2−n ≤ x2 we can use (3.13) to obtain∑
{k:tk+1>2x2}

brk ≤
∫

Ω\Ω(x2)

Φrudµ < ε. (3.18)

Again using (3.13) with 2−n ≤ x1/2 we get∑
{k:x1≤tk+1≤2x2}

brk ≤
∑

{k:x1≤tk+1≤2x2}

∫
Ωk

udµ ψ
(
tk, 2

−n)r
≤

∫
Ω(2x2)\Ω(x1/2)

udµ sup
x1/2≤x≤2x2

ψ
(
x, 2−n

)r
. (3.19)

The function Φ is integrable and the choice of x1 can be subject to one more condition: Φ (x1/2) <∞.
As b (x1/2) > 0, by the inequality∫

Ω(2x2)\Ω(x1/2)

udµ ≤
∫

Ω\Ω(x1/2)

udµ =
Φ (x1/2)p

b (x1/2)p/p
′ <∞

we see that the right-hand side in (3.19) tends to zero as n → ∞. Bounds (3.16)-(3.19) imply that
T can be approximated arbitrarily well with �nite-rank operators and thus is compact.

4 Bounds for approximation numbers

Our next task is to obtain bounds for the approximation numbers (a-numbers) of operator (2.5). Let
X, Y be two Banach spaces. For a bounded linear operator T : X → Y its n-th a-number, n ∈ N , is
de�ned by

an (T ) = inf {‖T − P‖ : P : X → Y is a bounded linear operator and rankP < n} .
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For [a, b] ⊆ [0,∞) we initially consider the problem of how well the operator χ[a,b]T is approxi-
mated by averages. To this end, successively de�ne

µu (Ω [a, b]) =

∫
Ω[a,b]

udµ, T̄[a,b]f =
1

µu (Ω [a, b])

∫
Ω[a,b]

(Tf)udµ, (4.1)

T[a,b]f (x) = χΩ[a,b] (x)
(
Tf (x)− T̄[a,b]f

)
.

Theorem 4.1. Choose the point c so that

µu (Ω [a, c]) = µu (Ω [c, b]) =
1

2
µu (Ω [a, b]) .

a) Let 1 < p ≤ q <∞,

A∗ [a, c] = sup
a<τ(x)<c

(∫
Ω[a,τ(x)]

udµ

)1/q (∫
Ω[τ(x),c]

v−p
′/pdν

)1/p′

,

A [c, b] = sup
c<τ(x)<b

(∫
Ω[τ(x),b]

udµ

)1/q (∫
Ω[c,τ(x)]

v−p
′/pdν

)1/p′

and A[a, b] = max{A∗[a, c], A[c, b]}. Then(
1− 2−1/q

)
A[a, b] ≤

∥∥T[a,b]

∥∥ ≤ 8A[a, b].

b) Let 1 < q < p <∞, 1/r = 1/q − 1/p,

B∗ [a, c] =

[∫
Ω[a,c]

(∫
Ω[a,τ(x)]

udµ

)r/p(∫
Ω[τ(x),c]

v−p
′/pdν

)r/p′
u (x) dµ (x)

]1/r

,

B [c, b] =

[∫
Ω[c,b]

(∫
Ω[τ(x),b]

udµ

)r/p(∫
Ω[c,τ(x)]

v−p
′/pdν

)r/p′
u (x) dµ (x)

]1/r

and B [a, b] = max {B∗ [a, c] , B [c, b]} . Then

q (p′/r)1/p′ 21−2r/p′q
(
1− 2−1/q

)((
1 + r

q

)
2r+r/p′

)1/p
B [a, b] ≤

∥∥T[a,b]

∥∥ ≤ 24+1/q B [a, b].

Proof. De�ne

F[a,b]f (x) =


−
∫

Ω[τ(x),c]

fdν, a < τ (x) < c,∫
Ω[c,τ(x)]

fdν, c < τ (x) < b,

F̄[a,b]f =
1

µu (Ω [a, b])

∫
Ω[a,b]

(F[a,b]f)udµ.

With this notation, we have the following identity

Tf (x)− T̄[a,b]f = F[a,b]f(x)− F̄[a,b]f, a < τ (x) < b. (4.2)
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To prove it, we start with adding and subtracting terms in∫
Ω[a,b]

(Tf)udµ

=

[∫
Ω[a,c]

(∫
Ω[0,τ(x)]

fdν

)
u (x) dµ (x) +

∫
Ω[c,b]

(∫
Ω[0,τ(x)]

fdν

)
u (x) dµ (x)

]
−
[∫

Ω[a,c]

(∫
Ω[0,c]

fdν

)
u (x) dµ (x) +

∫
Ω[c,b]

(∫
Ω[0,c]

fdν

)
u (x) dµ (x)

]
+

∫
Ω[a,b]

(∫
Ω[0,c]

fdν

)
u (x) dµ (x)

(joining similar terms in the square brackets and then using the de�nition of F )

=

[∫
Ω[a,c]

(
−
∫

Ω[τ(x),c]

fdν

)
u (x) dµ (x) +

∫
Ω[c,b]

(∫
Ω[c,τ(x)]

fdν

)
u (x) dµ (x)

]
+µu (Ω [a, b])

∫
Ω[0,c]

fdν

=

∫
Ω[a,b]

(F[a,b]f)udµ+ µu (Ω [a, b])


∫

Ω[0,τ(x)]

fdν +

∫
Ω[τ(x),c]

fdν, a < τ (x) < c∫
Ω[0,τ(x)]

fdν −
∫

Ω[c,τ(x)]

fdν, c < τ (x) < b

=

∫
Ω[a,b]

(F[a,b]f)udµ+ µu (Ω [a, b])
[
Tf (x)− F[a,b]f (x)

]
.

Rearranging this gives (4.2).
Upper bound. a) Equation (4.2) implies(∫

Ω[a,b]

∣∣T[a,b]f
∣∣q udµ)1/q

≤
∥∥F[a,b]f

∥∥
Lqudµ(a,b)

+
∣∣F̄[a,b]f

∣∣ (∫
Ω[a,b]

udµ

)1/q

≤
∥∥F[a,b]f

∥∥
Lqudµ(a,b)

+
1

µu (Ω [a, b])

∫
Ω[a,b]

∣∣F[a,b]f
∣∣udµ(∫

Ω[a,b]

udµ

)1/q

(applying H�older's inequality)

≤ 2
∥∥F[a,b]f

∥∥
Lqudµ(a,b)

.

Next we apply the de�nition of F[a,b] and Theorems 2.1, 2.3:∥∥T[a,b]f
∥∥
Lqudµ(a,b)

≤ 2

(∫
Ω[a,c]

∣∣∣∣∫
Ω[τ(x),c]

fdν

∣∣∣∣q u (x) dµ (x) +

∫
Ω[c,b]

∣∣∣∣∫
Ω[c,τ(x)]

fdν

∣∣∣∣q u (x) dµ (x)

)1/q

≤ 2

[(
(4A∗ [a, c])p

∫
Ω[a,c]

|f |p vdν
)q/p

+

(
(4A [c, b])p

∫
Ω[c,b]

|f |p vdν
)q/p]1/q

≤ 8 A[a, b]

(∫
Ω[a,b]

|f |p vdν
)1/p

.
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This proves the upper bound.
The upper bound in the case b) is proved similarly, using Theorems 2.2, 2.3.
Lower bound. a) For any f ≥ 0 supported in [a, c] we have∣∣∣∣∫

Ω[a,b]

(
F[a,b]f

)
udµ

∣∣∣∣ ≤ (∫
Ω[a,b]

∣∣F[a,b]f
∣∣q udµ)1/q (∫

Ω[a,b]

udµ

)1/q′

=

(∫
Ω[a,c]

∣∣F[a,b]f
∣∣q udµ)1/q

(2µu (Ω [a, c]))1/q′ .

Therefore, by (4.2)∥∥T[a,b]

∥∥ ‖f‖Lpvdν(a,c) ≥
∥∥T[a,b]f

∥∥
Lqudµ(a,b)

≥
∥∥Tf − T̄[a,b]f

∥∥
Lqudµ(a,c)

=
∥∥F[a,b]f − F̄[a,b]f

∥∥
Lqudµ(a,c)

≥
∥∥F[a,b]f

∥∥
Lqudµ(a,c)

−
∣∣F̄[a,b]f

∣∣ (∫
Ω[a,c]

udµ

)1/q

=
∥∥F[a,b]f

∥∥
Lqudµ(a,c)

− 1

µu (Ω [a, b])

∣∣∣∣∫
Ω[a,b]

(F[a,b]f)udµ

∣∣∣∣ (∫
Ω[a,c]

udµ

)1/q

≥
∥∥F[a,b]f

∥∥
Lqudµ(a,c)

(
1− 1

µu (Ω [a, b])
21/q′µu (Ω [a, c])

)
=

∥∥F[a,b]f
∥∥
Lqudµ(a,c)

(
1− 2−1/q

)
.

The conclusion is that

∥∥T[a,b]

∥∥ ≥
∥∥F[a,b]f

∥∥
Lqudµ(a,c)

‖f‖Lpvdν(a,c)

(
1− 2−1/q

)

=

[∫
Ω[a,c]

∣∣∣∫Ω[τ(x),c]
fdν

∣∣∣q u (x) dµ (x)
]1/q

‖f‖Lpvdν(a,c)

(
1− 2−1/q

)
for any non-negative f with supp ⊆ [a, c] and by Theorem 2.3∥∥T[a,b]

∥∥ ≥ (1− 2−1/q
)
A∗ [a, c] .

Selecting f supported in [c, b] similarly yields∥∥T[a,b]

∥∥ ≥ (1− 2−1/q
)
A [c, b] .

b) The lower bound in this case is obtained similarly using Theorems 2.2, 2.3.

Obviously, for any 0 < x <∞ we have

A [a, b]→ 0 if a, b→ x; A [a, b] > 0 if a < b.

Everywhere below we assume that T is a compact operator.

Lemma 4.1. Let 1 < p ≤ q < ∞ and 0 < ε < max Ψ. There exist points 0 = t0 < t1 < ... < tN <
tN+1 =∞ such that with the notation ∆k = [tk, tk+1), k = 0, ..., N one has

sup
t∈∆0

Ψ (t) = ε, max
k=1,...,N−2

A (∆k) = ε, A (∆N−1) ≤ ε, sup
t∈∆N

Ψ (t) = ε. (4.3)
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Proof. Let t0 = 0. Since Ψ is continuous and Ψ (t) → 0 when t → 0 or t → ∞, we can de�ne
t′ = min {t > 0 : Ψ (t) ≥ ε} and t′′ = max {t > 0 : Ψ (t) ≥ ε} . Then

max
t≤t′

Ψ (t) = ε, max
t≥t′′

Ψ (t) = ε,

c′ =

∫
Ω[t′,∞]

udµ <∞, c′′ =
∫

Ω(t′′)

v−p
′/pdν <∞. (4.4)

and we put t1 = t′. On the n-th step, if sup
t∈[tn,t′′]

A [tn, t] ≤ ε, we set tn+1 = t′′, tn+2 = ∞. If, on the

other hand, sup
t∈[tn,t′′]

A [tn, t] > ε, then we put tn+1 = min {t > tn : A [tn, t] ≥ ε} so that by continuity

A [tn, tn+1] = ε. Thus, we have disjoint segments [tn, tn+1] ⊆ [t′,∞).
We want to show that this process stops in a �nite number of steps. Suppose it does not and

tn → t ≤ t′′. Then A [tn, tn+1] = ε for n = 1, 2, ... Obviously,

A∗ [tn, tn+1] ≤ (c′′)
1/p′
(∫

Ω[tn,τ(xn)]

udµ

)1/q

,

A [tn, tn+1] ≤ (c′)
1/p′
(∫

Ω[τ(xn),tn+1]

udµ

)1/q

.

Hence,

εq = A [tn, tn+1]q ≤ max
{

(c′)
1/p′

, (c′′)
1/p′
}q ∫

Ω[tn,tn+1]

udµ for all n.

This contradicts the fact that in (4.4) c′ <∞.

With Ωk = Ω (∆k) put for k = 1, ..., N − 1

Tkf (x) =

∫
Ω(τ(x))\Ω(tk)

fdν, µu (Ωk) =

∫
Ωk

udµ, T̄kf =
1

µu (Ωk)

∫
Ωk

(Tf)udµ,

Pkf (x) = χΩk (x)
{
Tf (x)−

[
Tkf (x)− T̄kf

]}
= χΩk (x)

{∫
Ω(tk)

fdν + T̄kf

}
, (4.5)

P0f = 0, PNf (x) = χΩN (x)

∫
Ω(tN )

fdν.

Each of Pk is one-dimensional, so P =
N∑
k=1

has rankP ≤ N .

We use the approach developed in [5].

Theorem 4.2. Let 1 < p ≤ q <∞ and suppose the covering {Ωk : k = 0, ..., N} satis�es (4.3). Then(
21/q − 1

)
(21/q+1)

ε (N − 2)1/q−1/p ≤ aN−1 (T ) , aN+1 (T ) ≤ 8ε. (4.6)

Proof. Upper bound. By Theorem 2.1(∫
Ω0

|Tf |q udµ
)1/q

≤ 4A [0, t1]

(∫
Ω0

|f |p vdν
)1/p

≤ 4 sup
t∈∆0

Ψ (t)

(∫
Ω0

|f |p vdν
)1/p

,
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(∫
ΩN

|Tf − PNf |q udµ
)1/q

≤ 4A [tN , tN+1]

(∫
ΩN

|f |p vdν
)1/p

≤ 4 sup
t∈∆N

Ψ (t)

(∫
ΩN

|f |p vdν
)1/p

.

By Theorem 4.1

(∫
Ωk

|Tf − Pkf |q udµ
)1/q

=

(∫
Ωk

∣∣Tkf − T̄kf ∣∣q udµ)1/q

≤ 8A (Ωk)

(∫
Ωk

|f |p vdν
)1/p

, k = 1, ..., N − 1.

Summing these bounds and remembering (4.3) we get

(∫
Ω

|Tf − Pf |q udµ
)1/q

≤ 8ε

(∫
Ω

|f |p vdν
)1/p

which implies the upper bound in (4.6).

Lower bound. By Theorem 4.1 we can choose functions fk satisfying supp fk ⊆ Ωk and(∫
Ωk

∣∣Tkfk − T̄kfk∣∣q udµ)1/q

≥
(
1− 2−1/q

)
A (Ωk)

(∫
Ωk

|f |p vdν
)1/p

, k = 1, ..., N − 1. (4.7)

Let P : Lpvdν → Lqudµ be an arbitrary bounded linear operator, rankP < N − 1. Then because
of the linear independence of Pfk, k = 1, ..., N − 1, there are constants α1, ..., αN−1 such that

P

(
N−1∑
k=1

αkfk

)
= 0. Denote f =

N−1∑
k=1

αkfk. For τ (x) ∈ ∆k, k = 1, ..., N − 1, we have

Tf (x) =

∫
Ω(tk)

fdν + αk

∫
Ω(τ(x))\Ω(tk)

fkdν = βk + αkTkfk,

where the value of the constant βk =

∫
Ω(tk)

fdν does not matter, as we will see shortly. We need a

well-known property that in Lp spaces the average of a function is a good approximation to it in the
sense that (∫

Ωk

∣∣Tkfk − T̄kfk∣∣q udµ)1/q

≤ 2 inf
c

(∫
Ωk

|Tkfk − c|q udµ
)1/q

. (4.8)

Now using (4.8) and Theorem 4.1 we can proceed with the following estimate:

∫
Ωk

|βk + αkTkfk|q udµ ≥
(

1

2

)q ∫
Ωk

∣∣αkTkfk − αkT̄kfk∣∣q udµ
≥

(
1

2

(
1− 2−1/q

)
A (Ωk)

)q
|αk|q

(∫
Ωk

|fk|p vdν
)q/p

.
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Therefore, by (4.3) and discrete H�older's inequality∫
Ω

|Tf − Pf |q udµ ≥

((
21/q − 1

)
ε

(21/q+1)

)q N−2∑
k=1

|αk|q
(∫

Ωk

|fk|p vdν
)q/p

=

((
21/q − 1

)
ε

(21/q+1)

)q N−2∑
k=1

(∫
Ωk

|αkfk|p vdν
)q/p

≥

((
21/q − 1

)
ε

(21/q+1)

)q

(N − 2)1−q/p
(∫

Ω

|f |p vdν
)q/p

.

In the �rst line the term with k = N − 1 was omitted because A (∆N−1) may be less than ε. The
last inequality proves the lower bound.

Remark 2. Obviously, when p = q, (4.6) gives a same-order two-sided bound for a-numbers. Besides,
the upper bound on a-numbers gives an upper bound for the Gelfand, Kolmogorov and entropy
numbers because the a-numbers are the largest among s-numbers of linear operators [23].

To consider the case 1 < q < p <∞ we assume that ‖T‖ <∞ and therefore B <∞ by Theorem
2.2. Denote

Φ∗[a,b] (x) =

(∫
Ω[a,τ(x)]

udµ

)1/p(∫
Ω[τ(x),b]

v−p
′/pdν

)1/p′

,

Φ[a,b] (x) =

(∫
Ω[τ(x),b]

udµ

)1/p(∫
Ω[a,τ(x)]

v−p
′/pdν

)1/p′

Φ [a, b] =

[∫
Ω[a,b]

(
Φ∗[a,c]χ[a,c] + Φ[c,b]χ[c,b]

)r
udµ

]1/r

where c = c (a, b) is the constant de�ned in Theorem 4.1.

Theorem 4.3. Suppose that 1 < q < p <∞, 1/r = 1/q − 1/p, T is bounded and 0 < ε < B. Then

aN+1 (T ) ≤ 321/qε.

Proof. Upper bound. Let 0 < ε < B. Select t′, t′′ to satisfy(∫
Ω(t′)

Φrudµ

)1/r

= ε,

(∫
Ω[t′′,∞]

Φrudµ

)1/r

= ε. (4.9)

This implies, in particular, (4.4). Let {∆k : k = 1, ..., N} be a uniform (and �nite) partition of [t′, t′′]
into segments ∆k of length m. From the bound

N∑
k=1

Φ (∆k)
r ≤ max

k
sup

τ(x)∈∆k

(
Φ∗∆k

(x) + Φ∆k
(x)
) ∫

Ω[t′,t′′]

udµ

we see that m can be chosen so that (
N∑
k=1

Φ (∆k)
r

)1/r

= ε. (4.10)
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With de�nitions (4.5) and putting Ωk = Ω (∆k) we have for each k by Theorem 4.1(∫
Ωk

|Tf − Pkf |q udµ
)1/q

≤ 24+1/q Φ (∆k)

(∫
Ωk

|f |p vdν
)1/p

.

By Theorem 2.2 (4.9) implies(∫
Ω(t′)

|Tf |q udµ
)1/q

≤ 22+1/qε

(∫
Ω(t′)

|f |p vdν
)1/p

,(∫
Ω[t′′,∞]

|Tf |q udµ
)1/q

≤ 22+1/qε

(∫
Ω[t′′,∞]

|f |p vdν
)1/p

.

We use de�nitions of P0, ..., PN from Theorem 4.2. Put P =
N∑
k=1

Pk. The last three estimates and

(4.10) give (∫
Ω

|Tf − Pf |q udµ
)1/q

≤ 24+1/qε

(∫
Ω

|f |p vdν
)1/p

.

Since rankP ≤ N this proves that aN+1 (T ) ≤ 24+1/qε.

Lower bound. Let t′, t′′ be chosen as in (4.9) and put t0 = 0, t1 = t′. On the n-th step, if
sup
t>tn

Φ (tn, t) ≥ ε then we put tn+1 = min {t > tn : Φ (tn, t) = ε} . If sup
t>tn

Φ (tn, t) < ε we put tn+1 =∞.

This process stops in a �nite number of steps. Suppose that it does not and that tn → t ≤ ∞. From
(4.4) we conclude that

max
{

Φ∗[a,b] (x) ,Φ[a,b] (x)
}
≤

(∫
Ω[t′,∞]

udµ

)1/p(∫
Ω(t′′)

v−p
′/pdν

)1/p′

= c

for t′ ≤ a < b ≤ t′′.

Hence, for each k, εr = Φ (∆k)
r ≤ (2c)r

∫
Ω(∆k)

udµ,
∑
k

∫
Ω(∆k)

udµ =∞, which contradicts (4.4).

Denoting N the total number of segments, for an arbitrary bounded linear operator P : Lpvdν →
Lqudµ, rankP < N − 1, instead of (4.7) we have(∫

Ωk

∣∣Tkfk − T̄kfk∣∣q udµ)1/q

≥ cε

(∫
Ωk

|f |p vdν
)1/p

, k = 1, ..., N − 1,

where c is de�ned in Theorem 4.1 b). Repeating the argument based on (4.8) we get

∫
Ω

|Tf − Pf |q udµ ≥

q (p′/r)1/p′ 21−2r/p′q
(
1− 2−1/q

)
2
((

1 + r
q

)
2r+r/p′

)1/p
ε


q

N−2∑
k=1

(∫
Ωk

|αkfk|p vdν
)q/p

≥

q (p′/r)1/p′ 21−2r/p′q
(
1− 2−1/q

)
2
((

1 + r
q

)
2r+r/p′

)1/p
ε


q (∫

Ω

|f |p vdν
)q/p

where the last transition is by Jensen's inequality with the exponent 0 < q/p < 1. Thus, aN−1 (T ) ≥ cε
with the partition we have de�ned here and the constant c that depends only on p and q. We have
proved the following statement.
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Theorem 4.4. Suppose that 1 < q < p <∞, T is bounded and 0 < ε < B. Then

aN−1 (T ) ≥
q (p′/r)1/p′ 21−2r/p′q

(
1− 2−1/q

)
2
((

1 + r
q

)
2r+r/p′

)1/p
ε.
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