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Abstract We consider a Hardy type integral operator T" associated with a family of open subsets
Q(t) of an open set 2 in a Hausdorff topological space X. In the inequality

Tl ) <o [P
(/ ) =e(

the measures u,v are g-additive Borel measures; the weights u,v are positive and finite almost
everywhere, 1 < p < 00, 0 < ¢ < o0, and C > 0 is independent of f, u, v, u, v. We find necessary
and sufficient conditions for the boundedness and compactness of the operator T and obtain two-
sided estimates for its approximation numbers. All results are proved using domain partitions, thus
providing a roadmap for generalizing many one-dimensional results to a Hausdorff topological space.

DOI: https://doi.org/10.32523/2077-9879-2025-16-1-60-85

1 Introduction

A one-dimensional Hardy inequality

e ([ dy>qd“ gl e ([ rorwma (y>)” g

has been studied in detail and complete characterizations of its validity for all non-negative functions
f have been obtained in terms of pairs of weights u,v and measures p, v for all pairs of exponents
p,q, see |11, [12], [13], |14], |20] for the history and extensive references. By a characterization
we mean obtaining a functional ® (u, v, u, ) such that for all weights and measures the inequality
1C < @ (u,v, u,v) < coC is true, where C'is the best constant in the above inequality and ¢, co > 0
can depend on p,q but are not allowed to depend on wu,v, u,v. Those characterizations are very
different for the cases p < g and ¢ < p.

In the one-dimensional case most researchers have used tools of one-dimensional calculus, such
as integration by parts [33]. The lack of such tools has been the main obstacle on the way to
multidimensional results. Some general results for p < ¢ and for Banach function spaces have been
established in [7]. Obtaining full characterizations has been facilitated by the possibility to reduce
the multidimensional case to the one-dimensional, by using spherical coordinates [31], [4], the polar
decomposition [26], [27] or assuming that the weights are products of functions of one variable [35],
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[36]. The result by Sawyer [29] does not allow reduction to dimension one but is limited to a quadrant
on the plane R2.

In a recent paper Sinnamon [32] suggested a very general method that covers totally ordered sets
of domains on a measure space. The method relies on a non-increasing rearrangement involving the
weights and measures and reduces the multidimensional case to the one-dimensional. Apart from
generality, the method allows Sinnamon to improve the constants ci,cs. The analysis of ordered
cores is of independent interest.

For applications it is desirable to have everything to be expressed in terms of original weights and
measures, the most important examples being the Hardy-Steklov type operator [9] and the Hardy
inequality on cones of monotone functions [30], [34]. In Sinnamon’s method one additional step is
required to derive the criteria in terms of original weights and measures from his one-dimensional
formulations. K. Mynbaev [2I] has obtained results in terms of original weights and measures under
the assumptions on the domains that are close to the ones imposed by Sinnamon (see [21, Remark
1] for a more detailed comparison with Sinnamon’s paper).

Here we develop a different approach to the norm estimation, compactness conditions and bounds
for approximation numbers using domain partitions. The boundedness criteria obtained below can
be derived from both [32] and [21]. Nevertheless, we give full proofs of boundedness, compactness and
estimates of approximation numbers to show that domain partitions combined with the conditions
on the operator 1" imposed here allow one to extend many of the existing one-dimensional results to
the current setup in a Hausdorff space. Possible extensions include results that employ the Oinarov
condition [22], [I5]. Since Sinnamon’s approach covers also discrete Hardy inequalities, it would be
interesting to see if the results of [I6] can deduced following Sinnamon.

We consider integration over expanding subsets Q(t) of an arbitrary open set {2 in a Hausdorff
topological space X with o-additive Borel measures p,v. As in [32] and [2I], neither ©(¢) nor their
complements Q\€(t) need to be connected and there are no requirements on the shape of {)(¢) when
X is a linear space. In the classical case one can notice that the subdomain Q (¢) = (0,%) of Q@ = (0, 00)
has w (t) =t as the boundary in the relative topology and that Q(¢) = {s € Q:w(s) <w(t)}. Our
conditions on the family {2 (¢)} are based on this observation.

The existing results on integral Hardy inequalities for R or measure metric spaces (in which (¢)
are balls, see [4], [2], [26], [27], [28]) follow from ours, as well as from [32] and [2I]. Product weights
are not included as well as Sawyer’s result [29] (his rectangles do not satisfy condition below).
In papers [26], [27], [28] a metric is required to generate balls and a polar decomposition to use
the one-dimensional techniques, while we avoid these requirements. There is a number of situations
(homogeneous groups, hyperbolic spaces, Cartan-Hadamard manifolds, and connected Lie groups)
when the polar decomposition is available, see also [I] for a study of polarizable metric measure
spaces. All such situations are covered by our statements. The authors of the article [28] employ the
results from [21].

Unlike [32] and [2I], our approach is elementary and does not require any advanced measure
theory beyond o-additivity. Note that binary partitions were used to prove sufficiency for the Hardy
operator in the one-dimensional case in [3]. Unlike [3], we avoid their auxiliary functions ® and &,
and apply discretization both for the upper and lower bounds in terms of the same functional of the
weights.

Note that we provide two different proofs of the sufficiency of the compactness conditions: in
Sections 3 and 4. Both employ an explicit finite-rank approximation to the Hardy operator.

The study of the approximation numbers (a-numbers) of the Hardy operator in the Lebesgue
spaces on the half-line for parameters satisfying 1 < p < ¢ < oo started with the papers by D.E.
Edmunds, W.D. Evans, D.J. Harris [5], [6]. They found implicit and asymptotic bounds for a-
numbers of the operator T': LP(RT) — LP(R™). Next D.E. Edmunds, V.D. Stepanov [§] obtained
the bounds for singular numbers of the Hardy type operator with a polynomial kernel acting in
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the spaces L?*(R*). Those results were extended by E.N. Lomakina, V.D. Stepanov [19] to the
case 1 < p,q < oo; besides, two-sided bounds for the Schatten—von-Neumann norm were proved.
However, in the case 1 < ¢ < p < oo the upper bound for the a-numbers ay(T) < N9/ was not
informative because of its dependence on N. In this paper for 1 < ¢ < p < oo we derive an upper
bound that does not depend on N. We do not consider the case 0 < ¢ < 1 < p < oo studied by E.N.
Lomakina [I7], nor do we attempt to study the Hardy operator acting from the Lebesgue spaces to
the Lorentz spaces in the spirit of [18§].

2 Hardy operator boundedness

We write A < B to mean that c;A < B < ¢ A with constants ¢, co that do not depend on weights
and measures.

Assumption 1. Let Q be an open subset of a Hausdorff topological space X with o-additive measures
i, v. The measures are defined on a o-algebra M that contains the Borel-measurable sets. The weights
u, v are assumed to be positive and finite almost everywhere.

Assumption 2. a) {Q(t) : t > 0} is a one-parametric family of open subsets of Q which satisfy
monotonicity
for ty < ta, Q(t1) is a proper subset of Q(t3). (2.1)

b) QUt) start at the empty set and eventually cover almost all §2:

Q) =) =2, v <Q \ U@@)) = 0.

t>0 t>0

c¢) Further, denote by w(t) = Q) [ (Q\Q(t)) the boundary of Q(t) in the relative topology. We
require the boundaries to be disjoint and cover almost all ):

wit)) [ wltz) =@, t # ta, v(Q\ [ Jw(t) =0. (2.2)

t>0

d) Passing to a different parametrization, if necessary, we can assume that

v (Q\ U w(t)) >0 for any N < oo. (2.3)

t<N
e) Finally, we assume that boundaries are thin in the sense that

v(w(t)) =0 for all ¢ > 0. (2.4)

This Assumption has simple implications.
1) (2.2) implies that for v-almost each y € €2 there exists a unique 7(y) > 0 such that y € w(7(y)),
which allows us to define

Tf(y) = / fdv, y € Q, (2.5)
Q7 (y)

for any non-negative 9l-measurable f. On the set Qy C Q of those y for which 7(y) is not defined
we can put 7(€y) = &. (A more general definition of a Hardy-type operator is given in [7]. That
definition is more difficult to work with what we call slices.)

2) and the fact that w(t) # @, t > 0, lead to the equality 7(92) = (0, c0).
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3) Because of (2.4) / fdv= [  fdv and up to a set of v-measure zero
Q(t) Q(t)

{xeQ:7(x) >71(y)} = Q\Q7(y)). (2.6)

For 0 < a < b < oo we denote Q([a,b]) = Q(b) \ Q(a).

Since 7(y1) = 7(y2) for any y1,y2 € w(t), the value T'f(y) is the same for all y € w(t) and we can
define Sf(t) = Tf(y) if y € w(t). For a non-negative f, the function Sf is non-decreasing and its
jumps are zero due to . Thus,

for each f > 0, Sf is continuous where it is finite, including ¢ = 0. (2.7)

Let L?

vdv

function and let ||T'|| = ||T||»

1/p
@ = (/ |f\”vdu) where v is a weight
Q
P (@)=L, () be the norm of a linear operator T acting from L?, () to
L34,(2), hence
J

vdy
q 1/q 1/p
[ gaf wauo)| < ([ o)
Q(7(x)) Q

1/q ) 1/p
U(t) = </ udu) (/ v P /pdy) :
Q\Q(t) Q(t)

Theorem 2.1. If 1 < p < ¢ < oo, then 1) is bounded if and only if A < oo, where A = sup V().
t>0
Moreover, A < ||T|| < 4A.

(Q2) denote the space with the norm || f||.»

vdv

Denote

Proof. Lower bound. Let an operator T' : L7, (Q) — L,

constant C' > 0 such that ||TfHLZdH(Q) < ONfller, (@)

vdv

Put f,(z) = Uﬁp,/p(Z)XQ(T(y))(Z), y € ). Then

(Q) be bounded, then there exists a

Tf,(x) :/ v Py :/ v Pdy, for T(x) > T(y)
Q7 (x))N(7(y)) Q(r(y))

and

Cllifyllzz, @ = T fylls, -

Therefore, by applying (2.6) and 7(Q2) = (0, 00) we see that

1/q (f ud )l/qf v P /Pdy
¢ s qupo@h)udn) ™ rwsron 4) - Jowrw)
1/ = 1/
e U fjede) ™ et <fQ(T(y)) ”_p,/pdy) p

1/q / 1/p
— sup (/ ud,u) (/ vP /pd,/) =A
yeQ \Ja\Q(r(y)) Q7 ()

(@1, = nfC = A.

and ||7|| .

vdv
Upper bound. Without loss of generality we suppose that 0 < supT'f(y) < oo. Put ¢ty = oo,
yeN

Q(c0) = Q. By (2.7) Sf(t) — 0, t — 0, so the definition ¢; = sup{t > 0: 25 f(t) < Sf(to)} is correct.
By the continuity of Sf, we have 25f(t1) = Sf(ty) and t; < . By induction, if ¢; has been defined,
we put tp1 = sup{t > 0:25f(t) < Sf(tx)}. Then

QSf(tk+1) = Sf(tk), thr1 < Tk- (28)
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This can be called a sliding property because it allows us to pass from Sf(t;) to Sf(tx+;). Defining
slices

Sk+1 = Q(tk>\Q<tk+1)v k>0,
we have
Sf(tee) = 25f(tegr) — Sf(trs1)
= Sf(tx) — Sf(tks1) = / fdv, k> 0. (2.9)

Sk+1

Let y € sgy1 or, equivalently, tx1 < 7(y) < t. Using (2.8)), (2.9) and Holder’s inequality we have

Tfy) = / fdv < S(t) = 25F(tren) = 4 (trs2)
Q(7(y))

1/p 1/p'
= 4 fdv <4 / fPody / v PP dy : (2.10)
Sk+2 Sk+2 Sk+2
1/q 1/p'
ap = / udp / v PPy .
Sk+1 Sk+2

We can use ([2.10) and the inequality p < ¢ to estimate

([ ryuin) " (Z SHI(Tf)qudu) "

k>0

[ a/p a/p
Z / udp fPudv / v Py
Sk41 Sk+2 Sk+2

k>0
[ q/p] /1 1/p
= 4 Z aj fPodv < 4sup ay, Z fPodv (2.11)
Sk+2 k k>0 Sk+2

_k‘ZO
< 4Afle @ -

Denote

M 1/q

AN
W

The last transition uses the following inclusions
skt = Q) \Qter1) C A\Q(trr1)  and spra = Q1) \Qtrr2) C Qtera).

If supT'f (y) = oo we can choose ¢ < oo such that / fdv < oo, put fi(z) = xou (z) f (z),
Q(t)

yeN
and do all calculations leading to (2.11]) with f; in place of f. Since the constant in (2.11]) does not
depend on ¢, then we can let ¢ — oo thus completing the proof. O

Let ug, vo be non-negative integrable functions such that uy < u, vy < v, We can assume

that 0 < /vodu < oo and by analogy with (2.8)) define the points ¢y = co > t; > ..., where t; =
Q

sup {t > 0:2Svg (t) < Swvg (to)}, ..oy tir1 = sup{t > 0: 2Sv (t) < Svp (tx)} such that Q(c0) = Q and

/ vody = Q_k/vgdy, k> 0. (2.12)
Q(tx) Q
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This implies the following equality (as before, spi1 = Q(tx)\Q(tr11) ):

/ vodv = 2/ vodv.
Sk+1 Sk+2

The partition {¢;} generates non-negative numbers

Vi = / vodv, Uk:/ uodp,
Sk41 Sk41

Tp = / vodl/:ZVj, yk:/ uod,u:ZUj,k:ZO.
Q(tx)

>k O\Q(tg+1) <k

Here {z;} is non-increasing and {y;} is non-decreasing. We need the identities

r T r r r T

——l=— ——1l=—, ——1=-. (2.13)
q p Dg pq p q

The next lemma provides a replacement for the one-dimensional techniques mentioned in the
Introduction.

Lemma 2.1. Let a > 1.
a) We have

z(z w)a_lvng(z v)

Jj=k \izj+1 i>k+1

for any non-negative numbers V; such that the left side is finite.

b) Moreover,
a—1 1 a a
i>k i>k—1 i>k

For this inequality to be true for k =0 we formally put V_1 = 0 so that

96—1:2‘/}:2‘/%:%

i>—1 1>0

k> 1

and the inequality holds trivially.
c¢) For the partition {ty} one has

r/p
T T r
ykfl - yk/q < - / updp / updp.
q N\Q(tg12) Skt2
Proof. Let g(z) = x°.

a) By the mean value theorem with some 6 € (242, 7;41)

a—1

1,

( Z W) Viee = —¢(zj41)(Tj41 — Tjt2)

i>it1 a
1 1

> P (0)(xjp1 — Tj42) = p (9(zj11) — g(z)42)) .
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It follows that

Z < Z V%) Vi 2 %Z (g(ijrl) — 9($j+2))

>k \i>j+1

b) Similarly, with some 6 € (xy, 25_1)

(Z V%) Vier = ég,(ffk)(ffk—l — T)

< g (O)nr — ) =~ (glre) — glaw))

¢) With a = r/q and 6 € (yx, yx11) by the first identity (2.13])

r/q
/ uod L — / upd s
O\Q(tk+2) O\Q(tr+1)

= 9(Wrr1) — 9(uk) = 9O Wrs1 — yr) < 9 (Yrs1) / uodp
Sk+2
r/p
,
= - / upd s / Uod L.
q AN\Q(tg+2) Sk+2

Let0<g<p l<p<ooandputl/r=1/qg—1/p,

1/p , 1/p’
O(y) = (/ udu) (/ v P “”du) :
(7 () Q7 (y)

For 2 = (0, 00) [20], [33] have shown that ¢ [ @] .. o) < [T]| <2 [|®
udp
that depend on p, ¢ and do not depend on the weights and measures.

r/q

: ith constan
L7,.(9) with constants ¢y, co

1 1 1
Theorem 2.2. I[f1 <p<o0,0<g<pand ——— = —, then 1) is bounded if and only if B < oo,
r
1/r ¢ b
where B = (/ @%du) . Moreover,
Q

g ()7 212

1/p
((1 + g) 2r+r/p/>

Proof. Upper bound. As in the proof of Theorem , it suffices to consider the case 0 < supT'f(y) <
yeN

B <||T| < 2*Y4 B.

oo. Begin with applying Holder’s inequality with exponents p/q and r/q in (2.11)):

1/p 1r 1/p
<4 (Z a;> (Z / fpvdy) .

k>0 k>0

q/p
1T Sllzz, (@) <4 2}%(/ f%mj
Sk+2

k>0
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We want to bound

/

r/q r/p
ap = / udp / v Py
Sk41 Sk+2
r/p r/p
= / udp / udp / v Py
Sk41 Sk+1 Sk+2

by an integral. Select ¢} € (tx41,%x) so that

/

/
k+1

/

1
wdp= [ udi = [ udg, where si., = AN, s = AENDAtw).
Sk+1

Skt 2

First, we replace integrals and explicitly write out the domains of integration:

r/p r/p'
ap = / udp / udp / v Py
Sk+1 Sk41 Sk+42
r/p /v
= 2”‘1/ udy / udy / v Py
S S Sk+42

" /
k41 k41

r/p
_ o / u(y)dp(y) ( / u(z)du(z))
tht1 Sﬂ-(y)<t;C t;cgr(z)<tk

/

r/p
X / v P P(2)dy(2) .
te+2<7(2)<tkt+1

Next, we increase the domains of integration in the last two integrals:

r/p
o < 2 utwinto) ( [ (o))
trer1<7(y)<ty, T(y)<7(2) <00

/

) r/p
X (/ vP /p(z)dy(z)> :
T(2)<7(y)

Finally, we increase the domain of integration in the outer integral:

r/p ) r/p'
o < 2 [t ([ ) ([ o)
Skt N\Q(7(y)) Q(1(y))

or/a / S udp.

Sk+1

Thus,

deu(ﬂ) :

1/r
T, o < 27 g, o (Z ‘P’"udu> = fl o 0

k>0 Sk+1

Lower bound. Inspired by [33] we define

r/(pa) r/(p'9)—1
f(t) = (/ uodp) (/ vody) vo(t).
Q\Q(r (1)) Q(r(1))
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Then

r/(pq)
/ fdv > ( / uOdu)
Q(7(x)) Q\Q(7(x))
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r/(p'g)—1
/ </ vodv> vo(t)dv(t) | .
Q(r(z)) \JQ(r(1))

(2.14)

Let k = min{j: t; <7(x)}, for which ¢, < 7(2) < t;_1, and consider the integral in the square

r/(p'9)—1
(/ Uodl/) vo(t)dv(t)
Q(7(¢)

brackets:

v

>

:>\:>\

Q

>k

r/(p'9)—1
(/ vodu> vo(t)dv(t)
te) \JQ(t)

/sm (o

r/(®'q)—1
/ < UOdV> (t)dv(t) = Z ( Z V;) V.
Sj+1 Q(tj4+1) ; i>j

By the sliding property and Lemma a) with a = ;

Ww) ()du(t)

pq

r/(p'q)-1 o r/(r'q)
1222<2v;> sz%(ZVi) .

jzk

i>j+1 i>k+1

(2.14), (2.12)) and this bound give

/ fdv
Q(r(x))

where ¢; =

IN

4 q21 2r/(p/

171

>

v

r/(¥'q)

2 r/(pq)
P ( / uodu) / vodv
r A\Q(7(2)) Qtr+1)

/ r/(pq) r/(P'q)
2p_q4—r/(;n’q) (/ Uod,u> (/ vodu>
r QA7 (2)) Qtr-1)
r/(pq) r/(P'q)
a1 (/ uodu> (/ vodu> = clq)g/q(x),
\Q(7(2)) Q(r(z))

P9 and we have denoted

1/p 1/p
Oy(x) = (/ uodu) (/ vodu) .
A\Q(7(x)) Q(r(z))

Assuming that ||7']| < oo we have

q q/p
et [ apuans [ ([ - pv ) wteute) < |71 ([ yroav )

r/q r/d a/p
/ (/ uodu) </ vody) vo(x)dv(x) :
Q \JNQ(r(2)) Q(r ()

(2.15)
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We have applied the inequality viv < va/(l ) vg*p/p’ = 1vy. Further, we need to bound

/4 r/d
I = /(/ uodp) (/ vody) vo(z)dv(x)
Q \JNQ(r(2)) Q(r ()
r/q r/d
- Z/ (/ uodu> (/ vodu> vo(z)dv(x)
skt1 N\ Q\Q(7(2)) Q(r(2))

k>0

r/q r/q
Z / Uod s (/ 'Uodu> / voduv. (2.16)
k>0 NQ(tr1) Q(tx) Skt+1

Using the third identity in (2.13) and Lemma [2.1) b) with a = r/p’ we can write

r/q r/p'—1 1 r/p'—1
</ vody) / vodv = (Z VJ> Vi == (Z VJ) Vi1
Q(tx) Sk+1 i 2 i>k

IN

j>k
o T/’ T/’
<rl(zv) -(zv)
i>k—1 i>k
I .
- = (a7 =), (2.17)

/

Next combine (| and ( -, denoting ¢y = 2— and keeping in mind that x_; = x¢ :

Ijey < Z yr/q (1?2/_”1 - xZ/p) = Z y/’;/q (qu;/p1 :/p) + yS/q (xor/p/ — xoT/p/)

k>0

= Y +Z(yz:/+q1 r/‘I>:E/p/‘
k>0

By Lemma [2.1] ¢)

r/p r/p’
I/ey < yg/qxor/p’ + r Z / uodp (/ Uodl/) / uodpt. (2.18)
q k>0 N\Q(tt2) Q(tr) Shao

Let t),1 € (trt2, tes1) satisfy the following equality

/ uod,u—/ Upd .
Qth 1)\ Qtk42) Q(tr41)\ Ut

k+1 k+1)

T/p
/ updp / updp
Q\Q(tp42) Sk+2
r/p
= 2 2/ uodu—l—/ uod / updpt
Qte+1)\ 2t 1) NQ(tk41) Q1 )\2(tk+2)

r/p
< oltr/p (/ uodu> / uodp
QL 11) Qty 1)\t +2)
r/p
< 21+T/p/ (/ uod,u> uo(t)du(t).
sk+2 N\ \Q(7 (1))

Then
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/ vodv = 2"“/ vodv = 4 - 2~ (k+2) / vodv = 4/ vodv.
Q(tr) Q Q Qtkt2)

Hence, the big sum in (2.18)) is bounded since

v/ r/p'
Z / updp (/ vody) / updp
N\Q(tg+2) Q(tx) Sk+2

k>0

Besides,

/

r/p r/p
ol4r+r/p Z / vodv / (/ uodu) uo(t)dp(t)
Qth42) sk+2 N\ \Q(7(1))

k>0

/p r/p
< 21+r+7'/p’ Z/ (/ Uodﬁb) (/ UodV> uo(t)du(t)
k>0 7 skt NS Q\Q(7 (1)) Q(r(t))

< A/ / Brugdys. (2.19)
Q

IN

The first term in (2.18)) has to be treated separatel. Note that

) r/p r/p
yo/ LV = (/ uodu) (/ vody) / ugdjt.
O\Q(t1) Q DNQ(t1)

Let t' € [t1, 00) satisfy fQ(t,)\Q(tl) ugdp = fQ\Q(t,) uodu. Then,

) ) r/p r/p'
yg/quT/P — gr/ptr/p'+l (/ uod,u) (/ Uodl/) / uodp
Q) Q(t1) Q)\Q(t1)
r/p r/p
< 21”/ (/ uod,u) </ UodV) uo(t)dpu(t)
QEN\Q(t1) \SAQ(7(1)) Q(r(1))

< oM / Dpugdy. (2.20)
Q

Equations (2.18), (2.19) and (2.20) are summarized to give

/
1<t (1 + f) orir/v! / D ugdp.
r q Q

Recalling also (2.15) we get

1/q o r . 1/p 1/p
oo ([ g ) <z < (B (e D)) ([ agude)

1/p
It remains to divide both sides by ( / @Suodu) . Finally, choose ug, v9 monotonously approaching
Q

to u,v' ", respectively, and apply Fatou’s lemma, which holds on a general measure space (no
topology is needed) [10]. O

With simple changes in the proofs, analogues of Theorems[2.T]and [2.2]hold for the adjoint operator

T Lf))dy(Q) — LZdu(Q)7
rfw)= [ g
2N\Q(y)
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Denote

1/q ) 1/p'
U*(t) = (/ ud,u) </ v /pdu) , >0,
Q) Q\Q(1)

/

1/p ) 1/p
' (y) = (/ ud,u) (/ v P /pdy> , Yy €N,
Q(r(y) AN\Q(7(y))

and consider the inequality

! 1 1/p
{/ / fdv U(x)du(l’)} < [Tl (/ \f!%du) .
Q IJNQ(7(z)) Q

Theorem 2.3. 1) If1 < p < q < oo, then T* is bounded if and only if A* < oo where A* = sup U*(t),
>0
and A* < ||T%|| < 4A*.
2)If0 < ¢ < p, 1 < p < oo, then T* is bounded if and only if B* < oo where B* =

1/r
(/ ()" udu) , 1/r=1/q—1/p. Moreover,
Q

q(p'/r)7 2r-2r/v'a

1/p
()7

Remark 1. Instead of being parameterized by ¢ € (0,00) the family {€(¢)} can be parameterized
by t € [a,b] with —oo < a < b < 0o. The resulting bounds will be applied below.

B* S ||T*|| S 22+1/q B*.

3 Hardy operator compactness

The next subject is the compactness of T. The notation below allows one to trace similarity with
[32]. Denote

a(r) = / udp, b(x) :/ v P Pdy, 0 <z < o0,

I, = limsupa(2)”/7b(2)""", for i = 0,00, | = max {lo, s}
T

Lemma 3.1. Suppose that a (x) < 00, b(z) < oo on (0,00). Ifl > & > 0, then there exists a sequence
{gn} such that HgnHLﬁdu(Q) =1, [Tg, — TgmHLZd#(Q) > €.

Proof. Let f,(2) =b(z)" /" Xa@) (2) v/ (2), z € Q. Then

1/p
Vollpws = b ()" ( /Q o du) 1 (3.1)

and

T (y) = b(z) /

Q7(y)

Case ¢ = 0. Suppose that [ > ¢ > 0. Choose z; > 0 for which

Xa@v P Pdy =b (x)_l/p/ v PPy, (3.2)
Q(min{7(y),x})

a(z)V9b (2)" > €. (3.3)
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Since b(xz) — 0 as © — 0, we can select x5 < 7 so that
a(22) b (1) > ¢ and a (21)"* (b (21)7 — b(./L‘Q)l/p,> > €.
Similarly, we can choose x; > x5 > ... recursively so that for each n
a (2)"9b (2,)" > € and a (z,)"* (b (@) — b (xn+1)1/P’> > e (3.4)
If m > n then z, > x,,1 > x,, and
b(zn) > b(rpe1) > b(x,). (3.5)

If 7 (y) > ,, then by (B.2) and (3.5)
T frn = T o > b(wn) " = b (2) " > 0.

Hence, by (3.4

1/q
udu)
y:7(y)>2n}

> a(en)’* ()" = b(w)?) > e

1T fe,, — TfImHLZdN(Q) > <b (xn)l/p — b(xm)l/p) </{

This and (3.1)) show that the functions g, = f,, possess the required properties.
Case i = c0. Suppose [, > £. Choose z; satisfying (3.3). Obviously, a (z) — 0 as x — oo and,
therefore, b (x) — oco. Using (3.3) we can choose z; > z; such that

(a (1) —a(z20))"9b ()" > e. (3.6)
The inequality /. > ¢ and imply that we can select zp > 2z with a (z2)"9b (22)"? > ¢ and
(a(21) = a(20))" (b (@)"" —b(21)b @;g*“p) > e
Continuing in this way, we obtain points z1 < 21 < 3 < 23 < ... such that for each n
a (2)0 (2)77 > &, (a(zn) — a(z)9b (2) 7 > ¢,

(a(zn) — a(za))" <b (@) = b (2) b (xnﬂ)—l/p) > e (3.7)

If m > n, then z, < 2z, < ,41 < ,,, leading to the inequlities
b(zn) <b(zn) <b(zpi1) <b(xy). (3.8)
Let z,, < 7(y) < z,. Then by
Tfo, (y) = b(@)"", Tha, (1) = b(@n) 7 b(r ().
Because of and this implies

Tfe, (y) =Tt (y)

bwa) " = b(am) (7 (1)
b(z)"" = b(xm) b (2,)
b(z)"" = b (20r1) P b (20) > 0.

AVARLY,
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Now we apply (3.7) to get

1/q
Ito, = Tl = ( (T Far ()= Tl ()"0 )1 ))
e {y:zn<r(y)<zn}
> (a(wn) = a (=) (b@) = b () b)) > e
Denoting g, = f., we see that this bound and (3.1)) complete the proof of the lemma. O

Theorem 3.1. a) If 1 < p < q < o0, then T is compact if and only if L =0.b) If 1 <qg<p and T
18 bounded, then T is compact.

Proof. Approzimation to T. The points t, = k27", k=0, ...,n2", t,9n 1 = 00, lead to two partitions:
one of (0,00), consisting of the intervals

Ak - (tk,tk+1) ; k - O, ,n2n - 17 AnQn - (thn, tn2n+1) - (n, OO) 5
and the another one of €2, consisting of the sets

Qk =0 (tk+l) \Q (tk) y k= 0, ceny n2".

n2m

Define k,, (t) = ZthAk, (t), t > 0. Since = € ), is equivalent to 7 (z) € Ay we have
k=0

R (T(2) = th<7(x) <t +2" forzeQy, k=0,.,n2"—1,

ko (T(2)) = n<71(r) foraze Quon.
Put
n27l
tiw=[ = [ fir=>" [ fane, .
Qkn (%)) QR0 trxa, ) 0 Y Qtx)
Obviously 7, is a finite-rank operator.
For the difference T' — T}, we have the representation
n2"
Tf(y) —Tuf (v) = Y ( / fdv — / fdv) Xe, (v)
k=0 Q7 (y)) Q(tk)
n2m
=3[ e ). (39)
k=0 Y (T (W)\ (k)

Case p < q. Sufficiency. By Theorem

™
Qe 1Q(r(y)\(tk) Q
1/q / 1/p'
ap = sup / udp (/ v P /pdl/) .
t<t<tpi1 Qtr1)\Q(2) QO\Q(tr)

q

)ity " < ([ i vdu)w (3.10)

where
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Since p < ¢ we see by (3.9)-(3.10) that

1/q n2n 1/q
( / Tf — T, f|" udu) = [Z Tf — T, f|" udu]
Q k=0 /%
n2n a/p 1/q
S ¢ [Z GZ( If’”lvdl/) udu] < csupay Ifller @) - (3.11)
k=0 e

Let us prove the compactness of T assuming that [ = 0. For any ¢ > 0 we can choose z; < w9
such that
a ()b (2)" <&, xe (0,31 U[rs,00). (3.12)
Since v?/P and w are positive almost everywhere, this implies that a (z) and b () are positive in
the range in and then a(x) < a(x1) < o0, b(z) < b(x3) < 0o for x € [xq,x]. This justifies
the calculations that yielded .
We want to evaluate the sets

Ql = U Qk; QQ == U Qk7 @3 = U Qk

lg+1<x1 1 <tpy1<2w2 tet1>222

Obviously, Q, CQ (1) . Assuming that 27" < x5 we see that t5,1 > 2xo implies that ¢, > x5 and
Q3 C OQ\Q (x2). Further, provided that 27" < x1/2 from 27 < t3y1 < 29 we have ty > x1/2 and
Qy C Q(222) \Q(21/2). We have shown that

0 CQ(1), QCQQ2x)\Q(21/2), Qs C A (z2). (3.13)
Since ar < sup W (¢), the inclusions in (3.13)) and (3.12)) give
b <t<tpii
sup ap <¢e, sup ai <Ee. (3.14)
try1<T1 tp41>222

For Ay with 1 < ;11 < 2x9 we have

1/q . 1/p'
ax < (/ ud,u) (/ vP /pdu) = (tk,Q’") (3.15)
Q(te+27")\Q(tk) Qtp+27)\2(tk)

where 1 is defined as

/

1/q ) 1/p
v (z,d) = </ udu) (/ v P /pdy> ,
Q(z+0)\Q(z) Q(z+0)\Q(z)

(x,9) € [%,ng} x [0, do]

for some g > 0. This function is continuous on a compact domain and has the property that
(15111(1)77/1 (x,0) =0 for any x € [x1/2,2x5] . Hence, there exists 0, € (0, dp] such that
_)

ap < sup Y (x,0) <e.
(z,0)€lx1/2,222] % (0,01]

If we choose n satisfying the inequalities 27" < 21/2 < x5 and 27" < §; then (3.11)), (3.14)), (3.15))
give the desired bound from above: || T — T,|| < ce and T' is compact.
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Necessity. Suppose that T' is compact, which implies that ||7|| < co and A < oo by Theorem
As above, it follows that a and b are finite on (0, 0o) and we can use Lemma[3.1] Suppose [ > 0. Taking
€ =1/2 in Lemma (3.1 we obtain a sequence {g,} such that [|g.[z» @) =1, [[T'g, — TgmHLZdN(Q) > €.
This shows that 7" cannot be compact and that the condition [ = 0 is necessary.

Case g < p. Let ||T|| < co. By Theorem 2.2, instead of we have

1/q n2" Lr
(/ |Tf—Tnf!qudu) gc(ZbZ) 1z, (3.16)
k=0

where
1/r

/

r/p /p
by, = / / udp ( / v/ pdV) u (y) dp (y)
o\t )\ () QUrmN\At)

1/r "
Also B < oo. Therefore, we can select x; < x5 so that </~ q)rudu) < ¢ for both Q = Q (1) and
Q

Q = Q\Q () . This implies that

Z b, < Z / O udp < / Q" udp < e. (3.17)
ter1<z1 te+1<x1 Q Q
Assuming that 27" < x5 we can use (3.13)) to obtain

Z b, < / Q" udp < e. (3.18)
A\Q(z2)

{k:tk+1 >2xa}

Again using ([3.13]) with 27" < x,/2 we get

ooy < > /Quduw(tk,wy

{k:w1<tp41<2x2} {k:x1 <tpy1<2x2}

§/ udp  sup Y (z,27")". (3.19)
Q(222)\Q(21/2)

z1/2<e<2x9

The function ® is integrable and the choice of 21 can be subject to one more condition: ® (z1/2) < co.
As b(z1/2) > 0, by the inequality

D (2,/2)"
[ s [ e 02
Q(222)\Q(x1/2) 2\Q(a1/2) b(xy/2)P*

we see that the right-hand side in (3.19) tends to zero as n — oco. Bounds (3.16)-(3.19) imply that
T can be approximated arbitrarily well with finite-rank operators and thus is compact. O

4 Bounds for approximation numbers

Our next task is to obtain bounds for the approximation numbers (a-numbers) of operator (2.5)). Let
X,Y be two Banach spaces. For a bounded linear operator T': X — Y its n-th a-number, n € N, is
defined by

a, (T) =inf{||T — P||: P: X — Y is a bounded linear operator and rankP < n}.
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For [a,b] C [0,00) we initially consider the problem of how well the operator x[, 47 is approxi-
mated by averages. To this end, successively define

- 1
fu (2 [a, 0]) = /Q[a,b] udp, Ty f = m/g[a,b}(TﬁUdM’ (4.1)

ﬂa,b}f (l’) =  XQ[a,b] (ZL’) (Tf ($) - j_—’[a:b}f) :

Theorem 4.1. Choose the point ¢ so that

pa () = (e, ) = S ([ B).

a) Let 1 <p<q< o0,

1/q ) 1/p
A*la,c] =  sup (/ ud,u) (/ v P /pdl/) :
a<t(z)<c Qla,7(x)] Q[r(x),q]
1/q ) 1/p
Ale,b) = sup (/ udu) </ vP /pdu)
c<7(x)<b Q[r(z),b] Qle,7(z)]

and Ala,b] = max{A*[a,c|, Alc,b]}. Then
(1—279) Ala,b] < ||Tay]| < 8A[a,b].
b) Let 1 <qg<p<oo, 1/r=1/q—1/p,

1/r

r/p ) r/p
B*la,c] = / (/ ud,u) (/ vP /pdy) u(z)du () ,
Qla,c] Qla,r(z)] Qlr(x),q]

- 1/r

r/p ) r/p
Ble,b] = / (/ udu) (/ vP /pdy> w(x)du ()
Q[e,b] Q[7(z),b] Qle,m(z)]

and Ba,b] = max{B*[a,c], Blc,b]}. Then

a (pl/r)"" 21 (1 - 27Y)

1/p
()7

—/ fdv, a <1 (x) <e,
Qfr(z),c]

fdv, ¢ <71 (x)<b,
Qle,7(z)]
Fonf = iy . (Fanfud
af = ——— o f)udp.
ot Ho (Q [CL, b]) Q[a,b] ]

With this notation, we have the following identity

Bla,b] < [Ty <277 Ba, b).

Proof. Define

Floyf (z) =

Tf ($) — T[a,b]f = F[a’b]f(.%’) — F[a’b]f, a<T (Z‘) <b. (4.2)
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To prove it, we start with adding and subtracting terms in

/Q . (T f)udp

{A[a,c} </Q[0,7—(ac)} fdy) ! (m) dlu (x) " Qlc,b] </§2[0,7—(m)} fdy) ! (x) dlu ($):|
- |:/Q[a,c} </ﬂ[0,c] de) ! <x> dlu <x> " [)[c,b] (/Q[O,c} fdy) ! (w) dlu (x):|
+/Q[a,b] (/Q[o,c] de) u(z)du (x)

(joining similar terms in the square brackets and then using the definition of F')

[/Q[a,c] (_ /Q[T(x),c} fdy) wie)duz) + /ﬂ[c,b] </Q[c,7(x)] fdy) i) dy <x)}

+h (2 [a, D)) fdv
Q[0,c]
/ de+/ fdv, a <7 (x) <c
/ (Flap) f)udp + p, (2 [a, b]) Q[0,7(2)] Qlr(x),d
Qla,b] / fdv — fdv, e<1(x)<b

Q[0,7(2)] Qle,7(2)]

/Q (Floyf)udps + 1o (@0, 8)) [Tf () = Floy f ()]

[a,b]

Rearranging this gives (4.2]).
Upper bound. a) Equation (4.2]) implies

1/q
( / \T[a,b]f!qudu)
Qla,b]

_ 1/q
||F[a7b]f||LZdu(a,b) + |ﬂa,b]f} (/Q[a,b] udu)

1 1/q
Flanfl| +—/ Flanf Ud,u(/ Ud#)
[Fles ”Ludu(“’b) i ($2[a, b]) Q[a,b]l o] Qla,b)
(applying Hoélder’s inequality)

< 2 HF[a,b}fHLgdu(a,b) ’

IN

IN

Next we apply the definition of F,; and Theorems

IN

IN

HT[G’b]fHLZdH(a,b)

2( / / fdv / fdv
Qla,c] 1/ Q[r(z),c] Qle,7(z)]
a/p a/p
(aaioar [ ipoir) o+ (@aeny [ i) ]
Qla,] Qle,b)
1/p
8 Ala, b] (/ lfIP ’Udl/) .
Qla,b]

q q

u(z)dp (x) —i—/

Qlc,b]

u(z) dn <x>)1/q

1/q
2

7
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This proves the upper bound.
The upper bound in the case b) is proved similarly, using Theorems
Lower bound. a) For any f > 0 supported in [a, ¢| we have

. 1/q 1/q
[ ety < ([ (mnton) ([ )
Qfa,b] Qla,b] Qla,b]

1/q ,
= (/Q[ ]\F[a,mf!qudu) (240 (2 [a, )7 .

Therefore, by (4.2))

[Tl 1£1122,, ¢

vdv

_ _ 1/q
= 1S = Pl o 2 WPy o = s ([, )

1 1/q
/ (Flag f )udu' ( / udu)
Qla,b] Qla,c]

fu (€2[a, b))
”F[a,b]fHLq ,(a:€) (1 - mQIMMu (Q2]a, C]))

1
= N Flonf s, 0 (1=277) -

(a,c) Z HT‘[“’b]fHLZdH(ab HTf Tab]fHLq (

ac

- ||F[avb]f||LidM(a,c) o

v

(a c
The conclusion is that

HF[aab}fHLZdH(a c)

Toull > -
[ram| 112 (e

1/q
o o fv | 0 @) dp ()] oo
N ||f||L5dU(a,c)

2—1/q)

for any non-negative f with supp C [a, c] and by Theorem 2.3
[Tl = (1= 2747) A*[a,d]..
Selecting f supported in [c, b] similarly yields
Tl = (1 =277) Afe,8].
b) The lower bound in this case is obtained similarly using Theorems
Obviously, for any 0 < x < co we have
Ala,b] - 0if a,b — x; Afa,b] >0ifa <b.

Everywhere below we assume that 7" is a compact operator.

Lemma 4.1. Let 1 <p < qg < o0 and 0 < ¢ < maxVW. There exist points 0 =ty < t; < ...

tn+1 = 00 such that with the notation Ay = [tg,tgr1), k= 0,..., N one has

sup ¥ (t) = ¢, max A(Ay)=¢, A(Any_1) <eg, sup ¥ (¢) =

teNg k=1,..., -2 tEAN

<ty <

(4.3)
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Proof. Let ty = 0. Since V¥ is continuous and ¥ (¢) — 0 when ¢ — 0 or t — oo, we can define
t'=min{t >0: V() >¢c} and t’ =max{t >0: ¥ (¢) >¢c}. Then

max V¥ (t) = ¢, max VU (t) =&,

t<t! t>t!
d = / udp < oo, " :/ v Pdy < 0. (4.4)
Q[t’ ,00] Q")
and we put t; = t’. On the n-th step, if sup Alt,,t] < e, weset t,y =1t" t,ro = oco. If, on the
other hand, sup A [t,,t] > ¢, then we [ifl[?ttnil =min{t > t, : A[t,,t] > e} so that by continuity

tE[tn,t"]
A [t,, t,+1] = €. Thus, we have disjoint segments [t,,, t,+1] C [t, 00).
We want to show that this process stops in a finite number of steps. Suppose it does not and
tn — t <t”. Then A [t,,t,11] = ¢ for n =1,2,... Obviously,

L 1/q
A ftostos] < (@) ( / udu) |
Qltn,m(zn)]

L 1/q
Alttan] < (&) ( / udu) |
Q[r(xn),tnt1]

Hence,
el = Aty tni1]? < max {(c’)l/p/ , (c")l/p/}q/ udy for all n.
Q[tn7tn+l]
This contradicts the fact that in (4.4) ¢ < oc. O

With Q, = Q(Ag) put for k=1,...,. N —1

_ 1
T f (z) = dv. 1y () = | wdp, Tof = ——— | (Tf)udp,
wf () /Q(T(x))\sz(tk)f v, o (Q) /Qku w, Tif o (20) /ﬂk( fudp

Pof (2) = xou (@) {Tf (&) — [Tof (2) = Tef]} = o (2) { | v ka} S 4s)

(tr)

Pof =0, Puf () = xay (a) [ g

Qtn)

N
Each of P, is one-dimensional, so P = Z has rankP < N.

k=1
We use the approach developed in [5].

Theorem 4.2. Let 1 < p < q < oo and suppose the covering {S : k = 0,..., N} satisfies (4.3). Then

_(21/q _ 1) 1/¢—1/p
(21/a+1) e(N —2) <an-1(T), ans1 (T) < 8e. (4.6)

Proof. Upper bound. By Theorem

1/q 1/p 1/p
( |Tf|qud,u) < 4A0,1] ( |fI? vdu) <4 sup ¥ (t) ( |fI? ?)dl/) ,
Q() QO

Qo teAg
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1/q 1/p
(/ \Tf—PNf\‘Iudu) < AAfty tys] (/ !f|”vdV>
Qn Qn

1/p
< 4sup\I/(t)(/ |f\%dy) |
tEAN QN

By Theorem

1/q ~ 1/q
( / |Tf—Pkf|qudu) - ( / \ka—ka\qudu)
Q Qp

1/p
< 8A () ( \f|pvdy> , k=1,..,N—1.

Qp

Summing these bounds and remembering (4.3) we get

1/q 1/p
(/ Tf— Pf!qudu> < 8¢ (/ ]f]pvdu>
Q Q

which implies the upper bound in (4.6)).
Lower bound. By Theorem we can choose functions f; satisfying supp fi C  and

1/q 1/p
</ }kak—kak}qud,u) > (1—2‘1/‘1)A(Qk)< |f|pvdu) ck=1,.,N—1. (4.7)
Qk

Q

Let P : L, — de# be an arbitrary bounded linear operator, rankP < N — 1. Then because

of the linear independence of Pf,, k = 1,...,N — 1, there are constants «q,...,ay_1 such that

N-1 N-1
P (Z akfk> = 0. Denote f = Zakfk. For 7 (x) € Ay, k=1,..., N — 1, we have
k=1 k=1

Tf(v) :/ de+Oék/ frdv = B + Tk fr,
Q(tx) Q1 (2)\(tr)

where the value of the constant g = fdv does not matter, as we will see shortly. We need a
Q(tk)
well-known property that in L, spaces the average of a function is a good approximation to it in the

sense that
B 1/q 1/q
7% ¢ Q

Now using (4.8) and Theorem we can proceed with the following estimate:

1

q
Bk + Ty fro" udp > (5) / | T fie — T fie|* udp
Qp

(30— a0 o

Qp

v

q/p
| f” vdu) )

Qp
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Therefore, by (4.3)) and discrete Holder’s inequality

)5 IN-2 , ) a/p
) X ([ tarar)
B (21/q 1) c IN-2 ) a/p
e 2 ( o, |ou fi| UdV)
)
)

ol/e _ 1 a/p
=z ( (21/(1-1—1 6) (N —2) talv (/ ‘f‘pvdy) :

In the first line the term with &k = N — 1 was omitted because A (Ay_1) may be less than . The
last inequality proves the lower bound. O

(21/q —1
Lirs=piruin > (S

Remark 2. Obviously, when p = ¢, (4.6) gives a same-order two-sided bound for a-numbers. Besides,
the upper bound on a-numbers gives an upper bound for the Gelfand, Kolmogorov and entropy
numbers because the a-numbers are the largest among s-numbers of linear operators [23].

To consider the case 1 < ¢ < p < oo we assume that ||T']| < oo and therefore B < oo by Theorem

2.2 Denote
1/p ) 1/p
V@) = ([ wa) ([ i)
Qa,7(z)] Q7 (x),b]

1/p ) 1/p
P () = ( / udu) ( / v_p/”dV>
Q[r(x),b] Qla,7(z)]
1/r
®la,b] = [/[ }((I)Fa,c}X[a,c]+q)[c,b]X[c,b]) udu}
Qla,b

where ¢ = ¢ (a,b) is the constant defined in Theorem
Theorem 4.3. Suppose that 1 < g <p <oo, 1/r=1/q—1/p, T is bounded and 0 < ¢ < B. Then
an+1 (T) < 32Y4¢,

Proof. Upper bound. Let 0 < e < B. Select t/,t" to satisfy

1/r 1/r
</ @Tudu) =, (/ @Tudu) =e. (4.9)
Q') Q[t",00]

This implies, in particular, (4.4). Let {Ag : k= 1,..., N} be a uniform (and finite) partition of [t', "]
into segments Ay of length m. From the bound

N
Z ®(Ar)" <max sup (Pj, (z)+ Pa, () / udp
P ko r@en Q[ ]

we see that m can be chosen so that

N 1/r
(Z P (A,J) =¢. (4.10)
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With definitions (4.5) and putting € = Q (Ag) we have for each & by Theorem

1/q 1/p
</ Tf— Pkf|qudu) < oHVag (A) ( Vil vdu) .
Q

By Theorem (4.9) implies

1/q 1/p
([ iesvua) < ([ o)
Q(t) Q(t')
1/q 1/p
(/ ]Tf\qudu) < 2¥lag (/ \fI? vdu> :
Q[t",00] Q[t" ,00]

Qg

N
We use definitions of Fp,..., Py from Theorem Put P = ZPk. The last three estimates and
k=1
(4.10]) give
1/q 1/p
(/ ITf — Pf|qudu> < ott/ag (/ |fy%dy> :
Q Q
Since rankP < N this proves that ay,, (7) < 2414, O

Lower bound. TLet t',t" be chosen as in (4.9) and put ¢, = 0, t; = t’. On the n-th step, if
sup @ (t,,t) > e then we put t,,41 = min{t > ¢, : ®(t,,t) =¢}.If sup<I> (tn,t) < e we put t,1 = o0.

t>tn
This process stops in a finite number of steps. Suppose that it does not and that ¢,, —» t < co. From

(4.4) we conclude that
1/p ) /v
max {@fa 0 (T) s Play ()} (/ udu) (/ P /de/> =c
’ Q[t’ 0] Q)

fort < a<b<t.

IN

Hence, for each k, " = ® (Ay)" < (2¢)" / udju, Z/ udp = oo, which contradicts (4.4)).
Q(A)

Denoting N the total number of segments, for an albltrary bounded linear operator P : L?,  —

LI rankP < N — 1, instead of (4.7) we have

udp?

B 1/q 1/p
( |kak—kak{quM> ch( \f|pvdu>  k=1,.,N—1,
Q Qp

where ¢ is defined in Theorem 4.1 b). Repeating the argument based on (4.8]) we get

/ 1/p 21— 2r/p'q 1—92- 1/q N 2 qa/p
/ Tf—Pf|"udpy > a/r ( ><€ </ | fr|” Udu)
Q T \Ja,

)
2 (( ) or+r/v’ )Up q k=
)

/P 51— 2r/p'q —1/q q/p

q(p/r)'" 2 — 2

a T >€ | fIP vdv
(e )

where the last transition is by Jensen’s inequality with the exponent 0 < ¢/p < 1. Thus, ay_1 (T) > ce
with the partition we have defined here and the constant ¢ that depends only on p and ¢q. We have
proved the following statement.

v
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Theorem 4.4. Suppose that 1 < q < p < oo, T is bounded and 0 < ¢ < B. Then
q (pf/r)!" 2 e (1 —271e)

N /P
((r+3)2

an—1(T) >
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