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Abstract. In this paper we study the boundedness of the Hardy operator H, in
local and global Morrey-type spaces LMy (), G Mpg () respectively, characterized by
numerical parameters p, # and a functional parameter w. We reduce this problem to the
problem of a continuous embedding of one local Morrey-type space to another one. This
allows obtaining, for all admissible values of the numerical parameters «a, py, ps, 01, 05,
sufficient conditions on the functional parameters w; and w, ensuring the boundedness
of Hy, from LM, g, w, () t0 LMp,0, w,() and from G M, g, v, () t0 GMp,0, (). Moreover,
for a certain range of the numerical parameters and under certain a priori assumptions
on w; and ws these sufficient conditions coincide with the necessary ones.

1 Introduction

For z € R™ and r > 0, let B(z,r) denote the open ball centered at x of radius r and
| B(z,7)| denote its Lebesgue measure.

We consider, for —oo < o < oo, the Hardy operator H, = H, , defined for f &
Lloe(R™) by

Hof)(z) = ————= )dy, r e R". 1.1
(o)) = oo i /f y we (1)

This operator is to a certain extent related to the fractional maximal operator M,
defined for 0 < o < n for f € Li*(R") by

1

(Mof)(z) = f}ilg WBW/J) |f(y)|dy, r €R", (1.2)

and to the Riesz potential I,, defined for 0 < a < n for f € LY*(R") by

/|x— |na z e R"™.
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One can easily verify that

(Ma)@) = sup(Ha(If(+ 2. a € R, (1.3
and o
D) = s [ 10 ) d
’ B(w.2e])
< 2 (Mol Piag))0) S 2 (Mol )(2), 7 ER". (1.4

However the latter estimate is rather rough. It may easily happen that (M, f)(z) = 400
for all x € R™ whilst (H,(]f|)(z) < +oo for all z € R". (For example, this happens if
f(z) =0for |z] <1 and f(z) = |z|® for |z| > 1 where 3 > —a.) The reason for that
is that, for a fixed x € R™, the definition of (M, f)(x) takes into account the values of
f(y) for all y € R™ while the definition of (H,f)(x) takes into account the values of
f(y) only for y € B(0, |z]).

Recall also that, for 0 < a < n,

Mo f(z) < vi "' T(f)(x) | (1.5)

where v,, is the volume of the unit ball in R™.

We shall study the boundedness of the operator H, in the Morrey spaces Mlg\g,
where 0 < p,0 < o0, 0 <A < %, the spaces of all functions f € L;"C(R"), for which

1
00 6 0
”fHLp(B(z M\ dr
_ ) | 4r 1.
£y, = s | | ( . ") < (1.6)
0
if 8 < oo and T
Lyp(B(z,r))

1z, = sup sup — % < (L.7)

if = co. For § = oo, the spaces M), = M, were introduced in [17].
It will always be assumed that 0 < A < % if # < oo and that 0 < \ < % if = o0

Otherwise, the space M2 o 1s trivial, i. e. consists only of functions equivalent to 0 on
R™. Also,

My = My, = L,(R"), MpP:Moo_L (R™).

A
Compared with [17], we write * in the definition of M}, rather than 77 as in [17]
for # = oo, because with this notation the parameter \ is closely related to the order
of smoothness. (See [12, 3].)
We shall also consider the local variant of the spaces sz\e, namely the spaces LM 29,

where 0 < p,0 < 0o, A > 0, of all functions f € Lfvoc(R") for which

1
00 0 0
f M\ d
1 £llam, = /(””pr el (1.8)

rA r
0
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if 8 < oo and
1A e, B0 e

L (1.9)

TP
r>0
if 0 = oco. It will always be assumed that A > 0 if § < co and that A > 0 if § = oco.
Otherwise, the space LM;}G is trivial. Also LM} = L,(R").
We shall also call the spaces MI;\(, global Morrey spaces and denote them by GM I))‘g.
Note that

£ 1, = M llensy, = s G+ 2liary, -

Example 1. Let —oco < [ < oo and y,, denote the characteristic function of a set
Q C R Then [z|x,, , (¥) € LMy, (or GMyy) if and only if § > X — 2 if § < oo;
ﬁZA—%if@zooand)\>O;ﬁ>—%if@zoo,)\:()andp<oo;and620if
p=~6=o00and A =0.

Example 2. Let, for ¢ > 0, (7.f)(z) = f(ex). Then
A=z =2
||T€f||LM2‘9 =& ||f||LM;9 ’ ”TSf”GM;‘G =&’ ||f||GM;6 : (1.10)
In the terminology, used in particular in [2], p. 32, A —% is the differential dimension of
LM, and of GM),. Equality (1.10) also holds if the space LM, or GM), is replaced

by the homogeneous Nikols’ski-Besov space ng of functions with fractional order of
smoothness \ (see the definition, for example, in [2]), hence the differential dimensions

of the spaces LMy, GM,, and B}, coincide.

Also
Ha<7—€f) = g_aT€<Haf> s Ma<T€f) = 5_aTe<Maf> )
(1.11)
-[oz(TEf) - EiaTa(Iaf)a
hence the order of homogeneity of all three operators H,, M,, and I, is —a.
By (1.10) and (1.11)
HHa(Taf)HLMgg =M HHafHLM;@ )

(1.12)

A—T
1Ha(mPlllgars, = €7 " 1 Haf s, »

where the exponent of ¢ is the sum of the order of homogeneity of the operator H, and
of the differential dimension of the space LM ;,‘9 or GM ;,‘9. These equalities also hold if
H, is replaced by M, or I,.

In fact we shall consider more general spaces LM,y .y and G Mg .y, the local
and the global Morrey-type spaces, characterized by numerical parameters p, 6 and a
1
functional parameter w, defined in the next section. Note that if w(r) = =77, then
LM .1 =LM), and GM
r 0 P po

pb,

,T_A_% - GMI?\G'

For this reason we may say that LM?Q and GMI?@ are power type local Morrey spaces,
power type global Morrey spaces respectively, while LM,g ), GMpg.,(.) are general
local Morrey-type spaces, general global Morrey-type spaces respectively.
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In the case of local or global Morrey-type spaces we obtain sufficient conditions
on the functions w; and wy ensuring that H, : LMy 9, w () — LMpy0,0,) OF Hy -
GMy,0, 0.y = GMp,0,,,() (Theorem 3) and necessary conditions (Theorem 4), which,
for a certain range of the numerical parameters «, pq, po, 01, 6> and under additional a
priori assumptions on w; and wy, coincide (Theorem 5). (Note that in [4-9] necessary
and sufficient conditions on the functions w; and ws ensuring the boundedness of the
operators M, and I, were obtained, for a certain range of the numerical parameters,
only for the case of local Morrey-type spaces.)

Given 0; < 05 and a function ws satisfying certain regularity assumptions, we find,
for the operator H, with the target space LM)y,g, (., the maximal domain space in
the scale of spaces {LM,y, 9, w, ()} (Theorem 6). If the target space is the power type
local Morrey space LM ;2292, then, under the appropriate assumptions on the numerical
parameters, it appears that the maximal domain spaces in the scale of general Morrey-
type spaces {LM) g, v, ()} is the power type local Morrey space LM;:GI with A\; =

A2 +n(+ — L) — a (Corollary 4).

2 Definitions and basic properties of Morrey-type spaces

Definition 1. Let 0 < p,0 < oo and let w be a non-negative measurable function on
(0,00). We denote by LM,yg ..y and G Myg (), the local Morrey-type spaces, the global
Morrey-type spaces respectively, the spaces of all functions f € LLOC(R") with finite
quasi-norms

170ty = W et eer = [ 1 0|, (2.1)
1 nt iy = S0 17+ Miagy o, = 592 [|0l) Wl memn], o 22)
respectively.
Note that
||f||LMp6’T7 1 = ||f||LM;9 ) ||f||GMp6’FA7% = ||f||GM;6 = ||f||M;6

The boundedness of the maximal operator M, the fractional maximal operator M,,
the Riesz potential I, and the singular integral operator in Morrey or Morrey-type
spaces was studied in [1], [11], [16], [18], [12], [13], [11], [4-9]. In [4-9], for a certain
range of the numerical parameters «a, py, po, 01, 02, necessary and sufficient conditions on
the functions w; and wy were obtained ensuring the boundedness of the aforementioned
operators from LM, g, v, () t0 LM,0, w,(.)-

Definition 2. Let 0 < p, 0 < oo. We denote by €2y the set of all functions w which are
non-negative and measurable on (0,00), not equivalent to 0, and such that for some
t>0

[ ()l 1,00y < 00 (2:3)



51§) V.I. Burenkov, P. Jain, T.V. Tararykova,

Moreover, we denote by €1,, the set of all functions w which are non-negative and
measurable on (0, 00), not equivalent to 0, and such that for all ¢ > 0

[w@)r P 0 <000 w0 < 00 (2.4)

Lemma 1. Let 0 < p,0 < oo and let w be a non-negative measurable function on
(0, 00), which is not equivalent to 0.

Then the space LM, ,, is nontrivial if and only if w € Qy, and the space G My, s
notrivial if and only if w € Qypg.

Moreover, if w € Qg and 7 = inf{s > 0 : ||| 1,(s,00) < 00}, then the space LMpg .
contains all functions f € L,(R™) such that f = 0 on B(0,t) for somet > 7. If
w € g, then

Lp(Rn) N LOO(Rn) C GMpaw(.) .

Proof. Let w be a non-negative measurable function on (0, co) which is not equivalent
to 0.

1. In [5] it was proved that if w ¢ €y, then the spaces LM .y and GMpyg () are
trivial.

Tt was also proved there that if p < oo and |jw(r)r» | Ly(0,e) = oo for all £ > 0, then
the space G Mpg (. is trivial. This also holds for p = co. Indeed, assume that f is not
equivalent to 0 on R™. Then there exists y € R" such that A, = glirél+ | fll 2o (B(y,0)) > O-

(This follows because otherwise for all ¢ > 0 and for all x € R™ there exists 7., > 0
such that || f||z..(B(,r..)) < €. This implies that for all ¢ > 0

I fllLoo®r) = sup |l oo(B@ren)) < €,

zeR

hence || f{|z..(rn) = 0, which contradicts the assumption that f is not equivalent to 0.)
Therefore

[ flleM o ey = W Lo (B 1 260,00) = Ayllwl[ 20,000 = 00
We also note that if 0 < p < oo and ||w||,(,00) = 00 for some ¢ > 0, then the space
G Myo,u() is trivial. Indeed, if f is not equivalent to 0, then sup || f|z,(B@.) > 0, hence

rER™

I llen iy 2 89D [l ()| F Iy oeoc)

> Sélﬂgl 1 f 1| 2o (Bt 10 (T)] Lo(t00) = 00 -

Finally assume that Hw(r)'r’%HLg(o,T) = oo for some 7 > 0. Then there are two
possibilities: 1) [Jw(r)r» | o(0,6) = 00 for all ¢ > 0 or 2) there exists s € (0, 7) such that
l[w(r)re | Ly(0,5) < 00 which implies that ||w(r)r%||L9(s7T) = 00, hence

[l Lo(s.00) 2 WllLges,ry = 7 7 lwlr)re |l Lo m = o0

In both cases by the above the space GM,yg (. is trivial.
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2. Ifwe Qy, fe L,(R") and f =0 on B(0,t) for some ¢ > 7, then

) S My ey 0ty .00 < 00

1 0iag ey = [0 W],

If we Qy and f € L,(R") N Loo(R"), then !

s, = S0 [ 10 o,

< 95—+ ( sup
TER?

‘Lg(O,l)

’Lg(l,oo) )

15y oy [0y ) < 00

w(r) ||f||Lp(B(x,7"))

+ sup
z€R™

w(r) ||f||Lp(B(x,7"))

1 n
< 9(z=1+ (v,’{ ||f||Loo(R") ’w(r)TE

Lg(0,1)
U

In the sequel, keeping in mind Lemma 1, we always assume that w € €y for local
Morrey-type spaces LM, () and w € €,y for global Morrey-type spaces G Mpg ().

Remark 1. In [4-9] for the case of global Morrey-type spaces the class €2, 4, wider
than ,9, was considered. A function w belongs to this class if it is non-negative
and measurable on (0,00), not equivalent to 0, and there exist t;,t3 > 0 such that
Hw('r’)r"/pHLe(WI) < oo and [|w(r)| 1, t.0) < o0- However this does not increase gener-

ality because for w € €29 \ €9 the space G My (. is trivial.

Example 3. One can easily verify that rA e e Qy if and only if A > 0 for § < oo and
)\ZOforQ:oo;T*’\*% GngifandonlyifO<)\<%for0<ooand0§)\§%for
0 = oc.

For non-negative functions ¢, ¢ defined on (0, 00) we shall write ¢ < @ if there
exists ¢ > 0 such that ¢(t) < c(t) for all t € (0,00), and we shall write ¢ =< 1) if
¢ K Y and P K .

Lemma 2 ([6]). Let 0 < p,0 < 0o and wy,we € Qy. Then
1) LMppawn () C LMppuy(y <= ||w1||Lg(t,oo) < ||w2||L9(t,oo) g

2) LMo, () = LMppuy() <= ||w1||Lg(t,oo) = ||w2||L9(t,oo) :

! Here and in the sequel a, denotes the positive part of the real number a.
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3 Corollaries of weighted L, ,)-estimates

For a measurable set 2 C R™ and a function v non-negative and measurable on €2, let
Ly, u(y(22) be the space of all functions f measurable on € for which

HfHLp’u(,)(Q) = [lufllp, ) < oo

If 0 < p <60 <o0o, then
and if 0 < 6 < p < oo, then

105, e < Ui, (3:2)

where for all x € R”
These inequalities can be easily proved by applying the following inequality for

Lebesgue spaces with mixed quasinorms: for 0 < p < ¢ < oo and for a function
F measurable on R™"

G a ey < 1@ Dy,

In particular, for 0 < p < oo

A1 2

pp,w(-

e

PV()’
where for all x € R”
V(z)= HwHLP(\x\,oo) :
See, e.g., [6].
We shall use the following theorem stating necessary and sufficient conditions for
the validity of the inequality

I1Ha Sl <alflly

po,ug(:) T

(3.3)

prour(s)
where

w(z) =w(lz]),  u(z)=ua(|z]),
U1, Uy are functions non-negative and measurable on [0, 00) and ¢; > 0 is independent
of f.
Theorem 1 ([20], [21], [13]). Let 1 < p1,p2 < oo. Then inequality (3.3) holds if and
only if

I(ﬁl, ’ag) < 00,

where for? p; < po

(3.4)

~ ~ ~ a—n n=1 ~ — L71
16, ) = [ % ol 0],

n—1

2If p1 = 1, then the factor ||dy(r)~ 7 #

HLp’l ©0.0) should be replaced by 4y (t)~! and if py = oo,

should be replaced by us()t*™.

n—1

then the factor ||dz(r)7* " 72

HLP2 (t,00)



On boundedness of the Hardy operator in Morrey-type spaces 09

(p is the exponent conjugate to py), and for ps < py

~ o~ ~ afnJr"—*l
1) = [[[aa(r)r ™ 5, A, (3.5)
where? ,
n—/l p_/l p/l n—1
A(t) = ] ) % ) e
Lp/1 (0,¢)
and s is defined by
1 1 1
—=— =, (3.6)
s P2 N
Remark 2. Let for 1 < p; < py, < 0
J (T, 1) = Ht“—"%—@m(t)*l@(t)HLOO(OM) (3.4')
and for 1 < p, < p; < 0
o~ o~ o afn(ifi)/\ —1~ _1 /
J(ul,u2) = Ht p1 P2 ul(t) UQ(t)t s Ls(0,00) ° (35)
Assume that the functions u; and @y are non-increasing and that
a<£, if pp<oo and a<n if py=o00. (3.7)

V%!

Then for any v > 1

e (1 () Walvt)) < 1@ (1), 0(0) < s @(2),Ta(0),

where ¢, > 0 and ¢3 > 0 are independent of ©; and u,.
Indeed, if p; < po, then

I(uy(t), ua(t)) < [[ua(t)||7 72 |1, (tooyUr (t) T 7 ||Lp,1(o,t)||Loo(o,oo)

= aJ(u1(t), ua(t))
and

n—

~ ~ ~ — +L71 ~ — /1
L@ (6), @a(1) = [ [a7)7 7" 7 lay, aon [T 77 7 2, (20 s 000)

(TN ~
> bJ<u1 <—),u2(yt)> ,
v
where a,b > 0 are independent of Uy, u,. Also similar estimates hold if py < p;.
Hence the condition J(uy, Uz) < oo is sufficient for the validity of inequality (3.3).

’
P

P2 should be omitted.
Lp/1 (0,t)

n—1
7

31f py = 1, then the factor Hal(T)*lT 1




60 V.I. Burenkov, P. Jain, T.V. Tararykova,

Moreover, if there exist © > 1 and ¢4 > 0 such that
ur(t) < cqup(ut) or us < cqus(pt), te(0,00), (3.8)

then this condition is necessary and sufficient for the validity of inequality (3.3). This
follows since in both cases

(6 () ) = (). )

= Y (ur(t), uz(ut)) = 7 J (U (t), uz(t))
for some 71, 72,7 > 0 which are independent of %, and @y (y = min{v;, y2}c; ).
It is necessary and sufficient, in particular, if 7;(¢) < t% on (0, c0) where 8 > 0
and 1 is non-increasing on (0, 00), or Us(t) < t~% on (0,00) where 3 > 0 and 7 is
non-increasing on (0, 00). In the last case assumption (3.7) can be replaced by

a<ﬁl+ﬁ if pp<oo and a<n+pf if py=o00, (3.9)
Dy

n—1
because in (3.4) ||da(7) 7™ 72 ||, (00 < 00 if and only if this condition is satisfied.

Remark 3. It may happen that in conditions (3.4), (3.5) the first factor inside || -
| Lo (0,00)> || * |4 (0,00) T€SPECtiVely, is equal to 0 and the second one is equal to oo, or in
conditions (3.4), (3.5") 1x(t) = 0 and 4,(t)"! = co. In such cases it is assumed that
0-00=0.

Theorem 1, Remark 2, and inequalities (3.1) and (3.2) immediately imply the fol-
lowing result for the case of Morrey-type spaces.

Theorem 2. Let 1 < py,ps <00, 0 < by,0, <00, wy € Qy,, and wy € $y,.
1. If p1 > 01 and py < 05, then the condition

1(1101 112y, (00 12l 5,0 ) < 00 (3.10)

is sufficient for the boundedness of H, from LMy g, w, ) t0 LMp,0, w,(.)-

If p1 < 01 and ps > 05, then this conditions is necessary for the boundedness of H,
from LM, 6, w, () t0 LMp,0, ws(.)-

In particular, if 01 = p1 and O3 = pa, then this conditions is necessary and sufficient
for the boundedness of H,, from LM, to LM,

p1p1,w1(-) p2p2,wa(-)-

2. If p1 > 01, ps < 0y, and condition (3.7) is satisfied, then the condition

[y

_1
S’

1
(w11l 4, 00y 1021l 14, t0) £ 10,00 < 20 (3.11)

where s = oo if p1 < pe and s is defined by equality (3.6), is sufficient for the bounded-
ness of Hy from LM, 0, w, () 10 LMp,0, 0,
If p1 <01 and ps > 05, then for any p > 1 both conditions

(L1 ~1 -3
#7575 fuwnll s ey 02l ey £

(o) < O (3.12)
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and

i N

S

1
€ -1
p2) ||w1||L91(t,oo) ||w2||Lg2(Mt,OO) t Ls(0,00) <0 (313)

are necessary for the boundedness of Hy from LMy g, () 10 LMp,0, 1,
In particular, if 01 = py, 05 = pa, condition (3.7) is satisfied, and for some pu > 1
one of the conditions

lwrllz,, o) < Nlwnllzy, utoe) 00 w2, 00 < w2y, (uti00) (3.14)

is satisfied, then condition (3.11) is necessary and sufficient for the boundedness of H,
from LM, 51 w1 () 20 LMpyps (-

For example, if p; > 61, p < 05 and condition (3.10) is satisfied, then

[Hof |20ty pcy < IHaf |l

202, w9 PQ,HwQIILQQ(‘x‘,Oo)

< Cl||f||L < Cl||f||LMp101,wl(') .

PLH“’l”Lel(\x\,oo) —

Corollary 1. Let 1 < py,py < 00.
1. If Ay > 0 for p1 < 00 and Ay > 0 for p; = 00, wy € Q,,, and condition (3.7) is
satisfied, then the condition

e G2 gl eyt

La(0.00) < O (3.11")

is necessary and sufficient for the boundedness of H, from LM\ to LM,

p1p1 2p2,w2(") -
2. If wy € Qp,, A2 > 0 for ps < 00 and Ay > 0 for py = 0o, and condition (3.9) is
satisfied, then the condition
a-n(Lt-L _1
|t () ‘| Ls(0,00)

- _
2Hw1HL;(tm)t < 0 (3.11")

s necessary and sufficient for the boundedness of H, from LM () to LM

p1ip1, w1 pap2
3. Let a« € R, A\, > 0 for p, < oo and N\ > 0 for pp, = oo (k=1,2). Then H, is
bounded from LM to LM?>2 if and only if

pip1 p2p2

1 1
p1 <p2 and azx\z—/\1+n<———). (3.15)
pr P2

Statement 3 of the corollary follows by Statement 2, because for the space LM};\IIP1
forall t > 0

_1 1
WLy, (t,00) = |IT Ly, (b,00) = (A1P1) M1
[wilz,, [T (Aipr) it

if p1 < 0o and [lwi||z,, (tee) = ™™ if p1 = o0, and condition (3.15) implies condition
(3.9).
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4 Estimates over balls

In this section we first investigate assumptions on the parameters ensuring the validity
of the inequality

| Hof |, B0y < cs(M)fllL,, 3o (4.1)

for all » > 0 and for all f € L,, (B(0,r)), where c5(r) > 0 depends only on r, n, av, py, pa,
and the dependence on r of the sharp constant ¢(r) in this inequality. We start with
noting that inequality (4.1) holds for all » > 0 and for all f € L, (B(0,r)) if and only
if it holds for r =1 for all f € L,,(B(0,1)). Moreover,

1 1

ci(r) = cg(l)rafn(ﬁfﬁ) : (4.2)
This follows because by (1.11)

1Haf N2y 00 = 1T Halme P 00 = 7722 |1 Ha (1) 1y (50,0

and

|7 fllz,, oy =7 1 fllz,, (Bor) -

Lemma 3. Let 1 < p1,py < oo. Then inequality (4.1) holds for all r > 0 and for all
f € L, (B(0,r)) if and only if

1 1
aZn(———) if 1l<p <py<oocorp =1andp, =00 (4.3)

P1 P2

and . .
a>n<———) ifpr=1<py<ocorl<p,<p <. (4.4)

D1 P2

Proof. By the above it suffices to assume that r = 1. By Theorem 1 inequality (4.1)
holds if and only if K = 1(x,,,, X,,) < 00
1. First let p; < ps. If p; > 1 and py < 00, then

1

¢

my 1 AL N

K = sup (/T(a_g)m 1dT) " (/T"1d7'> P
o<t«1 9

t

IfaZp—?,then

2

1
1

_ 1 = n _ L 1
— D —_—
K <n *t sup (/T 1d7'> tri =n 1 osup |Int|k " < co.

0<t<1 0<t<1

If « < &, then
P2
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if and only if o > n(pil — p%) .
If py > 1 and py; = o0, then
1 n
K=mn * sup t" m < oo
0<t<1

if and only if o > pﬂl.
If pr =1 and py < 00, then

1

. Bl
K = sup </T(a_g)p2 1dT) " < o0

0<t<1
t

if and only if & > n(1 — p%) .
If py =1 and py; = o0, then

K= sup t“" <
0<t<1

if and only if &« > n .
2. Next let ps < py. If po > 1, then

t

; n 1 1
K= ([ Ny ([ ortar) e
0

t

Ls(0,1)

If « > &, then
)

1 | 1 n_ 1

< pn Pi -1 )” ] s — o P ] s )

K<n 1”(/7‘ dr) “tn Lo n i H|lnt|t b ey <
t
If o < 5, then
Py
-1 1 a—2 L a1
KI((E,—O&>Z92> P )(t( p2)p2—1)p2tp'1 : < o0
p2 Ls(071)

if and only if « >n(pi1 — p%)
If po =1 < p; < oo, then

1

K = H(/TaldT) £

t

Ly (0,1)

and by a similar argument it again follows that K < oo if and only if a > n(pil — 1) . O
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Lemma 4. Let 1 < p; < 00,0 < ps < o0 and o € R is such that condition (4.3) and
the condition

1 1
a>n(p__p_) ifpr=1<py<ocorl<ps<p <o0. (4-5)
1 2

are satisfied. Then there exists cg > 0 such that for all x € R™, for all r > 0, and for
all f € Ly, (B(0, [z + 7))
I Hof|l Ly (B < 672 (Jz] + 1) 770 || fllL,,, (B2 4r)) - (4.6)

Proof. 1. Assume first that |z| < 2r. If py > 1, then by Lemma 3

[ Hof 2, By < N Hok || L,y B0,z 4+r)

a—n 1
< ) (2] + )G | 1Ly ool

< g (1)3Pzrez (|| + ) P10 || |z, (B, a|+r)) -

If 0 < py < 1, then by Holder’s inequality and by the above with p, = 1

ny=—1
[ Haf Ly, (B < (ar™)?2 [ Hof || 2, (B@.r)
1

__1~>k n,.o- a—=1
<wp® ()3 e (x| + )" 2| fllL,, B4

where (1) is the value of ¢£(1) (which depends on n, a, py, p2) for p, = 1.
2. Next assume that || > 2r. Then for all y € B(x,r) Irl% < |x|—r <|y| < |z|+r
and by Holder’s inequality

1
Mo lpipiory = | =iy [ S
1B, [y[)["
B(0,lyl) Lpy (B(z,r))
a 1

150 Wl |

BOWDE Wl moin ],y

a_ 1 n

n p o——
< v, "M |y| P1 Ly (B(er) ||f||Lp1(B(O,\x\+r))

o 11 (2 —a),) a—"
< wog P3N ez +r)" e[|l (B0)al ) -

0

5 Necessary and sufficient conditions for general Morrey-type
spaces

Lemma 5. Let a € R, 1 < p; < 00,0 < pg, 01,05 < 0.
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If wy € Qq, and wo € Qy,, then the condition: for all t > 0

s (F)r™ 7 1y, (0e) < 00 (5.1)

is necessary for the boundedness of H, from LM, 6, w, () t0 LMp,0, w.(.)-
If wy € 0, and wy € §y,,0,, then this condition is also necessary for the bounded-
ness of Hy from GMp 6, w, () 10 GMp,g, s

Proof. Tt suffices to prove that if |wy(r)r" 7 | Lo, (t.00) = 00 for some t > 0, then there
exists a function f € GM,,g, w,() (hence f € LMy g, w,()) such that f & LM,,g, ()
(hence f & GM,p,0,.,())- In fact this is true for any non-negative function f €
G M0, () such that || f]|L, s,y > 0. Indeed, if |y| > §, then

-1 a—n
(Hof)(y) > vy ||f||L1(B(o,§)) :

Hence, if r > ¢, then

[ Hofll Ly B0 = 1Haf L, B0NBOL)

> k| B(0,7) \ B0, r/2)[7 = kot 7

where

1

o-1 n—a P2 =
k’lz’l}ﬁl max{1,2 }HfHLl(B(O,%))a ]{}2:1)52 (]_—2 )P2]{51 > 0.

Therefore

[ Hof 201,00, iy = N2 (M) [ Ha |2, (B0 L4, (1,00)

202, w9

a2
> kgllwa(r)r 72 ||L32(t7c>0) = 0.

O

Remark 4. For wy € (), condition (5.1) implies that ||w2|L,, (1,00) < 00 n0t only for
some ¢t > 0 (which is the meaning of the condition ws € €4,) but also for all ¢ > 0.

Corollary 2. Let a € R, 1 < p; < 00,0 < po, 01,605 < 00.
If Ao > 0 if O3 < 00, Ao > 0 if O = 0o and wy € Qy,, then the condition

a<)\2—|—ﬁ,if 0y < 0, ag)\2+ﬁ,if 0y = 00 (5.2)
P2 Do

is necessary for the boundedness of Hy from LM,y 6, w,() to LM

p202”
If0 < Ay < p% if 6y < 00,0 < Ay < p% if O = oo and wy € €y, , then this condition
is also necessary for the boundedness of H, from GM, g, w,(.) to GM;‘;G2.
it implies, in particular, that o < n if 63 < 0o and a < n if Oy = 00.)

(In this case
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Lemma 6. Let a € R;1 < p; < 00,0 < po, 61,02 <00, wy € 0, and wy € Qypyp,.
Then the condition

a< pﬁl (5.3)

is necessary for the boundedness of H, from G My g, () t0 GMp,0, ws(.)-
Moreover, if in addition |[wa(r)r?2 ||z, 0,00y = 00, then the condition

n
a < — 5.4
41 ( )

is necessary for the boundedness of Hy from GM,, 6, w, () t0 GMpyg,10(.)-

Proof. 1. If 1 < p; < oo and a > n, then H,f ¢ GMp,p, w,.) for any non-negative
function f € GM, 4, v, () Which is not equivalent to 0. Indeed, for all x € R",z # 0,
and for all y € R™ with |y| > |z|

1

(v ly|m)' ==
B,y

o1 a—n
f(z)dz zvi |2 fllLuso ) »

(Haf)(y) =

hence, since |B(z,r) \ B(0, |z|)| > 3|B(z,7)],

a-1 a—n L
[ Hof 1, Bar\BO,J2)) = V7 2" " fll o0, B2, ) \ B(O, |z])|?2

-L %71 é a—n s
> 2 P2y, 2“7 f LB,z T2 -

and
[ HaflleMy 0, 0 = sup w2 () Ha f| Ly (BB | Lo, (0,00)

_1 24 L . o—n n
>2 oy (g}ggolx\ HfHLl(B(o,|z|)>>HU&(T’)T” 124, 000) = 00
2. Assume that p; > 1 and pil < a < n. Consider the function
f5) = Xy, (), y ERT,
where max{—a, —n} < f < —--. Note that forallz € R" and r > 0

1 fsllL,, B < L, (B = kire,

1
where k; = vt , and

1£61 21 B < W91 E,, 0 B0,1)) = Rz < 00,

where kg > 0 depends only on n, p; and 3. Therefore

| fsllensy o = S Hlwr ()l oy, s llis, 0.0
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L1
< 2lo; b+ ( sup [wi ()| f5ll L, (B | o, 0.1)
+ 5 [ (1)l 50 10,0

1 n
< ol b+ (klﬂwl(r)r?’l 2o, 0.1) + szwl('f’)”Lel(l,oo)) < 0.

Since § > —n, for all y € R™ with |y| > 2

1
(Hofs)(y) = ———— / 1218 dz
(oalg

B(0,|ly[)\B(0,1)

= ng (8 +n) "y (ly 7 = 1) = kaly|**7,

where ks = nvé(ﬁ +n)7H(1 — 27+ because |y[PT — 1 > (1 — 276G+ |y |5+ for
lyl > 2.
If |z| > 2, then for all y € B(z,r) \ B(0,|z]) |y| > |z| > 2, hence

1 Hof8llan, 0, 000 2= sup, [wa ()| Haf 5l Ly, (BB Jal)) || Lo, (0.00)

1
Un \ p2 « o
> (‘) ks( sup || +5)||wz(r)“’2 120, (0.00) = 00
2 |z|>2

3. The second statement of the lemma will be proved later as a corollary of Theo-
rem 4. O

Lemma 7. Let 1 < p; <00, 0 < po, 01,0, < 00, wy €y, and wy € y,. Assume that
conditions (4.3) and (4.5) are satisfied.
If LM, 6, u, () s continuously embedded in LM, p, ..y, briefly

LMplel,wl(') — LMP192,U2(-) ) (55)
where
a-n(L-L
va(r) = wo(r)r* (7)) (5.6)

then the operator H, is bounded from LMy g, v,y t0 LMp,0, ws(.)-

Moreover, if the function wg(r)'r’% 1s almost increasing, then the operator H, is
bounded from LM,y 0, u, () t0 G Mp,o, () With wy € Cpy9,, hence also from G My, g, w, ()
to G Mp,0,,00()- (In the last case it is also assumed that wy € §p,0,.)

Proof. 1. Let ¢; > 0 be the norm of the embedding operator corresponding to the
embedding (5.5). Then by (4.6) with x =0

VHaf ity = ||220) 1Haf iy 0y

202,w3 (+) L, (0,00)

IA

Ce HW(T) ||f||Lp1(B(O,7")) ‘Lg (0,00)
2 bl

= Cp ||f||LMp192’U2(.) < CeCr ||f||LMP101,w1(') ’
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Hence H, is bounded from LMy g, w,(.) t0 LMp,6, w.(.)-
2. Next let the function wg(r)r% be almost increasing, i. e. there exists cs > 0
such that we(r)rr2 < cgwy(p)er2 for all 0 < r < p < co. Then by (4.6)

||H04f||G’Mp2g2’w2(.)
= sup ||ws(r) ||H

:BE]REL 2( )H OCf||Lp2(B($7r)) L02(0,oo)

n n

< cgsup |[wa(r)rez (|z| + )" e || f ‘

6xeRn 2(r)re= (| ) | HL“(B(OMHT)) L6y (0,00)

noogn
= Cg Sup ||wal0 — |Z|)(0— |x|)P20 P f
sup [[ws(o ~ lel) o ~ el 6" 1l o],
< cgeg sup ||wa(0)o Prore ||f||L,,1(B(o,g))
TER? Leg(\x\,oo)
= GCgCg ||f||LMp102,v2(-) < GoCrls ||f||LMP1917w1(') < CC7Cs ||f||GMp131’w1(') .
Hence H, is bounded from G M, g, w, () t0 GMp,0, w,(.)- =

Lemma 8 ([19]). Let 0 < 61,605 < 0o, uy € Qp,, and uy € Qy,. Then the inequality
[u2gll L, (0,000 < €0 1ua9ll L, (0,00) (5.7)

holds for some cog > 0 for all functions g non-negative and non-decreasing on (0,00) if
and only if

1. fOT’ ‘91 S 02
—1
2l 0 Tl 0 [,y <20 (5.8)
2. for 0y < 07 < 00
,zfl 0
2l (t.00) U]l L, e 00y ua (8) 7 o < o0, (5.9)
where o is defined by
1 1 (5.10)
o N 02 01 ' '

Theorem 3. Let 1 < p; < 00, 0 < po,01,0, < o0, and conditions (4.3), (4.5) be
satisfied.

1. Assume that wy € Qg,, we € y, and condition (5.1) is satisfied. Then for
0, < 6Oy the condition *

ifa = n(pi1 — piz), then it coincides with condition (3.11).

< 5.11
Lo (0,00) >0 ( )

el ool o




On boundedness of the Hardy operator in Morrey-type spaces 69

and for 0, < 01 < 0o the condition

01 0,

[ e e e (O

< 0, 5.12
L (0,00) oC ( )

where the function vy is defined by equality (5.6), are sufficient for the boundedness of
the operator H,, from LMy 6, w, () 10 LMp,0, ws(.)-

2. Assume that wy € Qp0,, Wo € Qyy0,, condition (5.1) is satisfied, the function
wg(r)'r’% is almost increasing, o < -+, and o < -+ if ng(r)'rﬁﬂLeQ(O,oo) = 00. Then
conditions (2.2) and (2.8) are sufficient for the boundedness of the operator H, also
from G My, 9w,y 10 GMpy9, (-

Proof. Follows by Lemmas 5 8. U

Remark 5. Condition (2.2) implies that for all € > 0 and for all v > 1

< 0. 5.13
Lo (0,00) o ( )

tava(r

)T_E HL@2 ('yt,oo) le szgll (t,oo)

Theorem 4. Let 1 < p; <00, 0 < pg, 0,0, < 00.

Then

1) For wy € Qy, and we € Qp, condition (5.13) fore =0 and for ally > 1 if p; =1,
and for all € > 0 and for all v > 1 if p1 > 1 is necessary for the boundedness of the
operator Hy, from LMy, g, w, () t0 LMy,0, wsy(.)-

2) For wy € Qp9, and wy € Q,,p, the condition: for ¢ = 0 and for all v > 1 if
p1 =1, and for all e > 0 and for all v > 1 if p; > 1
ta_ﬁng(r)rﬁ ) + £ || oo (r

—&
-
‘ ‘ L02 (Ov'yt ) L02 ('yt,oo)

tiﬁ le(T)T% HLQI (0,t) + le (T) HL91 (t,00)

<0 (5.14)
Lo (0,00)

is necessary for the boundedness of the operator Hy from G My 6, w, () t0 GMp,0, ()

Proof. 1. First let 1 < p; < oo. We note that due to monotonicity in ¢ it suffices
to prove the statements for sufficiently small ¢ > 0, say for 0 < € < z%. Consider the
1

family of functions

fre@) =yl " "X, W), yER,

Wheret>0and0<e<z%.ThenforalleR"andt>O
1

& |
el oo = 7577, o

Hence
”ft76|’Lpl(B(07r)) =0 ifr <t, (5.15)

= Clot_5 y (516)

< lly|"71 ¢
[ [ Lo CBO)
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1
where ¢ip = (%) r1, and

_n_.

1 eclls, ey <5, (s = ent 5151, (5.17)

a
where ¢y; = vt

Also
(Haft,s) (y> =0 if ‘y‘ <t,

(Hafie) (9) = calyl™™ (%"= 657) iyl > ¢,

where ¢jo = n(% — 5)7111,?. Note that, if v > 1, » > ~t, and “/2—”;1 r < l|y| <r, then

—n I T\ € a—
(Hafue) () = cnlyl (P77 = ()71 ) = ewr™ 575,

1\ (n—a) 1\ & —¢ 1\ Z—¢
0132012<7+ ) +(<—V+ )pl —(—)Pl >>0.
2y 2y gl

Therefore, if v > 1 and r > ~t, then

where

1Hateelln,, o, = 1HaftellL,, oo,z

a——¢
ro Pl

> 01474""”(%*%)’5, (5.18)

> C13

Ly (BO\(BO, 5L 7)

L 1
where ¢4 = ¢13052 (1 - (72_421)11) P2 > ().
Also, if v > 1,z € R",|z| = 29t and r < ~t, then for all y € B(z,r) we have
vt < |y| < 3yt and

(Haft,€> (y) Z Cl5ta_a_6 )
where ¢15 = coy* "3((=)+) (,YE_S — 1) > (, hence

||Haft,6||Lp2(B(z7r)) > et 1 Trie (5.19)

1
where ¢ = c150n2.
If the operator Hy : LMy 9, w, () — LMp,0,u,() is bounded, i.e. for some c¢;7 > 0

< car
02(0,00)

Hw2("’) HHaf”L,,Q(B(o,r)) I ’wl('r) HfHLp1 (B(0,r))

Lo, (0,00
for all f € LM,,9, w,(), then by taking here f = f;. and applying (5.18), (5.15) and
(5.16) we get that for all t > 0

Wo (r)rain(ﬁfé) €

(5.20)

< circiot” |Jwq (r)

Loy (yt,00)

C14

||L01(t,oo) Y
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hence the first statement follows.
If the operator H, : GM,, 9, w,(.) — G Mp,0,,u,() is bounded, i.e. for some cig > 0

. 2( ) H [fHLPQ( ( )) 92(07 )
< C 8 u w r 61 oo

for all f € LM,y 4, w,(), then

lwo) 1 ||+ [ 1Ha Sl a0

Loy (0,4t) Foatoe)
< sup wa(r) [ Haofll 1, Bz Loy(oan
+$S£REL wo(T) ||Haf||Lp2(B(a:7r)) Loy (41,00)
< 25;1]15 wa(r) [ Haf 1, (B2 Loy (0.00)
< Clg< S | (r) [l sy Lo, o0,
+5§u§% wi(r) [1f1 L, (o) L91<t,oo>) ’

where 19 = ¢152((717)9)*1 By taking heref = ft- and applying (5.19), (5.18), (5.17)
and (5.16) we get that for all ¢ > 0

n

a—2 —¢ e _e
cigt ™ Hw )7 P2 H C Hv r)r H
16 2(r) Loy (0t) €14 2(r) Lo, (t,00)

< ¢y (cnt‘ﬁ—anl(r)rﬁ HLel 0n T ClOtiEleHLel(LOO)) : (5.21)

hence the second statement follows.
2. Let py =1 and v > 1. Consider the family of functions

gt,’y@) = X B0,y \B(0,t) ? t>0,

where v =
Then for all x € R and ¢t > 0

y+1
5 -

”gt,’Y”Ll(B(x,r)) = H1”L1(B(x,r)ﬂ(B(O,ﬂﬂt)\B(O,t))) :
Hence
196l By =0 ifr <t, (5.22)
19040 L, By < MLy BOAMNBOY) = C20t™ 5 (5.23)

where co0 = v, (7] — 1), and

||gt7'7||L1(B(1‘7r)) < ||1||L1((B(a;,r)) =t (5.24)
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where ¢y = v,,.

Also
(Hagin) (y) =0 if |y| < ¢,
(Hagt) (y) = caaly|*"t"

where ¢y = i (v —1).
Note that, if » > ~¢ and “/2—”;1 r < ly| <r, then |y| > yr and

1Hageallz,, 0 = Hage L, somnmo,520)

> ngtnTain(lié) (525)

L 1
where Co3 = 6227((n_a)+)1)£2 (1 — (72—?)”) P2 > (),
Also, if z € R", |z| = 2yt and r < ~t, then for all y € B(z,r) we have vt < |y| < 3+t

and

(Hagt,v) (y) Z 024ta 5

where coy = 02270‘_"3("_0‘”, hence

||Hagt,v||LP2(B(z7r)) > costr P2, (5.26)

1

where co5 = coqgvpn? .

If the operator Hy : LM, 6, w,() — LMy,0,.w,() is bounded, then similarly to how
inequality (5.20) was obtained, by taking f = ¢, and applying (5.25), (5.22) and
(5.23) we get that for all t > 0

< circaot™ ||wi(r)

Cozt" ng(r)ran(lé)
Loy (t,00)

||L01(t,oo) ?

hence the first statement with ¢ = 0 follows.

If the operator Hy : GMy 6, w,() — GMp,0,,w.() is bounded, then similarly to how
inequality (5.21) was obtained, by taking f = g¢;, and applying (5.26), (5.25), (5.24)
and (5.23) we get that for all ¢ > 0

c25ta Hw2 (T)T% HL92 (0,4t) + C23tn H’U2 (T) HL32 (yt,00)

< cy9 <C22 le <T>Tn“L91 (0,t) + c20thw1 HLgl (t,oo)) )

hence the second statement with € = 0 follows. O

Second proof of Lemma 6 (including the proof of the second statement of the lemma).
Ifa> %, ora =" and [[wa(r)re |1, 0.0 = o0, then the numerator of the fraction in
(5.14) tends to infinity as t — oo whilst the denominator is bounded because for ¢t > 1

tiﬁ le (T)Tﬁ HLgl (0,t) + le (T) HL91 (t,00)

1 n
< 2(91 R (le('r’)rpl HL@1 (0,1) + le(T)HLgl(l,oo)) + le(T)HLQI(l,oo) :

Hence v < %, and a < 22 if [Jwa(r)rrz |1, (0,00) = 0. O
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Theorem 5. Let 1 < p; < 00, 0 < py < 00,0 < 0 <0y < o0, and conditions (4.3),
(4.5) be satisfied.

1. Assume that wy € Qq,, wy € Qy, and condition (5.1) is satisfied. If for p; =1
for some v > 1 and cog > 0 for all t > 0

[02(r) [ 2y y0.00y = C26]02(7) || 24, (1,00) - (5.27)

or for p1 > 1 for some e > 0,7 > 1 and coy > 0 for allt >0

)02 ()™ N g,y 2 Corllvalr)ll g, r.00) (5.28)

where the function vy is defined by equality (5.6), then condition (2.2) is necessary and
sufficient for the boundedness of the operator H, from LM, ¢, w, () t0 LMp,0, 1(.)-

2. Assume that wy € Qp0,, Wo € Qyy0,, condition (5.1) is satisfied, the function
wg(r)'r’% is almost increasing, o < 2=, and a < 2+ if ng(r)'rﬁﬂLeQ(Om) =oc0. If, in
addition to (5.27) and (5.28), for some cog > 0 for all t > 0

trflwi(r)reflng, . < casllwa(r)llg, oo (5.29)

then condition (2. 2) is also necessary and sufficient for the boundedness of the operator
H,, from GMp, 6, w,() 10 GMpy,y0, 0y

Proof. The sufficiency follows by Theorem 3, the necessity follows by Theorem 4, (5.13),
(5.27), (5.28), and (5.29). O

Corollary 3. Let 1 < p; < 00,0 <py < 00,0 <0, <0y < o0, and conditions (4.3),
(4.5) be satisfied.

1. Assume that wy € Qg,, Ao > 0 and o < )\2+ﬁ if 0y < 00, Ag > 0 and o < )\2+p—’§

2 2

if 0 = oco. Then the operator H, is bounded from LM, ¢, u, () to LM?2 if and only if
5

p202

a-n(L-L)- _
t (m p2> >\2”w1HL011(t700)HL 00 < 0. (530)

2. Assume that wy € 9, condition (5.29) holds, 0 < Ay < ——@ and o < Ap+ 25

if 0 < 00,0 < Ay < p% and o < Ay + L if Oy = 0o. Then the operator H, is bounded
from GM, 6, w, () to GM)‘Q also if cmd only if condition (5.30) is satisfied.

Proof. Immediately follows by Theorem 5 if to take into account that the function

n

RS gk . . .
wy(r)rez = rr2” 7?7 % i non-decreasing since it is assumed that o= Ao — é >0. O

Theorem 6. Let 1 < p; < 00, 0 < pp < 00,0 < 01 < 0y < 00, wy € $Qy,, and
conditions (4.3), (4.5), (5.1) be satisfied.
Assume that condition (5.27) is satisfied if p1 = 1 and condition (5.28) is satisfied
if pr > 1 and let for allt >0
020y 00) < 0 (531)

® For 01 = p; this condition coincides with condition (3.11").
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where the function vy is defined by equality (5.6). Moreover, if 63 = co and 6; < oo it
15 also assumed that

tlilg ||02||Loo(t,oo) = 0 . (532)

Then
1) Hy, is bounded from LMy, g, wr(y 1o LMy, wy(), where wi is a non-negative mea-
surable function on (0,00) defined by

Wiz, (t,00) = lv2llLg, (t,00) » ¢ € (0,00). (5.33)
2) If wy € Qg, and H, is bounded from LMy, g, w,() to LMy,0, 1., then
LMp19171U1(~) - LMp191,wI(~) . (5.34)

Thus the space LMy, 0, wi(.) 15 the mazimal domain space for the operator H,, with the
target space LM, 0, w,() in the scale of spaces { LM,,9, w, (), w1 € Qg, }, i-e. the mazimal
among spaces LM, ¢, () for which H, is bounded from LM, g, w, () t0 LMp,0, w,(.)-

Remark 6. If 0 < 0; < 0y < oo, then equality (5.33) defines the function wj] uniquely
up to equivalence:

92

wi={ = [( [0 dr)gé]'};l = () el oy ) 635)

for almost all ¢ € (0,00). In particular, if 0 < 6, = 0y < oo, then wj(t) = vy(t) for
almost all ¢ € (0, 00).

If 0 < 6; < 0y = 00, then equality (5.33) also defines the function w; uniquely up
to equivalence:

1 1

% / ] 1 1—+ 1
wi(t) = { = el P ]} = 0% oally Gy [l 1% (5:36)

for almost all ¢ € (0, 00).

If 0 < 6 = 0, = oo, then equality (5.33) does not define the function w] uniquely.
However, this is not important because for different functions wi satisfying (5.33) by
Lemma 2 the spaces LMy, ¢, .+ () are the same. Under the additional assumptions that
the function w7 is non-increasing and continuous on the right, equality (5.33) implies
that

wi(t) = [[vall e (t,00) (5.37)
for all ¢t € (0,00). ¢

6 Indeed, if functions ¢ and ¢ are non-increasing on (0,00) and ¥(t) = esssup,,p(7) for all
t > 0, then ¥(t) = lim+ o(t) = ¢(t"). (This follows since ¥(t) < sup,.,o(7) and ¥(t) =
T—t

SUDg~1€8SSUP; - ¢ P(T) > supgs,p(§) , hence (1) = esssup,.,p(7) = sup,,(7).) Therefore, if ¢
is continuous on the right at the point ¢ > 0, then ¢(¢) = (t) = ¥(1).
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Proof. 1) Statement 1 of the theorem follows by Theorem 5.
2) Let wy € Qp, and let H, be bounded from LM g, w () t0 LMy, wy)- By
Theorem 5 and equality (5.33) there exists cgg > 0 such that for all £ > 0

HwTHLel(t,oo) = HU2HL92(0,oo) < 029le|’Lel(t,oo)-
Therefore, by the first statement of Lemma 2 inclusion (5.34) follows. O

Remark 7. Let us compare the necessary and sufficient conditions ensuring the bound-
edness of the operators H,, M,, and I, in general local Morrey-type spaces.
This can be done if
1 1
1<pr<py<oo, 0<6b <60y <o0, a:n<———),
p1 D2
wy € Qp,, wy € Qp, and conditions (5.1), (5.28) are satisfied, when the necessary and
sufficient conditions for all three operators H,, M,, and I, are known.
Under these assumptions by Theorem 5 H, 1 _ .1 is bounded from LM, g, u, () t0

P1 P2

LM,,,0,,.w, if and only if
-1
s 102,10 41, 1 ) < 50

by [6], [4] M, _ 1 is bounded from LM, g, w,() t0 LMp,p, w,() if and only if

Sup (772 [wa(r)r72 [l g, (too) + 1w2llzo, ko)) Wil 7, o0y < 00

and by [7], [5] this condition is also necessary and sufficient for the boundedness of
[n(ﬁfi) from LMpu‘)l,wl(-) to LMPQQQ,W(.).

P2
Moreover, if

1
p=1 0<py<oo, 0<6b <6 <00, n(l——) <a<n,
D2/ +

wy € Qp,, wo € Qy, and conditions (5.1), (5.27) are satisfied, then by Theorem 5 H, is
bounded from LMp, () t0 LMp,0, 1w, if and only if

n(1—L _
a—n( p2)HL92(t,OO)”leLgll(tpo) < 00

sup ||ws(r)r
and by [4] M, is bounded from LMg, w,() to LM,,0, () if and only if
a1 (7 (5 0 + o) Bl oy < 000 (6539)

If 0 < #; < 1, then condition (5.38) is also necessary and sufficient for the bounded-
ness of I, from LMig, () t0 LMp,0, w,()- If 01 > 1, then I, is bounded from LM, ., (.
to LM, 0, if and only if apart from condition (5.38) also

n wh ()T
sup [|wa(r)rez || Lo, 0. || =5 < 0.
t>0 le”L91 (r,00) Lgi (t,00)

(See [5].)

Clearly the conditions for the boundedness of H, are in general weaker than for
M, and the conditions for the boundedness of M, are in general weaker than for I,
which conforms with inequalities (1.4) and (1.5), though sometimes they coincide.
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6 The case of Morrey spaces

Theorem 7. Let 1 < p; < 00,0 < py <00, 0< b <Oy <oo. Assume that conditions
(4.3) and (4.5) are satisfied.
1. Assume that \; > 0 if 6; < co; N\; > 0 if 0; = oo (i = 1,2). Then the operator

H,, is bounded from LM;);\;al to LM;;GQ if and only if
1 1
p1 P2

2. Assume that o < pﬂl; 0 < M < 1% if 01 < 00; 0 < A\ < p% if 61 = oo;

0< A < p% — é if O < 00; 0 < Ay < p% if 0 = oco. Then the operator H, is bounded
from GM;‘ll(,1 to GM;;GQ also if and only if condition (6.1) is satisfied.

Proof. Note that, for the spaces LM;fei and GM;fa,-a w;(r) = r 7% and by (6.1) for
alle >0,y>1,and t >0

—)\2—%—1—04—7L(L—L

][0 (1) 5|2y, (rt,00) = I P17 1y, (o)

1 1
S TIPS S
92+ (Pl

—Ao 1 )
= c3o |7 b2 ||L@2 (t,00) = €30 ||U2||L92(t,oo) )

where c3p > 0 is independent of t. Hence regularity conditions (5.27) and (5.28) are
satisfied. . ; )

Also the function wy(r)r#z = 772 7% is non-decreasing since it is assumed that
Lo\ — é > 0 and in the case of global Morrey spaces domination condition (5.29)
1s satisfied because for all £ > 0

_n n R R S S )
toflwn(r)reley, o0 = flr g, 0

N W
= 031||7« ) ||L91(t,oo) = 031||w1(7“)||L91(t,oo) )

where c3; > 0 is independent of ¢, since in this case 0 < A\; < pﬂl if 8, < oo and
Therefore the statements of the theorem follow by Corollary 3 because for w;(r) =

r~ 79 condition (5.30) is equivalent to condition (6.1).
U

Remark 8. Note that if equation (6.1) is satisfied, then conditions (4.3) and (4.5) are
equivalent to

M <X for 1<p<py<oo or py=1 and py = o0, (6.2)

and
M <X for pr=1<py<o0 or 0 <py <p <. (6.3)
Also it follows that

1 1 1 1
a<)\2+n<———> if 6, <o0, ag)\2+n<———) if 6, =00, (6.4)
P P2 P P2
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which is a stronger condition than the necessary condition (5.2) (since in Theorem 7
p1 > 1 and 6; < 0,).

In the case of global Morrey-type spaces the assumptions on A; and A\, imply some
further restrictions on the parameters:

1
M-t ca< N2 if 6 <oo

D2 p1 0o
or
h—Lca<® -t i g —co.
P2 Y41 0
If py < p1, it may happen that o < 0 for both local and global Morrey spaces (say,
if \; = ﬁ, Ay = %; in the case of global Morrey spaces it should also be assumed

that 6, > 2%) In the case of local Morrey spaces it may also happen that o > n (say,
A1 = n, Ay = 3n,p; = p2). In such cases the boundedness of the Hardy operator does
not follow by inequality (1.4) and the boundedness of the fractional maximal operator.
For example, if 1 < p < oo and A > 0, then by Theorem 7

. A Ao
Hy: LMY, — LM

for all 0 < a < oo, but by applying inequality (1.4) and the boundedness of the
fractional maximal operator M, this can be proved only for 0 < a < n.

Corollary 4. Let 1 < p; < 00,0 < py < 00,0 < ) <0y <oo. Assume that conditions
(4.3) and (4.5) are satisfied.

Assume that Ay > 0 if Oy < 00, Ay > 0 if 03 = 0o and that condition (6.4) is satisfied.
Then the mazximal domain space for the operator H, with the power type target space
LM;};GQ in the scale of the general local Morrey-type spaces {LMp 0, w, (), w1 € g, } is

A ; _ 1 1
the power type space LM, with Ay = Ay + n<p_1 — p_Q) _

Proof. Follows immediately by Theorem 6 and Remark 5. O

Remark 9. The necessity of condition (6.1) can be proved by using the ‘dilation’

argument. Indeed, let the operator H, be bounded from LM;‘llg1 to LM;;GQ, i.e., for
all f e MM

p101
||H04f||LM>‘2 < C32 ||f||LM)‘1 ) (65)
p202 p161

where ¢33 > 0 is independent of f. Since 7.f € LM;‘lle1 for all ¢ > 0, this inequality
also holds for 7. f for all e > 0 :

1HawDll g, < [Py,
By (1.10) and (1.12), it follows that
e T TN Ho fll e < s lIFpa
P22 P16

for all € > 0 which is only possible if equality (6.1) holds.
A similar argument works if the spaces LM ;1191 and LM ;2292 are replaced by the

spaces GM

ooy GM ;2292 respectively.
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Remark 10. Equality (6.1), rewritten in the form

)\2_2_(1:)\1_2,
D2 D1
has a simple meaning: the sums of the differential dimension of the space and of the
order of homogeneity of the operator in the left hand side and in the right hand side of
inequality (6.5) coincide. (In the right hand side the operator is the identity operator
whose order of homogeneity is equal to 0.)

Remark 11. In Theorem 7 it is assumed that #; < 65. It may happen that this
condition is necessary for the boundedness of H, from LM ;‘1191 to LM ;2292, at least, by
Corollary 1, this is so if #; = p; and 0y = ps.

Remark 12. Let 1 < p;, p» < oo. By Lemma 3 conditions (4.3) and (4.4) are necessary
and sufficient for the validity of inequality (4.1). However, it may happen that they are
not necessary for the boundedness of H, from L]W;‘ll@1 to LM;;GQ. (By Corollary 1, this
is so if 6; = p; and Oy = ps.) We note that the method developed in this paper does
not allow investigating the case in which conditions (4.3) and (4.4) are not satisfied,
because it is based on inequality (4.1), point-wise in r > 0, and a different approach in
this case will be required.
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