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Abstract. The aim of this manuscript is to explore the existence and uniqueness of solutions
for a class of nonlinear W-Caputo fractional pantograph differential equations subject to nonlocal
conditions. The proofs rely on key results in topological degree theory for condensing maps, coupled
with the method of measures of noncompactness and essential tools in W-fractional calculus. To
support the theoretical findings, a nontrivial example is presented as an application.
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1 Introduction

The fractional calculus which permits the integration and differentiation of functions with non-
integer orders, is one of the fastest-growing fields of mathematics due to the discovery that fractional
operators were utilized in mathematical modeling, see [10, 19, 20, 27, 29]. Fractional differential
equations, which can be used to model and describe non-homogeneous physical events, have recently
attracted a lot of attention, particularly initial and boundary value problems for nonlinear fractional
differential equations. Different researchers have found some interesting solutions to initial and
boundary value problems for fractional differential equations involving various fractional derivatives,
including their existence and uniqueness, such as Riemann-Liouville [23], Caputo [3], Hilfer [24],
Erdelyi-Kober [25] and Hadamard [2]. There is a certain type of kernel dependency included in all
those definitions. Therefore, a fractional derivative with respect to another function known as the
W-Caputo derivative was introduced in order to study fractional differential equations in a general
manner. For specific selections of ¥, we can obtain some well-known fractional derivatives, such
as the Caputo, Caputo-Hadamard, or Caputo-Erdelyi-Kober fractional derivatives, which depend
on a kernel. From the viewpoint of applications, this approach also seems appropriate. With
the help of a good selection of a "trial" function ¥, the W-Caputo fractional derivative allows
some measure of control over the modeling of the phenomenon under consideration. Almeida
et al. [5] investigated the existence and uniqueness results for nonlinear fractional differential
equations involving a W-Caputo-type fractional derivative by using fixed point theorems and
Picard iteration method. For more details, the reader can also consult [7, 16, 17, 18 28] and
references therein. In particular, the pantograph equation was employed as a useful tool to shed
light on some of the modern problems originating from several scientific disciplines, including
electrodynamics, probability, quantum mechanics, and number theory. However, a substantial
investigation on the characteristics of this type of fractional differential equation, both analyti-
cal and numerical, has been done, and intriguing findings have been published in [1 6] 8 9, 13|, 14} 15].
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Inspired by the above recent results, in this paper, we investigate the existence and uniqueness of
solutions to the following nonlinear fractional pantograph differential equation with W-Caputo type
fractional derivatives of order 8 € (1,2):

DI u(t) = h(t, ult),u(st),  teJ=]0,T]

(1.1)
w'(0) =0, u(0)+w(u)=u,

where CDg’f’ is the W—Caputo fractional derivative of w of order 5, ¢ € (0,1), T" > 0,
heC(JxRxR/R), up € Rand w: C(J) — Ris a nonlocal term satisfying some given conditions,
which will be stated in Section 3. For more details we refer the reader to [14] [15].

To the best of the authors’ knowledge, topological degree theory for condensing maps has not
been applied to nonlinear pantograph differential equations with W-Caputo fractional derivatives.

The structure of this paper is as follows. In Section 2, we give some basic definitions and pre-
liminary results that we will need to prove our main results. In Section 3, we prove the existence
of solutions for pantograph equation . After that, we give a concrete example to illustrate our
main results in Section 4 and the last Section 5 contains conclusions on the results obtained in the

paper.

2 Basic concepts

This section deals with some preliminaries and notations which are used throughout this paper. For
more details we refer the reader to [4].

Definition 1. [5] Let ¢ > 0, g € L'(J,R) and ¥ € C™(J,R) be such that W'(¢) > 0 for all t € J.
The U-Riemann-Liouville fractional integral of order ¢ of a function g is given by

19%g(t) = ﬁ / T (s) (B () — W(s))1 g(s)ds, (2.1)

where I'(.) is the Euler Gamma function.

Definition 2. [5] Let ¢ > 0, g € C"(J,R) and ¥ € C"(J,R) such that ¥'(¢) > 0 for all ¢ € J. The
V-Caputo fractional derivative of order ¢ of a function g is given by
“Dlg(t) =

; t /S . s n—q—1 {n}s <
F(n_q)/o W(s)(U(t) = W(s))"" gy (s)ds, (2.2)

where g;{l,n (s) = (W,l(s)%> g(s) and n = [q] +1 ([¢] denotes the integer part of the real number
q)-

Remark 1. In particular, if ¢ €]0, 1], then we have

CDu¥g(t) = ﬁ / ((t) — W(s)) g/ (s)ds.

and
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Proposition 2.1. [5] Let ¢ > 0, if g € C"Y(J,R), then we have

1) “DEITEY g(t) = g(1).

n—1 [k]
2) 1% CDa) = o)~ 3 20 wir) - wio)

3) Igf} 1s linear and bounded from C to C.

Proposition 2.2. [5| Let p>v >0 andt € J, then

R - ) = s - o,
2) DM (0) — W) = s (wle) - w0

3) DY (W(t) — 0(0)" =0, VkeN.

Definition 3. [II] Let X be a Banach space with the norm |.|| and Bx be the family of all
non-empty and bounded subsets of X. The Kuratowski measure of non-compactness is the mapping
p: Bx — [0,400] defined by: for any A € By

p(A) =inf{ r > 0: A admits a finite cover by sets of diameter < r}.

Proposition 2.3. [I1I]| The Kuratowski measure of noncompactness p satisfies the following asser-
tions: for any A, Ay, Ay € Bx

1. p(A) =0 if and only if A is relatively compact.
p(kA) = [k|p(A), keR.

p(Ar + Az) < p(A1) + p(Az).

If Ay C As then p(Ay) < p(As).

p(A1U Az) = max{p(A1), p(As)}.

p(A) = p(A) = p(convA) where A and convA denote the closure and the convex hull of A,
respectively.

S & e e

Definition 4. [IT] Let ¢ : Q@ € X — X be a continuous bounded map. We say that ¢ is p-Lipschitz
if there exists [ > 0 such that

p(p(A)) <lp(A), forevery A CQ.
Moreover, if [ < 1 then we say that ¢ is a strict p-contraction.
Definition 5. [I1] We say that a function w is p-condensing if

pw(A)) < p(A),
for every bounded subset A of 2 with p(A) > 0. In other words

pw(A)) = p(A) = p(A) = 0.



52 A. El Mfadel, S. Melliani

Definition 6. [11] We say that a function g : Q — X is Lipschitz if there exists { > 0 such that

I 9(w) = g(v) [<Ufw—wvl], forall uwve.

Moreover, if [ < 1 then we say that g is a strict contraction.

Lemma 2.1. [I1] If L, F : Q — X are p-Lipschitz mappings with the constants l; respectively lo,
then the mapping F' + L : Q — X s p-Lipschitz with the constant ly + [5.

Lemma 2.2. [11]| If g : Q — X is compact, then g is p-Lipschitz with constant ¢ = 0.

Lemma 2.3. [II]| If g : Q@ — X is Lipschitz with constant 1, then g is p—Lipschitz with the same
constant [.

Theorem 2.1. (See Isaia [22]). Let H : X — X be p-condensing and

E, ={r e X :2x=~Hxzx for some 0 <y <1}

If &, is a bounded set in X, then there exists v > 0 such that S, C B, = {x € X : ||z|| < r}, 7 >0,
and we have
deg(I — 0H,B,,0) =1, ¥o€]|0,1],

where deg(+, -, ) denotes the topological degree in the sense of Leray-Schauder.

As a consequence, the operator H has at least one fixed point and the set of all fixed points of H
lies in B, .

3 Main results

We start this section by introducing necessary notations and hypotheses on the functions w € C(R, R)
and h € C(J x R x R, R), entering equation ({1.1].
e We denote by C := C(J,R) the space of continuous real-valued functions defined on J provided
with the maximum norm
= t)l.
| l= max fu(t)

e We denote by B, the closed ball in C centred at 0 of radius n > 0.
(H:1) There exists a constant L, > 0 such that

lw(u) — w(v)| < Ly|lu— ||, for each u,v € C.

(Hy) There exist two constants K, M,, > 0 and ¢ € (0,1) such that

lw(u)| < Ky||ul|* + M, for each u € C.

(H3) There exist two constants Kp, M, > 0 and p € (0,1) such that

|h(t, u(t), u(et))| < Ky | u(t) |P +M,, for each u € C,e € (0,1).

Lemma 3.1. A function u € C is a solution of (L.1)) if and only if u satisfies the following fractional
integral equation
1

u(t) = ug — w(u) + m/o U (s)(W(t) — U(s)) " h(s, u(s),u(es))ds,t € J. (3.1)
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Proof. Let u be a solution to (1.1)), then by applying W-fractional integral Iéﬁ‘y to both sides of (1.1)
we obtain
15Y D u(t) = 15V h(t, u(t), u(et)),

and by employing Proposition [2.1] we get
u(t) = co + (W(t) — W(0))er + 107 h(t, u(t), ulet)),
where ¢y, c; € R, hence,

I (N hs. uls). wlesN ds
F(ﬂ)/o (V'()(() = U())" " Als, u(s), u(es))), ds.

Since u(0) + w(u) = ug and u/(0) = 0, then ¢y = up — w(u) and ¢; = 0. Hence, (3.1)) holds.

u'(t) = V(1) +

Conversely, by simple calculus, it is clear that if u satisfies (3.1]), then (1.1} holds. n

To prove that (3.1) has at least one solution u € C, we consider two operators B, A : C — C
defined by
Au(t) = ug — w(u(t)), teJ, (3.2)

and
Bu(t) = ﬁ /0 W(s)(U(E) — U(s))P (s, uls), ules))ds, t€J (3.3)

thus (3.1) can be formulated as follows
u(t) = Fu(t) == Au(t) + Bu(t), te.J (3.4)

Theorem 3.1. Assume that hypotheses (Hy) — (H3) are satisfied, then fractional pantograph differ-
ential equation (1.1) has at least one solution uw € C(J,R). Moreover, the set of all solutions to (1.1
is bounded in C(J,R) .

In order to prove the Theorem [B.I| we will need to show some lemmas and preliminary results
under the assumption that hypotheses (H;) — (Hj) are satisfied.

Lemma 3.2. The operator A is p-Lipschitz with the constant L,,. Moreover, A satisfies the following
mequality:

| Aul| < |uo| + K, ||ul|? + M, for every u € C. (3.5)
Proof. To prove that the operator A is Lipschitz with the constant L., we argue as follows.

Let u,v € C, then we have
[Au(t) — Av(t)] < |w(u) — w(v)],
by using hypothesis (H;) we get
[ Au(t) — Av(t)] < Lllu - o]

Taking supremum over ¢, we obtain

[ Au = Av|| < Lo |lu = o],
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hence, A is Lipschitz with the constant L,. By using Lemma it follows that A is p-Lipschitz
with the same constant L.

To prove (3.5)), let u € C, then we have
[Au(t)] = [ug — w(w)| < Juo| + [w(w)],
by using assumption (Hs) we get

[Aul] < Juo| + Ko flul|? + M.

m
Lemma 3.3. The operator B is continuous and the following inequality holds
1
Bu|| < —— (K, ||ul|P + M) (¥(T) — ¥(0))°, VueC. 3.6
I UII_F(5+1)( [ul[” + M) (¥(T) = ¥(0))", Vue (3.6)

Proof. To prove that the operator B is continuous, let a sequence {u, },eny C C converge to u in C, it
follows that there exists > 0 such that ||u,| < § and ||u|| <. Now let ¢ € J, then we have

1 ! / -1
|Bu,,(t) — Bu(t)| < m/o U (s)(W(t) — W(s))? (s, un(s), un(es)) — h(s,u(s), u(es))| ds.

Since h is continuous, we have

lim A(s, un(s), un(es)) = h(s,u(s),u(es)).

n—oo

On the other hand, by using (H3) we obtain

—(U'(s — ()P (s, un(s), un(es)) — h(s,u(s), ules P
F(B)(‘I’()(‘I’(t) ()" [[h(s, un(s), un(es)) — h(s, u(s), u(es))|| < (Kud” + M)

><L "(s —P(s))P !
W0~ ),

1
since s W(\D’(s)(\lf(t) — W(s))?~! is an integrable function on [0,], then Lebesgue dominated

convergence theorem implies that

m ﬁ / W U(E) — U(5)) (), une5)) — s, uls), ules))] ds = 0.
It follows that
nl:)rio | Bu,, — Bu ||=0,

hence, B is continuous .

To show (3.6}, let w € C, then we have

Lt’s — U(s))° 7 h(s, u(s), u(es))| ds
Bult)] < 755 | W) = W) Ih(s,u(s) u(es) s,
from (H3) we obtain

putn] < SITEEEED sy uge) - wiepy s
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Finally, we obtain

(Ko llull? + M) (¥(T) — ¥(0))”
r(B+1) '

I Bu ||<

Lemma 3.4. B:C — C is a compact operator.

Proof. In order to demonstrate the compactness of B we need to show that BB, is relatively compact
in C and we use the Arzela-Ascoli Theorem [2I]. Let u € B,, then from (3.6 we get

Kon? + M,,)(¥(T) — ¥(0))”
rpg+1)
So, it follows that BB, C B¢. Hence BB, is bounded.

| Bu <

=&

To prove that BB, is is uniformly equicontinuous, let u € BB, and t;,t, € J such that #; < 15,
then we have

Bu(ts) — Bu(ty)| < XLt ’ *M / (s)P s,
Bu(ts) — Bu(i)| < “L A *M / ()P s,
K.nP + M,
|Bu(ty) — Bu(t,)] < W(‘I’(tz) —W(ty))”,

K.n®+ M,
su su Bu(ty) — Bu(t))] < —_——* gy U(ty) — W(t)|?.
Sy swp|Bulty) —Bu(t)| < Syt sup [9() — W)

Since W is a continuous function on the closed interval J, then we obtain

lim sup sup |Bu(ty) — Bu(ts)| = 0.
60" ueBB, |t —t2|<6

which shows that BB, is uniformly equicontinuous.

Hence, BB, is uniformly bounded and is uniformly equicontinuous. Arzela-Ascoli Theorem [21]
permits us to conclude that BB, is relatively compact, thus B is compact. O

Corollary 3.1. B : C — C s p-Lipschitz with zero constant.

Proof. Since the operator B is compact and by Lemma [2.2] it follows that B is p-Lipschitz with zero
constant. 0

Now, we have all tools to establish the proof of Theorem
Proof of Theorem [3.11

Let A, B, F: C — C be the operators given by equations (3.2),(3.3) and (3.4]) respectively.

The operators A, B, F are continuous and bounded. Moreover, by using Lemma, we have that
A is p-Lipschitz with constant L, € [0,1) and by using Corollary we have that A is p-Lipschitz
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with zero constant. It follows from Lemma that F is a strict p-contraction with constant L.

We consider the following set
S, ={ueC:u=~Fu forsome 7€ |0,1]}.

Let us show that S, is bounded in C. For this purpose let u € S,, then v = vFu = v(Au + Bu). It
follows that
Jull = vl Full < (| Au]l + [[Bul),

by using Lemmas [3.2 and [3.3] we get
(Knlull” + M) (¥(T) — ¥(0))”
LB+1)

From inequality (3.7) we deduce that S, is bounded in C with p <1 and ¢ < 1.
If this is not the case, we suppose that £ := ||u|| — oo. Dividing both sides of (3.7) by &, and
taking & — oo, it follows that

[ull < Juol + Kollull” + M., + (3.7)

(Ko&” + M,)(¥(T) — 9(0))”
|uo| + K€+ M, +

which is a contradiction. By using Theorem we conclude that F has at least one fixed
point which is a solution of (1.1)) and the set of the fixed points of F is bounded in C.
O

Remark 2. Note that if assumptions (Hs) and (Hj3) are formulated for ¢ = 1 and p = 1, then the
conclusions of Theorem [3.1] remain valid provided that

4 An illustrative example

In this section, we give an example to illustrate the usefulness of our main result.
Consider the following problem:

3 _t

D2 u(t) = h(t,ult),ulet), teJ=10,1],

20 (4.1)

u'(0) =0, w(0)=> bilu(t;)l, 0;>0, 0<t;<1, j=12 .20,

j=1
_sin(u(%5)) (o)
where h(t, u(t), u(et)) = Ore)va (1+‘U<¢t§)‘> .

20 20
Here ¢ = \%, B=3T=1 U = ¢, and w(u) = 29j|u(tj)\ with Zl@j < 1. Clearly

=1 =

20
h e C(J xR xR,R) and (H;), (Hy) hold with K, = L, = >_6;, M, =0 and ¢ = 1. Indeed, we
i=j
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can write

20
ww)] <Y 65 lull,
j=1

20
thus, K, = >_0;, M,=0and q=1.
=1

J

Moreover, we have

Y

fwu(®) = w@®)] = | 3 fu(t)] = 3 8l

hence,

jwlu) —w(v)] < Z% lu =l

20
thus, in (Hs), L, = > 0;.
j=1

To prove (H3), let t € J and u € R, then we have

[At; u(t), u(et))] < ——=(Ju[ +1).

Thus, (Hj3) holds with K} = M), = and p = 1.

1
10v/2
Consequently, Theorem implies that problem (4.1) has at least one solution. Moreover, by
inequality (3.7) we have
(e —1)3/2)
~ (.19,
10v/21°(8/3) — 1

thus, the set of all solutions to (4.1) is bounded.

lull <

5 Conclusion

In this paper, we studied the existence of solutions to nonlinear pantograph differential equations
involving Caputo type fractional derivative with respect to another function ¥. The proofs of our
proposed model are based on the topological degree theory for condensing maps. We also provided
an example to make our results clear.
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