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Abstract. The aim of this manuscript is to explore the existence and uniqueness of solutions
for a class of nonlinear Ψ-Caputo fractional pantograph di�erential equations subject to nonlocal
conditions. The proofs rely on key results in topological degree theory for condensing maps, coupled
with the method of measures of noncompactness and essential tools in Ψ-fractional calculus. To
support the theoretical �ndings, a nontrivial example is presented as an application.
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1 Introduction

The fractional calculus which permits the integration and di�erentiation of functions with non-
integer orders, is one of the fastest-growing �elds of mathematics due to the discovery that fractional
operators were utilized in mathematical modeling, see [10, 19, 20, 27, 29]. Fractional di�erential
equations, which can be used to model and describe non-homogeneous physical events, have recently
attracted a lot of attention, particularly initial and boundary value problems for nonlinear fractional
di�erential equations. Di�erent researchers have found some interesting solutions to initial and
boundary value problems for fractional di�erential equations involving various fractional derivatives,
including their existence and uniqueness, such as Riemann-Liouville [23], Caputo [3], Hilfer [24],
Erdelyi-Kober [25] and Hadamard [2]. There is a certain type of kernel dependency included in all
those de�nitions. Therefore, a fractional derivative with respect to another function known as the
Ψ-Caputo derivative was introduced in order to study fractional di�erential equations in a general
manner. For speci�c selections of Ψ, we can obtain some well-known fractional derivatives, such
as the Caputo, Caputo-Hadamard, or Caputo-Erdelyi-Kober fractional derivatives, which depend
on a kernel. From the viewpoint of applications, this approach also seems appropriate. With
the help of a good selection of a "trial" function Ψ, the Ψ-Caputo fractional derivative allows
some measure of control over the modeling of the phenomenon under consideration. Almeida
et al. [5] investigated the existence and uniqueness results for nonlinear fractional di�erential
equations involving a Ψ-Caputo-type fractional derivative by using �xed point theorems and
Picard iteration method. For more details, the reader can also consult [7, 16, 17, 18, 28] and
references therein. In particular, the pantograph equation was employed as a useful tool to shed
light on some of the modern problems originating from several scienti�c disciplines, including
electrodynamics, probability, quantum mechanics, and number theory. However, a substantial
investigation on the characteristics of this type of fractional di�erential equation, both analyti-
cal and numerical, has been done, and intriguing �ndings have been published in [1, 6, 8, 9, 13, 14, 15].
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Inspired by the above recent results, in this paper, we investigate the existence and uniqueness of
solutions to the following nonlinear fractional pantograph di�erential equation with Ψ-Caputo type
fractional derivatives of order β ∈ (1, 2):

CDβ,Ψ
0+ u(t) = h(t, u(t), u(εt)), t ∈ J = [0, T ],

u′(0) = 0, u(0) + ω(u) = u0,
(1.1)

where CDβ,Ψ
0+ is the Ψ−Caputo fractional derivative of u of order β, ε ∈ (0, 1), T > 0,

h ∈ C(J ×R×R,R), u0 ∈ R and ω : C(J)→ R is a nonlocal term satisfying some given conditions,
which will be stated in Section 3. For more details we refer the reader to [14, 15].

To the best of the authors' knowledge, topological degree theory for condensing maps has not
been applied to nonlinear pantograph di�erential equations with Ψ-Caputo fractional derivatives.

The structure of this paper is as follows. In Section 2, we give some basic de�nitions and pre-
liminary results that we will need to prove our main results. In Section 3, we prove the existence
of solutions for pantograph equation (1.1). After that, we give a concrete example to illustrate our
main results in Section 4 and the last Section 5 contains conclusions on the results obtained in the
paper.

2 Basic concepts

This section deals with some preliminaries and notations which are used throughout this paper. For
more details we refer the reader to [4].

De�nition 1. [5] Let q > 0, g ∈ L1(J,R) and Ψ ∈ Cn(J,R) be such that Ψ′(t) > 0 for all t ∈ J .
The Ψ-Riemann-Liouville fractional integral of order q of a function g is given by

Iq,Ψ0+ g(t) =
1

Γ(q)

∫ t

0

Ψ′(s)(Ψ(t)−Ψ(s))q−1g(s)ds, (2.1)

where Γ(.) is the Euler Gamma function.

De�nition 2. [5] Let q > 0, g ∈ Cn−1(J,R) and Ψ ∈ Cn(J,R) such that Ψ′(t) > 0 for all t ∈ J . The
Ψ-Caputo fractional derivative of order q of a function g is given by

CDq,Ψ
0+ g(t) =

1

Γ(n− q)

∫ t

0

Ψ′(s)(Ψ(t)−Ψ(s))n−q−1g
{n}
Ψ (s)ds, (2.2)

where g
{n}
Ψ (s) =

(
1

Ψ′(s)
d
ds

)n
g(s) and n = [q] + 1 ([q] denotes the integer part of the real number

q).

Remark 1. In particular, if q ∈]0, 1[, then we have

CDq,Ψ
0+ g(t) =

1

Γ(q)

∫ t

0

(Ψ(t)−Ψ(s))q−1g′(s)ds,

and
CDq,Ψ

0+ g(t) = I1−q,Ψ
0+

(
g′(t)

Ψ′(t)

)
.
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Proposition 2.1. [5] Let q > 0, if g ∈ Cn−1(J,R), then we have

1) CDq,Ψ
0+ I

q,Ψ
0+ g(t) = g(t).

2) Iq,Ψ0+
CDq,Ψ

0+ g(t) = g(t)−
n−1∑
k=0

g
[k]
Ψ (0)

k!
(Ψ(t)−Ψ(0))k.

3) Iq,Ψ0+ is linear and bounded from C to C.

Proposition 2.2. [5] Let µ > ν > 0 and t ∈ J , then

1) Iµ,Ψ0+ (Ψ(t)−Ψ(0))ν−1 =
Γ(ν)

Γ(µ+ ν)
(Ψ(t)−Ψ(0))µ+ν−1.

2) Dµ,Ψ
0+ (Ψ(t)−Ψ(0))ν−1 =

Γ(ν)

Γ(ν − µ)
(Ψ(t)−Ψ(0))ν−µ−1.

3) Dµ,Ψ
0+ (Ψ(t)−Ψ(0))k = 0, ∀k ∈ N.

De�nition 3. [11] Let X be a Banach space with the norm ‖.‖ and BX be the family of all
non-empty and bounded subsets of X. The Kuratowski measure of non-compactness is the mapping
ρ : BX → [0,+∞[ de�ned by: for any A ∈ BX

ρ(A) = inf{ r > 0: A admits a �nite cover by sets of diameter ≤ r}.

Proposition 2.3. [11] The Kuratowski measure of noncompactness ρ satis�es the following asser-
tions: for any A,A1, A2 ∈ BX

1. ρ(A) = 0 if and only if A is relatively compact.

2. ρ(kA) = |k|ρ(A), k ∈ R .

3. ρ(A1 + A2) ≤ ρ(A1) + ρ(A2).

4. If A1 ⊂ A2 then ρ(A1) ≤ ρ(A2).

5. ρ(A1 ∪ A2) = max{ρ(A1), ρ(A2)}.

6. ρ(A) = ρ(A) = ρ(convA) where A and convA denote the closure and the convex hull of A,
respectively.

De�nition 4. [11] Let ϕ : Ω ⊂ X → X be a continuous bounded map. We say that ϕ is ρ-Lipschitz
if there exists l ≥ 0 such that

ρ(ϕ(A)) ≤ lρ(A), for every A ⊂ Ω.

Moreover, if l < 1 then we say that ϕ is a strict ρ-contraction.

De�nition 5. [11] We say that a function ω is ρ-condensing if

ρ(ω(A)) < ρ(A),

for every bounded subset A of Ω with ρ(A) > 0. In other words

ρ(ω(A)) ≥ ρ(A)⇒ ρ(A) = 0.
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De�nition 6. [11] We say that a function g : Ω→ X is Lipschitz if there exists l > 0 such that

‖ g(u)− g(v) ‖≤ l ‖ u− v ‖, for all u, v ∈ Ω.

Moreover, if l < 1 then we say that g is a strict contraction.

Lemma 2.1. [11] If L, F : Ω → X are ρ-Lipschitz mappings with the constants l1 respectively l2,
then the mapping F + L : Ω→ X is ρ-Lipschitz with the constant l1 + l2.

Lemma 2.2. [11] If g : Ω→ X is compact, then g is ρ-Lipschitz with constant c = 0.

Lemma 2.3. [11] If g : Ω → X is Lipschitz with constant l, then g is ρ−Lipschitz with the same
constant l.

Theorem 2.1. (See Isaia [22]). Let H : X → X be ρ-condensing and

Eγ = {x ∈ X : x = γHx for some 0 ≤ γ ≤ 1}.
If Eγ is a bounded set in X, then there exists r > 0 such that Sγ ⊂ Br = {x ∈ X : ||x|| ≤ r}, r > 0,

and we have
deg(I − δH, Br, 0) = 1, ∀δ ∈ [0, 1],

where deg(·, ·, ·) denotes the topological degree in the sense of Leray-Schauder.

As a consequence, the operator H has at least one �xed point and the set of all �xed points of H
lies in Br .

3 Main results

We start this section by introducing necessary notations and hypotheses on the functions ω ∈ C(R,R)
and h ∈ C(J × R× R,R), entering equation (1.1).
• We denote by C := C(J,R) the space of continuous real-valued functions de�ned on J provided
with the maximum norm

‖ u ‖= max
t∈J
|u(t)|.

• We denote by Bη the closed ball in C centred at 0 of radius η > 0.

(H1) There exists a constant Lω > 0 such that

|ω(u)− ω(v)| ≤ Lω‖u− v‖, for each u, v ∈ C.

(H2) There exist two constants Kω,Mω > 0 and q ∈ (0, 1) such that

|ω(u)| ≤ Kω‖u‖q +Mω for each u ∈ C.

(H3) There exist two constants Kh,Mh > 0 and p ∈ (0, 1) such that

|h(t, u(t), u(εt))| ≤ Kh | u(t) |p +Mh for each u ∈ C, ε ∈ (0, 1).

Lemma 3.1. A function u ∈ C is a solution of (1.1) if and only if u satis�es the following fractional
integral equation

u(t) = u0 − ω(u) +
1

Γ(β)

∫ t

0

Ψ′(s)(Ψ(t)−Ψ(s))β−1h(s, u(s), u(εs))ds, t ∈ J. (3.1)
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Proof. Let u be a solution to (1.1), then by applying Ψ-fractional integral Iβ,Ψ0+ to both sides of (1.1)
we obtain

Iβ,Ψ0+
CDβ,Ψ

0+ u(t) = Iβ,Ψ0+ h(t, u(t), u(εt)),

and by employing Proposition 2.1 we get

u(t) = c0 + (Ψ(t)−Ψ(0))c1 + Iβ,Ψ0+ h(t, u(t), u(εt)),

where c0, c1 ∈ R, hence,

u′(t) = c1Ψ′(t) +
1

Γ(β)

∫ t

0

(
Ψ′(s)(Ψ(t)−Ψ(s))β−1h(s, u(s), u(εs))

)′
t
ds.

Since u(0) + ω(u) = u0 and u
′(0) = 0, then c0 = u0 − ω(u) and c1 = 0. Hence, (3.1) holds.

Conversely, by simple calculus, it is clear that if u satis�es (3.1), then (1.1) holds.

To prove that (3.1) has at least one solution u ∈ C, we consider two operators B,A : C → C
de�ned by

Au(t) = u0 − ω(u(t)), t ∈ J, (3.2)

and

Bu(t) =
1

Γ(β)

∫ t

0

Ψ′(s)(Ψ(t)−Ψ(s))β−1h(s, u(s), u(εs))ds, t ∈ J, (3.3)

thus (3.1) can be formulated as follows

u(t) = Fu(t) := Au(t) + Bu(t), t ∈ J. (3.4)

Theorem 3.1. Assume that hypotheses (H1)− (H3) are satis�ed, then fractional pantograph di�er-
ential equation (1.1) has at least one solution u ∈ C(J,R). Moreover, the set of all solutions to (1.1)
is bounded in C(J,R) .

In order to prove the Theorem 3.1, we will need to show some lemmas and preliminary results
under the assumption that hypotheses (H1)− (H3) are satis�ed.

Lemma 3.2. The operator A is ρ-Lipschitz with the constant Lω. Moreover, A satis�es the following
inequality:

‖Au‖ ≤ |u0|+Kω‖u‖q +Mω, for every u ∈ C. (3.5)

Proof. To prove that the operator A is Lipschitz with the constant Lω,we argue as follows.

Let u, v ∈ C, then we have

|Au(t)−Av(t)| ≤ |ω(u)− ω(v)|,

by using hypothesis (H1) we get

|Au(t)−Av(t)| ≤ Lω‖u− v‖.

Taking supremum over t, we obtain

‖Au−Av‖ ≤ Lω‖u− v‖,
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hence, A is Lipschitz with the constant Lω. By using Lemma 2.3, it follows that A is ρ-Lipschitz
with the same constant Lω.

To prove (3.5), let u ∈ C, then we have

|Au(t)| = |u0 − ω(u)| ≤ |u0|+ |ω(u)|,

by using assumption (H2) we get

‖Au‖ ≤ |u0|+Kω‖u‖q +Mω.

Lemma 3.3. The operator B is continuous and the following inequality holds

‖Bu‖ ≤ 1

Γ(β + 1)
(Kω‖u‖p +Mω)(Ψ(T )−Ψ(0))β, ∀u ∈ C. (3.6)

Proof. To prove that the operator B is continuous, let a sequence {un}n∈N ⊂ C converge to u in C, it
follows that there exists δ > 0 such that ‖un‖ ≤ δ and ‖u‖ ≤ δ. Now let t ∈ J , then we have

|Bun(t)− Bu(t)| ≤ 1

Γ(β)

∫ t

0

Ψ′(s)(Ψ(t)−Ψ(s))β−1 |h(s, un(s), un(εs))− h(s, u(s), u(εs))| ds.

Since h is continuous, we have

lim
n→∞

h(s, un(s), un(εs)) = h(s, u(s), u(εs)).

On the other hand, by using (H3) we obtain

1

Γ(β)
(Ψ′(s)(Ψ(t)−Ψ(s))β−1 ‖h(s, un(s), un(εs))− h(s, u(s), u(εs))‖ ≤ (Kωδ

p +Mω)

× 1

Γ(β)
(Ψ′(s)(Ψ(t)−Ψ(s))β−1,

since s 7→ 1

Γ(β)
(Ψ′(s)(Ψ(t) − Ψ(s))β−1 is an integrable function on [0, t], then Lebesgue dominated

convergence theorem implies that

lim
n7→+∞

1

Γ(β)

∫ t

0

Ψ′(s)(Ψ(t)−Ψ(s))β−1 ‖h(s, un(s), un(εs))− h(s, u(s), u(εs))‖ ds = 0.

It follows that
lim

n7→+∞
‖ Bun − Bu ‖= 0,

hence, B is continuous .

To show (3.6), let u ∈ C, then we have

|Bu(t)| ≤ 1

Γ(β)

∫ t

0

Ψ′(s)(Ψ(t)−Ψ(s))β−1 |h(s, u(s), u(εs))| ds,

from (H3) we obtain

|Bu(t)| ≤ (Kω‖u‖p +Mω)

Γ(β)

∫ t

0

Ψ′(s)(Ψ(t)−Ψ(s))β−1ds,
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Finally, we obtain

‖ Bu ‖≤ (Kω‖u‖p +Mω)(Ψ(T )−Ψ(0))β

Γ(β + 1)
.

Lemma 3.4. B : C → C is a compact operator.

Proof. In order to demonstrate the compactness of B we need to show that BBη is relatively compact
in C and we use the Arzela-Ascoli Theorem [21]. Let u ∈ Bη, then from (3.6) we get

‖ Bu ‖≤ (Kωη
p +Mω)(Ψ(T )−Ψ(0))β

Γ(β + 1)
:= ξ.

So, it follows that BBη ⊂ Bξ. Hence BBη is bounded.

To prove that BBη is is uniformly equicontinuous, let u ∈ BBη and t1, t2 ∈ J such that t1 < t2,
then we have

|Bu(t2)− Bu(t1)| ≤ Kω | u |p +Mω

Γ(β)

∫ t2

t1

Ψ′(s)(Ψ(t2)−Ψ(s))β−1ds,

|Bu(t2)− Bu(t1)| ≤ Kωη
p +Mω

Γ(β)

∫ t2

t1

Ψ′(s)(Ψ(t2)−Ψ(s))β−1ds,

|Bu(t2)− Bu(t1)| ≤ Kωη
p +Mω

Γ(β + 1)
(Ψ(t2)−Ψ(t1))β,

sup
u∈BBγ

sup
|t1−t2|≤δ

|Bu(t2)− Bu(t1)| ≤ Kωη
β +Mω

Γ(β + 1)
sup

|t1−t2|≤δ
|Ψ(t2)−Ψ(t1)|β.

Since Ψ is a continuous function on the closed interval J, then we obtain

lim
δ→0+

sup
u∈BBγ

sup
|t1−t2|≤δ

|Bu(t1)− Bu(t2)| = 0.

which shows that BBη is uniformly equicontinuous.

Hence, BBη is uniformly bounded and is uniformly equicontinuous. Arzel�a�Ascoli Theorem [21]
permits us to conclude that BBη is relatively compact, thus B is compact.

Corollary 3.1. B : C → C is ρ-Lipschitz with zero constant.

Proof. Since the operator B is compact and by Lemma 2.2 it follows that B is ρ-Lipschitz with zero
constant.

Now, we have all tools to establish the proof of Theorem 3.1.
Proof of Theorem 3.1.

Let A,B,F : C → C be the operators given by equations (3.2),(3.3) and (3.4) respectively.

The operators A,B,F are continuous and bounded. Moreover, by using Lemma 3.2 we have that
A is ρ-Lipschitz with constant Lω ∈ [0, 1) and by using Corollary 3.1 we have that A is ρ-Lipschitz
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with zero constant. It follows from Lemma 2.1 that F is a strict ρ-contraction with constant Lω.

We consider the following set

Sγ = {u ∈ C : u = γFu for some γ ∈ [0, 1]}.

Let us show that Sγ is bounded in C. For this purpose let u ∈ Sγ, then u = γFu = γ(Au+ Bu). It
follows that

‖u‖ = γ‖Fu‖ ≤ γ(‖Au‖+ ‖Bu‖),

by using Lemmas 3.2 and 3.3 we get

‖u‖ ≤ |u0|+Kω‖u‖q +Mω +
(Kh‖u‖p +Mh)(Ψ(T )−Ψ(0))β

Γ(β + 1)
. (3.7)

From inequality (3.7) we deduce that Sγ is bounded in C with p < 1 and q < 1.
If this is not the case, we suppose that ξ := ‖u‖ −→ ∞. Dividing both sides of (3.7) by ξ, and

taking ξ →∞, it follows that

1 ≤ lim
ξ→∞

|u0|+Kωξ
q +Mω +

(Kωξ
p +Mω)(Ψ(T )−Ψ(0))β

Γ(β + 1)

ξ
= 0,

which is a contradiction. By using Theorem 2.1 we conclude that F has at least one �xed
point which is a solution of (1.1) and the set of the �xed points of F is bounded in C.

�

Remark 2. Note that if assumptions (H2) and (H3) are formulated for q = 1 and p = 1, then the
conclusions of Theorem 3.1 remain valid provided that

Kω +
Kh(Ψ(T )−Ψ(0))β

Γ(β + 1)
< 1.

4 An illustrative example

In this section, we give an example to illustrate the usefulness of our main result.
Consider the following problem:


CD

3
2
,et

0+ u(t) = h(t, u(t), u(εt)), t ∈ J = [0, 1],

u′(0) = 0, u(0) =
20∑
j=1

θj|u(tj)|, θj > 0, 0 < tj < 1, j = 1, 2, .., 20,

(4.1)

where h(t, u(t), u(εt)) =
sin
(
u
(
t√
2

))
(9+et)

√
2

(
|u(t)|

1+
∣∣∣u( t√

2

)∣∣∣
)
.

Here ε = 1√
2
, β = 3

2
, T = 1, Ψ(t) = et, and ω(u) =

20∑
j=1

θj|u(tj)| with
20∑
j=1

θj < 1. Clearly

h ∈ C(J × R × R,R) and (H1), (H2) hold with Kω = Lω =
20∑
i=j

θj, Mω = 0 and q = 1. Indeed, we
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can write

|ω(u)| ≤
20∑
j=1

θj ‖u‖ ,

thus, Kω =
20∑
j=1

θj, Mω = 0 and q = 1.

Moreover, we have

|ω(u(t))− ω(v(t))| =
∣∣∣ 20∑
j=1

θj|u(tj)| −
20∑
j=1

θj|v(tj)|
∣∣∣,

hence,

|ω(u)− ω(v)| ≤
20∑
j=1

θj ‖u− v‖ ,

thus, in (H2), Lω =
20∑
j=1

θj.

To prove (H3), let t ∈ J and u ∈ R, then we have

|h(t, u(t), u(εt))| =

∣∣∣∣∣∣
sin
(
u
(

t√
2

))
(9 + et)

√
2

 |u(t)|

1 +
∣∣∣u( t√

2

)∣∣∣
∣∣∣∣∣∣ ,

|h(t, u(t), u(εt))| ≤ 1

10
√

2
(|u|+ 1) .

Thus, (H3) holds with Kh = Mh =
1

10
√

2
and p = 1.

Consequently, Theorem 3.1 implies that problem (4.1) has at least one solution. Moreover, by
inequality (3.7) we have

‖u‖ ≤ (e− 1)(3/2)

10
√

2Γ(8/3)− 1
≈ 0.19,

thus, the set of all solutions to (4.1) is bounded.

5 Conclusion

In this paper, we studied the existence of solutions to nonlinear pantograph di�erential equations
involving Caputo type fractional derivative with respect to another function Ψ. The proofs of our
proposed model are based on the topological degree theory for condensing maps. We also provided
an example to make our results clear.
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