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1 Introduction and problem statement

It is known that in many cases it is impossible to �nd an exact solution of Dirichlet boundary
value problems for the Helmholtz equation in the two-dimensional space. This generates interest for
studying approximate solution of these problems with theoretical justi�cation. One of the methods
to solve Dirichlet boundary value problem for the Helmholtz equation in two-dimensional space is
to reduce it to an integral equation of the �rst kind. Note that the main advantage of applying the
method of integral equations to exterior boundary value problems is that this method allows reducing
the problem for an unbounded domain to the one for a bounded domain of lower dimension.

Let D ⊂ R2 be a bounded domain with twice continuously di�erentiable boundary L, and f be a
given continuous function on L. Consider the Dirichlet boundary value problems for the Helmholtz
equation:

Interior Dirichlet problem. Find a function u, which is twice continuously di�erentiable on
D, continuous on D̄, and satis�es the Helmholtz equation ∆u + k2u = 0 in D and the boundary
condition u = f on L, where ∆ is the Laplace operator, and k is a wave number with Imk ≥ 0.

Exterior Dirichlet problem. Find a function u, which is twice continuously di�erentiable
on R2\D̄, continuous on R2\D, satis�es the Helmholtz equation in R2\D̄, Sommerfeld radiation
condition (

x

|x|
, gradu (x)

)
− i k u (x) = o

(
1

|x|1/2

)
, x→∞,

uniformly in all directions x/ |x| and the boundary condition u = f on L.
It was shown in [3, p. 87] that the simple-layer potential

u (x) =

∫
L

Φ (x, y) ϕ (y) dLy, x ∈ R2\L,
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with continuous density ϕ is a solution of the interior and exterior Dirichlet boundary value problems
if ϕ is a solution of the integral equation of the �rst kind

Sϕ = 2 f, (1.1)

where

(Sϕ) (x) = 2

∫
L

Φ (x, y) ϕ (y) dLy, x ∈ L,

Φ(x, y) is the fundamental solution of the Helmholtz equation, i.e.

Φ (x, y) =

{
1

2π
ln 1
|x−y| for k = 0,

i
4
H

(1)
0 (k |x− y|) for k 6= 0,

where H
(1)
0 is the zero degree Hankel function of the �rst kind de�ned by the formula H

(1)
0 (z) =

J0 (z) + iN0 (z),

J0 (z) =
∞∑
m=0

(−1)m

(m !)2

(z
2

)2m

is the Bessel function of zero degree,

N0 (z) =
2

π

(
ln
z

2
+ C

)
J0 (z) +

∞∑
m=1

(
m∑
l=1

1

l

)
(−1)m+1

(m !)2

(z
2

)2m

is the Neumann function of zero degree, and C = 0.57721... is Euler's constant.
Note that the integral equations of the �rst kind do not �t into the Riesz-Fredholm theory. But,

it was proved in [3, p. 89�90] that if Imk > 0, then the operators S and

(Tf) (x) = 2
∂

∂ν (x)

(∫
L

∂Φ (x, y)

∂ν (y)
f(y)dLy

)
, x ∈ L,

are invertible, and

T−1 = −S
(
I − K̃

)−1 (
I + K̃

)−1

,

where (
K̃ρ
)

(x) = 2

∫
L

∂Φ (x, y)

∂ν (x)
ρ(y)dLy, x ∈ L,

ν (x) is the outer unit normal at the point x ∈ L, and I is the unit operator in C (L), the space of
all continuous functions on L with the norm ‖ϕ‖∞ = max

x∈L
|ϕ (x) |. Then the inverse operator S−1 is

de�ned by

S−1 = −
(
I − K̃

)−1 (
I + K̃

)−1

T.

Consequently, the solution of equation (1.1) has the form

ϕ = −2
(
I − K̃

)−1 (
I + K̃

)−1

Tf. (1.2)

Note that in spite of invertibility of the operators I − K̃ and I + K̃, the explicit forms of the

inverse operators
(
I − K̃

)−1

and
(
I + K̃

)−1

are unknown. Besides, Lyapunov's counterexample

shows ([6, p. 89�90]) that the derivatives of the double-layer potential with continuous density,
in general, do not exist, i.e. the operator S−1, inverse to the compact operator S, is unbounded
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in N (L), the space of all continuous functions ϕ, whose double-layer potential with the density
ϕ has continuous normal derivatives on both sides of the curve L. Note that in [17], quadrature
formulas for the simple-layer and double-layer potentials have been constructed using the asymptotic
formula for the zero degree Hankel functions of the �rst kind, which does not allow to �nd the
convergence rate of these quadrature formulas. But, in [11], quadrature formulas for the simple-
layer and double-layer potentials have been constructed by using more practical method, and in [12],
quadrature formulas for the normal derivative of the simple-layer potential have been constructed
and the error estimates have been obtained for the constructed quadrature formulas. Further, in [2,
16], quadrature formulas for the normal derivative of the simple-layer and double-layer logarithmic
potentials have been constructed and approximate solutions for integral equations of the exterior
Dirichlet boundary value problem and the mixed problem for the Laplace equation have been studied
in the two-dimensional space. In [10, 13], a new method for the construction of a cubature formula
for the normal derivative of the acoustic double-layer potential has been proposed and justi�cation
of the collocation method for the integral equations of exterior Dirichlet and Neumann boundary
value problems for the Helmholtz equation has been given in the three-dimensional space. However,
it is known that the fundamental solution of the Helmholtz equation in three-dimensional space has
the form

Φk(x, y) =
exp (ik |x− y|)

4π |x− y|
, x, y ∈ R3, x 6= y,

which di�ers essentially from the fundamental solution of the Helmholtz equation in the two-
dimensional space. Also note that in [18, p. 115�116], considering normal derivative of the double-
layer potential as a hypersingular integral, i.e. considering integral in the sense of �nite value ac-
cording to Hadamard, quadrature formula for the normal derivative of the double-layer potential has
been constructed using subdomain method with an additional condition on the density of f ([18,
p. 285�291]). It is known that with this condition the expression for the normal derivative of the
double-layer potential can be represented in the form of singular integral ([3, p. 57], [18, p. 100]), i.e.
the integral (Tf) (x) , x ∈ L, exists in the sense of the Cauchy principal value. Besides, it should be
noted that the quadrature formula constructed in [18] is not practical, in other words, its coe�cients
are singular integrals.

Despite important results in the �eld of numerical solution of integral equations of the �rst kind
([4, 5, 7, 8, 20]), due to the above reasons, approximate solving of Dirichlet boundary value problems
for the Helmholtz equation in the two-dimensional space has not yet been studied by the method of
integral equations of the �rst kind (1.1). In this work, considering the normal derivative of the double-
layer potential as an integral in the sense of the Cauchy principal value, we construct a quadrature
formula for the normal derivative of the double-layer potential by a more practical method, and,
using formula (1.2), we give a method for calculating an approximate solution to equation (1.1) at
some selected points.

2 Approximate solution to equation (1.1)

Assume that the curve L is de�ned by the parametric equation x (t) = (x1 (t) , x2 (t)) , t ∈ [a, b]. Let

us divide the interval [a, b] into n > 2M0 (b− a) /d equal parts: tp = a+ (b−a) p
n

, p = 0, n, where

M0 = max
t∈[a,b]

√
(x′1 (t))2 + (x′2 (t))2 < +∞

(see [19, p. 561]) and d is the standard radius ([21, p. 400]). As control points, we consider x (τp),

p = 1, n, where τp = a+ (b−a) (2p−1)
2n

. Then the curve L is divided into elementary parts: L =
n⋃
p=1

Lp,

where Lp = {x (t) : tp−1 ≤ t ≤ tp}.
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It is known ([14]) that
(1) ∀p ∈ {1, 2, ..., n}: rp(n) ∼ Rp(n), where

rp (n) = min { |x (τp)− x (tp−1)| , |x (tp)− x (τp)| } ,

Rp (n) = max { |x (τp)− x (tp−1)| , |x (tp)− x (τp)| } ,

and a (n) ∼ b (n) means C1 ≤
a (n)

b (n)
≤ C2, with the positive constants C1 and C2 independent of n.

(2) ∀p ∈ {1, 2, ..., n} : Rp (n) ≤ d/2;
(3) ∀p, j ∈ {1, 2, ..., n} : rj (n) ∼ rp (n) ;
(4) r (n) ∼ R (n) ∼ 1

n
, where R (n) = max

p=1, n
Rp (n), r (n) = min

p=1, n
rp (n).

The following lemma is true.

Lemma 2.1. [14]. There exist constants C ′0 > 0 and C ′1 > 0, independent of n, such that the
inequalities

C ′0 |y − x (τp)| ≤ |x (τj)− x (τp)| ≤ C ′1 |y − x (τp)|

hold for ∀p, j ∈ {1, 2, ..., n} , j 6= p, and ∀y ∈ Lj.

Let

Φn(x, y) =
i

4
H

(1)
0,n (k |x− y|) , x, y ∈ L, x 6= y,

where

H
(1)
0,n (z) = J0,n (z) + iN0,n (z) , J0,n (z) =

n∑
m=0

(−1)m

(m !)2

(z
2

)2m

and

N0,n (z) =
2

π

(
ln
z

2
+ C

)
J0,n (z) +

n∑
m=1

(
m∑
l=1

1

l

)
(−1)m+1

(m !)2

(z
2

)2m

.

It is not di�cult to show that

∂Φn (x, y)

∂ν (x)
=
i

4

(
∂J0,n (k |x− y|)

∂ν (x)
+ i

∂N0,n (k |x− y|)
∂ν (x)

)
,

where
∂J0,n (k |x− y|)

∂ν (x)
= (x− y, ν (x))

n∑
m=1

(−1)m k2m |x− y|2m−2

22m−1 (m− 1) !m !

and
∂N0,n (k |x− y|)

∂ν (x)
=

=
2

π

(
ln
k |x− y|

2
+ C

)
∂J0,n (k |x− y|)

∂ν (x)
+

2 (x− y, ν (x))

π |x− y|2
J0,n (k |x− y|) +

+ (x− y, ν (x))
n∑

m=1

(
m∑
l=1

1

l

)
(−1)m+1 k2m |x− y|2m−2

22m−1 (m− 1) !m !
.

Consider the matrix K̃n =
(
k̃pj

)n
p,j=1

with the elements

k̃pj =
2 |sgn (p− j)| (b− a)

n

∂Φn (x (τp) , x (τj))

∂ν (x (τp))

√
(x′1 (τj))

2 + (x′2 (τj))
2.
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It was proved in [12] that if ϕ ∈ C (L), then the expression

(
K̃nϕ

)
(x (τp)) =

n∑
j=1
j 6=p

k̃pj ϕ (x (τj))

is a quadrature formula for the integral
(
K̃ϕ
)

(x) at the control points x (τp) , p = 1, n, with1

max
p=1, n

∣∣∣(K̃ϕ) (x (τp))−
(
K̃nϕ

)
(x (τp))

∣∣∣ ≤M

(
ω (ϕ, 1/n) + ‖ϕ‖∞

lnn

n

)
,

where ω (ϕ, δ) is the modulus of continuity of the function ϕ, i.e.

ω (ϕ, δ) = max
|x−y|≤δ
x, y∈L

|ϕ (x)− ϕ (y)| , δ > 0.

It is known that if Imk > 0, then for every right-hand side g ∈ C (L) the integral equations ([3,
p. 81])

ϕ± K̃ϕ = g

are uniquely solvable in the space C (L). Then, proceeding in the same way as in [9], it is not di�cult
to prove the following lemmas.

Lemma 2.2. If Imk > 0, then there exists the inverse matrix
(
In + K̃n

)−1

with

M1 = sup
n

∥∥∥∥(In + K̃n
)−1
∥∥∥∥ < +∞

and

max
l=1 ,n

∣∣∣∣∣
((

I + K̃
)−1

g

)
(x (τl))−

n∑
j=1

k̃+
l j g (x (τl))

∣∣∣∣∣ ≤M

(
ω (g, 1/n) + ‖g‖∞

lnn

n

)
,

where In is a unit operator in the space Cn, and k̃+
l j is the element of the matrix

(
In + K̃n

)−1

in

the l−th row and j−th column.

Lemma 2.3. If Imk > 0, then there exists the inverse matrix
(
In − K̃n

)−1

with

M2 = sup
n

∥∥∥∥(In − K̃n
)−1
∥∥∥∥ < +∞

and

max
l=1 ,n

∣∣∣∣∣
((

I − K̃
)−1

g

)
(x (τl))−

n∑
j=1

k̃−l j g (x (τl))

∣∣∣∣∣ ≤M

(
ω (g, 1/n) + ‖g‖∞

lnn

n

)
,

where k̃−l j is the element of the matrix
(
In − K̃n

)−1

in the l−th row and j−th column.

1 Hereinafter M denotes di�erent positive constants which can be di�erent in di�erent inequalities.
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Now, let us construct a quadrature formula for the normal derivative of the double-layer potential.
For this, let us �rst determine the conditions for the existence of the normal derivative of the double-
layer potential and derive the formulas for calculating it.

Lemma 2.4. Let a function ρ be continuously di�erentiable on L and∫ diamL

0

ω (gradρ, t)

t
dt < +∞.

Then the double-layer potential

W (x) =

∫
L

∂Φ (x, y)

∂ν (y)
ρ (y) dLy, x ∈ L,

has the normal derivative in L, with

∂W (x)

∂ν (x)
=

∫
L

∂V (x, y)

∂ν (x)
ρ (y) dLy −

1

π

∫
L

(x− y, ν (y)) (x− y, ν (x))

|x− y|4
(ρ (y)− ρ (x)) dLy+

+
1

2π

∫
L

(ν (y) , ν (x))

|x− y|2
(ρ (y)− ρ (x)) dLy, x ∈ L (2.1)

and ∣∣∣∣ ∂W (x)

∂ν (x)

∣∣∣∣ ≤M

(
‖ρ‖∞ + ‖gradρ‖∞ +

∫ d

0

ω (gradρ, t)

t
dt

)
, ∀x ∈ L,

where

V (x, y) =

(
i

4
− C

2π
− 1

2π
ln
k |x− y|

2

)
(y − x, ν (y))

∞∑
m=1

(−1)m k2m |x− y|2m−2

22m−1 (m− 1) !m !
−

− (y − x, ν (y))
∞∑
m=1

(
m∑
l=1

1

l

)
(−1)m+1 k2m |x− y|2m−2

22m+1 (m− 1) !m !
−

− 1

2π
(y − x, ν (y))

∞∑
m=1

(−1)m k2m |x− y|2m−2

22m (m !)2 ,

the �rst and the second integral terms in (2.1) are weakly singular, and the last integral exists in the
sense of the Cauchy principal value.

Proof. It is easy to calculate that

∂Φ (x, y)

∂ν (y)
=
i

4

(
∂J0 (k |x− y|)

∂ν (y)
+ i

∂N0 (k |x− y|)
∂ν (y)

)
,

where
∂J0 (k |x− y|)

∂ν (y)
= (y − x, ν (y))

∞∑
m=1

(−1)m k2m |x− y|2m−2

22m−1 (m− 1) !m !

and

∂N0 (k |x− y|)
∂ν (y)

=
2

π

(
ln
k |x− y|

2
+ C

)
∂J0 (k |x− y|)

∂ν (y)
+

2 (y − x, ν (y))

π |x− y|2
J0 (k |x− y|) +
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+ (y − x, ν (y))
∞∑
m=1

(
m∑
l=1

1

l

)
(−1)m+1 k2m |x− y|2m−2

22m−1 (m− 1) !m !
.

Then the expression W (x) can be represented as

W (x) =

∫
L

(
(x− y, ν (y))

2π |x− y|2
+ V (x, y)

)
ρ (y) dLy, x ∈ L.

It was shown in [15] that if a function ρ is continuously di�erentiable on L and∫ diamL

0

ω (gradρ, t)

t
dt < +∞,

then the function

W0 (x) =
1

2π

∫
L

(x− y, ν (y))

|x− y|2
ρ (y) dLy, x ∈ L,

has the normal derivative in L, with

∂W0 (x)

∂ν (x)
= − 1

π

∫
L

(x− y, ν (y)) (x− y, ν (x))

|x− y|4
(ρ (y)− ρ (x)) dLy+

+
1

2π

∫
L

(ν (y) , ν (x))

|x− y|2
(ρ (y)− ρ (x)) dLy, x ∈ L (2.2)

and ∣∣∣∣ ∂W0 (x)

∂ν (x)

∣∣∣∣ ≤M

(
‖ρ‖∞ + ‖gradρ‖∞ +

∫ d

0

ω (gradρ, t)

t
dt

)
,∀x ∈ L.

The last integral in (2.2) exists in the sense of the Cauchy principal value.
As ([21, p. 403])

|(x− y, ν (x))| ≤M |x− y|2 ,∀x, y ∈ L, (2.3)

taking into account the inequalities

|J0 (k |x− y|)| =

∣∣∣∣∣
∞∑
m=0

(−1)m

(m !)2

(
k |x− y|

2

)2m
∣∣∣∣∣ ≤

∞∑
m=0

(|k| diamL)2m

4m (m !)2 ,∀x, y ∈ L, (2.4)

and ∣∣∣∣∣
∞∑
m=1

(
m∑
l=1

1

l

)
(−1)m+1 k2m |x− y|2m−2

22m−1 (m − 1)!m!

∣∣∣∣∣ ≤
≤

∞∑
m=1

(
m∑
l=1

1

l

)
|k|2m (diamL)2m−2

22m−1 (m − 1)!m!
,∀x, y ∈ L, (2.5)

we obtain
|V (x, y)| ≤M |x− y | , ∀x, y ∈ L.

Consequently, the function

W1 (x) =

∫
L

V (x, y) ρ (y) dLy, x ∈ L,

has the normal derivative in L, with

∂W1 (x)

∂ν (x)
=

∫
L

∂V (x, y)

∂ν (x)
ρ (y) dLy =



Constructive method for solving curvilinear integral equations 39

=
1

2π

∫
L

(y − x, ν (x)) (y − x, ν (y))

|x− y|2
∞∑
m=1

(−1)m k2m |x− y|2m−2

22m−1 (m− 1) !m !
ρ (y) dLy−

−
∫
L

(
i

4
− C

2π
− 1

2π
ln
k |x− y|

2

)
(ν (y) , ν (x))

∞∑
m=1

(−1)m k2m |x− y|2m−2

22m−1 (m− 1) !m !
ρ (y) dLy+

+

∫
L

(
i

4
− C

2π
− 1

2π
ln
k |x− y|

2

)
(y − x, ν (y)) (x− y, ν (x))×

×
∞∑
m=2

(−1)m k2m |x− y|2m−4

22m−2 (m− 2) !m !
ρ (y) dLy+

+

∫
L

(ν (y) , ν (x))
∞∑
m=1

(
m∑
l=1

1

l

)
(−1)m+1 k2m |x− y|2m−2

22m+1 (m− 1) !m !
ρ (y) dLy−

−
∫
L

(x− y, ν (x)) (y − x, ν (y))
∞∑
m=2

(
m∑
l=1

1

l

)
(−1)m+1 k2m |x− y|2m−4

22m (m− 2) !m !
ρ (y) dLy+

+
1

2π

∫
L

(ν (y) , ν (x)) (y − x, ν (y))
∞∑
m=1

(−1)m k2m |x− y|2m−2

22m (m !)2 ρ (y) dLy−

− 1

2π

∫
L

(x− y, ν (x)) (y − x, ν (y))
∞∑
m=2

(−1)m (m− 1) k2m |x− y|2m−4

22m−1 (m !)2 ρ (y) dLy

and ∣∣∣∣ ∂V (x, y)

∂ν (x)

∣∣∣∣ ≤M |ln |x− y|| , ∀x, y ∈ L. (2.6)

Hence, we have ∣∣∣∣ ∂W1 (x)

∂ν (x)

∣∣∣∣ ≤M ‖ρ‖∞ , ∀x ∈ L.

Obviously, there exists a positive integer n0 such that√
R (n) ≤ min {1 , d/2} , ∀n > n0.

Let
Pl =

{
j | 1 ≤ j ≤ n , |x (τl)− x (τj)| ≤

√
R (n)

}
,

Ql =
{
j | 1 ≤ j ≤ n , |x (τl)− x (τj)| >

√
R (n)

}
and

Vn (x, y) =

(
i

4
− C

2π
− 1

2π
ln
k |x− y|

2

)
(y − x, ν (y))

n∑
m=1

(−1)m k2m |x− y|2m−2

22m−1 (m− 1) !m !
−

− (y − x, ν (y))
n∑

m=1

(
m∑
l=1

1

l

)
(−1)m+1 k2m |x− y|2m−2

22m+1 (m− 1) !m !
−

− 1

2π
(y − x, ν (y))

n∑
m=1

(−1)m k2m |x− y|2m−2

22m (m !)2 .



40 E.H. Khalilov

It is easy to see that

∂Vn (x, y)

∂ν (x)
=

1

2π

(y − x, ν (x)) (y − x, ν (y))

|x− y|2
n∑

m=1

(−1)m k2m |x− y|2m−2

22m−1 (m− 1) !m !
−

−
(
i

4
− C

2π
− 1

2π
ln
k |x− y|

2

)
(ν (y) , ν (x))

n∑
m=1

(−1)m k2m |x− y|2m−2

22m−1 (m− 1) !m !
+

+

(
i

4
− C

2π
− 1

2π
ln
k |x− y|

2

)
(y − x, ν (y)) (x− y, ν (x))

n∑
m=2

(−1)m k2m |x− y|2m−4

22m−2 (m− 2) !m !
+

+ (ν (y) , ν (x))
n∑

m=1

(
m∑
l=1

1

l

)
(−1)m+1 k2m |x− y|2m−2

22m+1 (m− 1) !m !
−

− (x− y, ν (x)) (y − x, ν (y))
n∑

m=2

(
m∑
l=1

1

l

)
(−1)m+1 k2m |x− y|2m−4

22m (m− 2) !m !
+

+
1

2π
(ν (y) , ν (x)) (y − x, ν (y))

n∑
m=1

(−1)m k2m |x− y|2m−2

22m (m !)2 −

− 1

2π
(x− y, ν (x)) (y − x, ν (y))

n∑
m=2

(−1)m (m− 1) k2m |x− y|2m−4

22m−1 (m !)2 .

The following theorem is true.

Theorem 2.1. Let a function ρ be continuously di�erentiable on L and∫ diamL

0

ω(gradρ, t)

t
dt < +∞.

Then the expression

(Tnρ) (x (τp)) =
2 (b− a)

n

n∑
j=1
j 6=p

∂Vn (x (τp) , x (τj))

∂ν (x (τp))

√
(x′1 (τj))

2 + (x′2 (τj))
2 ρ (x (τj)) −

−2 (b− a)

π n

n∑
j=1
j 6=p

(x (τp)− x (τj) , ν (x (τj))) (x (τp)− x (τj) , ν (x (τp)))

|x (τp)− x (τj)|4
×

×
√

(x′1 (τj))
2 + (x′2 (τj))

2 (ρ (x (τj))− ρ (x (τp))) +

+
b− a
π n

∑
j∈Qp

(ν (x (τj)) , ν (x (τp)))

|x (τj)− x (τp)|2
√

(x′1 (τj))
2 + (x′2 (τj))

2 (ρ (x (τj))− ρ (x (τp)))

is a quadrature formula for (Tρ) (x) at the control points x (τp) , p = 1, n, and the following estimate
holds:

max
p=1, n

|(Tρ) (x (τp))− (Tnρ) (x (τp))| ≤

≤M

[
‖ρ‖∞ lnn

n
+
‖grad ρ‖∞√

n
+

∫ 1/
√
n

0

ω(grad ρ, t)

t
dt

]
.
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Proof. It was proved in [1] that if a function ρ is continuously di�erentiable on L and∫ diamL

0

ω(gradρ, t)

t
dt < +∞,

then the expression(
∂W0

∂ν

)n
(x (τp)) = −b− a

π n

n∑
j=1
j 6=p

(x (τp)− x (τj) , ν (x (τj))) (x (τp)− x (τj) , ν (x (τp)))

|x (τp)− x (τj)|4
×

×
√

(x′1 (τj))
2 + (x′2 (τj))

2 (ρ (x (τj))− ρ (x (τp))) +

+
b− a
2π n

∑
j∈Qp

(ν (x (τj)) , ν (x (τp)))

|x (τj)− x (τp)|2
√

(x′1 (τj))
2 + (x′2 (τj))

2 (ρ (x (τj))− ρ (x (τp)))

is a quadrature formula for the integral ∂W0(x)
∂ν(x)

at the control points x (τp) , p = 1, n, and the following
estimate holds:

max
p=1, n

∣∣∣∣∂W0 (x (τp))

∂ν (x (τp))
−
(
∂W0

∂ν

)n
(x (τp))

∣∣∣∣ ≤
≤M

[
‖ρ‖∞ lnn

n
+
‖grad ρ‖∞√

n
+

∫ 1/
√
n

0

ω(grad ρ, t)

t
dt

]
.

Now, let us show that the expression(
∂W1

∂ν

)n
(x (τl)) =

b− a
n

n∑
j=1
j 6=l

∂Vn (x (τl) , x (τj))

∂ν (x (τl))

√
(x′1 (τj))

2 + (x′2 (τj))
2 ρ (x (τj))

is a quadrature formula for the integral ∂W1(x)
∂ν(x)

at the control points x (τl) , l = 1, n. It is not di�cult
to see that

∂W1 (x (τp))

∂ν (x (τp))
−
(
∂W1

∂ν

)n
(x (τp)) =

∫
Lp

∂V (x (τp) , y)

∂ν (x)
ρ (y) dLy+

+
n∑
j=1
j 6=p

∫
Lj

(
∂V (x (τp) , y)

∂ν (x (τp))
− ∂Vn (x (τp) , x (τj))

∂ν (x (τp))

)
ρ (y) dLy +

+
n∑
j=1
j 6=p

∫
Lj

∂Vn (x (τp) , x (τj))

∂ν (x (τp))
(ρ (y)− ρ (x (τj))) dLy +

+
n∑
j=1
j 6=p

∫ tj

tj−1

∂Vn (x (τp) , x (τj))

∂ν (x (τp))
×

×
(√

(x′1 (t))2 + (x′2 (t))2 −
√

(x′1 (τj))
2 + (x′2 (τj))

2

)
ρ (x (τj)) dt.

Denote the terms in the last equality by δn1 (x (τp)), δ
n
2 (x (τp)), δ

n
3 (x (τp)) and δ

n
4 (x (τp)), respec-

tively.
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Taking into account (2.6) and the formula for calculating a curvilinear integral, we obtain

|δn1 (x (τp))| ≤M ‖ρ‖∞
∫ R(n)

0

|ln τ | dτ ≤M ‖ρ‖∞R (n) |lnR (n)| .

Let y ∈ Lj and j 6= p. From Lemma 2.1 and inequality (2.3) it is obvious that

||x (τp)− y|q − |x (τp)− x (τj)|q| ≤MqR (n) (diamL)q−1 ,

|(ν (y) , ν (x (τp)))− (ν (x (τj)) , ν (x (τp)))| ≤M R (n) ,

|(x (τp)− y, ν (y))− (x (τp)− x (τj) , ν (y))| = |(x (τj)− y, ν (y))| ≤M (R (n))2 ,

|(x (τp)− y, ν (x (τp)))− (x (τp)− x (τj) , ν (x (τp)))| = |(x (τj)− y, ν (x (τp)))| ≤

≤ |(x (τj)− y, ν (x (τj)))|+ |(x (τj)− y, ν (x (τp))− ν (x (τj)))| ≤M |y − x (τp)| R (n)

and

|ln (k |x (τp)− y|)− ln (k |x (τp)− x (τj)|)| =
∣∣∣∣ln |x (τp)− x (τj)|

|x (τp)− y|

∣∣∣∣ =

=

∣∣∣∣ln(1 +
|x (τp)− x (τj)| − |x (τp)− y|

|x (τp)− y|

)∣∣∣∣ ≤ ∣∣∣∣ln(1 +
|x (τj)− y|
|x (τp)− y|

)∣∣∣∣ ≤M
R (n)

|x (τp)− y|
,

where q ∈ N. Then, taking into account inequalities (2.4) and (2.5), it is not di�cult to show that∣∣∣∣∂V (x (τp) , y)

∂ν (x (τp))
− ∂V (x (τp) , x (τj))

∂ν (x (τp))

∣∣∣∣ ≤M

(
R (n) |ln |x (τp)− y||+

R (n)

|x (τp)− y|

)
.

Also, by the inequality∣∣∣∣∂V (x (τp) , x (τj))

∂ν (x (τp))
− ∂Vn (x (τp) , x (τj))

∂ν (x (τp))

∣∣∣∣ ≤M
|ln |x (τp)− y||

n !
, (2.7)

we have ∣∣∣∣∂V (x (τp) , y)

∂ν (x (τp))
− ∂Vn (x (τp) , x (τj))

∂ν (x (τp))

∣∣∣∣ ≤
≤M

(
R (n) |ln |x (τp)− y||+

R (n)

|x (τp)− y|
+
|ln |x (τp)− y||

n !

)
.

So, we obtain
|δn2 (x (τp))| ≤

≤M ‖ρ‖∞
(
R (n)

∫ diamL

r(n)

|ln τ | dτ +R (n)

∫ diamL

r(n)

dτ

τ
+

1

n !

∫ diamL

r(n)

|ln τ | dτ
)
≤

≤M ‖ρ‖∞
(
R (n) |lnR (n)|+ 1

n !

)
.

Let y ∈ Lj and j 6= p. From Lemma 2.1 and inequalities (2.6), (2.7) it is obvious that∣∣∣∣∂Vn (x (τp) , x (τj))

∂ν (x (τp))

∣∣∣∣ ≤
≤
∣∣∣∣∂V (x (τp) , x (τj))

∂ν (x (τp))

∣∣∣∣+

∣∣∣∣∂V (x (τp) , x (τj))

∂ν (x (τp))
− ∂Vn (x (τp) , x (τj))

∂ν (x (τp))

∣∣∣∣ ≤
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≤M

(
|ln |x (τp)− x (τj)||+

1

n !

)
,∀n ∈ N. (2.8)

Then,

|δn3 (x (τp))| ≤ 2ω (ρ,R (n))
n∑
j=1
j 6=p

∫
Lj

∣∣∣∣∂Vn (x (τp) , x (τj))

∂ν (x (τp))

∣∣∣∣ dLy ≤
≤ 2ω (ρ,R (n))

∫
L

∣∣∣∣∂Vn (x (τp) , x (τj))

∂ν (x (τp))

∣∣∣∣ dLy ≤Mω (ρ,R (n)) .

Besides, taking into account Lemma 2.1, inequality (2.8) and∣∣∣∣√(x′1 (t))2 + (x′2 (t))2 −
√

(x′1 (τj))
2 + (x′2 (τj))

2

∣∣∣∣ ≤M R (n) ,∀t ∈ [tj−1, tj] ,

we obtain

|δn4 (x (τp))| ≤M ‖ρ‖∞R (n)
n∑
j=1
j 6=p

∫ tj

tj−1

∣∣∣∣∂Vn (x (τp) , x (τj))

∂ν (x (τp))

∣∣∣∣ dt ≤
≤M ‖ρ‖∞R (n)

n∑
j=1
j 6=p

∫
Lj

∣∣∣∣∂Vn (x (τp) , x (τj))

∂ν (x (τp))

∣∣∣∣ dLy ≤
≤M ‖ρ‖∞R (n)

∫
L

∣∣∣∣∂Vn (x (τp) , x (τj))

∂ν (x (τp))

∣∣∣∣ dLy ≤M ‖ρ‖∞R (n) .

Summing up the estimates obtained for the expressions δn1 (x (τp)), δ
n
2 (x (τp)), δ

n
3 (x (τp)) and

δn4 (x (τp)), and considering the relation R (n) ∼ 1
n
, we obtain

max
p=1, n

∣∣∣∣∂W1 (x (τp))

∂ν (x (τp))
−
(
∂W1

∂ν

)n
(x (τp))

∣∣∣∣ ≤M

(
ω (ρ, 1/n) + ‖ρ‖∞

lnn

n

)
.

As a result, summing up the quadrature formulas constructed for the integrals ∂W0(x)
∂ν(x)

and ∂W1(x)
∂ν(x)

at the control points x (τp) , p = 1, n, we get the validity of Theorem 2.1.

Now, let us state the main result of this work. Let

tl l =
2 (b− a)

π n

n∑
j=1
j 6=l

(x (τl)− x (τj) , ν (x (τj))) (x (τl)− x (τj) , ν (x (τl)))

|x (τl)− x (τj)|4
×

×
√

(x′1 (τj))
2 + (x′2 (τj))

2−

−b− a
π n

∑
j∈Q l

(ν (x (τj)) , ν (x (τl)))

|x (τj)− x (τl)|2
√

(x′1 (τj))
2 + (x′2 (τj))

2 forl = 1, n;

tl j =
2 (b− a)

n

√
(x′1 (τj))

2 + (x′2 (τj))
2

(
∂Vn (x (τl) , x (τj))

∂ν (x (τl))
−

−(x (τl)− x (τj) , ν (x (τj))) (x (τl)− x (τj) , ν (x (τl)))

|x (τl)− x (τj)|4

)
for j ∈ Pl , j 6= l;
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tl j =
2 (b− a)

n

√
(x′1 (τj))

2 + (x′2 (τj))
2

(
∂Vn (x (τl) , x (τj))

∂ν (x (τl))
−

−(x (τl)− x (τj) , ν (x (τj))) (x (τl)− x (τj) , ν (x (τl)))

|x (τl)− x (τj)|4
+

(ν (x (τj)) , ν (x (τl)))

2 |x (τj)− x (τl)|2

)
for j ∈ Ql.

From Theorem 2.1 it follows that

(Tnρ) (x (τl)) =
n∑
j=1

tl j ρ (x (τl)) , l = 1, n.

Theorem 2.2. Let Imk > 0, a function f be continuously di�erentiable on L and∫ diamL

0

ω(gradf, t)

t
dt < +∞.

Then the expression

ϕn (x (τl)) = −2
n∑
j=1

k̃−l j

(
n∑
p=1

k̃+
j p

(
n∑

m=1

tpm f (x (τm))

))

is an approximate value of the solution ϕ(x) to equation (1.1) at the points x (τl) , l = 1, n, with

max
l=1, n

|ϕ (x (τl))− ϕn (x (τl)) | ≤

≤M

[
1√
n

+ ω (gradf, 1/n) +

∫ 1/
√
n

0

ω (gradf , t)

t
dt+

1

n

∫ diamL

1/n

ω (gradf, t)

t2
dt

]
.

Proof. From Lemmas 2.2 and 2.3 we obtain

max
j=1 ,n

n∑
l=1

∣∣∣ k̃+
j l

∣∣∣ ≤M1, max
j=1 ,n

n∑
l=1

∣∣∣ k̃−j l ∣∣∣ ≤M2.

Besides, taking into account the error estimate for the quadrature formula for (Tf) (x),x ∈ L, at the
control points x (τl) , l = 1, n, we have

|ϕ (x (τl))− ϕn (x (τl)) | ≤

≤ 2

∣∣∣∣∣
((

I − K̃
)−1 (

I + K̃
)−1

T f

)
(x (τl))−

n∑
j=1

k̃−l j

((
I + K̃

)−1

T f

)
(x (τj))

∣∣∣∣∣+
+2

∣∣∣∣∣
n∑
j=1

k̃−l j

[((
I + K̃

)−1

T f

)
(x (τj))−

n∑
p=1

k̃+
j p (Tf) (x (τp))

] ∣∣∣∣∣+
+2

∣∣∣∣∣
n∑
j=1

k̃−l j

(
n∑
p=1

k̃+
j p

[
(T f) (x (τp))−

n∑
m=1

tpm f (x (τm))

]) ∣∣∣∣∣ ≤
≤M

[∥∥∥∥(I + K̃
)−1
∥∥∥∥ ‖Tf ‖∞ R (n) | lnR (n) |+ ω

((
I + K̃

)−1

Tf,R (n)

)]
+

+MM2 [ ‖Tf ‖∞ R (n) | lnR (n) |+ ω (Tf,R (n)) ] +
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+MM1M2

[
‖ρ‖∞ lnn

n
+
‖grad ρ‖∞√

n
+

∫ 1/
√
n

0

ω(grad ρ, t)

t
dt

]
. (2.9)

From Lemma 2.4 it follows

‖Tf ‖∞ ≤M

(
‖f ‖∞ + ‖grad f‖∞ +

∫ diamL

0

ω(grad f, t)

t
dt

)
.

Further, as the integral ∂W1(x)
∂ν(x)

, x ∈ L, is weakly singular, it is not di�cult to show that

ω

(
∂W1

∂ν
, δ

)
≤M ‖ρ‖∞ δ | ln δ | , δ > 0 .

It was shown in [15] that if a function f is continuously di�erentiable on L and∫ diamL

0

ω(gradf, t)

t
dt < +∞,

then

ω

(
∂W0

∂ν
, δ

)
≤

≤M

(
δ |ln δ|+ ω (gradf, δ) +

∫ δ

o

ω (gradf, t)

t
dt+ δ

∫ diamL

δ

ω (gradf, t)

t2
dt

)
,

where δ > 0 . Hence, it follows that

ω (Tf, δ) ≤ 2

(
ω

(
∂W0

∂ν
, δ

)
+ ω

(
∂W1

∂ν
, δ

))
≤

≤M

(
δ |ln δ|+ ω (gradf, δ) +

∫ δ

o

ω (gradf, t)

t
dt+ δ

∫ diamL

δ

ω (gradf, t)

t2
dt

)
, δ > 0 .

It is known ([3, p. 53�54]) that

ω
(
K̃ ρ, δ

)
≤M ‖ρ‖∞ δ | ln δ | , δ > 0 .

Then, if a function ρ∗ is a solution of the equation ρ+ K̃ρ = Tf , we have

ω

((
I + K̃

)−1

Tf, δ

)
= ω (ρ∗, δ) = ω

(
Tf − K̃ ρ∗, δ

)
≤ ω (Tf, δ) + ω

(
K̃ ρ∗, δ

)
≤

≤ ω (Tf, δ) +M ‖ρ∗‖∞ δ | ln δ | = ω (Tf, δ) + M

∥∥∥∥ (I + K̃
)−1

Tf

∥∥∥∥
∞
δ | ln δ | ≤

≤ ω (Tf, δ) + M

∥∥∥∥ (I + K̃
)−1
∥∥∥∥ ‖Tf ‖∞ δ | ln δ | ≤

≤M

(
δ |ln δ|+ ω (gradf, δ) +

∫ δ

o

ω (gradf, t)

t
dt+ δ

∫ diamL

δ

ω (gradf, t)

t2
dt

)
, δ > 0 .

So, taking into account the above obtained inequalities in (2.9) and the relation R (n) ∼ 1
n
, we get

the validity of the theorem.

Theorem 2.2 has the following corollaries.
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Corollary 2.1. Let Imk > 0, a function f be continuously di�erentiable on L and∫ diamL

0

ω(gradf, t)

t
dt < +∞.

Then the sequence

un(x∗) =
b− a
n

n∑
l=1

Φn (x∗, x (τl)) ϕn (x (τl))

√
(x′1 (τl))

2 + (x′2 (τl))
2, x∗ ∈ D,

converges to the value u (x∗) of the solution u (x) to the interior Dirichlet boundary value problem
for the Helmholtz equation at the point x∗, with

|un (x∗)− u (x∗)| ≤

≤M

[
1√
n

+ ω (gradf, 1/n) +

∫ 1/
√
n

0

ω (gradf , t)

t
dt+

1

n

∫ diamL

1/n

ω (gradf, t)

t2
dt

]
,

where

ϕn (x (τl)) = −2
n∑
j=1

k̃−l j

(
n∑
p=1

k̃+
j p

(
n∑

m=1

tpm f (x (τm))

))
.

Corollary 2.2. Let Imk > 0, a function f be continuously di�erentiable on L and∫ diamL

0

ω(gradf, t)

t
dt < +∞.

Then the sequence

un (x∗) =
b− a
n

n∑
l=1

Φn (x∗, x (τl)) ϕn (x (τl))

√
(x′1 (τl))

2 + (x′2 (τl))
2, x∗ ∈ R2\D̄,

converges to the value u (x∗) of the solution u (x) to the exterior Dirichlet boundary value problem
for the Helmholtz equation at the point x∗, with

|un (x∗)− u (x∗)| ≤

≤M

[
1√
n

+ ω (gradf, 1/n) +

∫ 1/
√
n

0

ω (gradf , t)

t
dt+

1

n

∫ diamL

1/n

ω (gradf, t)

t2
dt

]
,

where

ϕn (x (τl)) = −2
n∑
j=1

k̃−l j

(
n∑
p=1

k̃+
j p

(
n∑

m=1

tpm f (x (τm))

))
.
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