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1 Introduction and problem statement

Everywhere below in this paper we denote by

f(a, x) =
a0

2
+
∞∑
n=1

an cosnx (1.1)

and

g(a, x) =
∞∑
n=1

an sinnx (1.2)

for all x for which the corresponding series converges.
It is known that one of the most important classes of trigonometric series is the class of series

with monotone coe�cients, i.e. the sequence a = {an}∞n=0 is such that an ↓ 0 as n → ∞. In this
case series (1.1) and (1.2) have a lot of very good properties. For instance, the following theorem
was proved by G. Hardy and J. Littlewood.

Theorem 1.1 ([14]). Let p ∈ (1,∞). Then f(a, x) ∈ Lp([0, π]) (or g(a, x) ∈ Lp([0, π])) if and only
if

Jp(a) ≡
∞∑
n=1

apnn
p−2 <∞.

We mention also the well-known theorems of G. Lorentz (Theorem 1.2) and T. Chaundy and
A. Jolli�e (Theorem 1.3).

Theorem 1.2 ([16]). Let α ∈ (0, 1). Then f(a, x) ∈ Lipα (or g(a, x) ∈ Lipα) if and only if for
some C > 0 we have an 6 C/n1+α for all n ∈ N.
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Theorem 1.3 ([7]). Series (1.2) uniformly converges if and only if nan → 0 as n→∞.

One of the main topics of the present paper is the so-called asymptotic behaviour of the sums
of trigonometric series with monotone coe�cients in a neighbourhood of zero. The �rst results in
this direction were obtained by R. Salem [22], [23] (see also [6]). His research was continued by
S. Izumi [15], S.A. Telyakovskii [28], [29], A.Yu. Popov and A.P. Solodov (see [18]�[21], [24]�[27]),
and others. Note that the properties of sine and cosine series di�er signi�cantly in this problem. In
Section 2 we discuss in detail the asymptotics of the sums of sine series and new approaches to this
problem.

As series with monotone coe�cients are very interesting because of their properties, many authors
introduced the classes of trigonometric series with generalized monotone coe�cients. In Section 3 we
discuss fractional monotone sequences and the corresponding trigonometric series. M.I. Dyachenko
introduced this class in paper [8] and proved some convergence and smoothness properties of cosine
and sine series with coe�cients belonging to this class. It is necessary to say that many impor-
tant auxiliary results essential for the study of monotonicity of fractional order were established
by A. Andersen [4]. A number of new results in this direction were obtained by M.I. Dyachenko,
E.D. Nursultanov, A.P. Solodov, A.B. Mukanov, and E.D. Alferova (see [8]�[13], [17], [2]). Similar
questions were also considered in the works [1], [5], [30].

2 New approaches to asymptotic properties

This section is devoted to the study of the asymptotic behavior in the right half-neighbourhood of
zero of sums of a sine series with monotone coe�cients.

To obtain a two-sided estimate of the sum of a series (1.2), R. Salem [22] de�ned the following
function:

v(a, x) = x

m(x)∑
n=1

nan, m(x) = [π/x] .

Under some additional assumptions on the sequence a monotonically tending to zero, he proved
the existence of positive constants C1(a), C2(a), and x0 > 0 such that the following estimates hold:

C2(a)v(a, x) 6 g(a, x) 6 C1(a)v(a, x), 0 < x 6 x0. (2.1)

S.A. Telyakovskii has improved this result by deriving estimate (2.1) with absolute constants C1

and C2, freeing the sequence a from additional requirements and showing that the upper bound
holds for any monotone sequence a, and the lower bound � for any convex sequence a (i.e. an −
2an+1 + an+2 > 0, n ∈ N).

Theorem 2.1 ([28], [29]). There exists a constant C1 > 0 such that for any nonincreasing null
sequence a

g(a, x) 6 C1v(a, x), 0 < x 6 π/11.

There exists a constant C2 > 0 such that for any convex null sequence a

g(a, x) > C2(a)v(a, x), 0 < x 6 π/11.

A.Yu. Popov calculated the sharp values of the constants in the estimates of Telyakovskii. He
proved the following results.

Theorem 2.2 ([18]). For any nonincreasing null sequence a,

g(a, x) 6 v(a, x), 0 < x 6 π. (2.2)
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Theorem 2.3 ([18]). For any convex null sequence a,

g(a, x) >
2

π2
v(a, x)− 0.46 am(x), 0 < x 6

π

2
. (2.3)

The estimate (2.3), in general, does not hold if there is no second negative term in its right-hand
side. The question arises: is it possible to modify the Salem function v(a, x) in such way so that the
two-sided estimate with constants C1 = 1 and C2 = 2π−2 still holds in some right half-neighbourhood
of zero? The answer to this question is positive.

In [24] was shown that the estimate (2.2) can be strengthened. As a new majorant, consider the
function

u(a, x) = x

[(m(x)+1)/2]∑
n=1

nan + x

m(x)∑
n=[(m(x)+3)/2]

(
m(x) + 1− n

)
an.

The following re�nement of Theorem 2.2 is valid.

Theorem 2.4 ([24]). For any nonincreasing null sequence a,

g(a, x) 6 u(a, x), 0 < x 6 π.

Under the additional condition of convexity of the sequence a, the function 2π−2u(a, x) turns
out to be a minorant of the sum of the sine series not only in a certain neighbourhood of zero, but
practically over the entire interval (0, π/2].

Theorem 2.5 ([24]). For any convex null sequence a,

g(a, x) >
2

π2
u(a, x), 0 < x 6

9π

20
.

In [21], the asymptotic behavior of sums of the particular sine series (1.2) as x→ 0+ was studied.
Their coe�cient sequences not only monotonically tend to zero, but also belong to the following two
special classes. First class � let us denote it as B ↓ � consists of all sequences a monotonically
tending to zero such that the sequence {nan}∞n=1 does not increase, that is (n+ 1)an+1 6 nan, n ∈ N.
Second class � let us denote it as B ↑ � consists of all sequences a monotonically tending to zero
such that the sequence {nan}∞n=1 does not decrease, that is nan 6 (n+ 1)an+1, n ∈ N.

Theorem 2.6 ([21]). If a ∈ B ↓, then, for any x ∈ (0, π/3], the following lower estimate holds:

g(a, x) >

(
I − 1

m(x)

)
v(a, x)− 3

2
am(x)+1 sin

x

2
,

where

I =
1

π

∫ 2π

0

sin t

t
dt = 0.451 . . . .

Moreover, there exist sequences a ∈ B ↓ and {xk}∞k=1 such that

xk > 0 (∀k ∈ N), lim
k→∞

xk = 0, g(a, xk) ∼ I v(a, xk), k →∞.

Theorem 2.7 ([21]). If a ∈ B ↑, then, for any x ∈ (0, π), the following upper estimate holds:

g(a, x) 6 I

(
1 +

1

m(x)

)
v(a, x) +

1

2
am(x)+1 tan

x

4
,
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where

I =
1

π

∫ π

0

sin t

t
dt = 0.589 . . . .

Moreover, there exist sequences a ∈ B ↑ and {xk}∞k=1 such that

xk > 0 (∀k ∈ N), lim
k→∞

xk = 0, g(a, xk) ∼ I v(a, xk), k →∞.

In [24], a lower bound for the sums of sine series with convex coe�cients was studied. The
following result of Popov was re�ned.

Theorem 2.8 ([18]). For any convex null sequence a,

g(a, x) >
2

π2
v(a, x)− 1

π
am(x) − am(x)

(
1

x
− 1

2
cot

x

2

)
, 0 < x 6

π

2
.

It has been established that the Salem function with a sharp constant 2π−2 is not, in general, a
minorant for the sum of a sine series for the class of all convex sequences a.

A sequence {βk}∞k=1 is called slowly varying if limk→∞ β[δk]/βk = 1 for any δ > 0.

Theorem 2.9 ([24]). There exists a convex slowly varying null sequence a such that

g(a, xk) <
2

π2
v(a, xk)

for a sequence of points {xk}∞k=1 with xk → +0.

It is shown that, as an alternative, one can take the modi�ed Salem function

v0(a, x) = x

(m(x)−1∑
n=1

nan +
m(x)

2
am(x)

)
.

Theorem 2.10 ([24]). Let a be a positive convex null sequence. Then for some x0 > 0

g(a, x) >
2

π2
v0(a, x), 0 < x < x0.

For any ε > 0 there exists a convex slowly varying null sequence a for which there exists a sequence
of points {xk}∞k=1 with xk → +0 such that

g(a, xk) <
2

π2
xk

(m(xk)−1∑
n=1

nan +

(
1

2
+ ε

)
m(xk)am(xk)

)
.

In other words, the coe�cient 1/2 multiplying the termm(x)am(x) in the modi�ed Salem majorant
is sharp. This shows that in some sense the function v0(b, x) is optimal for estimating the sum of a
sine series with convex coe�cients from below.

In [26], the sharp constants were found in the two-sided Telyakovskii estimate for the sum of a
sine series with a monotone sequence of coe�cients a under the additional condition of convexity.

S.A. Telyakovskii showed that it is convenient to compare the di�erence between the sum of
series (1.2) and the main term of its asymptotic expansion, i.e.

g(a, x)−
am(x)

2
cot

x

2
,

with the function

σ(a, x) =
1

m(x)

m(x)−1∑
n=1

n2∆1an, ∆1an = an − an+1 > 0.
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Theorem 2.11 ([28], [29]). There exist positive absolute constants C1 and C2 such that

C1 σ(a, x) 6 g(a, x)−
am(x)

2
cot

x

2
6 C2 σ(a, x), 0 < x 6

π

11
,

for any convex null sequence a.

In the following theorem, the sharp values of the constants C1 and C2 are obtained.

Theorem 2.12 ([26]). The following equalities hold:

sup
a

lim
x→+0

g(a, x)− (am(x)/2) cot (x/2)

σ(a, x)
=
π

2
, (2.4)

inf
a

lim
x→+0

g(a, x)− (am(x)/2) cot (x/2)

σ(a, x)
=

3(π − 1)

π2
, (2.5)

moreover, the supremum in (2.4) and the in�mum in (2.5) are attained for slowly varying sequences.

The following theorems answer the question how large is the deviation between the sum of sine
series (1.2) and its asymptotically sharp majorant and minorant for the class of all convex sequences
of coe�cients.

Theorem 2.13 ([24]). There exists a convex slowly varying null sequence a such that

0 < g(a, xk)−
2

π2
v0(a, xk) <

1

2
3

√
π2a1xka2

m(xk) +
9 + π2

6π2
xkam(xk)

for some sequence of points {xk}∞k=1, xk → +0.

Theorem 2.14 ([25]). For any ε > 0, there exists a convex slowly varying null sequence a such that

0 > g(a, xk)−
am(xk)

2
cot

xk
2
− sin

xk
2

m(xk)−1∑
n=1

n(n+ 1)∆1an > −a1x
3−ε
k

for some sequence of points {xk}∞k=1, xk → +0.

At the end of the section, we present a result that re�nes the asymptotics of the sum of a sine
series (1.1) with a convex slowly varying sequence of coe�cients, obtained by S. Aljan�ci�c, R. Bo-
jani�c and M. Tomi�c, in the case when the sequence of coe�cients satis�es the additional regularity
condition.

Theorem 2.15 ([27]). Let a be a non-negative convex null sequence, and let {n∆1an}∞n=1 be a convex
slowly varying sequence. Then

g(a, x)−
am(x)

x
∼ (γ + ln π)

m(x)∆1am(x)

x
, x→ +0,

where γ � is the Euler constant.
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3 The fractional monotonicity

Let us give the corresponding de�nitions.

De�nition 1. Let α ∈ (−∞,∞). The Ces�aro numbers {Aαn}
∞
n=0 are de�ned as the coe�cients in the

expansion

(1− x)−α−1 =
∞∑
n=0

Aαnx
n for x ∈ (0, 1).

The following properties of the Ces�aro numbers are known (see [31]):
(1) A0

n = 1 for n = 0, 1, . . . and Aα0 = 1 for any α.
(2) If α 6= −1,−2, . . . , then there are constants C1(α) > 0 and C2(α) > 0 depending only on α

such that
C2(α)nα 6 |Aαn| 6 C1(α)nα for all n > 0.

(3) For α > −1 and any n, Aαn > 0; for α > 0, Aαn ↑ ∞ as n → ∞; and, for −1 < α < 0, Aαn ↓ 0
as n→∞.

(4) For all α, β and n = 0, 1, . . .

n∑
k=0

Aαn−kA
β
k = Aα+β+1

n .

In particular, Aαn − Aαn−1 = Aα−1
n .

(5) For α > −1 and n = 0, 1, . . . we have

Aαn =
(α + 1)(α + 2) . . . (α + n)

n!
.

Given a number sequence a = {an}∞n=0 and a real number α, we set

∆αan =
∞∑
k=0

A−α−1
k an+k

for n = 0, 1, . . . if this series converges (this is so, for example, if α > 0 and the sequence a is
bounded).

De�nition 2. Let α > 0, and let a = {an}∞n=0 be a sequence of real numbers. We say that a ∈ Mα

if limn→∞ an = 0 and ∆αan > 0 for n = 0, 1, . . . .

It follows from De�nition 2 that the classM0 coincides with the class of null sequences of nonneg-
ative numbers, M1 is the class of monotone nonincreasing null sequences, M2 is the class of convex
null sequences, etc. In addition, in [8, Lemma 1, assertion b)] it was shown that Mα ⊂ Mβ for
α > β > 0.

De�nition 3. Let γ ∈ (0, 1). We say that a sequence a ∈ Pγ if a ∈M0 and

∞∑
n=1

n−γan <∞.

In [8], M.I. Dyachenko proved the following statements. They were proved for cosine series, but
the analogous statements remain valid for sine series.
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Theorem 3.1 ([8]). Let α ∈ (0, 1), a sequence a ∈ Mα ∩ Pα. Then a function f(a, x) exists for
x ∈ (0, 2π), such that f(a, x) ∈ C((0, 2π)) and |f(a, x)| 6 C(α)x−α for x ∈ (0, π), where C(α)
depends only on α.

Theorem 3.2 ([8]). Let α ∈ (0, 1), a sequence b ∈ M1 and b /∈ Pα. Then there exists a sequence
a ∈Mα such that an 6 bn for all n, but series (1.1) diverges at the point π/2.

Theorem 3.3 ([8]). Let α ∈ (1, 2) and a ∈ Mα. Then for any γ ∈ (0, π) we have f(a, x + t) −
f(a, x) = o(tα−1) as t→ +0 uniformly for x ∈ [γ, 2π − γ].

Theorem 3.4 ([8]). Let α ∈ (1, 2) and a function ϕ be de�ned on [0, 1] and ϕ(t) ↓ 0 as t ↓ 0.
Then there exist a sequence a ∈ Mα and a sequence {tn}∞n=1 such that tn ↓ 0 as n → ∞ and
|f(a, π/2 + tn)− f(a, π/2)| > Ctα−1

n ϕ(tn) for all n where C > 0 does not depend on n.

In [9], the following statements connected with Theorem 1.1 were obtained.

Theorem 3.5 ([9]). Let α ∈ (0, 1), p ∈ (1/α,∞), a sequence a ∈ Mα and Jp(a) < ∞. Then
series (1.1) converges at any x ∈ (0, 2π).

Theorem 3.6 ([9]). Let α ∈ (1/2, 1), p ∈ (1/α,∞), a sequence a ∈ Mα and Jp(a) < ∞. Then the
function f(a, x) ∈ Lp([0, π]).

Theorem 3.7 ([9]). Let α ∈ (1/2, 1). Then there exists a sequence a ∈ Mα such that Jp(a) < ∞
for every p ∈ (1, 1/α), but (1.1) is not a Fourier�Lebesgue series.

It is natural to suppose that the following hypothesis is true.

Hypothesis 3.1. Let α ∈ (1/2, 1), p ∈ (2, 1/(1− α)), a function f ∈ Lp([0, π]) and has the Fourier
series of type (1.1) or (1.2) with a ∈Mα. Then Jp(a) <∞.

This conjecture is still unsolved, but M.I. Dyachenko and E. D. Nursultanov [12] proved, in
particular, the following result.

Theorem 3.8 ([12]). Let α ∈ (1/2, 1) and p > 1/(1 − α). Then there exists an even function
f ∈ Lp([0, π]) such that its Fourier coe�cients a ∈Mα, but Jp(a) =∞.

As for asymptotic properties of the sums of trigonometric series with fractional monotone coe�-
cients, the results are the following. For cosine series they were established by M.I. Dyachenko [10].

Note that the sums of cosine series are usually estimated using the function

q(a, x) =

[π/x]∑
n=0

(n+ 1)(an − an+1).

Theorem 3.9 ([10]). For any α ∈ (1, 2), there exists a sequence a ∈ Mα and a monotone null
sequence {tl}∞l=1 such that

lim
l→∞

q(a, tl)

f(a, tl)
= 0.

Theorem 3.10 ([10]). Let α > 2. Then there exists a constant C(α) > 0 such that if a sequence
a ∈Mα, then, for x ∈ (0, π/6), the sum of series (1.1) satis�es the inequality f(a, x) > C(α)q(a, x).

In the same paper [10], an example showing that the condition a ∈ M2 does not guarantee
the validity of the lower bound in terms of q(a, x) was given. Of course, the condition a ∈ M2 is
su�cient for the upper bound f(a, x) 6 Cq(a, x), x ∈ (0, π), to hold. So, for cosine series, we need
2-monotonicity for the upper estimate, and (2 + ε)-monotonicity for the lower estimate.

For the sine series the situation is quite di�erent. This was shown by M.I. Dyachenko and
A.P. Solodov in the paper [13]. They proved the following results.
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Theorem 3.11 ([13]). For any α ∈ (0, 1), there exists a sequence a ∈ Mα such that series (1.2)
diverges almost everywhere.

Theorem 3.12 ([13]). Let α > 1. Then there exist positive constants C(α) and x(α) such that if a
sequence a ∈ Mα, then, for x ∈ (0, x(α)), the sum of series (1.2) satis�es the inequality g(a, x) >
C(α)v(a, x).

Also, it was shown in [13] that there exists a sequence a ∈ M1 and a monotone null sequence
{tl}∞l=1 such that

lim
l→∞

g(a, tl)

v(a, tl)
= 0.

In [2], the following analogue of Theorem 1.2 was obtained.

Theorem 3.13 ([2]). Let an even 2π-periodic function f be in the class Lip β with some 0 < β < 1
and its cosine Fourier coe�cients be in the class Mα with some 0 < α < 1. Then for some C > 0
we have an 6 C/nα+β for n = 1, 2, . . . .

This result cannot be improved as it follows from the next statement.

Theorem 3.14 ([2]). Let α ∈ (0, 1) and β ∈ (0, 1). Then there exists an even 2π-periodic function
f ∈ Lip β such that its cosine Fourier coe�cients are in the classMα and also there exists a monotone
increasing sequence of natural numbers {lr}∞r=1 such that the Fourier coe�cients alr(f) > l−α−βr for
all r.

Also in [2], the following property of α-monotone sequences was established.

Theorem 3.15 ([2]). Let α ∈ (0, 1) and a = {an}∞n=0 be an α-monotone sequence. Then for any
n > 1 holds the inequality ak > anA

α−1
n−k for all 0 6 k 6 n−1, and this inequality cannot be improved.

In [11], M.I. Dyachenko proved the following generalization of one part of Theorem 1.3.

Theorem 3.16 ([11]). Let α ∈ (0, 1), the coe�cients of series (1.2) belong to the class Mα and
nan → 0 as n→∞. Then series (1.2) uniformly converges.

As for reverse statement, the following is true.

Theorem 3.17 ([11]). Let α ∈ (0, 1), series (1.2) uniformly converge and its coe�cients belong to
the class Mα. Then n

αan → 0 as n→∞ and this result cannot be improved.

Also in [11] the following generalization of Kolmogorov's theorem was obtained.

Theorem 3.18 ([11]). Let α > 1 and a sequence a ∈ Mα. Then the sum of series (1.1) f(a, x) ∈
L([0, π]).
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