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1 Introduction

Let a closed linear operator L be given in a Hilbert space H. The linear equation

Lu = f (1.1)

is said to be well-de�nedly solvable on R(L) if ‖u‖ ≤ C‖Lu‖ for all u ∈ D(L) (where C > 0 does
not depend on u) and everywhere solvable if R(L) = H. If (1.1) is simultaneously well-de�ned and
solvable everywhere, then we say that L is a well-de�ned operator. A well-de�nedly solvable operator
L0 is said to be minimal if R(L0) 6= H. A closed operator L̂ is called a maximal operator if R(L̂) = H

and Ker L̂ 6= {0}. An operator A is called a restriction of an operator B and B is said to be an
extension of A if D(A) ⊂ D(B) and Au = Bu for all u ∈ D(A).

Note that if one of the well-de�ned restriction L of a maximal operator L̂ is known, then the
inverses of all well-de�ned restrictions of L̂ have in the form [9]

L−1
K f = L−1f +Kf, (1.2)

where K is an arbitrary bounded linear operator in H such that R(K) ⊂ Ker L̂.
Let L0 be a minimal operator, and let M0 be another minimal operator related to L0 by the

equation (L0u, v) = (u,M0v) for all u ∈ D(L0) and v ∈ D(M0). Then L̂ = M∗
0 and M̂ = L∗0

are maximal operators such that L0 ⊂ L̂ and M0 ⊂ M̂ . A well-de�ned restriction L of a maximal
operator L̂ such that L is simultaneously a well-de�ned extension of the minimal operator L0 is called
a boundary well-de�ned extension. The existence of at least one boundary well-de�ned extension L
was proved by Vishik in [14], that is, L0 ⊂ L ⊂ L̂.

The inverse operators to all possible well-de�ned restrictions LK of the maximal operator L̂ have
form (1.2), moreover

D(LK) =
{
u ∈ D(L̂) : (I −KL̂)u ∈ D(L)

}
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is dense in H if and only if Ker (I + K∗L∗) = {0}. All possible well-de�ned extensions MK of M0

have inverses of the form
M−1

K f = (L∗K)−1f = (L∗)−1f +K∗f,

where K is an arbitrary bounded linear operator in H with R(K) ⊂ Ker L̂ such that

Ker (I +K∗L∗) = {0}.

The main result of this work is the following.

Theorem 1.1. Let L be a boundary well-de�ned extension of L0, that is, L0 ⊂ L ⊂ L̂. If LK is
densely de�ned in H and

R(K∗) ⊂ D(L∗) ∩D(L∗K),

where K and L are the operators in representation (1.2), then the operator KLK, where the bar
denotes the closure of an operator in H, is bounded in H and a well-de�ned restriction LK of the
maximal operator L̂ is similar to the well-de�ned extension

AK = L−KLKL on D(AK) = D(L),

of the minimal operator A0, where D(A0) = D(L) ∩ Ker (KLKL) and A0u = Lu on D(A0) (hence,
A0 ⊂ L).

The theory of well-de�ned restrictions and extensions is intended for the study of unbounded
operators in a Hilbert space. A well-de�ned restriction of a certain maximal operator L̂ is obtained
by the domain restriction of the maximal operator. All possible well-de�ned restrictions LK are
described using one �xed boundary well-de�ned restriction L in terms of the inverse operator (1.2).
Then the direct operator LK acts as a maximal operator, and its domain is given as a perturbation
of the domain of a �xed boundary well-de�ned restriction L.

The main result of this work is the description of all well-de�ned restrictions LK , which are similar
to the well-de�ned extension AK , of some minimal operator A0. The domain of AK coincides with
the domain of L, and the action is de�ned as a perturbation of L̂.

It is clear that the spectra of these similar operators LK and AK coincide. Their eigenvectors
are di�erent. Further in the work, examples of the application of this abstract theorem to some
di�erential equations are given. We note that a weak perturbation of the boundary condition LK is
equivalent to a singular perturbation of the action of the di�erential operator L̂.

The study of the properties of singular perturbations of some di�erential operators and well-
de�ned restrictions is devoted to the works [5], [8].

2 Preliminaries

In this section, we present some results for the well-de�ned restrictions and extensions [3] which are
used in Section 3.

Let A and B be bounded operators in a Hilbert space H. Operators A and B are said to be
similar if there exist an invertible operator P such that P−1AP = B. Similar operators have the
same spectrum. If at least one of two operators A and B is invertible, then the operators AB and
BA are similar.

Lemma 2.1. Let L be a densely de�ned well-de�ned restriction of a maximal operator L̂ in a Hilbert
space H, and K be a bounded linear operator in H. Then the operator KL is bounded on D(L)
(hence, KL is bounded in H) if and only if

R(K∗) ⊂ D(L∗).
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Proof. Let R(K∗) ⊂ D(L∗). Then, by virtue of the equality (KL)∗ = L∗K∗, we have that KL is
bounded in H. Here we have used the boundedness of the operator L∗K∗. Then the operator KL is
bounded on D(L). Conversely, let KL be bounded on D(L). Then KL is bounded on H, by virtue
of the equality (KL)∗ = (KL)∗ and, hence, the operator (KL)∗ is de�ned on the whole space H.
Moreover, the operator K∗ transfers any element f in H to D(L∗). Indeed, for any element g of
D(L) we have

(Lg,K∗f) = (KLg, f) = (g, (KL)∗f).

Therefore, K∗f belongs to the domain D(L∗).

Lemma 2.2. Let LK be a densely de�ned well-de�ned restriction of a maximal operator L̂ in a
Hilbert space H. Then D(L∗) = D(L∗K) if and only if R(K∗) ⊂ D(L∗)∩D(L∗K), where L and K are
the operators entering representation (1.2).

Proof. If D(L∗) = D(L∗K), then by representation (1.2) we easily get

R(K∗) ⊂ D(L∗) ∩D(L∗K) = D(L∗) = D(L∗K).

Let us prove the converse. If
R(K∗) ⊂ D(L∗) ∩D(L∗K),

then we obtain
(L∗K)−1f = (L∗)−1f +K∗f = (L∗)−1(I + L∗K∗)f, (2.1)

(L∗)−1f = (L∗K)−1f −K∗f = (L∗K)−1(I − L∗KK∗)f, (2.2)

for all f in H. It follows from (2.1) that D(L∗K) ⊂ D(L∗), and taking into account (2.2) this implies
that D(L∗) ⊂ D(L∗K). Thus D(L∗) = D(L∗K).

Corollary 2.1. Let LK be any densely de�ned well-de�ned restriction of a maximal operator L̂ in a
Hilbert space H. If R(K∗) ⊂ D(L∗) and KL is a compact operator in H, then

D(L∗) = D(L∗K).

Proof. Compactness of KL implies compactness of L∗K∗. Then R(I + L∗K∗) is a closed subspace
in H. It follows from the dense de�niteness of LK that R(I + L∗K∗) is a dense set in H. Hence
R(I + L∗K∗) = H. Then from the equality (2.1) we get D(L∗) = D(L∗K).

Lemma 2.3. If R(K∗) ⊂ D(L∗)∩D(L∗K), then the bounded operators I+L∗K∗ and I−L∗KK∗ from
(2.1) and (2.2), respectively, have bounded inverses de�ned on H.

Proof. By virtue of the density of the domains of the operators L∗K and L∗ it follows that the
operators I + L∗K∗ and I − L∗KK∗ are invertible. By (2.1) and (2.2) we have Ker (I + L∗K∗) = {0}
and Ker (I − L∗KK∗) = {0}, respectively. By representations (2.1) and (2.2) it also follows that

R(I + L∗K∗) = H and R(I − L∗KK∗) = H,

since D(L∗) = D(L∗K). The inverse operators (I+L∗K∗)−1 and (I−L∗KK∗)−1 of the closed operators
I − L∗KK

∗ and I + L∗K∗, respectively, are closed. Then the closed operators (I + L∗K∗)−1 and
(I − L∗KK∗)−1, de�ned on the whole of H, are bounded.

Under the assumptions of Lemma 2.3 the operators KL and KLK will be (see [2]) restrictions of
the bounded operators KL and KLK , respectively. Thus,

(I − L∗KK∗)−1 = I + L∗K∗ and (I −KLK)−1 = I +KL.

In what follows, we need the following theorem.

Theorem 2.1 (Theorem 1.1 [6, p. 307]). A sequence {ψj}∞j=1 biorthogonal to a basis {φj}∞j=1 of a
Hilbert space H is also a basis of H.
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3 Proof of Theorem 1.1

In this section we prove our main result Theorem 1.1.

Proof. We transform (1.2) to the form

L−1
K = L−1 +K = (I +KL)L−1. (3.1)

By Lemma 2.1 and Lemma 2.3 the operators KL and KLK are bounded, the operator I + KL is
invertible and

(I +KL)−1 = I −KLK .

Then we have

A−1
K = (I +KL)−1L−1

K (I +KL)

= (I +KL)−1(I +KL)L−1(I +KL) = L−1(I +KL).

Hence, by Corollary 1 [4, p. 259] we have D(AK) = D(L) and

AK = (I −KLK)L = L−KLKL.

Note that AK = A0 = L on D(A0) = D(L) ∩Ker (KLKL) and AK is a well-de�ned extension of the
minimal operator A0.

Corollary 3.1. Suppose the hypothesis of Theorem 1.1 is satis�ed. Then a well-de�ned extension
L∗K of a minimal operator M0 is similar to the well-de�ned operator

A∗K = L∗(I − L∗KK∗)

on

D(A∗K) =
{
v ∈ H : (I − L∗KK∗)v ∈ D(L∗)

}
.

4 An application of Theorem 1.1 to the di�erentiation operator

of order n

In this section, we give some applications of the main result to di�erential operators.
As a maximal operator L̂ in L2(0, 1), we consider the operator

L̂y = y(n),

with the domain D(L̂) = W n
2 (0, 1), n ∈ N (W n

2 (0, 1) in the Sobolev space). Then the minimal

operator L0 is the restriction of L̂ on D(L0) = W̊ n
2 (0, 1). As a �xed boundary well-de�ned extension

L of the minimal operator L0, we take the restriction of L̂ on

D(L) =
{
y ∈ W n

2 (0, 1) : y(`)(0) + y(`)(1) = 0, ` = 1, 2, . . . , n− 1
}
.

We �nd the inverse to all well-de�ned restrictions of LK ⊂ L̂

L−1
K = L−1 +K,
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where

Kf =
n∑
`=1

w`(x)

∫ 1

0

f(t)σ`(t) dt, σ` ∈ L2(0, 1),

and w` ∈ Ker L̂, ` = 1, 2, . . . , n are linearly independent functions with the properties

w
(k−1)
` (0) + w

(k−1)
` (1) =

{
1, ` = k,

0, ` 6= k,
`, k = 1, 2, . . . , n.

Then the operator LK is the restriction of L̂ on

D(LK)

=

{
u ∈ W n

2 (0, 1) : u(k−1)(0) + u(k−1)(1) =

∫ 1

0

u(n)(t)σk(t) dt, k = 1, 2, . . . , n

}
.

We will consider restrictions of LK with dense domains in L2(0, 1), that is,

D(LK) = L2(0, 1).

If R(K∗) ⊂ D(L∗), then by Corollary 3.1 the operators KL and KLK will be bounded in L2(0, 1).
Since KL is a compact operator, then by Lemma 2.3 the operator I + KL is invertible and (I +
KL)−1 = I −KLK . The operator KL is bounded if and only if

σ` ∈ D(L∗) =
{
σ` ∈ W n

2 (0, 1) : σ
(k−1)
` (0) + σ

(k−1)
` (1) = 0, `, k = 1, 2, . . . , n

}
.

Hence, we have

KLy =
n∑
`=1

w`(x)

∫ 1

0

y(n)(t)σ`(t) dt = (−1)n
n∑
`=1

w`(x)

∫ 1

0

y(t)σ
(n)
` (t) dt.

We �nd the operator KLK . For this, we invert the operator

(I +KL)y = y + (−1)n
n∑
`=1

w`(x)

∫ 1

0

y(t)σ
(n)
` (t) dt = u,

where y ∈ D(L), u ∈ D(LK). Then we can write

y = (I −KLK)u = u− (−1)n
n∑
`=1

w`(x)
n∑
j=1

β`j

∫ 1

0

u(t)σ
(n)
j (t) dt,

where β`j, `, j = 1, 2, . . . , n are elements of the inverse matrix U−1 of the matrix U

U

=


1 + (−1)n−1σ

(n−1)
1 (0) (−1)n−2σ

(n−2)
1 (0) · · · σ

(2)
1 (0) −σ(1)

1 (0) σ1(0)

(−1)n−1σ
(n−1)
2 (0) 1 + (−1)n−2σ

(n−2)
2 (0) · · · σ

(2)
2 (0) −σ(1)

2 (0) σ2(0)
...

...
. . .

...
...

...
(−1)n−1σ(n−1)

n (0) (−1)n−2σ(n−2)
n (0) · · · σ(2)

n (0) −σ(1)
n (0) 1 + σn(0)

 .

Note that the conditions R(K∗) ⊂ D(L∗) and D(LK) = L2(0, 1) imply that detU 6= 0. Thereby, the
operator

KLKu = (−1)n
n∑
`=1

w`(x)
n∑
j=1

β`j

∫ 1

0

u(t)σ
(n)
j (t) dt,
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is a bounded operator in L2(0, 1). Then the operator AK has the form

AKv = Lv −KLKLv = v(n) − (−1)n
n∑
`=1

w`(x)
n∑
j=1

β`j

∫ 1

0

v(n)(t)σ
(n)
j (t) dt,

on

D(AK) = D(L) =
{
v ∈ W n

2 (0, 1) : v(k−1)(0) + v(k−1)(1) = 0, k = 1, 2, . . . , n
}
.

The operator AK can be written as

AKv = v(n) − (−1)n
n∑
`=1

w`(x)
n∑
j=1

β`jFj(v),

where

Fj(v) =< Fj, v >=

∫ 1

0

v(n)(t)σ
(n)
j (t) dt, j = 1, 2, . . . , n.

It can be seen that Fj ∈ W−n
2 (0, 1) in the sense of Lions-Magenes (see [10]).

In this case

D(A0) = {v ∈ D(L) : Fj(v) = 0, j = 1, 2, . . . , n} ,

A0 ⊂ L and A0 ⊂ AK .
We transform the boundary conditions of LK to the form

U


u(0) + u(1)

u(1)(0) + u(1)(1)
...

u(n−1)(0) + u(n−1)(1)

 =


∫ 1

0
u(t)σ

(n)
1 (t) dt∫ 1

0
u(t)σ

(n)
2 (t) dt
...∫ 1

0
u(t)σ(n)

n (t) dt

 .

Then we get

u(`−1)(0) + u(`−1)(1) =
n∑
j=1

β`j

∫ 1

0

u(t)σ
(n)
j (t) dt, ` = 1, 2, . . . , n, (4.1)

where u ∈ D(LK), σ
(n)
j ∈ L2(0, 1), j = 1, 2, . . . , n. Boundary condition (4.1) is regular in the

Shkalikov sense (see [12]). Then, by virtue of [12], the operator LK has a system of root vectors
forming a Riesz basis with brackets in L2(0, 1). Thereby the operator AK , being similar to the
operator LK , also has a basis with brackets property. The eigenvalues of these operators coincide. If
{uk}∞1 are eigenfunctions of the operator LK , then the eigenfunctions vk of AK are related to them
by the relations

uk = (I +KL)vk = vk + (−1)n
n∑
`=1

w`(x)

∫ 1

0

vk(t)σ
(n)
` (t) dt, k = 1, 2, . . . , n.

If, in particular, we take

σ
(n)
` (x) = sign(x− x`), 0 < x` < 1, ` = 1, 2, . . . , n,

then we get

F`(v) = −2v(n−1)(x`), ` = 1, 2, . . . , n.
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By Corollary 3.1, Theorem 2.1, and [13, p. 928], we can assert that the system of root vectors of the
adjoint operator

A∗Kv = (−1)n
dn

dxn

[
v(x)− (−1)n

n∑
`,j=1

β`jσ
(n)
j (x)

∫ 1

0

v(t)w`(t) dt

]
,

on

D(A∗K) =

{
v ∈ L2(0, 1) : v(x)− (−1)n

n∑
`,j=1

β`jσ
(n)
j (x)

∫ 1

0

v(t)w`(t) dt ∈ D(L)

}
,

forms a Riesz basis with brackets in L2(0, 1).

5 Example in case n = 2

If the maximal operator L̂ acts as

L̂y = −y′′

on the domain D(L̂) = W 2
2 (0, 1), then the minimal operator L0 is a restriction of L̂ on D(L0) =

W̊ 2
2 (0, 1). As a �xed operator L we take the restriction of L̂ on

D(L) =
{
y ∈ W 2

2 (0, 1) : y(0) = y(1) = 0
}
.

Then

L−1
K f = L−1f +Kf = −

∫ x

0

(x− t)f(t) dt+ x

∫ 1

0

(1− t)f(t) dt

+ (1− x)

∫ 1

0

f(t)σ1(t) dt+ x

∫ 1

0

f(t)σ2(t) dt,

Kf = (1− x)

∫ 1

0

f(t)σ1(t) dt+ x

∫ 1

0

f(t)σ2(t) dt.

KL is bounded in L2(0, 1), if R(K∗) ⊂ D(L∗) = D(L), that is,

σ1, σ2 ∈ D(L) =
{
σ1, σ2 ∈ W 2

2 (0, 1) : σ1(0) = σ1(1) = σ2(0) = σ2(1) = 0
}
,

and has the form

KLy = −(1− x)

∫ 1

0

y(t)σ′′1(t) dt− x
∫ 1

0

y(t)σ′′2(t) dt.

The operator KLK is also bounded in L2(0, 1) and

KLKu = −1− x
∆

[(
1− σ′2(1)

) ∫ 1

0

u(t)σ′′1(t) dt+ σ′1(1)

∫ 1

0

u(t)σ′′2(t) dt
]

− x

∆

[(
1 + σ′1(0)

) ∫ 1

0

u(t)σ′′2(t) dt− σ′2(0)

∫ 1

0

u(t)σ′′1(t) dt
]
,

where

∆ =
(
1 + σ′1(0)

)(
1− σ′2(1)

)
+ σ′2(0)σ′1(1).
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Then the operator AK has the form

AKv = −v′′ − 1

∆

[(
(1− x)(1− σ′2(1))− xσ′2(0)

) ∫ 1

0

v′′(t)σ′′1(t) dt

+
(
(1− x)σ′1(1) + x(1 + σ′1(0))

) ∫ 1

0

v′′(t)σ′′2(t) dt
]
,

on
D(AK) = D(L) =

{
v ∈ W 2

2 (0, 1) : v(0) = v(1) = 0
}
,

where σ′′1 , σ
′′
2 ∈ L2(0, 1).

We rewrite the operator AK in the form

AKv = −v′′ + a(x)F1(v) + b(x)F2(v), (5.1)

where

a(x) = − 1

∆

(
(1− x)(1− σ′2(1))− xσ′2(0)

)
, F1(v) =

∫ 1

0

v′′(t)σ′′1(t) dt,

b(x) = − 1

∆

(
(1− x)σ′1(1) + x(1 + σ′1(0)), F2(v) =

∫ 1

0

v′′(t)σ′′2(t) dt.

Note that F1, F2 ∈ W−2
2 (0, 1) in the sense of Lions-Magenes (see [10]).

Further, we see that the operator LK acts as L̂ on the domain

D(LK) =

{
u ∈ W 2

2 (0, 1) :

(
1 + σ′1(0) 0 −σ′1(1) 0
σ′2(0) 0 1− σ′2(1) 0

)
u(0)
u′(0)
u(1)
u′(1)

 =

(
−
∫ 1

0
u(t)σ′′1(t) dt

−
∫ 1

0
u(t)σ′′2(t) dt

)}
,

and the determinant of the matrix composed of the �rst and third columns of the boundary conditions
matrix is

J13 =
(
1 + σ′1(0)

)(
1− σ′2(1)

)
+ σ′2(0)σ′1(1) = ∆ 6= 0,

since R(K∗) ⊂ D(L∗) and D(LK) = L2(0, 1). Then the left-hand side of this boundary condition
is non-degenerate according to Marchenko [11], hence regular according to Birkho� (see [12]). By
virtue of Theorem (see [12, p. 15]), the system of root vectors of the operator LK forms a Riesz basis
with brackets in L2(0, 1). Thus, by virtue of Theorem (1.1) the system of root vectors of AK also
forms a Riesz basis with brackets and the eigenvalues of LK and AK coincide, and the eigenfunctions
are related to each other as follows

uk = vk − (1− x)

∫ 1

0

vk(t)σ
′′
1(t) dt− x

∫ 1

0

vk(t)σ
′′
2(t) dt, k ∈ N.

If in the particular case we take

σ′′1(x) = sign(x− x1)− sign(x− x2),

σ′′2(x) = x
[

sign(x− x1)− sign(x− x2)
]
,

(5.2)
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where 0 < x1 < x2 < 1, then we get

F1(v) = 2v′(x2)− 2v′(x1),

F2(v) = 2x2v
′(x2)− 2x1v

′(x1)− 2v(x2) + 2v(x1),

in (5.1).
In this case

D(A0) = {v ∈ D(L) : v(x1) = v(x2), v′(x1) = v′(x2)} ,

A0 ⊂ L and A0 ⊂ AK .
By Corollary 3.1, Theorem 2.1, and [13, p. 928], for n = 2, we can assert that the system of root

vectors of the operator

A∗Kv = (−1)2 d
2

dx2

[
v(x)− c(x)

∫ 1

0

(1− t)v(t) dt− d(x)

∫ 1

0

tv(t) dt
]
,

on

D(A∗K) =
{
v ∈ L2(0, 1) : v(x)− c(x)

∫ 1

0

(1− t)v(t) dt− d(x)

∫ 1

0

tv(t) dt ∈ D(L)
}
,

forms a Riesz basis with brackets in L2(0, 1), where

c(x) = − 1

∆

[(
1− σ′2(1)

)
σ′′1(x) + σ′1(1)σ′′2(x)

]
,

d(x) =
1

∆

[(
1 + σ′1(0)

)
σ′′2(x)− σ′2(0)σ′′1(x)

]
.

Note that
σ′′1 , σ

′′
2 ∈ L2(0, 1), D(L) =

{
y ∈ W 2

2 (0, 1) : y(0) = y(1) = 0
}
.

For clarity, we consider the special case (5.2), then we have

c(x) =
sign(x− x1)− sign(x− x2)

∆

[
1 +

x3
2 − x3

1

3
− x2

2 − x2
1

2
x

]
,

d(x) =
sign(x− x1)− sign(x− x2)

∆

[(
1 + x2 − x1 −

x2
2 − x2

1

2

)
x

− x2
2 − x2

1

2
+
x3

2 − x3
1

3

]
.

The domain of A∗K will have the form

D(A∗K) =

{
v ∈ L2(0, 1) ∩W 2

2 (0, x1) ∩W 2
2 (x1, x2) ∩W 2

2 (x2, 1) : v(0) = v(1) = 0,

v(x1 − 0)− v(x1 + 0) = −c(x1 + 0)

∫ 1

0

(1− t)v(t) dt− d(x1 + 0)

∫ 1

0

tv(t) dt,

v(x2 + 0)− v(x2 − 0) = −c(x2 − 0)

∫ 1

0

(1− t)v(t) dt− d(x2 − 0)

∫ 1

0

tv(t) dt,

v′(x1 − 0)− v′(x1 + 0) = −c′(x1 + 0)

∫ 1

0

(1− t)v(t) dt− d′(x1 + 0)

∫ 1

0

tv(t) dt,

v′(x2 + 0)− v′(x2 − 0) = −c′(x2 − 0)

∫ 1

0

(1− t)v(t) dt− d′(x2 − 0)

∫ 1

0

tv(t) dt

}
,
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where

c(x1 + 0) =
2

∆

(
1 +

x3
2 − x3

1

3
− x2

2 − x2
1

2
x1

)
,

d(x1 + 0) = − 2

∆

((
1 + x2 − x1 −

x2
2 − x2

1

2

)
x1 −

x2
2 − x2

1

2
+
x3

2 − x3
1

3

)
,

c(x2 − 0) =
2

∆

(
1 +

x3
2 − x3

1

3
− x2

2 − x2
1

2
x2

)
,

d(x2 − 0) = − 2

∆

((
1 + x2 − x1 −

x2
2 − x2

1

2

)
x2 −

x2
2 − x2

1

2
+
x3

2 − x3
1

3

)
,

c′(x1 + 0) = − 1

∆

(
x2

2 − x2
1

)
,

d′(x1 + 0) =
2

∆

(
1 + x1 − x2 +

x2
2 − x2

1

2

)
,

c′(x2 − 0) = c′(x1 + 0), d′(x2 − 0) = d′(x1 + 0),

∆ = 1 + x2 − x1 −
x2

2 − x2
1

2
+
x3

2 − x3
1

3
+
x2 − x1

12

(
(x2 − x1)3 + 6x1x2

)
6= 0,

since x1, x2 ∈ (0, 1). Moreover, the operator A∗K acts as follows

A∗Kv = −v′′(x) + c′′(x)

∫ 1

0

(1− t)v(t) dt+ d′′(x)

∫ 1

0

tv(t) dt,

where

c′′(x) =
2

∆

[
1 +

x3
2 − x3

1

3
+
x2

2 − x2
1

2
(x2 − x1)

](
δ′(x− x1)− δ′(x− x2)

)
− 1

∆

(
x2

2 − x2
1

)(
δ(x− x1)− δ(x− x2)

)
,

d′′(x) =
2

∆

[(
1 + x2 − x1 −

x2
2 − x2

1

2

)
(x1 − x2)− x2

2 − x2
1

2
+
x3

2 − x3
1

3

]
×
(
δ′(x− x1)− δ′(x− x2)

)
− 1

∆

(
1 + x2 − x1 +

x2
2 − x2

1

2

)(
δ(x− x1)− δ(x− x2)

)
,

here δ is the Dirac delta-function.

6 An application to the Laplace operator

In the Hilbert space L2(Ω), where Ω is a bounded domain in Rm with in�nitely smooth boundary

∂Ω, let us consider the minimal L0 and maximal L̂ operators generated by the Laplace operator

−∆u = −
(
∂2u

∂x2
1

+
∂2u

∂x2
2

+ · · ·+ ∂2u

∂x2
m

)
. (6.1)

The closure L0 in the space L2(Ω) of the Laplace operator (6.1) with the domain C∞0 (Ω) is called
the minimal operator corresponding to the Laplace operator.
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The operator L̂, adjoint to the minimal operator L0 corresponding to the Laplace operator is
called the maximal operator (see [7]). Note that

D(L̂) = {u ∈ L2(Ω) : L̂u = −∆u ∈ L2(Ω)}.

Denote by L the operator corresponding to the Dirichlet problem with the domain

D(L) = {u ∈ W 2
2 (Ω) : u|∂Ω = 0}.

Then the inverse operators L−1
K to all possible well-de�ned restrictions of the maximal operator L̂

corresponding to the Laplace operator (6.1) have the following form:

u ≡ L−1
K f = L−1f +Kf, (6.2)

where K is an arbitrary bounded (in L2(Ω)) linear operator with

R(K) ⊂ Ker L̂ = {u ∈ L2(Ω) : −∆u = 0}.

Then the direct operator LK is determined from the following problem:

L̂u = f, f ∈ L2(Ω), (6.3)

D(LK) = {u ∈ D(L̂) : (I −KL̂)u|∂Ω = 0}, (6.4)

where I is the unit operator in L2(Ω). There are no other linear well-de�ned restrictions of the

operator L̂ (see [1]).
The operators (L∗K)−1, corresponding to the operators L∗K ,

v ≡ (L∗K)−1g = L−1g +K∗g,

describe the inverse operators to all possible well-de�ned extensions of the minimal operator L0 if
and only if K satis�es the condition (see [1])

Ker (I +K∗L) = {0}.

Note that the last condition is equivalent to the following one: D(LK) = L2(Ω). If the additional
condition

KR(L0) = {0}

is imposed on the operator K from (6.2), then the operator LK corresponding to problem (6.3), (6.4),
will turn out to be boundary well-de�ned. By applying Theorem 1.1 to this particular case we have

Theorem 6.1. Let the operator K have the form

Kf(x) = φ(x)

∫∫
Ω

f(ξ)g(ξ)dξ, x, ξ ∈ Ω ⊂ Rm,

where φ is a harmonic function in L2(Ω), g ∈ L2(Ω), and

K∗f(x) = g(x)

∫∫
Ω

f(ξ)φ(ξ)dξ.
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If K satis�es the assumptions of Theorem 1.1, then g ∈ W 2
2 (Ω), g(x) |∂Ω= 0,∫∫

Ω

φ(ξ)(∆g)(ξ)dξ 6= 1,

and the well-de�ned operator

AKu(x) = −∆u(x) +
φ(x)

1 +
∫∫
Ω

φ(ξ)(∆g)(ξ)dξ

∫∫
Ω

(∆u)(ξ)(∆g)(ξ)dξ,

,

D(AK) =
{
u ∈ W 2

2 (Ω) :
(
u(x) |∂Ω= 0

}
describes a relatively bounded perturbation of LK which has the same eigenvalues as LK.

The system of root vectors of AK is complete in L2(Ω). Morever, if {vk} is a system of eigen-
functions of LK , then the system of eigenvectors {uk} of AK has the form

uk(x) = ((I +KL)vk)(x) = vk(x) + φ(x)

∫∫
Ω

vk(ξ)(∆g)(ξ)dξ, k = 1, 2, . . .

We can rewrite

AKu(x) = −∆u(x) +
φ(x)

1 +
∫∫
Ω

φ(ξ)(∆g)(ξ)dξ
F (u),

where

F (u) =

∫∫
Ω

(∆u)(ξ)(∆g)(ξ)dξ.

Note that F ∈ W−2
2 (Ω) in the sense of Lions-Magenes (see [10]).

In this case

D(A0) =

v ∈ D(L) :

∫∫
Ω

(∆u)(ξ)(∆g)(ξ)dξ = 0

 ,

A0 ⊂ L and A0 ⊂ AK .
Consider a more visual cases when m = 2 and m = 3, that is, Ω ⊂ R2 and Ω ⊂ R3 respectively.

To do this, we de�ne the operator K by using the function g constructed in the following way. Let
x0 ∈ Ω, be a point lying strictly inside the closed domain Ω. As functions g(x) we take the solution
to the following Dirichlet problem

− (∆g)(x) = − ln |x− x0|, g|∂Ω = 0, (6.5)

for m = 2 and
− (∆g)(x) = |x− x0|, g|∂Ω = 0, (6.6)

for m = 3, respectively. Then we get the following:

AKu(x) = −∆u(x) +
φ(x)

1 +
∫∫
Ω

φ(ξ)(ln |ξ − x0|)dξ

∫
∂Ω

∂u

∂n
(ξ)(ln |ξ − x0|)dξ

+
φ(x)u(x0)

1 +
∫∫
Ω

φ(ξ)(ln |ξ − x0|)dξ
,

D(AK) =
{
u ∈ W 2

2 (Ω) : u(x) |∂Ω= 0
}
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for the case m = 2 and

AKu(x) = −∆u(x) +
φ(x)

1 +
∫∫
Ω

φ(ξ) 1
|ξ−x0|dξ

∫
∂Ω

∂u

∂n
(ξ)

1

|ξ − x0|
dξ

+
φ(x)u(x0)

1 +
∫∫
Ω

φ(ξ) 1
|ξ−x0|dξ

,

D(AK) =
{
u ∈ W 2

2 (Ω) : u(x) |∂Ω= 0
}

for the case m = 3. We have obtained a relatively bounded perturbation AK of LK which has the
same eigenvalues as the operator LK . The system of root vectors of AK is complete in the L2(Ω). If
{vk} is a system of eigenfunctions of LK , then the system of eigenfunctions {uk} of AK has the form

uk(x) = ((I +KL)vk)(x) = vk(x) + φ(x)

∫∫
Ω

vk(ξ) ln |ξ − x0|dξ, k = 1, 2, . . . ,

in the case m = 2 and

uk(x) = ((I +KL)vk)(x) = vk(x) + φ(x)

∫∫
Ω

vk(ξ)
1

|ξ − x0

|dξ, k = 1, 2, . . . ,

in the case m = 3, respectively.
Thus, we have constructed a singular perturbation AK of the LK with a complete system of root

vectors. Indeed,
L−1
K = L−1 +K = (I +KL)L−1,

where KL is compact operator, I +KL is invertable operator. Selfadjoint operator L−1 is positive,
compact and belongs to the Neumann-Schatten class. Then by Theorem 8.1 [6, p. 257]the system of
root vectors LK is complete in L2(Ω). Hence, by Theorem 1.1 the system of root vectors of AK is
complete in L2(Ω).
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