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1 Introduction

Let a closed linear operator L be given in a Hilbert space H. The linear equation
Lu=f (1.1)

is said to be well-definedly solvable on R(L) if ||u|| < C||Lu|| for all w € D(L) (where C' > 0 does
not depend on u) and everywhere solvable if R(L) = H. If is simultaneously well-defined and
solvable everywhere, then we say that L is a well-defined operator. A well-definedly solvable operator
Ly is said to be minimal if R(Ly) # H. A closed operator L is called a mazimal operator if R(L) = H
and Ker L # {0}. An operator A is called a restriction of an operator B and B is said to be an
extension of A if D(A) C D(B) and Au = Bu for all u € D(A).

Note that if one of the well-defined restriction L of a maximal operator L is known, then the
inverses of all well-defined restrictions of L have in the form [9]

L f=L"'f+KJ, (1.2)

where K is an arbitrary bounded linear operator in H such that R(K) C Ker L.

Let Lo be a minimal operator, and let M, be another minimal operator related to Ly by the
equation (Lou,v) = (u, Mov) for all u € D(Ly) and v € D(My). Then L = Mg and M = Lj
are maxir/r\lal operators such that Ly C L and My C M. A well-defined restriction L of a maximal
operator L such that L is simultaneously a well-defined extension of the minimal operator L is called
a boundary well-defined extension. The existence of at least one boundary well-defined extension L
was proved by Vishik in [I4], that is, Lo C L C L.

The inverse operators to all possible well-defined restrictions L of the maximal operator L have

form , moreover
D(Lg)={ue D(L): (I - KL)u€ D(L)}
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is dense in H if and only if Ker (I + K*L*) = {0}. All possible well-defined extensions My of M,
have inverses of the form

M f = (L) f = (L) f+ K f,
where K is an arbitrary bounded linear operator in H with R(K) C Ker L such that
Ker (I + K*L*) = {0}.
The main result of this work is the following.

Theorem 1.1. Let L be a boundary well-defined extension of Lg, that is, Ly C L C L. If Lg s
densely defined in H and
R(K™) C D(L*)n D(LY),

where K and L are the operators in representation (1.2), then the operator KLy, where the bar
denotes the closure of an operator in H, is bounded in H and a well-defined restriction Ly of the
mazximal operator L is similar to the well-defined extension

AK =L —EKL on D(AK) = D(L),

of the minimal operator Ay, where D(Ag) = D(L) N Ker(KLgL) and Ayu = Lu on D(Ag) (hence,
Ag C L)

The theory of well-defined restrictions and extensions is intended for the study of unbounded
operators in a Hilbert space. A well-defined restriction of a certain maximal operator L is obtained
by the domain restriction of the maximal operator. All possible well-defined restrictions Lg are
described using one fixed boundary well-defined restriction L in terms of the inverse operator .
Then the direct operator Lx acts as a maximal operator, and its domain is given as a perturbation
of the domain of a fixed boundary well-defined restriction L.

The main result of this work is the description of all well-defined restrictions Lg, which are similar
to the well-defined extension Ay, of some minimal operator Ag. The domain of Ak coincides with
the domain of L, and the action is defined as a perturbation of L.

It is clear that the spectra of these similar operators Ly and Ay coincide. Their eigenvectors
are different. Further in the work, examples of the application of this abstract theorem to some
differential equations are given. We note that a weak perturbation of the boundary condition L is
equivalent to a singular perturbation of the action of the differential operator L.

The study of the properties of singular perturbations of some differential operators and well-
defined restrictions is devoted to the works [5], [8].

2 Preliminaries

In this section, we present some results for the well-defined restrictions and extensions [3] which are
used in Section 3.

Let A and B be bounded operators in a Hilbert space H. Operators A and B are said to be
similar if there exist an invertible operator P such that P~'AP = B. Similar operators have the
same spectrum. If at least one of two operators A and B is invertible, then the operators AB and
BA are similar.

Lemma 2.1. Let L be a densely defined well-defined restriction of a mazximal operator L in a Hilbert
space H, and K be a bounded linear operator in H. Then the operator KL is bounded on D(L)
(hence, KL is bounded in H) if and only if

R(K*) c D(L*).
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Proof. Let R(K*) C D(L*). Then, by virtue of the equality (KL)* = L*K*, we have that KL is
bounded in H. Here we have used the boundedness of the operator L*K*. Then the operator KL is
bounded on D(L). Conversely, let KL be bounded on D(L). Then KL is bounded on H, by virtue
of the equality (KL)* = (KL)* and, hence, the operator (KL)* is defined on the whole space H.
Moreover, the operator K* transfers any element f in H to D(L*). Indeed, for any element g of
D(L) we have

(Lg, K" f) = (KLg, f) = (9, (KL)"f).
Therefore, K*f belongs to the domain D(L*). O

Lemma 2.2. Let Lix be a densely defined well-defined restriction of a mazximal operator Lina
Hilbert space H. Then D(L*) = D(L%;) if and only if R(K*) C D(L*) N D(L3), where L and K are
the operators entering representation (|1.2]).

Proof. If D(L*) = D(L3},), then by representation (|1.2)) we easily get
R(K*) C D(L*)ND(Ly) = D(L*) = D(L}).

Let us prove the converse. If
R(K*) C D(L*)ND(L%),

then we obtain

(L) f= (L) f+ K f = (L)' (I+ L'K") f, (2.1)
(L) = (L)' f = K*f = (Li) "' (I = LK) f, (2.2)
for all fin H. It follows from that D(L3,) C D(L*), and taking into account this implies
that D(L*) € D(L%). Thus D(L*) = D(L%). 0

Corollary 2.1. Let Lk be any densely defined well-defined restriction of a mazimal operator Lina
Hilbert space H. If R(K*) C D(L*) and KL is a compact operator in H, then

D(L*) = D(L%).

Proof. Compactness of KL implies compactness of L*K*. Then R(I + L*K*) is a closed subspace
in H. It follows from the dense definiteness of Ly that R(I + L*K*) is a dense set in H. Hence
R(I + L*K*) = H. Then from the equality (2.1) we get D(L*) = D(L3). O

Lemma 2.3. If R(K*) C D(L*)ND(L%), then the bounded operators I + L*K* and I — Lj,K* from
(2.1) and (2.2)), respectively, have bounded inverses defined on H.

Proof. By virtue of the density of the domains of the operators L} and L* it follows that the

operators [ + L*K* and I — L3 K* are invertible. By (2.1) and (2.2)) we have Ker (I + L*K*) = {0}

and Ker (I — L, K*) = {0}, respectively. By representations (2.1) and (2.2) it also follows that
RI+L'K*)=H and R(—L,K*) =H,

since D(L*) = D(L%). The inverse operators (I +L*K*)~' and (I — Lj K*)~! of the closed operators
I — L K* and I + L*K*, respectively, are closed. Then the closed operators (I + L*K*)~! and
(I — L3 K*)7!, defined on the whole of H, are bounded. O

Under the assumptions of Lemma [2.3[the operators KL and K Ly will be (see [2]) restrictions of
the bounded operators KL and K Ly, respectively. Thus,

(I-Li K '=I+L*K* and (I-KLg)'=1+KL.
In what follows, we need the following theorem.

Theorem 2.1 (Theorem 1.1 [6, p.307]). A sequence {1;}52, biorthogonal to a basis {¢;}52, of a
Hilbert space H is also a basis of H.
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3 Proof of Theorem [1.1

In this section we prove our main result Theorem

Proof. We transform ([1.2]) to the form
Lt =L"'"+K=(I+KL)L" (3.1)

By Lemma and Lemma the operators KL and K Ly are bounded, the operator I + KL is
invertible and
(I+KL)y'=1-KLg.

Then we have

A = I+ KL) 'L (I +KL)
= (I+KL'(U+KL)L*I+KL)=L"'(I+KL).
Hence, by Corollary 1 [4], p.259] we have D(Ax) = D(L) and
Ax = (I -KLg)L =L —KLgL.

Note that Ax = Ag = L on D(Ag) = D(L)NKer (KLgL) and Ak is a well-defined extension of the
minimal operator Ay. [

Corollary 3.1. Suppose the hypothesis of Theorem 18 satisfied. Then a well-defined extension
L3 of a minimal operator My is similar to the well-defined operator

At = L*(I — LK)

on

D(Ay)={ve H: (I - LyK*)v e D(L*)}.

4 An application of Theorem (1.1| to the differentiation operator

of order n

In this section, we give some applications of the main result to differential operators.
As a maximal operator L in L?(0,1), we consider the operator

Ly =y,

~

with the domain D(L) = W}(0,1), n € N (W3(0,1) in the Sobolev space). Then the minimal
operator Ly is the restriction of L on D(Ly) = W} (0,1). As a fixed boundary well-defined extension
L of the minimal operator L, we take the restriction of L on

D(L) = {y e W3(0,1): y9(0) +yP (1) =0, £=1,2,....,n—1}.
We find the inverse to all well-defined restrictions of Ly C L

L =L+ K,
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where
n 1
Kf= ng(x)/ f()F,(t)dt, o, € L*0,1),
=1 0
and w, € Ker Z, ¢=1,2,...,n are linearly independent functions with the properties

_ - 1, L=k,
wék 1)(0)—|—wék 1)(1):{0 (4K (k=1,2,...,n

Then the operator Ly is the restriction of L on

D(Lk)
= {u e Wi(0,1) : u*V(0) + ukY(1) = /1 u™ ()T (t) dt, k=1,2,... n} :

We will consider restrictions of Lx with dense domains in L?(0, 1), that is,
D(Ly) = L*(0,1).

If R(K*) C D(L*), then by Corollary B.1] the operators KL and K Ly will be bounded in L2(0, 1).
Since KL is a compact operator, then by Lemma the operator I + KL is invertible and (I +
KL)™' =1 — KLg. The operator KL is bounded if and only if

or € D(L*) = {o, e W(0,1) : o) (0) + 0 V(1) =0, 6,k=1,2,...,n}.

Hence, we have

KLy = wi(x) / Yy (071 dt = (—1)" 3 wi() / y(t)y" (t) dt.

We find the operator K Lg. For this, we invert the operator

(I+KLy=y+(-1)"> wx) / YO (t) dt = u,
(=1 0

where y € D(L), u € D(Lk). Then we can write

y= (1= KLy =u— (=" wila) 3 B /0 u(t)7 (1) dt,

where (g, ¢,j =1,2,...,n are elements of the inverse matrix U~! of the matrix U
U
L (Dt ) (1)) e 320 <30 3i(0)
| om0 1+ () 0) e 720) —5(0)  7a(0)
(C)EEO) () A0) e () —a(0) 1+7,(0)

Note that the conditions R(K*) C D(L*) and D(Lg) = L?*(0,1) imply that det U # 0. Thereby, the

operator
KLKU— — ng Zﬂg]/ F" (t)dt,
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is a bounded operator in L?(0,1). Then the operator Ax has the form

Agv=Lv— KLgLv = 0™ ng ZﬁgJ/ n)(t)dt,

on

D(Ag) = D(L) = {v e W3(0,1) : v*D(0) +o* V(1) =0, k=1,2,...,n}.

The operator Ax can be written as

Ao =v™ — (=1)" Y wi(w) Y Br F(v)
P =1

where )
Fi(v) =< Fj,v >:/ VW E (t) dt, j=1,2,...,n.
0

It can be seen that F; € W5 "(0,1) in the sense of Lions-Magenes (see [10]).
In this case

D(Ay) ={ve D(L): Fj(v)=0, j=12,...,n},

Ay C L and Ay C Ax.
We transform the boundary conditions of L to the form

w(0) + u(1) fo t 5§ t dt
w1 (0) + u=D(1) i uta) @) d

Then we get

WD (0) 4 e ZB@/ ()7 () dt, £=1,2,. (4.1)

where u € D(Lg), a§n) € L*0,1), 7 = 1,2,...,n. Boundary condition is regular in the
Shkalikov sense (see [I2]). Then, by virtue of [I2], the operator Lx has a system of root vectors
forming a Riesz basis with brackets in L?*(0,1). Thereby the operator Ag, being similar to the
operator Ly, also has a basis with brackets property. The eigenvalues of these operators coincide. If
{uy }3° are eigenfunctions of the operator Ly, then the eigenfunctions vy of Ax are related to them

by the relations
= (I 4+ KLy, = v, + (— sz / () dt, k=1,2,....n

If, in particular, we take
Uzgn)@) =sign(x —x), 0<z, <1, £=12,....n

then we get
Fy(v) = =20 Y(zy), £=1,2,...,n
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By Corollary Theorem and |13 p.928|, we can assert that the system of root vectors of the
adjoint operator

i = (1 o) = (" 3 Bl ) [ tentoya]

dx™ A
4,j=1

on

D(A}) = {v € L*(0,1) : v(z) — (=1)" Z ngajn)(x)/o v(t)we(t) dt € D(L)},

£,j=1

forms a Riesz basis with brackets in L?(0,1).

5 Example in case n = 2

If the maximal operator L acts as
"

Ly=—y
on the domain D(L) = W2(0,1), then the minimal operator Ly is a restriction of L on D(Lg) =
W2(0,1). As a fixed operator L we take the restriction of L on

D(L) = {y € W§(0,1) : y(0) = y(1) = 0}.
Then
Lf=L"'"f+Kf= —/Om(x—t)f(t)dt—i—x/o (1—t)f(t)dt
+(1—x)/0 f(t)a(t) dt+x/0 f(t)aa(t)dt,

Kf=(1-u1) /01 £ () dt + x/; FOF () dt.
KL is bounded in L2(0,1), if R(K*) C D(L*) = D(L), that is,
o1, 02 € D(L) = {o1,02 € W3(0,1) : 61(0) = 01(1) = 02(0) = 05(1) = 0},
and has the form ) X
KLy=—(1—2) /O (BT (1) dt — /0 y(EF(1) dt.
The operator K L is also bounded in L?(0,1) and

l1—2z

KLgu=——"[(1-0) /01 w5 (1) dt+6’1(1)/01u(t)6’2’(t) ]

- 20 mo) [ wostoa -0 [ ot o)

where

A= (1+71(0))(1—a%(1)) +75(0) 77 (1).
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Then the operator Ax has the form

Agv = =o' — %[((1 — 2)(1 = 7y(1)) — 255(0)) /O V(0 (L) dt

1
+ (1 = 2)7)(1) + (1 +71(0))) / v ()T (t) dt},
0
on
D(Ak) =D(L) = {v e W3(0,1) : v(0) =v(1) =0},
where o, ol € L*(0,1).
We rewrite the operator Ay in the form

Agv = —v"+a(x)Fy(v) + b(z) F3(v), (5.1)

where
ale) = —5 (1= D)1= 7(1) =270). Fi(w) = [ V070
1

b(z) = ——((1 — 2)71(1) + z(1 +71(0)), Fo(v) = /0 V" ()75 () dt.

Note that Fy, Fy € W5 2(0,1) in the sense of Lions-Magenes (see [10]).
Further, we see that the operator L acts as L on the domain

D(Lg) = {u € W3(0,1) :

)
( 1+a,0) 0 —a}(1) o) W) | _ [ = Jy u®)F () dt
75(0) 0 1-a5(1) 0 (1) — [Ju)zytydt) |
and the determinant of the matrix composed of the first and third columns of the boundary conditions
matrix is

Jiz = (1+7(0)) (1 —75(1)) +75(0) 77 (1) = A #0,

since R(K*) C D(L*) and D(Lk) = L?*(0,1). Then the left-hand side of this boundary condition
is non-degenerate according to Marchenko [I1], hence regular according to Birkhoff (see [12]). By
virtue of Theorem (see [12], p. 15]), the system of root vectors of the operator Lk forms a Riesz basis
with brackets in L?(0,1). Thus, by virtue of Theorem the system of root vectors of Ag also
forms a Riesz basis with brackets and the eigenvalues of Lx and Ag coincide, and the eigenfunctions
are related to each other as follows

up =vp — (1 — x)/o v(t)ay (t) dt — x/o v(t)ay(t) dt, ke N.

If in the particular case we take

o (x) = sign(z — 1) — sign(z — z3),

7y () = x[sign(z — 1) — sign(z — z3)],
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where 0 < 1 < x5 < 1, then we get

Fi(v) = 20" (22) — 20" (1),
Fy(v) = 2290 (29) — 2210 (1) — 20(x2) + 20(11),
in (51).

In this case
D(Ag) ={v e D(L) : v(zy) =v(xs), v'(x1)="1"(22)},

Ay C L and Ay C Ag.
By Corollary [3.1] Theorem and [I3] p.928|, for n = 2, we can assert that the system of root
vectors of the operator

2 4

Ajw = (=1 [v(:v)—c(x) /01(1—t)v(t) dt — d(z) /01 to(t) dt],

D(A30) = {v e 2(0,1) : w(z) - c(:c)/o (1 tyo(t) dt — d(x)/o oty dt € D(L) ),
forms a Riesz basis with brackets in L?(0,1), where
(w) = =5 | (1 = o5(D) ol () + o1 (V)03 ()],

() = 5 [(1+61(0))74(2) ~ o400 ()]

Note that
ot 05 € L*(0,1), D(L) = {y € W3(0,1): y(0) =y(1) = 0}.

For clarity, we consider the special case (5.2), then we have

' — 1) — si _ 3.3 .2 .2
() = sign(x — x1) ASlgn(aU ) {1 s el G 9614,

d(z) = sign(z — z1) — sign(z — 2) [(1 + T2 — 21 — i I%)x

A

The domain of A will have the form
D(A3) = {v € L*(0,1) N W2(0,z1) N WE(xy, 29) N WE(x5,1) : v(0) = v(1) =0,

oy — 0) — v(zs +0) = —c(ay +0) /01(1 ~ t)o(t) dt — d(a, +0) /01 to(t) dt,

o(w2 4+ 0) — v(za — 0) = —c(za — 0) /01(1 ~ o(t) dt — d(zs — 0) /01 to(t) dt.
oy = 0) = o (21 + 0) = =/ (a1 + 0) /01(1 — t)o(t) dt — d' (21 + 0) /01 fo(t) dt,

V(xg +0) — 0 (22 — 0) = = (29 — O)/0 (1—t)v(t)dt — d'(xe — O)/O to(t) dt},
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where
c<x1+0>—%(1+x3;ﬁ’—5”3;“’%9:1),
d($1+0):_%<(1+x2—x1—x2;x%)xl_x%;x% 37:25;55?)7
c(:pZ—O):% 1+x%;$?_$§;x%$2>7
o0 -2y o A
/(0 +0) =~ 5 (e 1),
d’(:c1+0):%(1+m1_x2+x§;x%)7
d(xy—0)=Cd(x1+0), d(xy—0)=d(x;+0),
A:1+l‘2—x1_x§;x% x%;ﬁ) xZ;Qxl((Iz—m1)3+6x1x2)7é0,

since 1, x9 € (0,1). Moreover, the operator A} acts as follows

Ao = —"(z) + () /O (1= tyo(t) dt + d' () /O fo(t) dt,

where
d'(x) = % [1 + 22 g g ; al (g — xl)l (8'(x — 1) = 0'(z — 22))
Lo o
- Z(xQ —27) (6(z — 21) — 6(z — 32)),

2 T
1! _ = o 2 1 o o
d(x)_A{(sz -2 )(:m m) - 2 B

X (5’(x —x1) =8 (x — 1:2))

1<1+ B Bk
- — Tog— T
A S

)(5(3: —z1) — 6(z — x9)),

here ¢ is the Dirac delta-function.

6 An application to the Laplace operator

In the Hilbert space Ly(2), where Q is a bounded domain in R™ with infinitely smooth boundary
0f, let us consider the minimal Ly, and maximal L operators generated by the Laplace operator

0’u  0%u 0%u
) (6.1

The closure Lg in the space Lo(2) of the Laplace operator (6.1) with the domain C§°(2) is called
the minimal operator corresponding to the Laplace operator.
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The operator E, adjoint to the minimal operator L corresponding to the Laplace operator is
called the maximal operator (see [7]). Note that

D(L) = {u € Ly(Q) : Lu=—Au € Ly(Q)}.
Denote by L the operator corresponding to the Dirichlet problem with the domain
D(L) = {u € Wi (Q) : u|osq = 0}.

Then the inverse operators Ll}l to all possible well-defined restrictions of the maximal operator L
corresponding to the Laplace operator (6.1)) have the following form:

u= L f=L"f+Kf, (6.2)
where K is an arbitrary bounded (in Lo(2)) linear operator with
R(K) CKerL = {u € Ly(Q) : —Au = 0}.
Then the direct operator L is determined from the following problem:

Lu=f, [f€LyQ), (6.3)

~

D(Lg) ={ue D(L): (I — KL)u|sq =0}, (6.4)

where [ is the unit operator in Ls(£2). There are no other linear well-defined restrictions of the
operator L (see [I]).
The operators (L% )~!, corresponding to the operators L,

v = (L}“()‘lg =L 'g+ K*g,

describe the inverse operators to all possible well-defined extensions of the minimal operator Lg if
and only if K satisfies the condition (see [1])

Ker (I + K*L) = {0}.

Note that the last condition is equivalent to the following one: D(Lg) = Lo(2). If the additional
condition

KR(Lo) = {0}

is imposed on the operator K from (6.2), then the operator Lk corresponding to problem (6.3)), (6.4)),
will turn out to be boundary well-defined. By applying Theorem to this particular case we have

Theorem 6.1. Let the operator K have the form

Kf(z) = d(x) / / (€)9E)de, x, E€QCR™,

where ¢ is a harmonic function in Ly(Q), g € Ly(Q), and

K*f(a) = gla) [ [ riyatee



Similar transformation of one class of well-defined restrictions 19

If K satisfies the assumptions of Theorem then g € W2(Q), g(x) |sa= 0,

[ s 21

and the well-defined operator

= —Aulx qb(x) U q
An(e) = ~8ule) ¢ T e / [aw©a @,

D(Ag) = {u e W2(Q) : (u(@) |pa= o}

describes a relatively bounded perturbation of Ly which has the same eigenvalues as L.
The system of root vectors of Ak is complete in Lo(2). Morever, if {vi} is a system of eigen-
functions of Ly , then the system of eigenvectors {u} of Ak has the form

wn(@) = (I + KD)u)() = wi(a) + olx) / / w(6)(AG)(E)de, k=1,2,...
Q

We can rewrite

¢(z)

Axule) = —Aulo) + 7 IEGIEIGLE

F(u),

where

Fu) = / / (M) (€)(AF)(€)d.

Note that ' € W5 2(9) in the sense of Lions-Magenes (see [10]).
In this case

D(Ag) = { e D(L) - / / (Au)(€)(AT)(E)de = o} ,
Q

Ag C L and Ay C Ak.

Consider a more visual cases when m = 2 and m = 3, that is, Q C R? and Q C R? respectively.
To do this, we define the operator K by using the function g constructed in the following way. Let
Ty € Q, be a point lying strictly inside the closed domain Q. As functions g(z) we take the solution
to the following Dirichlet problem

— (Ag)(z) = —In|z —xo|, gloa =0, (6.5)
for m = 2 and
—(Ag)(z) = |z — 0|, gloa =0, (6.6)
for m = 3, respectively. Then we get the following:
- ola) du

¢(x)u(wo)

iy [T 9(€) I € = au)dE’

D(Ag) = {u e W2(Q) : u(z) |po= o}
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for the case m = 2 and

#() du, 1
=] ¢<5>md5£ on el ®

¢(x)u(zo)
1+ éf A& gy dE’

Agu(z) = —Au(z) +

+

D(Ag) = {u e W2(Q) : ul) |on= o}

for the case m = 3. We have obtained a relatively bounded perturbation Ag of Lx which has the
same eigenvalues as the operator Lg. The system of root vectors of A is complete in the Ly(Q2). If
{vk} is a system of eigenfunctions of Lk, then the system of eigenfunctions {ux} of Ax has the form

un(z) = (T + BL)u) (x) = v (x) + 6(x) / / o) Inf¢ — molde, k=1,2,....

in the case m = 2 and

(o) = (1 + KDue)a) = vn(o) + (o) [ [ on()7=

|§—l’o

de, k=1,2,...,

in the case m = 3, respectively.
Thus, we have constructed a singular perturbation Ag of the Ly with a complete system of root
vectors. Indeed,
L=L"'"+K=(I+KL)L",

where KL is compact operator, I + K L is invertable operator. Selfadjoint operator L~! is positive,
compact and belongs to the Neumann-Schatten class. Then by Theorem 8.1 [6], p. 257|the system of
root vectors Ly is complete in Ly(£2). Hence, by Theorem the system of root vectors of Ax is
complete in Ly(€).
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