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MUKHTARBAY OTELBAEV
(to the 75th birthday)

On October 3, 2017 was the 75th birthday of Mukhtarbay Otel-
baev, Doctor of Physical and Mathematical Sciences (1978), Pro-
fessor (1983), academician of the National Academy of Sciences of
the Republic of Kazakhstan (2004), Honored Worker of the Repub-
lic of Kazakhstan (2012), laureate of the State Prize of the Republic
of Kazakhstan in the field of science and technology (2007), Direc-
tor of the Eurasian Mathematical Institute (since 2001), Professor
of the Department s BmFundamental Mathematicss Dk of the L.N.
Gumilyov Eurasian National University, the editor-in-chief of the
Eurasian Mathematical Journal (together with V.I. Burenkov and
V.A. Sadovnichy).

M. Otelbaev was born in the village of Karakemer of the Kurdai
district, Zhambyl region. He graduated from the M.V. Lomonosov
Moscow State University (1969) and then completed his postgraduate studies at the same uni-
versity (1972). There he defended his doctor of sciences thesis (1978).

Professor Otelbaev’s scientific interests are related to functional analysis, differential equa-
tions, computational mathematics, and theoretical physics.

He introduced the g-averaging, which is now called the Otelbaev function; using it he ob-
tained a number of fundamental results. For embedding of the Sobolev weighted spaces and the
resolvent of the Schrodinger operator, he established criterions for the compactness and finiteness
of the type, as well as estimates of the eigenvalues of the Schrodinger and Dirac operators that
are exact in order. He was the first to establish that there is no universal asymptotic formula
for the distribution function of the Sturm-Liouville operator. He obtained effective conditions
for the separation of the differential operators with nonsmooth and oscillating coefficients, he
developed an abstract theory of extension and contraction of operators which are not necessarily
linear in linear topological spaces. M. Otelbaev proposed a new numerical method for solving
boundary value problems, and a method for approximate calculation of eigenvalues and eigen-
vectors of compact operators. He obtained the fundamental results in the theory of nonlinear
evolution equations and in theoretical physics.

He has published more than 70 scientific papers in leading international journals entering the
rating lists of Thomson Reuters and Scopus. Under his supervision 70 postgraduate students
have defended their candidate of sciences theses, 9 of them became doctors of sciences. In 2006
and 2011 he was awarded the state grant "The best university teacher".

The Editorial Board of the Eurasian Mathematical Journal congratulates Mukhtarbay Otel-
baev on the occasion of his 75th birthday and wishes him good health and new achievements in
mathematics and mathematical education.




Award for the Eurasian Mathematical Journal

Dear readers, authors, reviewers and members of the Editorial Board of the Eurasian
Mathematical Journal,

we are happy to inform you that in November 2017 the Eurasian Mathematical Journal was
awarded the title "Leader of Science 2017" by the National Center of State Scientific-Technical
Expertise of the Committee of Science of the Ministry of Education and Science of the Republic
of Kazakhstan in the nomination "Leader of Kazakhstan Scientific Publications" for the high
level of publication activities and high level of citations in Web of Science Core Collection in
2014-2016.

Recall that the Eurasian Mathematical Journal was founded by the L.N. Gumilyov Eurasian
National University in 2010 in co-operation with the M.V. Lomonosov Moscow State University,
the Peoples’ Friendship University of Russia and the University of Padua (see [1]).

The journal pulishes carefully selected original research papers in all areas of mathematics,
survey papers, and short communications. It publishes 4 issues in a year. The language of the
paper must be English only. Papers accepted for publication are edited from the point of view
of English.

More than 280 papers were published written by mathematicians from more than 40 countries
representing all continents.

In 2014 the journal was registered in Scopus and in September 2014 the Elsevier-Kazakhstan
Research Excellence Forum was held at the L.N. Gumilyov Eurasian National University dedi-
cated to this occasion in which the Elsevier Chairman Professor Y.S. Chi participated (see [3]
for details).

In 2015 the Eurasian Mathematical Journal was included in the list of Scopus mathematical
journals, quartile Q4, and it is on the way to entering quartile Q3 (see [3]).

Attached is the invitation letter to the Rector of the L.N. Gumilyov Eurasian National
University Professor E.B. Sydykov to the ceremony of awarding, which took place in Almaty on
November 8, 2017.

On behalf of the Editorial Board of the EMJ V.I. Burenkov, E.D. Nursultanov,
T.Sh. Kalmenov, R. Oinarov, M. Otelbaev, T.V. Tararykova, A.M. Temirkhanova
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Abstract. The objective of this paper is to introduce a certain new subclass of analytic functions
and obtain an upper bound for the third Hankel determinant for the functions belonging to this
class, using Toeplitz determinants.

1 Introduction

Let A denote the class of all functions f(z) of the form

f(2) :z—i—Zanz" (1.1)

n=2

in the open unit disc £ = {z : |2| < 1}. Let S be the subclass of A consisting of all univalent
functions. For a univalent function in the class A, it is well known that the n'® coefficient is
bounded by n. The bounds for the coefficients give information about geometric properties of
these functions. In particular, the growth and distortion properties of a normalized univalent
function are determined by the bound of its second coefficient. The Hankel determinant of f for
g > 1 and n > 1 was defined by Pommerenke [14] as

Qp, Qpy1 - (p4q—1
Qnt+1  Gpy2 - An+q
H,(n) = : : : : . (e =1)
Untg—1 Ontq " Qnt2¢-2

This determinant has been considered by many authors in the literature. For example, Noor
[12] determined the rate of growth of H,(n) as n — oo for the functions in S with bounded
boundary. Ehrenborg [4] studied the Hankel determinant of exponential polynomials. The
Hankel transform of an integer sequence and some of its properties were discussed by Layman
in [9]. In the recent years several authors have investigated bounds for the Hankel determinant
of functions belonging to various subclasses of univalent and multivalent analytic functions. In
particular for g =2, n=1,a; =1 and ¢ =2, n = 2, a; = 1, the Hankel determinant simplifies
respectively to

a; Qg
Qo as

a2 as

Hy(1) = =a3—a5 and Hy(2) = = ayay — a3.

as Qq
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For our discussion, in this paper, we consider the Hankel determinant in the case ¢ = 3 and
n = 1, denoted by H3(1), given by

a; Qg asg
Hg(]_) =|ay a3 au <12)
as a4 Qas
For f € A, a; = 1, so that, we have
H3(1) = az(asas — a3) — as(as — asaz) + as(az — a3).
and by applying the triangle inequality, we obtain
|H3(1)| < lag|lazas — a3] + [aa|lasaz — as| + |as]|az — a3. (1.3)

The sharp upper bound for the second Hankel functional Hs(2) for the subclass RT of S, con-
sisting of functions whose derivative has a positive real part, studied by Mac Gregor [11], was

obtained by Janteng [8]. It was known that if f € RT then |a;| < 2, for k € {2,3,....}. Also the

sharp upper bound for the functional |az — a3| was %, stated in |2], for the class RT. Further,

the best possible sharp upper bound for the functional |asas — a4| was obtained by Babalola [2]
and hence the sharp inequality for |H3(1)|, for the class RT.

Motivated by the above mentioned results obtained by different authors in this direction and
the result by Babalola 2|, in the present paper, we introduce certain new subclass of analytic
functions and seek a sharp upper bound to the functional |asas — a| and an upper bound to the
third Hankel determinant, defined as follows.

Definition 1. A function f € A is said to be a function whose reciprocal derivative has a
positive real part (also called the reciprocal of a bounded turning function), denoted by f € RT,
if and only if

Re(ﬁ) >0,Vz e E. (1.4)

Some preliminary lemmas required for proving our results are in Section 2.

2 Preliminary results

Let & denote the class of all functions p of the form
p(2)=1+cz+c+e+ .. = 1+chz”, (2.1)
n=1

which are regular in the open unit disc F and satisfy Re{p(z)} > 0 for any z € E. Here p(z) is
called the Caratheodory function [3].

Lemma 2.1. [13, 15] If p € 2, then |cx| < 2, for each k > 1 and the inequality is sharp for the

function 1.
—Zz

Lemma 2.2. [6] The power series for p(z) given in (2.1) converges in the open unit disc E to
a function in & if and only if the Toeplitz determinants

2 c1 Cy Y e
C_1 2 C1 e Cp—1
D,=|C2 (1 2 o Cp—2 |, for n=1,2,3....
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and c_p = T, are all non-negative. They are strictly positive except for
p(z) = ppo(e™2),
k=1

pr > 0, ty, real and ty, # t;, for k # j, where po(z) = f_“j, in this case D, > 0 forn < (m — 1)
and D, =0 forn > m.

This necessary and sufficient condition found in |6] is due to Caratheodory and Toeplitz. We
may assume without restriction that ¢; > 0. On using Lemma 2.2, for n = 2, we have

2 C1 Co
DQ =|C 2 C1 | = [8 + 2R€{C%02} -2 | Co |2 - 4|Cl|2] Z 0,
Cy ¢ 2
which is equivalent to
2c; = ¢ +x(4—c3), for some w, |z| < 1. (2.2)
For n = 3,
2 Ci Cy C3
El 2 C1 Co
= > 0.
D3 EQ El 2 c1| 0
Ty Gy ¢ 2
and is equivalent to
[(4es — derey + ) (4 — )+ e1(2c0 — ¢3)? < 2(4 — 3)? — 2|(2¢, — &) (2.3)

From the relations (2.2) and (2.3), after simplifying, we get

des =424 — A)x — (4 — A +2(4 — A) (1 — |z]?)z,
for some z, with |z| < 1. (2.4)

To obtain our results, we refer to the classical method initiated by Libera and Zlotkiewicz [10]
and used by several authors in the literature.

3 Main results

Theorem 3.1. If f(z) € RT then

and the inequality is sharp.

Proof. For
f(z)=z+ Zanz" € RT,
n=2

there exists an analytic function p € & in the open unit disc E with p(0) = 1 and Re{p(z)} > 0
such that

Fi) ~PE e 1= f'(Z)p(2). (3.1)



Third Hankel determinant for the reciprocal of bounded turning functions 95

Replacing f’(z) and p(z) with their equivalent series expressions in (3.1), we have

1= (1 + i nanz"’l) (1 + i cnz").
n=2 n=1

upon simplification, we obtain

1 =1+ (1 +2a)z + (ca + 2a9¢; + 3a3)z* + (c3 + 2ag¢y + 3aze; + 4day) 2°+
(c4 + 2agcs3 + 3ascy + 4agey + 5as)z* -+ (3.2)

Equating the coefficients of like powers of z, 22, 23 and z* respectively on both sides of (3.2),
after simplifying, we get

55 = g(c% —C9); a4 = —Z(Cg —2c1c0 + E3);
1
as = —5(04 — 2c103 + 3¢ty — 5 — c). (3.3)

Substituting the values of as,a3 and a4 from (3.3) in the functional |agay — a3| for the
function f € RT, upon simplification, we obtain

1
lasay — a3| = = 9c1c3 — 2cies — 865 + ¢ (3.4)
which is equivalent to
2 1 2 2 4
lasay — a3 = ™ ‘dlclcg + dycicy + dsc; + dacy |

where dy =9; dy = —2; d3 = —8; dy = 1. (3.5)

Substituting the values of ¢ and c3 given in (2.2) and (2.4) respectively on the right-hand side
of (3.5), we have

1
|dycre3 + dQC%CQ + d3c§ + d4cjl\ = |dic; X Z{C? +2¢1(4 — cf)x —c(4— cf)ac2

1
+2(4 = )1 = [2)z} + dact x { +a(d =)}
1
+ d3 X Z{cf +2(4 —c)}? +dycy). (3.6)
Using triangle inequality and the fact that |z| < 1, we get

4 | d10103 + dQC%CQ + dgcg + d40111 | S ‘(dl + 2d2 + d3 + 4d4)CZIL + 2d101 (4: — C%)
+2(dy + dy + d3)c3 (4 — ¢3)|x]
— {(dy + ds)E + 2dyc; — Ads} (4 — c§)|x|2‘. (3.7)

From (3.5), we can now write

di+2dy + ds +4dy = 1;  2(dy + dp + d3) = —2;
(dy + d3)c + 2dyc; — 4ds = 3 + 18¢; + 32 = (¢ + 16)(c1 + 2)
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Since ¢; € [0, 2], using the result (¢; + a)(c1 +b) > (¢1 —a)(cr — b), where a,b > 0 in (3.9),
we can have
—{(dy +d3)? + 2dyc; — 4ds} < —( — 18¢; + 32). (3.10)

Substituting the calculated values from (3.8) and (3.10) on the right-hand side of (3.7), we have
4ldicics + daciey + dscs + dyct| < |+ 18c1(4 — cf) — 262 (4 — ) ||
— (&} — 18¢; +32)(4 — &)|z|?|.
Choosing ¢; = ¢ € [0, 2], applying triangle inequality and replacing |z| by p on the right-hand
side of the above inequality,we get
4 |dicics + dociey + dsca + dycy| < |t 4 18¢(4 — ) + 262 (4 — A
+ (2 —18c+32)(4 — CQ),B]
=F(e,p), 0<p=|z[<1 and 0<c<2. (3.11)

We next maximize the function F(c, ) on the closed region [0,2] x [0, 1]. Differentiating
F(c, p) given in (3.11) partially with respect to u, we obtain

F
‘37 = [2¢® +2(c® — 18c + 32)p)(4 — ). (3.12)

For 0 < p < 1 and for fixed ¢ with 0 < ¢ < 2, from (3.12), we observe that ?9_5 > (. Therefore,
F(c, 1) becomes an increasing function of 1 and hence it cannot have a maximum value at any
point in the interior of the closed region [0, 2] x [0, 1]. Moreover, for a fixed ¢ € [0, 2], we have

max F(c,p) = F(c,1) = G(c).

0<p<1
Therefore, replacing p by 1 in F(c, pt), upon simplification, we obtain
G(c) = 2(—c* — 10c¢* + 64). (3.13)
G'(c) = —8¢(c® +5). (3.14)
From (3.14), we observe that G'(c) < 0, for every ¢ € [0,2]. Therefore, G(c) is a decreasing

function of ¢ in the interval [0, 2], whose maximum value occurs at ¢ = 0 only. From (3.13), the
maximum value of G(c¢) at ¢ = 0 is given by

Gomas = G(0) = 128. (3.15)

Simplifying the expressions (3.11) and (3.15), we get

|d10163 + dQC%CQ + d3C§ + d4clll| S 32. (316)
From the relations (3.4) and (3.16), upon simplification, we obtain

9 4
lasay — a3 < g
By setting ¢; = ¢ = 0 and selecting = 1 in the expressions (2.2) and (2.4), we find that ¢, = 2

and c3 = 0 respectively. Substituting these values in (3.16) together with the values in (3.5), we
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observe that equality is attained, which shows that our result is sharp. The extremal function
in this case is given by

1 1+ 22
= 14224224 +... = .
f'(z) e e 1—2z?

This completes the proof of our Theorem. O

Remark 1. It is observed that the sharp upper bound to the second Hankel determinant of a
function whose derivative has a positive real part [8] and a function whose reciprocal derivative
has a positive real part is the same.

3
Theorem 3.2. If f(z) € RT then |asaz — a4 < %[gr and the inequality is sharp.

Proof. Substituting the values of ay, a3z and a4 from (3.3) in the functional
| asas — a4 | for the function f € RT, after simplifying, we get

1
’ o3 — Ay | = 1—2 ’ 3C3 — 4C1C2 + CL;) ’ . (317)

Substituting the values of ¢ and ¢z from (2.2) and (2.4) respectively on the right-hand side of
(3.17), we have

1
13c3 — 4ciey + 63 = |3 x Z{C? +2¢1(4— )z — (4 — c})a?
+2(4 =) (1- | 2” [)z}

1
— 4y X 50%—%—95(4—0?)—1—0? :
Using the fact | z |< 1, after simplifying, we get
43¢ —derca+ 6| < | =S +6(4—¢f) —2¢1(4—)|x|+ (=31 — 6)(4 — )|z

Since ¢; = ¢ € [0,2], using the result (¢; +a) > (¢; — a), where a > 0, applying triangle
inequality and replacing |z| by u on the right-hand side of the above inequality, we have

413cs —derea+ 6 <[P +6(A—)+ 2c(4—F)p+3(c—2) (4= ) p* |
= F(e,p) , 0<pu=[z|<1 and 0<c<2. (3.18)
Where F(c,p) = *+6(4—¢")+ 2c(4—F)p+3(c—2)(4— ) p’

Applying the same procedure described in Theorem 3.1, we observe that

g_i — 24 6(c - 2p](4— &) > 0 (3.19)

For 0 < p < 1 and for fixed ¢ with 0 < ¢ < 2, from (3.19), we observe that 88—1; > 0. Therefore,

F(c, 1) becomes an increasing function of p and hence it cannot have a maximum value at any

point in the interior of the closed region [0, 2] x [0, 1]. Further, for a fixed ¢ € [0, 2], we have
max F(c,pu) = F(e, 1) = G(c).

0<u<1
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Therefore, replacing p by 1 in F(c, u), upon simplification, we obtain

G(c) = —4c® + 20c. (3.20)
G'(c) = —12¢* + 20. (3.21)
G"(c) = —24c. (3.22)

For optimum value of G(c), consider G'(¢) = 0. From (3.21), we get

Since ¢ € [0,2], consider ¢ = /32 only. Substituting this value in (3.21), we observe that
3

G"(c) = —24 \/g < 0.

By the second derivative test, G/(c) has maximum value at ¢ = \/é Substituting the value

of ¢ in the expression (3.20), upon simplification, we obtain the maximum value of G(c) as

4
40 /5 (3.23)

Gmax =
3V3

Simplifying the expressions (3.18) and (3.23), we get

. 10 /5
| 3c5 —4ciey + ¢ | < —\/j (3.24)
3V3
From the relations (3.17) and (3.24), upon simplification, we obtain

17573
|CL26L3 — (14’ S 6 |:§] .

By setting ¢; = \/é and selecting « = 1 in the expressions (2.2) and (2.4), we find that ¢, = 3

and c3 = g\/g respectively. Substituting these values in (3.24), we observe that equality is

attained, which shows that our result is sharp. This completes the proof of our Theorem. O

Remark 2. It is observed that the sharp upper bound to the |asas — a4| of a function whose
derivative has a positive real part [2| and a function whose reciprocal derivative has a positive
real part is the same.

The following Theorem is a straight forward verification on applying the same procedure as
described in Theorems 3.1 and 3.3 and the result is sharp for the values ¢c; =0, co =2 and z = 1.

Theorem 3.3. If f € RT then |az —a| < 2,

Using the fact that |c,| <2, ne€ N ={1,2,3,---}, with the help of ¢ and c¢3 values
given in 2.2 and 2.4 respectively together with the values in (3.3), we obtain |ay| < 2, for
ke {2,345, -}

Using the results of Theorems 3.1, 3.3, 3.5 and |ax| < %, for k € {2,3,4,5,---}, we obtain
the following corollary.
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Corollary 3.1. If f(z) € RT then

ol < 5 50)

Remark 3. It is observed that the sharp upper bound to the third Hankel determinant of a
function whose derivative has a positive real part [2| and a function whose reciprocal derivative
has a positive real part is the same.
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