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MUKHTARBAY OTELBAEV

(to the 75th birthday)

On October 3, 2017 was the 75th birthday of Mukhtarbay Otel-
baev, Doctor of Physical and Mathematical Sciences (1978), Pro-
fessor (1983), academician of the National Academy of Sciences of
the Republic of Kazakhstan (2004), Honored Worker of the Repub-
lic of Kazakhstan (2012), laureate of the State Prize of the Republic
of Kazakhstan in the �eld of science and technology (2007), Direc-
tor of the Eurasian Mathematical Institute (since 2001), Professor
of the Department â�»Fundamental Mathematicsâ��ê of the L.N.
Gumilyov Eurasian National University, the editor-in-chief of the
Eurasian Mathematical Journal (together with V.I. Burenkov and
V.A. Sadovnichy).

M. Otelbaev was born in the village of Karakemer of the Kurdai
district, Zhambyl region. He graduated from the M.V. Lomonosov

Moscow State University (1969) and then completed his postgraduate studies at the same uni-
versity (1972). There he defended his doctor of sciences thesis (1978).

Professor Otelbaev's scienti�c interests are related to functional analysis, di�erential equa-
tions, computational mathematics, and theoretical physics.

He introduced the q-averaging, which is now called the Otelbaev function; using it he ob-
tained a number of fundamental results. For embedding of the Sobolev weighted spaces and the
resolvent of the Schrödinger operator, he established criterions for the compactness and �niteness
of the type, as well as estimates of the eigenvalues of the Schrödinger and Dirac operators that
are exact in order. He was the �rst to establish that there is no universal asymptotic formula
for the distribution function of the Sturm-Liouville operator. He obtained e�ective conditions
for the separation of the di�erential operators with nonsmooth and oscillating coe�cients, he
developed an abstract theory of extension and contraction of operators which are not necessarily
linear in linear topological spaces. M. Otelbaev proposed a new numerical method for solving
boundary value problems, and a method for approximate calculation of eigenvalues and eigen-
vectors of compact operators. He obtained the fundamental results in the theory of nonlinear
evolution equations and in theoretical physics.

He has published more than 70 scienti�c papers in leading international journals entering the
rating lists of Thomson Reuters and Scopus. Under his supervision 70 postgraduate students
have defended their candidate of sciences theses, 9 of them became doctors of sciences. In 2006
and 2011 he was awarded the state grant "The best university teacher".

The Editorial Board of the Eurasian Mathematical Journal congratulates Mukhtarbay Otel-
baev on the occasion of his 75th birthday and wishes him good health and new achievements in
mathematics and mathematical education.



Award for the Eurasian Mathematical Journal

Dear readers, authors, reviewers and members of the Editorial Board of the Eurasian
Mathematical Journal,

we are happy to inform you that in November 2017 the Eurasian Mathematical Journal was
awarded the title "Leader of Science 2017" by the National Center of State Scienti�c-Technical
Expertise of the Committee of Science of the Ministry of Education and Science of the Republic
of Kazakhstan in the nomination "Leader of Kazakhstan Scienti�c Publications" for the high
level of publication activities and high level of citations in Web of Science Core Collection in
2014-2016.

Recall that the Eurasian Mathematical Journal was founded by the L.N. Gumilyov Eurasian
National University in 2010 in co-operation with the M.V. Lomonosov Moscow State University,
the Peoples' Friendship University of Russia and the University of Padua (see [1]).

The journal pulishes carefully selected original research papers in all areas of mathematics,
survey papers, and short communications. It publishes 4 issues in a year. The language of the
paper must be English only. Papers accepted for publication are edited from the point of view
of English.

More than 280 papers were published written by mathematicians from more than 40 countries
representing all continents.

In 2014 the journal was registered in Scopus and in September 2014 the Elsevier-Kazakhstan
Research Excellence Forum was held at the L.N. Gumilyov Eurasian National University dedi-
cated to this occasion in which the Elsevier Chairman Professor Y.S. Chi participated (see [3]
for details).

In 2015 the Eurasian Mathematical Journal was included in the list of Scopus mathematical
journals, quartile Q4, and it is on the way to entering quartile Q3 (see [3]).

Attached is the invitation letter to the Rector of the L.N. Gumilyov Eurasian National
University Professor E.B. Sydykov to the ceremony of awarding, which took place in Almaty on
November 8, 2017.

On behalf of the Editorial Board of the EMJ V.I. Burenkov, E.D. Nursultanov,
T.Sh. Kalmenov, R. Oinarov, M. Otelbaev, T.V. Tararykova, A.M. Temirkhanova
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Abstract. Using the test function method, we study su�cient conditions of nonexistence of
nonnegative solutions for a quasilinear elliptic inequality of the form −div(ur|Du|p−2Du) ≥
a(x)uq|Du|s in a bounded domain and its generalizations.

1 Introduction

Su�cient conditions of nonexistence of solutions to nonlinear elliptic inequalities with singular
coe�cients and their systems were studied by many authors.

For inequalities with the Laplacian in the principal part and with a coe�cient in the nonlinear
term possessing a point singularity the �rst results in this direction were obtained by H. Brezis
and X. Cabr�e [1] by using comparison principles.

For higher order inequalities that do not obey comparison principles S. Pohozaev [9] suggested
the so-called test function method. Later it was developed in joint papers with E. Mitidieri and
other authors (see, in particular, the monograph [8] and references therein). This method allowed
to obtain a series of new sharp results on nonexistence of solutions to elliptic and other di�erential
inequalities in di�erent functional classes. The method is based on asymptotically optimal a
priori estimates obtained by algebraic analysis of the integral form of the inequalities under
consideration with a special choice of test functions. Applications of this method to di�erent
types of elliptic inequalities and systems with degeneration, point singularities, gradient terms
etc., can be found, e.g., in [2, 3, 4, 7].

In this paper a modi�cation of the test function method is used in order to obtain dimension-
independent su�cient conditions of nonexistence of solutions to some quasilinear elliptic in-
equalities and their systems in a bounded domain with coe�cients possessing singularities near
the boundary. This distinguishes the formulation of the problem given here from the above-
mentioned papers where singularities appeared at single points or at in�nity. Note that [7]
contained some results in the case of boundary singularities, but they were dimension-dependent.

To prove the results on nonexistence of solutions by the test function method, test functions
with a di�erent geometrical structure of the support were constructed, in order to take into
account the speci�c nature of the problems under consideration. First results in this direction
were published in [5, 6].

The rest of the paper consists of two sections. In Section 2 we establish results on nonexistence
of solutions to scalar quasilinear elliptic inequalities, and in Section 3 � to systems of such
inequalities.
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The work was supported by the Russian Foundation of Fundamental Research (project 14-
01-00736).

2 Scalar quasilinear inequalities

Consider the problem 
−div(ur|Du|p−2Du) ≥ a(x)uq|Du|s, x ∈ Ω,

u(x) ≥ 0, x ∈ Ω,
(2.1)

where Ω is a bounded domain with a smooth boundary, and a ∈ C(Ω) is a positive function.
Introduce the notation ρ(x) = dist(x, ∂Ω),

Ωkη = {x ∈ Ω : ρ(x) ≥ kη} (η > 0, k = 1, 2).

There holds

Theorem 2.1. Let α ∈ R, p > 1, q > p− 1, s > r − 1,

pq − s(r − 1)

p+ r − 1
> 1,

(α + s)r + (α− q − 1)(p− 1)

q + s− r − p+ 1
> 0.

If, for some constant c > 0, a(x) ≥ cρ−α(x), x ∈ Ω, then problem (2.1) has no nontrivial

(distinct from a constant a.e.) nonnegative solutions.

Proof. Let u be a nontrivial solution of inequality (2.1), and let ϕη ∈ C∞0 (Ω; [0, 1]) be a test

function of the form

ϕη(x) =

{
1 (x ∈ Ω2η),

0 (x ∈ Ωη),
(2.2)

|Dϕη(x)| ≤ cη−1 (x ∈ Ω) (2.3)

and λ > 0 be su�ciently large (to be speci�ed below). Then we get∫
Ω

a(x)uq+γ|Du|sϕη dx ≤
∫
Ω

(ur|Du|p−2Du,D(uγϕη)) dx =

= γ

∫
Ω

ur+γ−1|Du|pϕη dx+

∫
Ω

ur+γ|Du|p−2(Du,Dϕη) dx ≤

≤ γ

∫
Ω

ur+γ−1|Du|pϕη dx+

∫
Ω

ur+γ|Du|p−1|Dϕη| dx,

whence ∫
Ω

a(x)uq+γ|Du|sϕη dx+ |γ|
∫
Ω

ur+γ−1|Du|pϕη dx ≤
∫
Ω

ur+γ|Du|p−1|Dϕη| dx.

Representing the integrand in the right-hand side of the obtained inequality in the form

2−
y
su

(q+γ)y
s |Du|ya

y
sϕ

y
s
η × 2

y
su

(r+γ)s−(q+γ)y
s |Du|p−1−y|Dϕη| · a−

y
sϕ
− y
s

η ,
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where y will be chosen below, and applying the parametric Young inequality with the exponent

s/y, we obtain

1

2

∫
Ω

a(x)uq+γ|Du|sϕη dx+ |γ|
∫
Ω

ur+γ−1|Du|pϕη dx ≤

≤ c

∫
Ω

u
(r+γ)s−(q+γ)y

s−y |Du|
(p−1−y)s
s−y |Dϕη|

s
s−y · a−

y
s−yϕ

− y
s−y

η dx.

We apply again the Young inequality with the exponent z:

c

∫
Ω

u
(r+γ)s−(q+γ)y

s−y |Du|
(p−1−y)s
s−y |Dϕη|

s
s−y · a−

y
s−yϕ

− y
s−y

η dx ≤

≤ |γ|
2

∫
Ω

u
((r+γ)s−(q+γ)y)z

s−y |Du|
(p−1−y)sz

s−y ϕη dx+ c

∫
Ω

|Dϕη|
sz′
s−y · a−

yz′
s−yϕ

1− sz′
s−y

η dx,

where 1
z

+ 1
z′

= 1.

Choose y and z so that


(p− 1− y)sz = p(s− y),

(r + γ)s− (q + γ)y

s− y
· z = r + γ − 1,

i.e., 
y =

s(p+ r + γ − 1)

p(q + γ)− s(r + γ − 1)
,

z =
p[p(q + γ)− s(r + γ − 1)− (p+ r + γ − 1)]

(p− 1)(p(q + γ)− s(r + γ − 1))− s(p+ r + γ − 1)
.

Then due to the choice of ϕη with properties (2.2), (2.3) and for su�ciently large λ > 0 this

implies

1

2

∫
Ω

a(x)uq+γ|Du|sϕη dx+
|γ|
2

∫
Ω

uγ−1|Du|pϕη dx ≤ cη
α(r+γ+p−1)−p(q+γ)+s(r+γ)+q−r−p+1

q+s−r−p+1 .

Taking η → +0, for su�ciently small γ < 0 we obtain a contradiction, which proves the claim.

Remark 1. By a similar argument one can prove an analogous result for the problem


−div(ur(x)|Du|p(x)−2Du) ≥ a(x)uq(x)|Du|s(x), x ∈ Ω,

u(x) ≥ 0, x ∈ Ω,

(2.4)
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where Ω is a bounded domain with a smooth boundary and p, q, r, s ∈ C(Ω),

inf
x∈Ω

p(x) > 1,

inf
x∈Ω

(p(x)− q(x)) > −1,

inf
x∈Ω

s(x) > 0,

inf
x∈Ω

(s(x) + q(x)− p(x)− r(x)) > 1,

inf
x∈Ω

p(x)q(x)− s(x)(r(x)− 1)

p(x) + r(x)− 1
> 1,

inf
x∈Ω

p(x)[p(x)(q(x)− 1)− (s(x) + 1)(r(x)− 1)]

(p(x)− 1)(p(x)q(x)− s(x)(r(x)− 1))− s(x)(p(x) + r(x)− 1)
> 1,

a ∈ C(Ω) is a positive function. Namely, if we denote

bγ(x) =
p(x)(q(x) + γ)− s(x)(r(x) + γ − 1)

q(x) + s(x)− p(x)− r(x) + 1
,

cγ(x) =
p(x) + r(x) + γ − 1

q(x) + s(x)− p(x)− r(x) + 1
,

D(η) =

∫
Ωη\Ω2η

ηbγ(x)acγ(x) dx,

(2.5)

then there holds

Theorem 2.2. Let

lim
η→0+

D(η) = 0. (2.6)

Then problem (2.4) has no nontrivial solutions.

3 Systems of quasilinear inequalities

Further we consider the system of inequalities
−div(ur1 |Du|p−2Du) ≥ a(x)vq1|Dv|q2 , x ∈ Ω,

−div(vr2|Dv|q−2Dv) ≥ b(x)up1|Du|p2 , x ∈ Ω,

u, v ≥ 0, x ∈ Ω,

(3.1)

where Ω is a bounded domain with a smooth boundary.
We assume that p, q > 1, and a, b ∈ C(Ω) are nonnegative functions such that for some

a0, b0 > 0 and for all x ∈ Ω one has a(x) ≥ a0ρ
−α(x), b(x) ≥ b0ρ

−β(x).
Then there holds

Theorem 3.1. Let p1 + p2 > p+ r1 − 1, q1 + q2 > q + r2 − 1 and

((α−1)(q+r2−1)−q1(q−1)+q2r2)(p1 +p2)+((β−1)(p+r1−1)−p1(p−1)+p2r1)(q+r2−1) > 0

(3.2)

or

((β−1)(p+r1−1)−p1(p−1)+p2r1)(q+r2−1)(p1+p2)+((α−1)(q+r2−1)−q1(q−1)+q2r2)(p+r1−1) > 0.

(3.3)

Then problem (3.1) has no nontrivial (distinct from a pair of constants a.e.) nonnegative solu-

tions.
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Proof. Let (u, v) be a nontrivial solution of (3.1), and let ϕη ∈ C∞0 (Ω; [0, 1]) be a test function

of the same form as in the proof of Theorem 2.1, which satis�es assumptions (2.2) and (2.3).

We will assume that u > 0 and v > 0 (otherwise instead of uγ and vγ with γ < 0 we will use uγε
and vγε , where uε = u+ ε, vε = v + ε, ε > 0, and pass to the limit as ε→ +0).

Multiplying the �rst inequality (3.1) by uγϕη and the second one by vγϕη, where γ is a

number such that max(p1 + p2 − p− r1 + 1, q1 + q2 − q − r2 + 1) < γ < 0, we get∫
Ω

avq1|Dv|q2uγϕη dx ≤ γ

∫
Ω

uγ+r1−1|Du|pϕη dx+

∫
Ω

uγ+r1|Du|p−1|Dϕη| dx, (3.4)

∫
Ω

bup1|Du|p2vγϕη dx ≤ γ

∫
Ω

vγ+r2−1|Dv|qϕη dx +

∫
Ω

vγ+r2 |Dv|q−1|Dϕη| dx. (3.5)

We make use of the representation

uγ+r1|Du|p−1 = ua1|Du|b1ϕ
1
c1
η u

γ−a1|Du|p−1−b1ϕ
− 1
c1

η , (3.6)

vγ+r2|Dv|q−1 = va2|Du|b2ϕ
1
c2
η v

γ−a2 |Dv|q−1−b2ϕ
− 1
c2

η , (3.7)

in order to apply to the right-hand sides of (3.4) and (3.5) the parametric Young inequality with

exponents denoted by c1 and c2, respectively. Here we choose the parameters so that
a1c1 = γ − 1 + r1,

b1c1 = p,
γ − a1 + r1

p− 1− b1

=
p1

p2

,

(3.8)


a2c2 = γ − 1 + r2,

b2c2 = q,
γ − a2 + r2

q − 1− b2

=
q1

q2

.

(3.9)

Remark 2. These conditions allow the further application of the H�older inequality.

Solving the systems of equations (3.8) and (3.9), we arrive at

a1 =
(γ + r1 − 1)((p− 1)p1 − (γ + r1)p2)

pp1 + p2(1− γ − r1)
,

b1 =
p((p− 1)p1 − (γ + r1)p2)

pp1 + p2(1− γ − r1)
,

c1 =
pp1 + p2(1− γ − r1)

(p− 1)p1 − (γ + r1)p2

,

(3.10)



a2 =
(γ + r2 − 1)((q − 1)q1 − (γ + r2)q2)

qq1 + q2(1− γ − r2)
,

b2 =
q((q − 1)q1 − (γ + r2)q2)

qq1 + q2(1− γ − r2)
,

c2 =
qq1 + q2(1− γ − r2)

(q − 1)q1 − (γ + r2)q2

.

(3.11)
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Substituting (3.10) and (3.11) into (3.6) and (3.7), we obtain the representations

uγ+r1|Du|p−1 = u
(γ+r1−1)((p−1)p1−(γ+r1)p2)

pp1+p2(1−γ−r1) |Du|
p((p−1)p1−(γ+r1)p2)
pp1+p2(1−γ−r1) ϕ

(p−1)p1−(γ+r1)p2
pp1+p2(1−γ−r1)
η ×

×u
p1(p+γ+r1−1)
pp1+p2(1−γ−r1) |Du|

p2(p+γ+r1−1)
pp1+p2(1−γ−r1)ϕ

− (p−1)p1−(γ+r1)p2
pp1+p2(1−γ−r1)

η ,

vγ+r2 |Dv|q−1 = v
(γ+r2−1)((q−1)q1−(γ+r2)q2)

qq1+q2(1−γ−r2) |Dv|
q((q−1)q1−(γ+r2)q2)
qq1+q2(1−γ−r2) ϕ

(q−1)q1−(γ+r2)q2
qq1+q2(1−γ−r2)
η ×

×v
q1(q+γ+r2−1)
qq1+q2(1−γ−r2) |Dv|

q2(q+γ+r2−1)
qq1+q2(1−γ−r2)ϕ

− (q−1)q1−(γ+r2)q2
qq1+q2(1−γ−r2)

η .

Applying to the right-hand sides of (3.4) and (3.5) the parametric Young inequality with expo-

nents c1 and c2 from (3.10) and (3.11) respectively, we get∫
Ω

avq1|Dv|q2uγϕη dx+
|γ|
2

∫
Ω

|Du|puγ−1ϕη dx ≤

≤ cγ

∫
Ω

u
p1(p+γ+r1−1)

p1+p2 |Du|
p2(p+γ+r1−1)

p1+p2
|Dϕη|

pp1+p2(1−γ−r1)
p1+p2

ϕ
1− pp1+p2(1−γ−r1)

p1+p2
η

dx,

∫
Ω

bup1|Du|p2vγϕη dx+
|γ|
2

∫
Ω

vγ−1|Dv|qϕη dx ≤

≤ dγ

∫
Ω

v
q1(q+γ+r2−1)

q1+q2 |Dv|
q2(q+γ+r2−1)

q1+q2
|Dϕη|

qq1+q2(1−γ−r2)
q1+q2

ϕ
1− qq1+q2(1−γ−r2)

q1+q2
η

dx,

where the constants cγ and dγ depend only on p, q, and γ. Applying the H�older inequality with

the exponents
p1 + p2

p+ γ + r1 − 1
,

p1 + p2

p1 + p2 − p− γ − r1 + 1

and
q1 + q2

q + γ + r2 − 1
,

q1 + q2

q1 + q2 − q − γ − r2 + 1

respectively, we obtain∫
Ω

auγvq1|Dv|q2ϕη dx+
|γ|
2

∫
Ω

|Du|puγ+r1−1ϕη dx ≤

≤ cγ

∫
Ω

bup1|Du|p2ϕη dx


p+γ+r1−1
p1+p2

∫
Ω

b
− p+γ+r1−1
p1+p2−p−γ−r1+1

|Dϕη|
pp1+p2(1−γ−r1)
p1+p2−p−γ−r1+1

ϕ
1− pp1+p2(1−γ−r1)

p1+p2−p−γ−r1+1
η

dx


p1+p2−p−γ+1

p1+p2

,

(3.12)∫
Ω

bvγup1|Du|p2ϕη dx+
|γ|
2

∫
Ω

|Dv|qvγ+r2−1ϕη dx ≤

≤ dγ

∫
Ω

avq1|Dv|q2ϕη dx


q+γ+r2−1
q1+q2

∫
Ω

a
− q+γ+r2−1
q1+q2−q−γ−r2+1

|Dϕη|
qq1+q2(1−γ−r2)
q1+q2−q−γ−r2+1

ϕ
1− qq1+q2(1−γ−r2)

q1+q2−q−γ−r2+1
η

dx


q1+q2−q−γ−r2+1

q1+q2

.

(3.13)

Further, multiplying both di�erential inequalities (3.1) by ϕη, we integrate them by parts:∫
Ω

avq1ϕη dx ≤
∫
Ω

ur1|Du|p−1|Dϕη| dx , (3.14)
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∫
Ω

bup1ϕη dx ≤
∫
Ω

vr2 |Dv|q−1|Dϕη| dx . (3.15)

We make use of the representation

ur1|Du|p−1 = ua3|Du|b3ϕ
1
c3
η u

r1−a3|Du|p−1−b3(bϕη)
1
d3 b
− 1
d3ϕη)

− 1
c3
− 1
d3 , (3.16)

vr2 |Dv|q−1 = va4|Dv|b4ϕ
1
c4
η v

r2−a4|Dv|q−1−b4(aϕη)
1
d4 a
− 1
d4ϕη)

− 1
c4
− 1
d4 , (3.17)

in order to apply to the right-hand sides of (3.14) and (3.15) the triple H�older inequality with

the exponents denoted by c3, d3, e3 and c4, d4, e4 respectively. Here we choose the exponents so

that 

a3c3 = γ + r1 − 1,

b3c3 = p,

(r1 − a3)d3 = p1,

(p− 1− b3)d3 = p2,

1

c3

+
1

d3

+
1

e3

= 1,

(3.18)



a4c4 = γ + r2 − 1,

b4c4 = q,

(r2 − a4)d4 = q1,

(p− 1− b4)d4 = q2,

1

c4

+
1

d4

+
1

e4

= 1.

(3.19)

Solving the systems of equations (3.18) and (3.19), we obtain



a3 =
(γ − 1)(p1(p− 1)− p2r1)

pp1 + p2(1− γ)
,

b3 =
p(p1(p− 1)− p2r1)

pp1 + p2(1− γ)
,

c3 =
pp1 + p2(1− γ − r1)

p1(p− 1)− p2r1

,

d3 =
pp1 + p2(1− γ − r1)

(p− 1)(1− γ) + r1

,

e3 =
pp1 + p2(1− γ − r1)

(1− γ)(p2 − p+ 1) + p1 − r1

,

(3.20)
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

a4 =
(γ − 1)(q1(q − 1)− q2r2)

qq1 + q2(1− γ)
,

b4 =
q(q1(q − 1)− q2r2)

qq1 + q2(1− γ)
,

c4 =
qq1 + q2(1− γ − r2)

q1(q − 1)− q2r2

,

d4 =
qq1 + q2(1− γ − r2)

(q − 1)(1− γ) + r2

,

e4 =
qq1 + q2(1− γ − r2)

(1− γ)(q2 − q + 1) + q1 − r2

.

(3.21)

Substituting (3.20) and (3.21) into (3.16) and (3.17), we get the representations

|Du|p−1 = u
(γ+r1−1)(p1(p−1)−p2r1)

pp1+p2(1−γ−r1) |Du|
p(p1(p−1)−p2r1)
pp1+p2(1−γ−r1)ϕ

p1(p−1)−p2r1
pp1+p2(1−γ−r1)
η ×

×u
p1((p−1)(1−γ)+r1)
pp1+p2(1−γ−r1) |Du|

p2((p−1)(1−γ)+r1)
pp1+p2(1−γ−r1) (bϕη)

(p−1)(1−γ)+r1
pp1+p2(1−γ−r1)×

×b−
(p−1)(1−γ)+r1
pp1+p2(1−γ−r1)ϕ

(γ−p1−1)(p−1)+(p2−1)r1
pp1+p2(1−γ−r1)

η ,

|Dv|q−1 = v
(γ+r2−1)(q1(q−1)−q2r2)

qq1+q2(1−γ−r2) |Dv|
qq1(q−1)−q2r2
qq1+q2(1−γ−r2)ϕ

q1(q−1)−q2r2
qq1+q2(1−γ−r2)
η ×

v
q1((q−1)(1−γ)+r2)
qq1+q2(1−γ−r2) |Dv|

q2((q−1)(1−γ)+r2)
qq1+q2(1−γ−r2) (bϕη)

(q−1)(1−γ)+r2
qq1+q2(1−γ−r2)×

×b−
(q−1)(1−γ)+r2
qq1+q2(1−γ−r2)ϕ

(γ−q1−1)(q−1)+(q2−1)r2
qq1+q2(1−γ−r2)

η ,

and, applying to the right-hand sides of (3.14) and (3.15) the triple H�older inequality with the

exponents c3, d3, e3, c4, d4, e4 from (3.20) and (3.21) respectively, we arrive at

∫
Ω

avq1|Dv|q2ϕη dx ≤

∫
Ω

uγ+r1−1|Du|pϕη dx


p1(p−1)−p2r1

pp1+p2(1−γ−r1)

×

×

∫
Ω

bup1 |Du|p2ϕη dx


(p−1)(1−γ)+r1
pp1+p2(1−γ−r1)

×

×

∫
Ω

b
− (p−1)(1−γ)+r1
p1+(p2−p+1)(1−γ)−r1

|Dϕη|
pp1+p2(1−γ−r1)

p1+(1−γ)(p2−p+1)−r1

ϕ
1− pp1+p2(1−γ−r1)

p1+(1−γ)(p2−p+1)−r1
η

dx


p1+(1−γ)(p2−p+1)−r1

pp1+p2(1−γ−r1)

,

(3.22)

∫
Ω

bup1|Du|p2ϕη dx ≤

∫
Ω

vγ+r2−1|Dv|qϕη dx


q1(q−1)−q2r2

qq1+q2(1−γ−r2)

×

×

∫
Ω

avq1|Dv|q2ϕη dx


(q−1)(1−γ)+r2
qq1+q2(1−γ−r2)

×

×

∫
Ω

b
− (q−1)(1−γ)+r2
q1+(q2−q+1)(1−γ)−r2

|Dϕη|
qq1+q2(1−γ−r2)

q1+(1−γ)(q2−q+1)−r2

ϕ
1− qq1+q2(1−γ−r2)

q1+(1−γ)(q2−q+1)−r2
η

dx


q1+(1−γ)(q2−q+1)−r2

qq1+q2(1−γ−r2)

.

(3.23)
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Making use of (3.12) and (3.13), from the previous estimates we obtain

∫
Ω

avq1|Dv|q2ϕη dx ≤ Dγ

∫
Ω

bup1|Du|p2ϕη dx


(p1(p−1)−p2r1)(p1+p2)+((p−1)(1−γ)+r1)(p+γ+r1−1)

(pp1+p2(1−γ−r1))(p1+p2)

×

×

∫
Ω

b
− p+γ+r1−1
p1+p2−p−γ−r1+1 |Dϕη|

pp1+p2(1−γ−r1)
p1+p2−p−γ−r1+1

ϕ
1− pp1+p2(1−γ−r1)

p1+p2−p−γ−r1+1
η

dx


(p1(p−1)−p2r1)(p1+p2−p−γ−r1+1)

(pp1+p2(1−γ−r1))(p1+p2)

×

×

∫
Ω

b
− (p−1)(1−γ)+r1
p1+(1−γ)(p2−p+1)−r1

|Dϕη|
pp1+p2(1−γ−r1)

p1+(1−γ)(p2−p+1)−r1

ϕ
1− pp1+p2(1−γ−r1)

p1+(1−γ)(p2−p+1)−r1
η

dx


p1+(1−γ)(p2−p+1)−r1

pp1+p2(1−γ−r1)

,

(3.24)∫
Ω

bup1|Du|p2ϕη dx ≤ Eγ

∫
Ω

avq1|Dv|q2ϕη dx


(q1(q−1)−q2r2)(q1+q2)+((q−1)(1−γ)+r2)(q+γ+r2−1)

(qq1+q2(1−γ−r2))(q1+q2)

×

×

∫
Ω

b
− q+γ+r2−1
q1+q2−q−γ−r2+1 |Dϕη|

qq1+q2(1−γ−r2)
q1+q2−q−γ−r2+1

ϕ
1− qq1+q2(1−γ−r2)

q1+q2−q−γ−r2+1
η

dx


(q1(q−1)−q2r2)(q1+q2−q−γ−r2+1)

(qq1+q2(1−γ−r2))(q1+q2)

×

×

∫
Ω

b
− (q−1)(1−γ)+r2
q1+(1−γ)(q2−q+1)−r2

|Dϕη|
qq1+q2(1−γ−r2)

q1+(1−γ)(q2−q+1)−r2

ϕ
1− qq1+q2(1−γ−r2)

q1+(1−γ)(q2−q+1)−r2
η

dx


q1+(1−γ)(q2−q+1)−r2

qq1+q2(1−γ−r2)

,

(3.25)

where Dγ and Eγ > 0 depend only on p, q, and γ.

Hence due to (2.2) and (2.3) we have∫
Ω

avq1|Dv|q2ϕη dx ≤ c

∫
Ω

bup1|Du|p2ϕη dx

a1

ηb1 , (3.26)

∫
Ω

bup1|Du|p2ϕη dx ≤ c

∫
Ω

avq1|Dv|q2ϕη dx

a2

ηb2 , (3.27)

where

a1 =
p+ r1 − 1

p1 + p2

, b1 =
(β − 1)(p+ r1 − 1)− p1(p− 1) + p2r1

p1 + p2

,

a2 =
q + r2 − 1

q1 + q2

, b2 =
(α− 1)(q + r2 − 1)− q1(q − 1) + q2r2

q1 + q2

.

Substituting (3.26) into (3.27) and vice versa, we get∫
Ω

avq1|Dv|q2ϕη dx ≤ cη
((β−1)(p+r1−1)−p1(p−1)+p2r1)(q+r2−1)(p1+p2)+((α−1)(q+r2−1)−q1(q−1)+q2r2)(p+r1−1)

(p1+p2)(q1+q2)−(p+r1−1)(q+r2−1) ,

∫
Ω

bup1|Du|p2ϕη dx ≤ cη
((α−1)(q+r2−1)−q1(q−1)+q2r2)(p1+p2)+((β−1)(p+r1−1)−p1(p−1)+p2r1)(q+r2−1)

(p1+p2)(q1+q2)−(p+r1−1)(q+r2−1) .

Passing to the limit as η → 0+, by (3.2) and (3.3) we obtain a contradiction, which proves the

claim.
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