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MUKHTARBAY OTELBAEV

(to the 75th birthday)

On October 3, 2017 was the 75th birthday of Mukhtarbay Otel-
baev, Doctor of Physical and Mathematical Sciences (1978), Pro-
fessor (1983), academician of the National Academy of Sciences of
the Republic of Kazakhstan (2004), Honored Worker of the Repub-
lic of Kazakhstan (2012), laureate of the State Prize of the Republic
of Kazakhstan in the �eld of science and technology (2007), Direc-
tor of the Eurasian Mathematical Institute (since 2001), Professor
of the Department â�»Fundamental Mathematicsâ��ê of the L.N.
Gumilyov Eurasian National University, the editor-in-chief of the
Eurasian Mathematical Journal (together with V.I. Burenkov and
V.A. Sadovnichy).

M. Otelbaev was born in the village of Karakemer of the Kurdai
district, Zhambyl region. He graduated from the M.V. Lomonosov

Moscow State University (1969) and then completed his postgraduate studies at the same uni-
versity (1972). There he defended his doctor of sciences thesis (1978).

Professor Otelbaev's scienti�c interests are related to functional analysis, di�erential equa-
tions, computational mathematics, and theoretical physics.

He introduced the q-averaging, which is now called the Otelbaev function; using it he ob-
tained a number of fundamental results. For embedding of the Sobolev weighted spaces and the
resolvent of the Schrödinger operator, he established criterions for the compactness and �niteness
of the type, as well as estimates of the eigenvalues of the Schrödinger and Dirac operators that
are exact in order. He was the �rst to establish that there is no universal asymptotic formula
for the distribution function of the Sturm-Liouville operator. He obtained e�ective conditions
for the separation of the di�erential operators with nonsmooth and oscillating coe�cients, he
developed an abstract theory of extension and contraction of operators which are not necessarily
linear in linear topological spaces. M. Otelbaev proposed a new numerical method for solving
boundary value problems, and a method for approximate calculation of eigenvalues and eigen-
vectors of compact operators. He obtained the fundamental results in the theory of nonlinear
evolution equations and in theoretical physics.

He has published more than 70 scienti�c papers in leading international journals entering the
rating lists of Thomson Reuters and Scopus. Under his supervision 70 postgraduate students
have defended their candidate of sciences theses, 9 of them became doctors of sciences. In 2006
and 2011 he was awarded the state grant "The best university teacher".

The Editorial Board of the Eurasian Mathematical Journal congratulates Mukhtarbay Otel-
baev on the occasion of his 75th birthday and wishes him good health and new achievements in
mathematics and mathematical education.



Award for the Eurasian Mathematical Journal

Dear readers, authors, reviewers and members of the Editorial Board of the Eurasian
Mathematical Journal,

we are happy to inform you that in November 2017 the Eurasian Mathematical Journal was
awarded the title "Leader of Science 2017" by the National Center of State Scienti�c-Technical
Expertise of the Committee of Science of the Ministry of Education and Science of the Republic
of Kazakhstan in the nomination "Leader of Kazakhstan Scienti�c Publications" for the high
level of publication activities and high level of citations in Web of Science Core Collection in
2014-2016.

Recall that the Eurasian Mathematical Journal was founded by the L.N. Gumilyov Eurasian
National University in 2010 in co-operation with the M.V. Lomonosov Moscow State University,
the Peoples' Friendship University of Russia and the University of Padua (see [1]).

The journal pulishes carefully selected original research papers in all areas of mathematics,
survey papers, and short communications. It publishes 4 issues in a year. The language of the
paper must be English only. Papers accepted for publication are edited from the point of view
of English.

More than 280 papers were published written by mathematicians from more than 40 countries
representing all continents.

In 2014 the journal was registered in Scopus and in September 2014 the Elsevier-Kazakhstan
Research Excellence Forum was held at the L.N. Gumilyov Eurasian National University dedi-
cated to this occasion in which the Elsevier Chairman Professor Y.S. Chi participated (see [3]
for details).

In 2015 the Eurasian Mathematical Journal was included in the list of Scopus mathematical
journals, quartile Q4, and it is on the way to entering quartile Q3 (see [3]).

Attached is the invitation letter to the Rector of the L.N. Gumilyov Eurasian National
University Professor E.B. Sydykov to the ceremony of awarding, which took place in Almaty on
November 8, 2017.

On behalf of the Editorial Board of the EMJ V.I. Burenkov, E.D. Nursultanov,
T.Sh. Kalmenov, R. Oinarov, M. Otelbaev, T.V. Tararykova, A.M. Temirkhanova
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Abstract. In this paper, we proceed with the study of the basic properties of bi-Γ-hyperideals of
ordered Γ-semihypergroups. The purpose of the present paper is to study the Green's relations
on ordered Γ-semihypergroups.

1 Introduction

The study of ordered semihypergroups was �rst undertaken by Heidari and Davvaz [12]. In
[3, 4], Changphas and Davvaz gave some properties of hyperideals and bi-hyperideals of ordered
semihypergroups. The concept of ordered semihypergroups is a generalization of the concept
of ordered semigroups. Many authors studied di�erent aspects of ordered semihypergroups,
for instance, Davvaz et al. [9], Gu and Tang [11], Heidari and Davvaz [12], Pibaljommee and
Davvaz [30], and many others. Recall from [12], that an ordered semihypergroup (S, ◦,≤) is a
semihypergroup (S, ◦) together with a partial order ≤ that is compatible with the hyperoperation
◦, meaning that for any x, y, z ∈ S,

x ≤ y ⇒ z ◦ x ≤ z ◦ y and x ◦ z ≤ y ◦ z.

Here, A ≤ B means that for any a ∈ A, there exists b ∈ B such that a ≤ b, for all non-empty
subsets A and B of S. For the information about ordered semigroups we refer the reader to
[20, 22, 23, 24, 25].

For Green's relations in Γ-semigroups, we refer to [19]. The notion of a Γ-semigroup was in-
troduced by Sen and Saha [31] as a generalization of semigroups as well as of ternary semigroups.
The concept of an ordered Γ-semigroup has been introduced by Sen and Seth [32] in 1993 as
follows: An ordered Γ-semigroup (S,Γ,≤) is a Γ-semigroup (S,Γ) together with an order relation
≤ such that a ≤ b implies that aγc ≤ bγc and cγa ≤ cγb for all a, b, c ∈ S and γ ∈ Γ. Many
authors studied di�erent aspects of ordered Γ-semigroups, for instance, Dutta and Adhikari [10],
Hila [14], Iampan [15], Kehayopulu [21], Kwon [27], Kwon and Lee [28], and many others.

The concept of hyperstructures was �rst introduced by Marty [29] at the Eighth Congress
of Scandinavian Mathematicians in 1934. A comprehensive review of the theory of hyperstruc-
tures can be found in [5, 6, 7, 33]. Recently, Davvaz et al. [1, 2, 13] introduced the notion
of Γ-semihypergroup as a generalization of a semigroup, a generalization of a semihypergroup
and a generalization of a Γ-semigroup. Davvaz et al. in [1] introduced the relations L,R,H
in a Γ-semihypergroup S, which are called the Green's relations in the Γ-semihypergroup S.
The notion of a Γ-hyperideal of a Γ-semihypergroup was introduced in [1]. Davvaz et al. [2]
introduced the notion of Pawlak's approximations in Γ-semihypergroups. The study of ordered
semihyperrings began with the work of Davvaz and Omidi [8].
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2 De�nitions and notations

Given a nonempty set M and a nonempty set Γ of binary operations on M , then, M is called a
Γ -semigroup if

(1) m1αm2 ∈M ,

(2) (m1αm2)βm3 = m1α(m2βm3)

for all m1,m2,m3 ∈ M and all α, β ∈ Γ . Then, Kehayopulu in [18, 21, 17], has added the
following property in the de�nition:

(3) If m1,m2,m3,m4 ∈ M , γ1, γ2 ∈ Γ are such that m1 = m3, γ1 = γ2 and m2 = m4, then
m1γ1m2 = m3γ2m4.

Let S be a non-empty set and P∗(S) be the family of all non-empty subsets of S. A mapping
◦ : S × S → P∗(S) is called a hyperoperation on S. A hypergroupoid is a set S together with a
(binary) hyperoperation. In the above de�nition, if A and B are two non-empty subsets of S
and x ∈ S, then we denote

A ◦B =
⋃
a∈A
b∈B

a ◦ b, x ◦ A = {x} ◦ A and B ◦ x = B ◦ {x}.

A hypergroupoid (S, ◦) is called a semihypergroup if for every x, y, z in S,

x ◦ (y ◦ z) = (x ◦ y) ◦ z.

That is, ⋃
u∈y◦z

x ◦ u =
⋃

v∈x◦y
v ◦ z.

A hypergroupoid (S, ◦) is called a quasihypergroup if for every x ∈ S, x ◦ S = S = S ◦ x. This
condition is called the reproduction axiom. The couple (S, ◦) is called a hypergroup if it is a
semihypergroup and a quasihypergroup.

De�nition 1. [1, 2] Let S be a nonempty set and Γ be a nonempty set of hyperoperations on

S. Then, S is called a Γ-semihypergroup if every γ ∈ Γ is a hyperoperation on S, i.e., xγy ⊆ S

for every x, y ∈ S, and for every α, β ∈ Γ and x, y, z ∈ S, we have

xα(yβz) = (xαy)βz.

If m1, m2, m3, m4 ∈ M , γ1, γ2 ∈ Γ are such that m1 = m3, γ1 = γ2 and m2 = m4, then

m1γ1m2 = m3γ2m4.

If every γ ∈ Γ is an operation, then S is a Γ-semigroup. Let A and B be two non-empty

subsets of S. We de�ne

AγB = ∪{aγb | a ∈ A, b ∈ B}.

Also,
AΓB = ∪{aγb | a ∈ A, b ∈ B and γ ∈ Γ} =

⋃
γ∈Γ

AγB.

A Γ-semihypergroup S is called commutative if for all x, y ∈ S and γ ∈ Γ, we have xγy = yγx.

A Γ-semihypergroup S is called a Γ-hypergroup if for every γ ∈ Γ, (S, γ) is a hypergroup.
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De�nition 2. [26] An algebraic hyperstructure (S,Γ,≤) is called an ordered Γ-semihypergroup

if (S,Γ) is a Γ-semihypergroup and (S,≤) is a partially ordered set such that for any x, y, z ∈ S
and γ ∈ Γ, x ≤ y implies zγx ≤ zγy and xγz ≤ yγz. Here, if A and B are two non-empty

subsets of S, then we say that A ≤ B if for every a ∈ A there exists b ∈ B such that a ≤ b.

An ordered Γ-semihypergroup is called idempotent if a ∈ aγa for every a ∈ S and for every
γ ∈ Γ.

De�nition 3. Let (S,Γ,≤) be an ordered Γ-semihypergroup. A non-empty subset I of S is

called a left Γ-hyperideal of S if the following conditions are satis�ed:

(1) SΓI ⊆ I;

(2) When x ∈ I and y ∈ S such that y ≤ x, imply that y ∈ I.

A right Γ-hyperideal of an ordered Γ-semihypergroup S is de�ned in a similar way. By two-
sided Γ-hyperideal or simply Γ-hyperideal, we mean a non-empty subset of S which both left and
right Γ-hyperideal of S. A Γ-hyperideal I of S is said to be proper if I 6= S.

Let K be a non-empty subset of an ordered Γ-semihypergroup (S,Γ,≤). We de�ne

(K] := {x ∈ S | x ≤ k for some k ∈ K}.

For K = {k}, we write (k] instead of ({k}]. Note that the condition (2) in De�nition 3 is
equivalent to (I] ⊆ I. If A and B are non-empty subsets of S, then we have

(1) A ⊆ (A];

(2) ((A]] = (A];

(3) If A ⊆ B, then (A] ⊆ (B];

(4) (A]Γ(B] ⊆ (AΓB];

(5) ((A]Γ(B]] = (AΓB].

Let (S,Γ,≤) be an ordered Γ-semihypergroup. A subset A of S is called idempotent if
A = (AΓA].

De�nition 4. [26] A sub Γ-semihypergroup B of an ordered Γ-semihypergroup (S,Γ,≤) is called

a bi-Γ-hyperideal of S if the following conditions hold:

(1) BΓSΓB ⊆ B;

(2) When x ∈ B and y ∈ S such that y ≤ x, imply that y ∈ B.

An ordered Γ-semihypergroup (S,Γ,≤) is said to be B-simple if S has no proper bi-Γ-
hyperideals. A bi-Γ-hyperideal C of S is called a minimal bi-Γ-hyperideal of S if C does not
properly contain any bi-Γ-hyperideal of S.
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3 Basic properties of bi-Γ-hyperideals

Let A be a non-empty subset of an ordered Γ-semihypergroup (S,Γ,≤). The smallest left (resp.
right, two-sided, bi-) Γ-hyperideal of S containing A is called left (resp. right, two-sided, bi-)
Γ-hyperideal of S generated by A. A left (resp. right, two-sided, bi-) Γ-hyperideal that can be
generated by only one element is called principal. In this section, we present some basic types
of Γ-hyperideals and collect some basic properties of Γ-hyperideals.

Theorem 3.1. The left (resp. right, two-sided, bi-) Γ-hyperideal of an ordered Γ-semihypergroup

(S,Γ,≤) generated by a non-empty subset A is the intersection of all left (resp. right, two-sided,

bi-) Γ-hyperideals of S containing A.

Proof. Let Θ be the set of all left (resp. right, two-sided, bi-) Γ-hyperideals of S containing A.

Since S ∈ Θ, it follows that Θ 6= ∅. Let G =
⋂
C∈Θ

C. Since A ⊆ C for all C ∈ Θ, we obtain

A ⊆ G. Clearly, G is a left (resp. right, two-sided, bi-) Γ-hyperideal of S. Let C be a left (resp.

right, two-sided, bi-) Γ-hyperideal of S containing A. Then, C ∈ Θ. So, we have G ⊆ C, which

completes the proof.

Lemma 3.1. Let a be an element of an ordered Γ-semihypergroup (S,Γ,≤). We denote by LS(a)

(resp. RS(a), IS(a), BS(a)) the left (resp. right, two-sided, bi-) Γ-hyperideal of S generated by

a. We have

(1) LS(a) = (a ∪ SΓa];

(2) RS(a) = (a ∪ aΓS];

(3) IS(a) = (a ∪ SΓa ∪ aΓS ∪ SΓaΓS];

(4) BS(a) = (a ∪ aΓa ∪ aΓSΓa].

Theorem 3.2. Let (S,Γ,≤) be an ordered Γ-semihypergroup. Then the following assertions are

equivalent:

(1) principal Γ-hyperideals of S form a chain with respect to the inclusion relation.

(2) Γ-hyperideals of S form a chain with respect to the inclusion relation.

Proof. (1) ⇒ (2): Assume that (1) holds. Let I, J be two Γ-hyperideals of S. If I * J and

J * I, then we consider x ∈ I \J and y ∈ J \ I. Since principal Γ-hyperideals of S form a chain,

either IS(x) ⊆ IS(y) or IS(y) ⊆ IS(x). Now, we can consider the following two cases:

Case 1. IS(x) ⊆ IS(y). Since y ∈ J , we obtain x ∈ IS(x) ⊆ IS(y) ⊆ J and this is a

contradiction.

Case 2. IS(y) ⊆ IS(x). Since x ∈ I, we obtain y ∈ IS(y) ⊆ IS(x) ⊆ I and this is a contradiction.

Hence, I ⊆ J or J ⊆ I and so Γ-hyperideals of S form a chain.

(2)⇒ (1): This proof is straightforward.

Theorem 3.3. Let I be a Γ-hyperideal of an ordered Γ-semihypergroup (S,Γ,≤). Then, any

idempotent Γ-hyperideal J of I is a Γ-hyperideal of S.
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Proof. First, we show that (J ] = J . Let a be an arbitrary element of J . Since (a, a) ∈≤, it
follows that a ∈ (J ]. So, we have J ⊆ (J ]. If x ∈ (J ], then x ≤ a for some a ∈ J ⊆ I. Since I

is a Γ-hyperideal of S, it follows that x ∈ I. Since J is a Γ-hyperideal of I, we obtain x ∈ J .
Hence, (J ] ⊆ J which implies that (J ] = J . By hypothesis, J is a Γ-hyperideal of I such that

J = (JΓJ ]. We have

SΓJ = SΓ(JΓJ ]

= (S]Γ(JΓJ ]

⊆ (SΓ(JΓJ)]

= ((SΓJ)ΓJ ]

⊆ ((SΓI)ΓJ ]

⊆ (IΓJ ]

⊆ (J ]

= J.

Similarly, we obtain JΓS ⊆ J . Therefore, J is a Γ-hyperideal of S.

Iseki [16] proved that a commutative semigroup S is regular if and only if every ideal of S is
idempotent.

De�nition 5. An ordered Γ-semihypergroup (S,Γ,≤) is called regular if for every a ∈ S there

exist x ∈ S, α, β ∈ Γ such that a ≤ aαxβa. This is equivalent to saying that a ∈ (aΓSΓa], for

every a ∈ S or A ⊆ (AΓSΓA], for every A ⊆ S.

Theorem 3.4. An ordered Γ-semihypergroup (S,Γ,≤) is regular if and only if for every bi-Γ-

hyperideal B and every left Γ-hyperideal L of S, we have

B ∩ L ⊆ (BΓL].

Proof. Let a ∈ B ∩ L. Since S is regular, there exist x ∈ S and α, β ∈ Γ such that

a ≤ aαxβa = aα(xβa) ⊆ BΓ(SΓL) ⊆ BΓL.

Hence, a ∈ (BΓL] and so B ∩ L ⊆ (BΓL].

Conversely, suppose that B∩L ⊆ (BΓL] for any bi-Γ-hyperideal B and any left Γ-hyperideal

L of S. Let a ∈ S. Since a ∈ BS(a) and a ∈ LS(a), it follows that a ∈ BS(a) ∩ LS(a). By

hypothesis, we have

a ∈ (BS(a)ΓLS(a)] = ((a ∪ aΓa ∪ aΓSΓa]Γ(a ∪ SΓa]]

= ((a ∪ aΓa ∪ aΓSΓa)Γ(a ∪ SΓa)]

⊆ (aΓa ∪ aΓSΓa].

Then, a ≤ u for some u ∈ aΓa∪aΓSΓa. If u ∈ aΓa, then a ≤ aαa ≤ aα(aαa). So, a ∈ (aΓSΓa].

Therefore, S is regular. If u ∈ aΓSΓa, then a ≤ aαxβa for some x ∈ S and α, β ∈ Γ. Thus,

a ∈ (aΓSΓa]. Therefore, S is regular.

De�nition 6. Let (S,Γ,≤) be an ordered Γ-semihypergroup. An element a ∈ S is said to

be intra-regular if there exist x, y ∈ S, α, β, γ ∈ Γ such that a ≤ xαaβaγy. An ordered Γ-

semihypergroup S is called intra-regular if all elements of S are intra-regular.

Equivalent de�nitions:

(1) a ∈ (SΓaΓaΓS], ∀a ∈ S.
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(2) A ⊆ (SΓAΓAΓS], ∀A ⊆ S.

Theorem 3.5. Let (S,Γ,≤) be an ordered Γ-semihypergroup. The following statements are

equivalent:

(1) S is regular and intra-regular.

(2) Every bi-Γ-hyperideal of S is idempotent.

Proof. (1) ⇒ (2): Assume that (1) holds. If B is a bi-Γ-hyperideal of S, then BΓSΓB ⊆ B.

Since S is regular and intra-regular, B ⊆ (BΓSΓB] and B ⊆ (SΓBΓBΓS]. We have

B ⊆ (BΓSΓB]

⊆ (BΓSΓ(BΓSΓB]]

⊆ ((BΓS]Γ(BΓSΓB]]

= (BΓSΓBΓSΓB]

⊆ ((BΓS]Γ(SΓBΓBΓS]Γ(SΓB]]

⊆ ((BΓS)Γ(SΓBΓBΓS)Γ(SΓB)]

⊆ ((BΓSΓB)Γ(BΓSΓB)]

⊆ (BΓB].

Since B is a bi-Γ-hyperideal of S, it follows that (BΓB] ⊆ (B] = B. This shows that B = (BΓB],

and the proof is completed.

(2)⇒ (1): Let a ∈ S. By hypothesis, we have

a ∈ BS(a) = (BS(a)ΓBS(a)]

= ((a ∪ aΓa ∪ aΓSΓa]Γ(a ∪ aΓa ∪ aΓSΓa]]

= ((a ∪ aΓa ∪ aΓSΓa)Γ(a ∪ aΓa ∪ aΓSΓa)]

⊆ (aΓa ∪ aΓSΓa].

Then, a ≤ t for some t ∈ aΓa ∪ aΓSΓa. If t ∈ aΓa, then a ≤ aαa ≤ aα(aαa). So, a ∈ (aΓSΓa].

If t ∈ aΓSΓa, then a ≤ aαxβa for some x ∈ S and α, β ∈ Γ. Thus, a ∈ (aΓSΓa]. Therefore, S

is regular. Also, we have

a ∈ BS(a) = (BS(a)ΓBS(a)]

= ((BS(a)ΓBS(a)]ΓBS(a)]

⊆ ((aΓa ∪ aΓSΓa]Γ(a ∪ aΓa ∪ aΓSΓa]]

= ((aΓa ∪ aΓSΓa)Γ(a ∪ aΓa ∪ aΓSΓa)]

⊆ (aΓaΓa ∪ aΓSΓaΓa ∪ SΓaΓaΓS].

Then, a ≤ u for some u ∈ aΓaΓa ∪ aΓSΓaΓa ∪ SΓaΓaΓS. If u ∈ aΓaΓa, then a ≤ aαaβa for

some α, β ∈ Γ. We have

a ≤ aαaβa = aα(aβa) ≤ (aαaβa)α(aβa) ⊆ SΓaΓaΓS,

and so a ∈ (SΓaΓaΓS]. If u ∈ aΓSΓaΓa, then a ≤ aαxβaγa for some x ∈ S and α, β, γ ∈ Γ.

So, we have

a ≤ aαxβaγa ≤ (aαxβaγa)αxβaγa = (aαx)βaγaα(xβaγa) ⊆ SΓaΓaΓS.

Hence, a ∈ (SΓaΓaΓS]. If u ∈ SΓaΓaΓS, then a ∈ (SΓaΓaΓS]. Therefore, S is intra-regular.
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4 The relation B and minimal bi-Γ-hyperideals in ordered Γ-

semihypergroups

Let (S,Γ,≤) be an ordered Γ-semihypergroup. An equivalence relation L is de�ned on S by aLb
if and only if (a ∪ SΓa] = (b ∪ SΓb] for any a, b ∈ S. Similarly,

aRb if and only if (a ∪ aΓS] = (b ∪ bΓS],

aIb if and only if (a ∪ SΓa ∪ aΓS ∪ SΓaΓS] = (b ∪ SΓb ∪ bΓS ∪ SΓbΓS],

aBb if and only if (a ∪ aΓa ∪ aΓSΓa] = (b ∪ bΓb ∪ bΓSΓb].

These equivalence relations are called Green's relations on an ordered Γ-semihypergroup (S,Γ,≤
).

Theorem 4.1. Let (S,Γ,≤) be an intra-regular ordered Γ-semihypergroup. Then, for any a, b ∈
S, aIb if and only if (SΓaΓS] = (SΓbΓS].

Proof. Let a ∈ S. First of all, we show that (SΓaΓS] is a Γ-hyperideal of S. We have

SΓ(SΓaΓS] = (S]Γ(SΓaΓS]

⊆ (SΓ(SΓaΓS)]

= (SΓS(ΓaΓS)]

⊆ (SΓaΓS].

Similarly, we have (SΓaΓS]ΓS ⊆ (SΓaΓS]. Now, let x ∈ S and y ∈ (SΓaΓS] such that x ≤ y.

Then x ≤ y ≤ z for some z ∈ SΓaΓS. Hence, x ≤ z and so x ∈ (SΓaΓS]. Therefore,

(SΓaΓS] is a Γ-hyperideal of S. By hypothesis, S is intra-regular. We have a ∈ (SΓaΓaΓS] ⊆
(SΓaΓS]. Since (SΓaΓS] is a Γ-hyperideal of S containing a, we have IS(a) ⊆ (SΓaΓS]. Clearly,

(SΓaΓS] ⊆ IS(a). Thus IS(a) = (SΓaΓS]. Similarly, we have IS(b) = (SΓbΓS]. Therefore, aIb
if and only if (SΓaΓS] = (SΓbΓS].

In view of Theorem 4.1, we have the following corollaries.

Corollary 4.1. Let (S,Γ,≤) be a commutative ordered Γ-semihypergroup. If S is regular, then,

for any a, b ∈ S, aIb if and only if (SΓaΓS] = (SΓbΓS].

Proof. Let S be regular and a ∈ S. Then, there exist x ∈ S and α, β ∈ Γ such that a ≤ aαxβa.

Again Since S is regular, there exist y ∈ S and θ, λ ∈ Γ such that x ≤ xθyλx. By assumption,

we have
a ≤ aαxβa

≤ aα(xθyλx)βa

= (xαa)θyλ(xβa)

= (xαa)θyλ(aβx)

= (xαa)θ(yλa)βx

= (xαa)θ(aλy)βx

= xα(aθa)λyβx

⊆ SΓaΓaΓS.

So, a ∈ (SΓaΓaΓS] and this implies that S is intra-regular. By Theorem 4.1, for any a, b ∈ S,
aIb if and only if (SΓaΓS] = (SΓbΓS].
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Corollary 4.2. Let (S,Γ,≤) be an idempotent ordered Γ-semihypergroup. Then, for any a, b ∈
S, aIb if and only if (SΓaΓS] = (SΓbΓS].

Proof. Let a ∈ S. Then, a ∈ aγa for every γ ∈ Γ. So, we have

a ∈ aγa ⊆ (a ∈ aγa)γ(a ∈ aγa) = aγ(aγa)γa.

Since ≤ is re�exive, we have a ≤ aγ(aγa)γa This implies that a ∈ (SΓaΓaΓS]. Therefore, S is

intra-regular. By Theorem 4.1, for any a, b ∈ S, aIb if and only if (SΓaΓS] = (SΓbΓS].

Theorem 4.2. Let B be a bi-Γ-hyperideal of an ordered Γ-semihypergroup (S,Γ,≤). If B is

B-simple, then B is a minimal bi-Γ-hyperideal of S.

Proof. If C is a bi-Γ-hyperideal of S contain in B, then

CΓBΓC ⊆ CΓSΓC ⊆ C.

This means that C is a bi-Γ-hyperideal of B. By hypothesis, we have C = B. Hence, B is a

minimal bi-Γ-hyperideal of S.

Theorem 4.3. Let B be a bi-Γ-hyperideal of an ordered Γ-semihypergroup (S,Γ,≤). Then, B

is a minimal bi-Γ-hyperideal of S if and only if B is a B-class.

Proof. Suppose that B is a minimal bi-Γ-hyperideal of S. Let a, b ∈ B. If a = b, then aBb.
Assume that a 6= b. Since B is a bi-Γ-hyperideal of S containing a, we have BS(a) ⊆ B. By the

minimality of B, we obtain BS(a) = B. Similarly, we have BS(b) = B. Thus, BS(a) = BS(b).

This means that aBb. So we have shown that B is a B-class.
Conversely, suppose that B is a B-class. Fix a ∈ B. Take any b ∈ B; then aBb. Thus,

b ∈ BS(b) = BS(a). Since b was chosen arbitrarily, we obtain B ⊆ BS(a). By hypothesis, we

vhave

BS(a) = (a ∪ aΓa ∪ aΓSΓa] ⊆ B.

Hence, B = BS(a) for all a ∈ B. Let C be a bi-Γ-hyperideal of S and C ⊆ B. If x ∈ C, then
x ∈ B and B = BS(x). Since x ∈ C and C is a bi-Γ-hyperideal of S, we have

B = BS(x) = (x ∪ xΓx ∪ xΓSΓx] ⊆ C.

Therefore, B is a minimal bi-Γ-hyperideal of S.

Corollary 4.3. Let (S,Γ,≤) be an ordered Γ-semihypergroup. Then S is a B-simple ordered

Γ-semihypergroup if and only if S is a B-class.

Proof. It follows by Theorems 4.2 and 4.3.

Theorem 4.4. Let A be a non-empty subset of an ordered Γ-semihyergroup (S,Γ,≤). We

consider the relation on S as follows:

σA := {(x, y) ∈ S × S | x, y ∈ A or x, y /∈ A}

Let Θ be the set of bi-Γ-hyperideals of S. Then we have

B =
⋂
B∈Θ

σB.
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Proof. Let (x, y) ∈ B and B ∈ Θ. If x ∈ B, then we have

y ∈ BS(y) = BS(x)

= (x ∪ xΓx ∪ xΓSΓx]

⊆ (B ∪BΓB ∪BΓSΓB]

⊆ (B]

= B.

Then, x, y ∈ B and so (x, y) ∈ σB. If x /∈ B, then y /∈ B. Thus, x, y /∈ B. This implies that
(x, y) ∈ σB. Therefore, B ⊆

⋂
B∈Θ

σB. Now, let (x, y) ∈ σB for every B ∈ Θ. Since x ∈ BS(x) and

(x, y) ∈ σBS(x), we have y ∈ BS(x). Since BS(x) is a bi-Γ-hyperideal of S containing y, we have

BS(y) ⊆ BS(x). Similarly, we have BS(x) ⊆ BS(y). Then, BS(x) = BS(y) and so (x, y) ∈ B.
Hence,

⋂
B∈Θ

σB ⊆ B. Thus, B =
⋂
B∈Θ

σB.

We conclude this paper with the following observation.

Corollary 4.4. Let (S,Γ,≤) be an ordered Γ-semihypergroup. Then S is a B-simple ordered

Γ-semihypergroup if and only if S has only one B-class.

Proof. Suppose that S does not contain proper bi-Γ-hyperideals. Let a ∈ S. Then, for any

x ∈ S such that a /∈ x, we have BS(a) = S and BS(x) = S. Hence, (a, x) ∈ B. Then, BS(a) is

the only B-class of S.
Conversely, suppose that S has only one B-class. If C is a bi-Γ-hyperideal of S and x ∈ S,

then we have x ∈ C. Let x /∈ C. Take any a ∈ C; then (x, a) /∈ σC . Therefore, (x, a) /∈ B. Then
x 6= a and BS(x) 6= BS(a), which is a contradiction. This leads to x ∈ C. This means that

S ⊆ C. Therefore, S is B-simple.



72 S. Omidi, B. Davvaz

References

[1] S.M. Anvariyeh, S. Mirvakili, B. Davvaz, On Γ-hyperideals in Γ-semihypergroups, Carpathian J. Math. 26

(2010), no. 1, 11-23.

[2] S.M. Anvariyeh, S. Mirvakili, B. Davvaz, Pawlak's approximations in Γ-semihypergroups, Comput. Math.

Appl. 60 (2010), 45-53.

[3] T. Changphas, B. Davvaz, Bi-hyperideals and quasi-hyperideals in ordered semihypergroups, Ital. J. Pure

Appl. Math. 35 (2015), 493-508.

[4] T. Changphas, B. Davvaz, Properties of hyperideals in ordered semihypergroups, Ital. J. Pure Appl. Math.

33 (2014), 425-432.

[5] P. Corsini, Prolegomena of hypergroup theory, Second edition, Aviani Editore, Italy, 1993.

[6] P. Corsini, V. Leoreanu, Applications of hyperstructure theory, Advances in Mathematics, Kluwer Academic

Publishers, Dordrecht, 2003.

[7] B. Davvaz, V. Leoreanu-Fotea, Hyperring theory and applications, International Academic Press, USA,

2007.

[8] B. Davvaz, S. Omidi, Basic notions and properties of ordered semihyperrings, Categ. General Alg. Structures

Appl. 4 (2016), 43-62.

[9] B. Davvaz, P. Corsini, T. Changphas, Relationship between ordered semihypergroups and ordered semigroups

by using pseudoorder, European J. Combinatorics, 44 (2015), 208-217.

[10] T.K. Dutta, N.C. Adhikari, On partially ordered Γ-semigroup, Southeast Asian Bull. Math. 28 (2004), no.

6, 1021-1028.

[11] Z. Gu, X. Tang, Ordered regular equivalence relations on ordered semihypergroups, J. Algebra, 450 (2016),

384-397.

[12] D. Heidari, B. Davvaz, On ordered hyperstructures, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math.

Phys. 73 (2011), 85-96.

[13] D. Heidari, S.O. Dehkordi, B. Davvaz, Γ-semihypergroups and their properties, U. P. B. Sci. Bull. Series A.

72 (2010), 197-210.

[14] K. Hila, On quasi-prime, weakly quasi-prime left ideals in ordered Γ-semigroups, Math. Slovaca, 60 (2010),

195-212.

[15] A. Iampan, Characterizing ordered bi-ideals in ordered Γ-semigroups, Iranian Journal of Mathematical

Sciences and Informatics. 4 (2009), 17-25.

[16] K. Iseki, A characterization of regular semigroups, Proc. Japan Acad. 32 (1956), 676-677.

[17] N. Kehayopulu, On regular duo po-Γ -semigroups, Math. Slovaca, 61 (2011), 871-884.

[18] N. Kehayopulu, On prime, weakly prime ideals in po−Γ -semigroups, Lobachevskii J. Math. 30 (2009),

257-262.

[19] N. Kehayopulu, Green's relations and the relation N in Γ-semigroups, Quasigroups Relat. Syst. 22 (2014),

89-96.

[20] N. Kehayopulu, Ordered semigroups whose elements are separated by prime ideals, Math. Slovaca, 62 (2012),

417-424.

[21] N. Kehayopulu, On ordered Γ-semigroups, Sci. Math. Japonica, 71 (2010), 179-185.



Bi-Γ-hyperideals and Green's relations in ordered Γ-semihypergroups 73

[22] N. Kehayopulu, On regular ordered semigroups, Math. Japonica, 45 (1997), 549-553.

[23] N. Kehayopulu, On intra-regular ordered semigroups, Semigroup Forum, 46 (1993), 271-278.

[24] N. Kehayopulu, Note on Green's relations in ordered semigroups, Math. Japonica, 36 (1991), 211-214.

[25] N. Kehayopulu, M. Tsingelis, On weakly prime ideals of ordered semigroups, Math. Japonica, 35 (1990),

1051-1056.

[26] M. Kondo, N. Lekkoksung, On intra-regular ordered Γ-semihypergroups, Int. Journal of Math. Analysis, 7

(2013), no. 28, 1379-1386.

[27] Y.I. Kwon, The �lters of the ordered Γ-semigroups, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 4

(1997), 131-135.

[28] Y.I. Kwon, S. K. Lee, On weakly prime ideals of ordered Γ-semigroups, Comm. Korean Math. Soc. 13 (1998),

251-256.

[29] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm,

Sweden, 1934, 45-49.

[30] B. Pibaljommee, B. Davvaz, Characterizations of (fuzzy) bi-hyperideals in ordered semihypergroups, J. Intell.

Fuzzy Systems. 28 (2015), 2141-2148.

[31] M.K. Sen, N.K. Saha, On Γ-semigroup I, Bull. Calcutta Math. Soc. 78 (1986), 180-186.

[32] M.K. Sen, A. Seth, On po-Γ-semigroups, Bull. Calcutta Math. Soc. 85 (1993), 445-450.

[33] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, Palm Harbor, Florida, 1994.

Saber Omidi and Bijan Davvaz

Department of Mathematics

Yazd University

Yazd, Iran

E-mails: omidi.saber@yahoo.com; davvaz@yazd.ac.ir

Received: 25.04.2016

Revised version: 10.03.2017


