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MUKHTARBAY OTELBAEV

(to the 75th birthday)

On October 3, 2017 was the 75th birthday of Mukhtarbay Otel-
baev, Doctor of Physical and Mathematical Sciences (1978), Pro-
fessor (1983), academician of the National Academy of Sciences of
the Republic of Kazakhstan (2004), Honored Worker of the Repub-
lic of Kazakhstan (2012), laureate of the State Prize of the Republic
of Kazakhstan in the �eld of science and technology (2007), Direc-
tor of the Eurasian Mathematical Institute (since 2001), Professor
of the Department â�»Fundamental Mathematicsâ��ê of the L.N.
Gumilyov Eurasian National University, the editor-in-chief of the
Eurasian Mathematical Journal (together with V.I. Burenkov and
V.A. Sadovnichy).

M. Otelbaev was born in the village of Karakemer of the Kurdai
district, Zhambyl region. He graduated from the M.V. Lomonosov

Moscow State University (1969) and then completed his postgraduate studies at the same uni-
versity (1972). There he defended his doctor of sciences thesis (1978).

Professor Otelbaev's scienti�c interests are related to functional analysis, di�erential equa-
tions, computational mathematics, and theoretical physics.

He introduced the q-averaging, which is now called the Otelbaev function; using it he ob-
tained a number of fundamental results. For embedding of the Sobolev weighted spaces and the
resolvent of the Schrödinger operator, he established criterions for the compactness and �niteness
of the type, as well as estimates of the eigenvalues of the Schrödinger and Dirac operators that
are exact in order. He was the �rst to establish that there is no universal asymptotic formula
for the distribution function of the Sturm-Liouville operator. He obtained e�ective conditions
for the separation of the di�erential operators with nonsmooth and oscillating coe�cients, he
developed an abstract theory of extension and contraction of operators which are not necessarily
linear in linear topological spaces. M. Otelbaev proposed a new numerical method for solving
boundary value problems, and a method for approximate calculation of eigenvalues and eigen-
vectors of compact operators. He obtained the fundamental results in the theory of nonlinear
evolution equations and in theoretical physics.

He has published more than 70 scienti�c papers in leading international journals entering the
rating lists of Thomson Reuters and Scopus. Under his supervision 70 postgraduate students
have defended their candidate of sciences theses, 9 of them became doctors of sciences. In 2006
and 2011 he was awarded the state grant "The best university teacher".

The Editorial Board of the Eurasian Mathematical Journal congratulates Mukhtarbay Otel-
baev on the occasion of his 75th birthday and wishes him good health and new achievements in
mathematics and mathematical education.



Award for the Eurasian Mathematical Journal

Dear readers, authors, reviewers and members of the Editorial Board of the Eurasian
Mathematical Journal,

we are happy to inform you that in November 2017 the Eurasian Mathematical Journal was
awarded the title "Leader of Science 2017" by the National Center of State Scienti�c-Technical
Expertise of the Committee of Science of the Ministry of Education and Science of the Republic
of Kazakhstan in the nomination "Leader of Kazakhstan Scienti�c Publications" for the high
level of publication activities and high level of citations in Web of Science Core Collection in
2014-2016.

Recall that the Eurasian Mathematical Journal was founded by the L.N. Gumilyov Eurasian
National University in 2010 in co-operation with the M.V. Lomonosov Moscow State University,
the Peoples' Friendship University of Russia and the University of Padua (see [1]).

The journal pulishes carefully selected original research papers in all areas of mathematics,
survey papers, and short communications. It publishes 4 issues in a year. The language of the
paper must be English only. Papers accepted for publication are edited from the point of view
of English.

More than 280 papers were published written by mathematicians from more than 40 countries
representing all continents.

In 2014 the journal was registered in Scopus and in September 2014 the Elsevier-Kazakhstan
Research Excellence Forum was held at the L.N. Gumilyov Eurasian National University dedi-
cated to this occasion in which the Elsevier Chairman Professor Y.S. Chi participated (see [3]
for details).

In 2015 the Eurasian Mathematical Journal was included in the list of Scopus mathematical
journals, quartile Q4, and it is on the way to entering quartile Q3 (see [3]).

Attached is the invitation letter to the Rector of the L.N. Gumilyov Eurasian National
University Professor E.B. Sydykov to the ceremony of awarding, which took place in Almaty on
November 8, 2017.

On behalf of the Editorial Board of the EMJ V.I. Burenkov, E.D. Nursultanov,
T.Sh. Kalmenov, R. Oinarov, M. Otelbaev, T.V. Tararykova, A.M. Temirkhanova
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Abstract. In this paper we de�ne the generalized Riesz-dual sequence from a g-Bessel sequence
with respect to a pair of g-orthonormal bases as a generalization of the Riesz-dual sequence. We
characterize exactly properties of the �rst sequence in terms of the associated one, which yields
duality relations for the abstract g-frame setting.

1 Introduction

Let {ei}i∈I and {hi}i∈I be orthonormal bases for a separable Hilbert space H and let f = {fi}i∈I
be any sequence in H for which

∑
i∈I |〈fi, ej〉|2 < ∞ for all j ∈ I. In [4], Casazza, Kutyniok,

and Lammers introduced the Riesz-dual sequence (R-dual sequence) of {fi}i∈I with respect to
{ei}i∈I and {hi}i∈I as the sequence {wfj }j∈I given by

wfj =
∑
i∈I

〈fi, ej〉hi, ∀j ∈ I. (1.1)

The paper [4] demonstrates that there is a strong relationship between the frame theoretic
properties of {wfj }j∈I and {fi}i∈I . For more details we refer to [6, 7, 11, 14]. The purpose of this
paper is to introduce the concept of Riesz-dual sequence for g-frames. We give characterizations
of g-R-dual sequences and prove that g-R-dual sequences share many useful properties with
R-dual sequences.

In 2006, a new generalization of the frame named g-frame was introduced by Sun [12] in
a complex Hilbert space. G-frames are natural generalizations of frames which cover many
other recent generalizations of frames, e.g., bounded quasi-projectors, frames of subspaces, outer
frames, oblique frames, pseudo-frames and a class of time-frequency localization operators. Sun
showed that all of the above applications of frames are special cases of g-frames. For more
information about the theory and applications of g-frames we refer to [3, 5, 10, 13].

Let H and K be two separable Hilbert spaces and let {Vi}i∈I be a family of closed subspaces
of K and B(H, Vi) denote the collection of all bounded linear operators from H into Vi for all
i ∈ I. Recall that a family Λ = {Λi ∈ B(H, Vi) : i ∈ I} is a g-frame for H with respect to
{Vi}i∈I if there exist constants 0 < C ≤ D <∞ such that:

C‖f‖2 ≤
∑
i∈I

‖Λif‖2 ≤ D‖f‖2, ∀f ∈ H. (1.2)

The constants C and D are called g-frame bounds. If only the right-hand inequality of (1.2) is
required, we call it a g-Bessel sequence. We denote the representation space associated with a
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g-Bessel sequence {Λi}i∈I as follows:(∑
i∈I

⊕Vi
)
`2

=
{
{g′i}i∈I | g′i ∈ Vi,

∑
i∈I

‖g′i‖2 <∞
}
.

In order to analyze a signal f ∈ H, i.e., to map it into the representation space, the analysis
operator TΛ : H →

(∑
i∈I ⊕Vi

)
`2
given by TΛf = {Λif}i∈I is applied. The associated synthesis

operator, which provides a mapping from the representation space to H, is de�ned to be the
adjoint operator T ∗Λ :

(∑
i∈I ⊕Vi

)
`2
→ H, which is given by T ∗Λ({g′i}i∈I) =

∑
i∈I Λ∗i g

′
i. By

composing TΛ and T ∗Λ we obtain the g-frame operator SΛ : H → H, SΛf = T ∗ΛTΛf =
∑

i∈I Λ∗iΛif ,
which is a positive, self-adjoint and invertible operator and such that CIH ≤ SΛ ≤ DIH. The
canonical dual g-frame for {Λi}i∈I is de�ned by {Λ̂i}i∈I where Λ̂i = ΛiS

−1
Λ which is also a g-frame

for H with respect to {Vi}i∈I with 1
D
and 1

C
as its lower and upper g-frame bounds, respectively.

Also we have

f =
∑
i∈I

Λ∗i Λ̂if =
∑
i∈I

Λ̂∗iΛif, ∀f ∈ H.

Moreover, {ΛiS
− 1

2
Λ }i∈I is a Parseval g-frame for H with respect {Vi}i∈I .

Since almost all applications require a �nite model for their numerical treatment, we restrict
ourselves to a �nite-dimensional space in the following examples.

Example 1. Let H = Cn+1 and V1 = V2 = . . . = Vn+1 = Cn. De�ne

Λ1 =


−1 0 0 . . . 0 0
1 0 0 . . . 0 0
...

...
...

...
...

1 0 0 . . . 0 0

 , · · · Λn =


0 0 0 . . . 1 0
0 0 0 . . . 1 0
...

...
...

...
...

0 0 0 . . . −1 0

 ,

Λn+1 =


0 0 0 . . . 0 1
0 0 0 . . . 0 1
...

...
...

...
...

0 0 0 . . . 0 1

 .
Then, the set {Λi}n+1

i=1 is a n-tight g-frame for Cn+1 with respect to Cn. To see this explicitly,
note that for any f = (z1, z2, . . . , zn+1) ∈ Cn+1, we have

n+1∑
i=1

‖Λif‖2 = n(|z1|2 + |z2|2 + . . .+ |zn+1|2) = n‖f‖2.

The structure of this paper is as follows: In the rest of this section we will brie�y recall the
required facts of the theory g-orthonormal bases. For more information about g-orthonormal
bases we refer to [8, 9]. We also, de�ne the g-R-dual sequence from a g-Bessel sequence with
respect to a pair of g-orthonormal bases as a generalization of the Riesz-dual sequence. We
invert the process and calculate the g-Bessel sequence from the g-R-dual sequence. In Section
2, �rst we obtain the g-frame conditions for a sequence of operators and its g-R-dual sequence.
We also characterize those pairs of g-frames and their g-R-dual sequences, which are equivalent
(unitarily equivalent).

De�nition 1. Let {Ξi ∈ B(H,Wi)| i ∈ I} be a sequence of operators. Then
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(i) {Ξi}i∈I is a g-complete set for H with respect to {Wi}i∈I , if H = span{Ξ∗i (Wi)}i∈I .

(ii) {Ξi}i∈I is an g-orthonormal system for H with respect to {Wi}i∈I , if ΞiΞ
∗
j = δijIWj

for all
i, j ∈ I.

(iii) A g-complete and g-orthonormal system {Ξi}i∈I is called an g-orthonormal basis for H
with respect to {Wi}i∈I .

The following well-known and useful characterization of g-orthonormal bases is taken from
[2].

Lemma 1.1. Let Ξ = {Ξi}i∈I be an g-orthonormal system for H with respect to {Wi}i∈I . Then
the following conditions are equivalent:

(i) Ξ is an g-orthonormal basis for H with respect to {Wi}i∈I .

(ii)
∑

i∈I Ξ∗iΞi = IH.

(iii) ‖f‖2 =
∑

i∈I ‖Ξif‖2 ∀f ∈ H.

(iv) If Ξif = 0 for all i ∈ I, then f = 0.

Let Ξ = {Ξi}i∈I be a g-orthonormal basis for H with respect to {Wi}i∈I . If f =
∑

i∈I Ξ∗i gi,
then the coordinate representation of f ∈ H relative to the g-orthonormal basis Ξ is [f ]Ξ =
{gi}i∈I . In this case {gi}i∈I ∈

(∑
i∈I ⊕Wi

)
`2
and ‖f‖ =

∥∥[f ]Ξ
∥∥
`2
.

Let Ξ = {Ξi}i∈I and Ξ′ = {Ξ′i}i∈I be g-orthonormal bases for H with respect to {Wi}i∈I and
{Vi}i∈I respectively. The transition matrix from Ξ to Ξ′ is the matrix B = [Bij] whose (i, j)-
entry is Bij = Ξ′iΞ

∗
j for all i, j ∈ I. Then we have B[f ]Ξ = [f ]Ξ′ where, [f ]Ξ is the coordinate

representation of an arbitrary vector f ∈ H in the basis Ξ and similarly for Ξ′. The transition
matrix from Ξ′ to Ξ is B−1 = B∗. Thus, if B∗ = [B∗ij] then B

∗
ij = (Bji)

∗ = ΞiΞ
′∗
j for all i, j ∈ I.

Example 2. Let {ej}j∈N be an orthonormal basis forH and let {Wj}j∈N be a family of subspaces
of H is de�ned by

Wj = span{e2j−1 + e2j}, and Ξjf =
1

2
〈f, e2j−1 + e2j〉(e2j−1 + e2j) ∀j ∈ N.

A direct calculation shows that ‖Ξj‖ = 1 and ΞiΞ
∗
jgj = δijgj for all 1 ≤ i, j ≤ n and gj ∈ Wj.

Since 〈e1 − e2, e2j−1 + e2j〉 = 0 for all j ∈ N, H 6= span{Ξ∗j(Wj)}j∈J . Therefore {Ξj}j∈N is an
g-orthonormal system for H with respect to {Wj}j∈I , but it is not an g-orthonormal basis for
H.

Example 3. Let N ∈ N,H = CN+1 and let {ek}N+1
k=1 be the standard orthonormal basis of H.

De�ne

Wj = span


N+1∑
k=1
k 6=j

ek

 , and Ξj({ci}N+1
i=1 ) =

cj√
N

N+1∑
k=1
k 6=j

ek

Then Ξ∗j
(
λ
∑N+1

k=1
k 6=j

ek
)

=
√
Nλej for all 1 ≤ j ≤ N + 1. This show that

span{Ξ∗j(Wj)}N+1
j=1 = span{ej}N+1

j=1 = H, and ΞiΞ
∗
j = δij.

Therefore {Ξj}j∈N is a g-orthonormal basis for H with respect to {Wj}N+1
j=1 .
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Example 4. Let H = C2N and W1 = W2 = . . . = WN = C2. De�ne

Ξ1 =

[
1 0 . . . 0 0
0 1 . . . 0 0

]
, . . . ,ΞN =

[
0 0 . . . 1 0
0 0 . . . 0 1

]
.

A direct calculation shows that ‖Ξk‖ = 1 and ΞkΞ
∗
` = δk` for any 1 ≤ k, ` ≤ N . We also have

N∑
k=1

‖Ξkf‖2 =
N∑
k=1

(|z2k−1|2 + |z2k|2) = ‖f‖2, ∀f = {zi}2N
i=1 ∈ C2N .

Therefore Ξ = {Ξk}Nk=1 is an g-orthonormal basis for C2N with respect to C2. Similarly, the
sequence Ψ = {Ψk}Nk=1 de�ned by

Ψ1 =

[
0 1 . . . 0 0
1 0 . . . 0 0

]
, . . . ,ΨN =

[
0 0 . . . 0 1
0 0 . . . 1 0

]
,

is also an g-orthonormal basis for C2N with respect to C2 and the matrix

B =
[
ΨiΞ

∗
j

]
N×N =

 A 0
. . .

0 A

 , where A =

[
0 1
1 0

]

is the transition matrix from Ξ to Ψ. Hence, for any f ∈ C2N we have B[f ]Ξ = [f ]Ψ.

Now, we de�ne the generalized Riesz-dual sequence from a sequence of operators.

De�nition 2. Let Ξ = {Ξi}i∈I and Ψ = {Ψi}i∈I be g-orthonormal bases for H with respect
to {Wi}i∈I and {Vi}i∈I respectively. Let Λ =

{
Λi : H → Vi| i ∈ I

}
be such that the series∑

i∈I Λ∗i g
′
i is convergent for all {g′i}i∈I ∈

(∑
i∈I ⊕Vi

)
`2
. De�ne

ΓΛ
j : H → Wj, ΓΛ

j =
∑
i∈I

ΞjΛ
∗
iΨi, ∀j ∈ I. (1.3)

Then {ΓΛ
j }j∈I is called the generalized Riesz-dual sequence (g-R-dual sequence) for the sequence

Λ with respect to (Ξ,Ψ).

Notice that the hypothesis the series
∑

i∈I Λ∗i g
′
i is convergent for all {g′i}i∈I ∈

(∑
i∈I ⊕Vi

)
`2

is always ful�lled if the sequence Λ = {Λi}i∈I is g-Bessel sequence with respect to {Vi}i∈I .

Example 5. Let H = C2N and let {Ξi}Ni=1, {Ψi}Ni=1 be the g-orthonormal bases for H with
respect to C2 de�ned in Example 4. De�ne

Λ1 =

[
1 1 . . . 0 0
0 1 . . . 0 0

]
, . . . ,ΛN =

[
0 0 . . . 1 1
0 0 . . . 0 1

]
.

Then, Λ = {Λi}Ni=1 is a g-Bessel sequence for H with respect to C2 with g-Bessel bound B = 3.
The g-R-dual sequence for the sequence Λ with respect to (Ξ,Ψ) is de�ned as follows:

ΓΛ
1 =

[
0 1 . . . 0 0
1 1 . . . 0 0

]
, . . . ,ΓΛ

N =

[
0 0 . . . 0 1
0 0 . . . 1 1

]
,

which is also a g-Bessel sequence for H with respect to C2 with g-Bessel bound B = 3.
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Now, we need an algorithm to invert the process and calculate {Λi}i∈I from the sequence
{ΓΛ

j }j∈I .

Theorem 1.1. Let Ξ = {Ξi}i∈I and Ψ = {Ψi}i∈I be g-orthonormal bases for H with respect
to {Wi}i∈I and {Vi}i∈I respectively. Let {Λi}i∈I be a g-Bessel sequence for H with respect to
{Vi}i∈I . Then, for all i ∈ I,

Λi =
∑
j∈I

Ψi(Γ
Λ
j )∗Ξj. (1.4)

In particular, this shows that {Λi}i∈I is the g-R-dual sequence for {ΓΛ
j }j∈I with respect to (Ψ,Ξ).

Proof. The de�nition of {ΓΛ
j }j∈I implies that for every i, j ∈ I

Ψi(Γ
Λ
j )∗ = Ψi

(∑
k∈I

ΞjΛ
∗
kΨk

)∗
=
∑
k∈I

ΨiΨ
∗
kΛkΞ

∗
j

=
∑
k∈I

δikΛkΞ
∗
j = ΛiΞ

∗
j .

Therefore Ψi(Γ
Λ
j )∗ = ΛiΞ

∗
j . Now, by Lemma 1.1 we have

Λi = ΛiIH = Λi

(∑
j∈I

Ξ∗jΞj

)
=
∑
j∈I

ΛiΞ
∗
jΞj =

∑
j∈I

Ψi(Γ
Λ
j )∗Ξj.

2 Characterizations of equivalence of the g-R-dual sequence

In this section we obtain the g-frame conditions for a sequence of operators and its g-R-dual
sequence. We also characterize those pairs of g-frames and their g-R-dual sequences, which are
equivalent (unitarily equivalent). Recall that a family {Λi}i∈I is a g-frame sequence with respect
to {Vi}i∈I if, it is a g-frame for span{Λ∗i (Vi)}i∈I with respect to {Vi}i∈I .

De�nition 3. A sequence Γ = {Γj ∈ B(H,Wj)| j ∈ I} is called a g-Riesz basis for H with
respect to {Wj}j∈I , if {Γj}j∈I is a g-complete set for H with respect to {Wj}j∈I and there exist
constants 0 < A ≤ B <∞ such that:

A
∑
j∈I

‖gj‖2 ≤
∥∥∑
j∈I

Γ∗jgj
∥∥2 ≤ B

∑
j∈I

‖gj‖2, (2.1)

for all sequences {gj}j∈I ∈
(∑

j∈I ⊕Wj

)
`2
. We de�ne the g-Riesz basis bounds for {Γj}j∈I to

be the largest number A and the smallest number B such that this inequality (2.1) holds. If
{Γj}j∈I is a g-Riesz basis only for span{Γ∗j(Wj)}j∈I , we call it is a g-Riesz basic sequence for H
with respect to {Wj}j∈I .

The following result is a characterization of g-Riesz bases for H, see, e.g., [1] for a proof of
this standard result.

Lemma 2.1. Let {Ξj}j∈I be an g-orthonormal basis for H with respect to {Wj}j∈I . Then the
following holds.

(i) Γ = {Γj ∈ B(H,Wj)| j ∈ I} is a g-Riesz basis for H with respect to {Wj}j∈I , if and only
if there exists a bounded bijective operator U : H → H such that Γj = ΞjU

∗ for all j ∈ I.
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(ii) Assume that span{Γ∗j(Wj)}j∈I = H and that
∥∥∑

j∈I Γ∗jgj
∥∥2

=
∑

j∈I ‖gj‖2, for all sequences

{gj}j∈I ∈
(∑

j∈I ⊕Wj

)
`2
. Then {Γj}j∈I is an g-orthonormal basis for H with respect to

{Wi}i∈I .

The next result gives a characterization of g-frame sequences which keeps the information
about the g-frame bounds.

Proposition 2.1. Let Λ = {Λi ∈ B(H, Vi) : i ∈ I}. Then the following conditions are
equivalent.

(i) Λ = {Λi}i∈I is a g-frame sequence with respect to {Vi}i∈I with g-frame bounds A and B.

(ii) The synthesis operator T ∗Λ is well de�ned on
(∑

i∈I ⊕Vi
)
`2

and satis�es the condition:

A‖g′‖2
`2 ≤ ‖T ∗Λg′‖2 ≤ B‖g′‖2

`2 , ∀ g′ ∈ (kerT ∗Λ)⊥.

Proof. We note that if f ∈ span{Λ∗i (Vi)}⊥i∈I , then ‖Λif‖2 = 〈f,Λ∗iΛif〉 = 0 for all i ∈ I. This
implies that the upper bound condition with bound B is equivalent to the right-hand inequality
in (ii). We therefore assume that {Λi}i∈I is a g-Bessel sequence for H with respect to {Vi}i∈I and
prove the equivalence of the lower bound condition with the left-hand inequality in (ii). First,
assume that {Λi}i∈I satis�es the lower bound condition with bound A. Then RT ∗Λ

is closed

because RTΛ
is closed. Therefore (kerT ∗Λ)⊥ = RTΛ

= RTΛ
, i.e., (kerT ∗Λ)⊥ =

{
TΛf : f ∈ H

}
.

Now, for any f ∈ H we have

‖TΛf‖4
`2 = |〈T ∗ΛTΛf, f〉|2 = |〈SΛf, f〉|2 ≤ ‖SΛf‖2‖f‖2

≤ 1

A
‖SΛf‖2

∑
i∈I

‖Λif‖2 =
1

A
‖SΛf‖2‖TΛf‖2

`2 .

This implies that

A‖TΛf‖2
`2 ≤ ‖SΛf‖2 =

∥∥T ∗Λ(TΛf)
∥∥2
,

as desired. For the other implication, assume that the left-hand inequality in (ii) is satis�ed.
We prove that RT ∗Λ

is closed. Let {fn}∞n=1 ⊂ RT ∗Λ
and limn→∞ fn = f for some f ∈ H. There

exists a sequence {g′n}∞n=1 ⊂ (kerT ∗Λ)⊥ such that T ∗Λg
′
n = fn. Now (ii) implies that {g′n}∞n=1 is a

Cauchy sequence. Therefore {g′n}∞n=1 converges to some g
′ ∈
(∑

i∈I ⊕Vi
)
`2
, which by continuity

of T ∗Λ we have T ∗Λg
′ = f . Thus RT ∗Λ

is closed. Let (T ∗Λ)† denote the pseudo-inverse of T ∗Λ, then we
have T ∗Λ(T ∗Λ)†T ∗Λ = T ∗Λ and the operator (T ∗Λ)†T ∗Λ is the orthogonal projection onto (kerT ∗Λ)⊥, and

the operator T ∗Λ(T ∗Λ)† is the orthogonal projection onto RT ∗Λ
. Thus, for any g′ ∈

(∑
i∈I ⊕Vi

)
`2
,

the inequality (ii) implies that

A‖(T ∗Λ)†T ∗Λg
′‖2 ≤ ‖T ∗Λ(T ∗Λ)†T ∗Λg

′‖2 = ‖T ∗Λg′‖2.

Since ker(T ∗Λ)† = R⊥T ∗Λ , therefore ‖(T
∗
Λ)†‖2 ≤ A−1. But T †ΛTΛ is the orthogonal projection onto

RT †Λ
= (ker(T †Λ)∗)

⊥ = (ker(T ∗Λ)†)
⊥ = RT ∗Λ

,

so for all f ∈ span{Λ∗i (Vi)}i∈I = RT ∗Λ
we obtain

‖f‖2 = ‖T †ΛTΛf‖2 ≤ 1

A
‖TΛf‖2 =

1

A

∑
i∈I

‖Λif‖2.

This shows that Λ = {Λi}i∈I satis�es the lower bound condition as desired.
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The next result shows a basic connection between a sequence of operators and its g-R-dual
sequence which will be used frequently in what follows.

Proposition 2.2. Let Λ = {Λi}i∈I be a g-Bessel sequence for H with respect {Vi}i∈I . For every
{gj}j∈I ∈

(∑
j∈I ⊕Wj

)
`2
, {g′i}i∈I ∈

(∑
i∈I ⊕Vi

)
`2
, let f =

∑
j∈I Ξ∗jgj and h =

∑
i∈I Ψ∗i g

′
i. Then∥∥∥∑

j∈I

(ΓΛ
j )∗gj

∥∥∥2

=
∑
i∈I

‖Λif‖2 and
∥∥∥∑
i∈I

Λ∗i g
′
i

∥∥∥2

=
∑
j∈I

‖ΓΛ
j h‖2.

In particular, ‖T ∗ΓΛ

(
[f ]Ξ

)
‖ = ‖TΛf‖`2 and ‖T ∗Λ

(
[f ]Ψ

)
‖ = ‖TΓΛf‖`2, for every f ∈ H.

Proof. It is easy to check that∥∥∥∑
j∈I

(ΓΛ
j )∗gj

∥∥∥2

=
∥∥∥∑
j∈I

(∑
i∈I

ΞjΛ
∗
iΨi

)∗
gj

∥∥∥2

=
∥∥∥∑
i∈I

Ψ∗iΛif
∥∥∥2

=
〈∑
i∈I

Ψ∗iΛif,
∑
j∈I

Ψ∗jΛjf
〉

=
∑
i∈I

∑
j∈I

〈Λif,ΨiΨ
∗
jΛjf〉

=
∑
i∈I

∑
j∈I

〈Λif, δijΛjf〉 =
∑
i∈I

‖Λif‖2.

Similarly, the second claim follows from Theorem 1.1.

There exists an interesting relation between the synthesis operator of Λ = {Λi}i∈I and the
span of {(ΓΛ

j )∗(Wj)}j∈I , which will turn out to be very useful in the sequel.

Proposition 2.3. Let Λ = {Λi}i∈I be a g-Bessel sequence for H with respect to {Vi}i∈I with
g-R-dual sequence {ΓΛ

j }j∈I with respect to (Ξ,Ψ). Then the following statements hold.

(i) f ∈
(
span{(ΓΛ

j )∗(Wj)}j∈I
)⊥

if and only if [f ]Ψ ∈ kerT ∗Λ.

(ii) f ∈
(
span{Λ∗j(Vj)}j∈I

)⊥
if and only if [f ]Ξ ∈ kerT ∗ΓΛ.

In particular,

dim
(
span{(ΓΛ

j )∗(Wj)}j∈I
)⊥

= dim kerT ∗Λ and dim
(
span{Λ∗j(Vj)}j∈I

)⊥
= dim kerT ∗ΓΛ .

Proof. Let f ∈ H. First for each j ∈ J and gj ∈ Wj we observe that

〈f, (ΓΛ
j )∗gj〉 =

∑
i∈J

〈f,Ψ∗iΛiΞ
∗
jgj〉 =

〈∑
i∈J

Λ∗iΨif,Ξ
∗
jgj
〉

=
〈
T ∗Λ([f ]Ψ),Ξ∗jgj

〉
.

Since Ξ = {Ξj}j∈J is a g-orthonormal basis for H with respect to {Wj}j∈I ,
〈
T ∗Λ([f ]Ψ),Ξ∗jgj

〉
= 0

for all j ∈ I and gj ∈ Wj, if and only if T ∗Λ([f ]Ψ) = 0. Thus, f ∈
(

span{(ΓΛ
j )∗(Wj)}j∈I

)⊥
is

equivalent to [f ]Ψ ∈ kerT ∗Λ. Similarly, the second claim follows from Theorem 1.1.

The next result shows a kind of equilibrium between a sequence of operators and its R-dual
sequence. It can be viewed as a general version of [4, Proposition 13].

Corollary 2.1. The following conditions are equivalent.

(i) Λ = {Λi}i∈I is a g-frame sequence with respect to {Vi}i∈I with g-frame bounds A, B.

(ii) {ΓΛ
j }j∈I is a g-frame sequence with respect to {Wj}j∈I with g-frame bounds A, B.
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(iii) {ΓΛ
j }j∈I is a g-Riesz basic sequence with respect to {Wj}j∈I with g-frame bounds A, B.

Proof. (i) ⇔ (ii) Proposition 2.1 and Proposition 2.3 imply that Λ = {Λi}i∈I is a g-frame
sequence with respect to {Vi}i∈I with g-frame bounds A, B if and only if

A‖[f ]Ψ‖2
`2 ≤ ‖T ∗Λ([f ]Ψ)‖2 ≤ B‖[f ]Ψ‖2

`2 ,

for all f ∈ span{(ΓΛ
j )∗(Wj)}j∈I . Now, Proposition 2.2 implies

A‖f‖2 ≤ ‖TΓΛf‖2
`2 ≤ B‖f‖2.

(i)⇔ (iii) This equivalence follows immediately from Proposition 2.2.

The dimension condition in Proposition 2.3 will play a crucial role for the g-R-dual sequence.
Using Proposition 2.3 we can derive a simple characterization of an g-Riesz basic sequence being
an g-R-dual sequence of a g-frame in the tight case.

Theorem 2.1. Let Λ = {Λi}i∈I be a A-tight g-frames for H with respect to {Vi}i∈I and let
{Γj}j∈I be a A-tight g-Riesz basic sequence in H with respect to {Wj}j∈I . Then {Γj}j∈I is a
g-R-dual sequence of {Λi}i∈I with respect to (Ξ,Ψ), if and only if

dim
(
span{Γ∗j(Wj)}j∈I

)⊥
= dim kerT ∗Λ. (2.2)

Proof. The necessity of the condition in (2.2) follows from Proposition 2.3. Now, assume that
(2.2) holds. Then, according to Lemma 2.1 the sequence { 1√

A
Γj}j∈I is an g-orthonormal system

for H with respect to {Wj}j∈I . Suppose that Ξ = {Ξj}j∈I and Ψ = {Ψi}i∈I are g-orthonormal
bases for H with respect to {Wj}j∈I and {Vi}i∈I respectively. Consider the g-R-dual {Θj}j∈I of
Λ = {Λi}i∈I with respect to (Ξ,Ψ), i.e. Θj =

∑
i∈I ΞjΛ

∗
iΨi, j ∈ I. By Corollary 2.1 {Θj}j∈I

is a A-tight g-Riesz basic sequence with respect to {Wj}j∈I and hence { 1√
A

Θj}j∈I is also an

g-orthonormal system for H with respect to {Wj}j∈I . By Proposition 2.3 and (2.2),

dim
(
span{Θ∗j(Wj)}j∈I

)⊥
= dim kerT ∗Λ = dim

(
span{Γ∗j(Wj)}j∈I

)⊥
. (2.3)

In case
(
span{Θ∗j(Wj)}j∈I

)⊥
=
(
span{Γ∗j(Wj)}j∈I

)⊥
= {0}, the g-orthonormality of the se-

quences { 1√
A

Θi}i∈I and { 1√
A

Γi}i∈I implies that there exists unitary operator

U : H → H, by Γj = ΘjU
∗, ∀j ∈ I.

In case
(
span{Θ∗j(Wj)}j∈I

)⊥ 6= {0}, letting {Φj}j∈I and {Ωj}j∈I be g-orthonormal bases for(
span{Θ∗j(Wj)}j∈I

)⊥
and

(
span{Γ∗j(Wj)}j∈I

)⊥
,

with respect to {Wj}j∈I respectively. (2.3) implies that there exists unitary operator

U : H → H, by Γj = ΘjU
∗, Ωj = ΦjU

∗ ∀j ∈ I.

In both cases, we have

Γj = ΘjU
∗ =

(∑
i∈I

ΞjΛ
∗
iΨi

)
U∗ =

∑
i∈I

ΞjΛ
∗
iΨiU

∗, ∀j ∈ I,

which shows that {Γj}j∈I is a g-R-dual sequence of {Λi}i∈I with respect to {Ξj}j∈I and
{ΨiU

∗}i∈I .
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The following result is about di�erent types of equivalence of g-frames, which is taken from
[10]. This result will moreover be employed in several proofs in the sequel.

Proposition 2.4. Let Λ = {Λi}i∈I and Λ′ = {Λ′i}i∈I be Parseval g-frames for H1 and H2 with
respect to {Vi}i∈I , respectively. Then Λ is unitarily equivalent to Λ′ if and only if the analysis
operators TΛ and TΛ′ have the same range. Likewise, two g-frames with respect to {Vi}i∈I are
equivalent if and only if their analysis operators have the same range.

In the following we characterize those pairs of g-frames and their g-R-dual sequences, which
are equivalent (unitarily equivalent).

Theorem 2.2. Let {Λi}i∈I and {Λ′i}i∈I be g-frames for H with respect to {Vi}i∈I . Then

(i) {Λi}i∈I is equivalent to {Λ′i}i∈I in H with respect to {Vi}i∈I if and only if

span{(ΓΛ
j )∗(Wj)}j∈I = span{(ΓΛ′

j )∗(Wj)}j∈I .

(ii) {Λi}i∈I is unitarily equivalent to {Λ′i}i∈I in H with respect to {Vi}i∈I if and only if SΓΛ =
SΓΛ′ .

(iii) {ΓΛ
j }j∈I is unitarily equivalent to {ΓΛ′

j }j∈I in H with respect to {Wj}j∈I if and only if
SΛ = SΛ′.

Proof. (i) By Proposition 2.4 {Λi}i∈I and {Λ′i}i∈I are equivalent in H with respect to {Vi}i∈I , if
and only if RTΛ

= RTΛ′
. Therefore, kerT ∗Λ = kerT ∗Λ′ . Now the conclusion follows by Proposition

2.3.
(ii) Using Propositions 2.1 and 2.4, {Λi}i∈I is unitarily equivalent to {Λ′i}i∈I if and only if∥∥∑

i∈I

Λ∗i g
′
i

∥∥2
=
∥∥∑
i∈I

Λ′
∗
i g
′
i

∥∥2
, ∀ {g′i}i∈I ∈ (kerT ∗Λ)⊥.

turn equivalent to

〈SΓΛf, f〉 =
∑
j∈I

‖ΓΛ
j f‖2 =

∑
j∈I

‖ΓΛ′

j f‖2 = 〈SΓΛ′f, f〉,

for all f ∈ H and g′i = Ψif (i ∈ I). Hence SΓΛ = SΓΛ′ , as required.
(iii) The proof follows immediately from (ii) and Theorem 1.1.

Corollary 2.2. Let {Λi}i∈I be a g-frame for H with respect to {Vi}i∈I . Then

span{(ΓΛ
j )∗(Wj)}j∈I = span{(ΓΛ̂

j )∗(Wj)}j∈I ,

where {Λ̂i}i∈I is the canonical dual g-frame of {Λi}i∈I .

Proof. Since {Λ̂i}i∈I is equivalent to {Λi}i∈I . Therefore the conclusion follows by Theorem
2.2.
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