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MUKHTARBAY OTELBAEV
(to the 75th birthday)

On October 3, 2017 was the 75th birthday of Mukhtarbay Otel-
baev, Doctor of Physical and Mathematical Sciences (1978), Pro-
fessor (1983), academician of the National Academy of Sciences of
the Republic of Kazakhstan (2004), Honored Worker of the Repub-
lic of Kazakhstan (2012), laureate of the State Prize of the Republic
of Kazakhstan in the field of science and technology (2007), Direc-
tor of the Eurasian Mathematical Institute (since 2001), Professor
of the Department s BmFundamental Mathematicss Dk of the L.N.
Gumilyov Eurasian National University, the editor-in-chief of the
Eurasian Mathematical Journal (together with V.I. Burenkov and
V.A. Sadovnichy).

M. Otelbaev was born in the village of Karakemer of the Kurdai
district, Zhambyl region. He graduated from the M.V. Lomonosov
Moscow State University (1969) and then completed his postgraduate studies at the same uni-
versity (1972). There he defended his doctor of sciences thesis (1978).

Professor Otelbaev’s scientific interests are related to functional analysis, differential equa-
tions, computational mathematics, and theoretical physics.

He introduced the g-averaging, which is now called the Otelbaev function; using it he ob-
tained a number of fundamental results. For embedding of the Sobolev weighted spaces and the
resolvent of the Schrodinger operator, he established criterions for the compactness and finiteness
of the type, as well as estimates of the eigenvalues of the Schrodinger and Dirac operators that
are exact in order. He was the first to establish that there is no universal asymptotic formula
for the distribution function of the Sturm-Liouville operator. He obtained effective conditions
for the separation of the differential operators with nonsmooth and oscillating coefficients, he
developed an abstract theory of extension and contraction of operators which are not necessarily
linear in linear topological spaces. M. Otelbaev proposed a new numerical method for solving
boundary value problems, and a method for approximate calculation of eigenvalues and eigen-
vectors of compact operators. He obtained the fundamental results in the theory of nonlinear
evolution equations and in theoretical physics.

He has published more than 70 scientific papers in leading international journals entering the
rating lists of Thomson Reuters and Scopus. Under his supervision 70 postgraduate students
have defended their candidate of sciences theses, 9 of them became doctors of sciences. In 2006
and 2011 he was awarded the state grant "The best university teacher".

The Editorial Board of the Eurasian Mathematical Journal congratulates Mukhtarbay Otel-
baev on the occasion of his 75th birthday and wishes him good health and new achievements in
mathematics and mathematical education.




Award for the Eurasian Mathematical Journal

Dear readers, authors, reviewers and members of the Editorial Board of the Eurasian
Mathematical Journal,

we are happy to inform you that in November 2017 the Eurasian Mathematical Journal was
awarded the title "Leader of Science 2017" by the National Center of State Scientific-Technical
Expertise of the Committee of Science of the Ministry of Education and Science of the Republic
of Kazakhstan in the nomination "Leader of Kazakhstan Scientific Publications" for the high
level of publication activities and high level of citations in Web of Science Core Collection in
2014-2016.

Recall that the Eurasian Mathematical Journal was founded by the L.N. Gumilyov Eurasian
National University in 2010 in co-operation with the M.V. Lomonosov Moscow State University,
the Peoples’ Friendship University of Russia and the University of Padua (see [1]).

The journal pulishes carefully selected original research papers in all areas of mathematics,
survey papers, and short communications. It publishes 4 issues in a year. The language of the
paper must be English only. Papers accepted for publication are edited from the point of view
of English.

More than 280 papers were published written by mathematicians from more than 40 countries
representing all continents.

In 2014 the journal was registered in Scopus and in September 2014 the Elsevier-Kazakhstan
Research Excellence Forum was held at the L.N. Gumilyov Eurasian National University dedi-
cated to this occasion in which the Elsevier Chairman Professor Y.S. Chi participated (see [3]
for details).

In 2015 the Eurasian Mathematical Journal was included in the list of Scopus mathematical
journals, quartile Q4, and it is on the way to entering quartile Q3 (see [3]).

Attached is the invitation letter to the Rector of the L.N. Gumilyov Eurasian National
University Professor E.B. Sydykov to the ceremony of awarding, which took place in Almaty on
November 8, 2017.

On behalf of the Editorial Board of the EMJ V.I. Burenkov, E.D. Nursultanov,
T.Sh. Kalmenov, R. Oinarov, M. Otelbaev, T.V. Tararykova, A.M. Temirkhanova
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Abstract. In this paper we define the generalized Riesz-dual sequence from a g-Bessel sequence
with respect to a pair of g-orthonormal bases as a generalization of the Riesz-dual sequence. We
characterize exactly properties of the first sequence in terms of the associated one, which yields
duality relations for the abstract g-frame setting.

1 Introduction

Let {e;}icr and {h;};c; be orthonormal bases for a separable Hilbert space H and let f = {f;}ics
be any sequence in H for which Y., [(f;,e;)|* < oo for all j € I. In [4], Casazza, Kutyniok,
and Lammers introduced the Riesz-dual sequence (R-dual sequence) of {f;}ic; with respect to
{ei}icr and {h;}icr as the sequence {wjf}je] given by

i€l

The paper [4] demonstrates that there is a strong relationship between the frame theoretic
properties of {w;}jg and {f;}:c;. For more details we refer to |6, 7, 11, 14]. The purpose of this
paper is to introduce the concept of Riesz-dual sequence for g-frames. We give characterizations
of g-R-dual sequences and prove that g-R-dual sequences share many useful properties with
R-dual sequences.

In 2006, a new generalization of the frame named g-frame was introduced by Sun [12]| in
a complex Hilbert space. G-frames are natural generalizations of frames which cover many
other recent generalizations of frames, e.g., bounded quasi-projectors, frames of subspaces, outer
frames, oblique frames, pseudo-frames and a class of time-frequency localization operators. Sun
showed that all of the above applications of frames are special cases of g-frames. For more
information about the theory and applications of g-frames we refer to [3, 5, 10, 13].

Let ‘H and K be two separable Hilbert spaces and let {V;};c; be a family of closed subspaces
of K and B(H,V;) denote the collection of all bounded linear operators from H into V; for all
i € I. Recall that a family A = {A; € B(H,V;) : i € I} is a g-frame for H with respect to
{Vi}ier if there exist constants 0 < C' < D < oo such that:

CIFIP <Y IMSIP < DIfIP, Y eh. (1.2)

iel

The constants C' and D are called g-frame bounds. If only the right-hand inequality of (1.2) is
required, we call it a g-Bessel sequence. We denote the representation space associated with a
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g-Bessel sequence {A;};cr as follows:

(Z@%)p = {{g;}ieﬂ g9; € Vi, Z g1 < oo}.

el icl

In order to analyze a signal f € H, i.e., to map it into the representation space, the analysis
operator Ty : H — (ZZ_E] @V;‘)ez given by Txf = {A;f}ier is applied. The associated synthesis
operator, which provides a mapping from the representation space to H, is defined to be the
adjoint operator Ty : (> ,c;®Vi),, — M, which is given by Tx({g/}icr) = ;i Ajg). By
composing Ty and T} we obtain the g-frame operator Sy : H — H, Saf = TxTaf = e, AT AT,
which is a positive, self-adjoint and invertible operator and such that C'Iyy < Sy < DIy The
canonical dual g-frame for {A; }ic; is defined by {A;}ic; where A; = A; S ! which is also a g-frame
for H with respect to {V;}ier with % and % as its lower and upper g-frame bounds, respectively.
Also we have

F=Y"NAF=Y"KNAf,  VieH

i€l iel

_1
Moreover, {A;S, ? }ier is a Parseval g-frame for H with respect {V;};er.

Since almost all applications require a finite model for their numerical treatment, we restrict
ourselves to a finite-dimensional space in the following examples.

Example 1. Let H = C"™ and V; = Vo, = ... = V,,;; = C". Define
-1 00 ... 00 0 00 1 0
1 00 ... 00 000 ... 1 0
Al — . . . . . ) tte An — . . . . . )
1 00 00 000 -1 0
0 00 01
000 0 1
An+1 - . . . .
000 ...0°1
Then, the set {A;}'1] is a n-tight g-frame for C"*! with respect to C*. To see this explicitly,
note that for any f = (21,22,...,2,11) € C"™!, we have
n+1

SN = (a1 + 22+ ) =0l £
=1

The structure of this paper is as follows: In the rest of this section we will briefly recall the
required facts of the theory g-orthonormal bases. For more information about g-orthonormal
bases we refer to [8, 9]. We also, define the g-R-dual sequence from a g-Bessel sequence with
respect to a pair of g-orthonormal bases as a generalization of the Riesz-dual sequence. We
invert the process and calculate the g-Bessel sequence from the g-R-dual sequence. In Section
2, first we obtain the g-frame conditions for a sequence of operators and its g-R-dual sequence.
We also characterize those pairs of g-frames and their g-R-dual sequences, which are equivalent
(unitarily equivalent).

Definition 1. Let {Z; € B(H,W;)| i € I} be a sequence of operators. Then
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(1) {Ei}ier is a g-complete set for H with respect to {W,}ier, if H = Span{Z;(W;) }ier.

(13) {Z;}ier is an g-orthonormal system for ‘H with respect to {W, }iey, if Ei=; = 0y, for all
i,jel

(77i) A g-complete and g-orthonormal system {=;},cr is called an g-orthonormal basis for H
with respect to {W; }ies.

The following well-known and useful characterization of g-orthonormal bases is taken from
2]

Lemma 1.1. Let = = {E;}ics be an g-orthonormal system for H with respect to {W;}icr. Then
the following conditions are equivalent:

(1) Z is an g-orthonormal basis for H with respect to {W;}icr.
(17) Zie[ =5 = Iy
(i) IfI* =2ier IE:f1? Vf e H.
() If 2;f =0 for alli € I, then f =0.

Let = = {E;}iecr be a g-orthonormal basis for H with respect to {Witicr. If f =", =g,
then the coordinate representation of f € H relative to the g-orthonormal basis Z is [f]z =
{gi}ier. In this case {g;}ier € (X0, ®Wi) o and || f]] = ||[f]z][ .-

Let = = {=;}ie; and =/ = {Z] }ic; be g-orthonormal bases for H with respect to {W;};c; and
{Vi}ier respectively. The transition matrix from = to =’ is the matrix B = [B;;] whose (3, j)-
entry is By = Z;Z; for all i,j € I. Then we have B[f]z = [f]= where, [f]z is the coordinate
representation of an arbitrary vector f € H in the basis = and similarly for Z/'. The transition
matrix from Z' to Zis B~' = B*. Thus, if B* = [B};] then B}, = (Bj;)* = Z,Z for all 4,5 € I.

Example 2. Let {e;};en be an orthonormal basis for  and let {W,} ey be a family of subspaces
of H is defined by

- 1 :

Wj = Span{e2j_1 + egj}, and ‘:jf = §<f, €251 + 62]')(62]'—1 + egj) Vj - N.

A direct calculation shows that [|Z;]| = 1 and £;=5g; = ;;9; for all 1 <i,j < n and g; € W;.
Since (€3 — eg,e9j_1 +eg;) = 0 for all j € N, H # span{Ej(Wj)}jQ. Therefore {Z;}jen is an
g-orthonormal system for H with respect to {W;},c;, but it is not an g-orthonormal basis for

H.

Example 3. Let N € N,H = CV*! and let {e;}, ;' be the standard orthonormal basis of H.
Define

N+1 o N
— . AN+ J
W; = span g er 0, and Z;({¢hiy) = _\/N E e
k=1 k=1
k#j k#j

Then =; ()\ Z];LJEI ek) = \/N)\ej for all 1 < j7 < N + 1. This show that

ki
span{=;(W;)} ' = span{e; } ' = H, and EE} =0y

Therefore {=,}en is a g-orthonormal basis for H with respect to {Wj}jvjll
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Example 4. Let H = C*N and W, = W, = ... = Wy = C2. Define
~ [10...00 ~ oo .. 10
=L~ 101 ...001” "N " loo0o ...01]|"

A direct calculation shows that ||Z¢|| = 1 and Z,Z) = dg for any 1 < k,¢ < N. We also have

N

N
DOIERSI? =D (2ol + l2el) = 117, Vf ={z}2 € C.
k=1

k=1

Therefore = = {Z;}, is an g-orthonormal basis for C*¥ with respect to C?. Similarly, the
sequence U = {U,}& | defined by

01 ..00 00 ..01
‘111—[1 0 ... 0 0],.--,%—[0 0 ... 1 0}’

is also an g-orthonormal basis for C?V with respect to C? and the matrix

A 0 01
B = [\IJZE;}NXN - _ T ) where A= |: 1 0 :|
0 A
is the transition matrix from = to W. Hence, for any f € C* we have B[f]z = [f]v-

Now, we define the generalized Riesz-dual sequence from a sequence of operators.

Definition 2. Let = = {Z;},c; and ¥ = {V,},; be g-orthonormal bases for H with respect
to {W;tier and {V;};er respectively. Let A = {Ai T H = V| i€ ]} be such that the series
> i1 Mgl is convergent for all {g/}ier € (Y ;c; BVi) - Define

I H— W, I => EA0;, Vjel (1.3)
i€l

Then {I'}}¢; is called the generalized Riesz-dual sequence (g-R-dual sequence) for the sequence
A with respect to (2, ).

Notice that the hypothesis the series Y, ., A7g] is convergent for all {g/}icr € (D ;c; ®Vi) 0
is always fulfilled if the sequence A = {A;};c; is g-Bessel sequence with respect to {V; }ier.

Example 5. Let H = C*V and let {Z;}Y,, {¥;}Y, be the g-orthonormal bases for H with
respect to C? defined in Example 4. Define

11 ...00 00 ...11
Al_{o 1 ... 0 0]""’AN_{0 0 ... 0 1]

Then, A = {A;}Y, is a g-Bessel sequence for H with respect to C* with g-Bessel bound B = 3.
The g-R-dual sequence for the sequence A with respect to (=, V) is defined as follows:

A_ |01 ... 00 A_ 00 ... 01
Fl_{11...00 ooy = 00 ... 1 1]

which is also a g-Bessel sequence for H with respect to C? with g-Bessel bound B = 3.
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Now, we need an algorithm to invert the process and calculate {A;};c; from the sequence
{3 }yer

Theorem 1.1. Let = = {Z;}icr and V = {V,; }ier be g-orthonormal bases for H with respect
to {W;}ier and {V;}ier respectively. Let {A;}icr be a g-Bessel sequence for H with respect to
{Vi}tier. Then, for alli € I,

A=) Wy(T))E;. (1.4)

jel
In particular, this shows that {\;}ic; is the g-R-dual sequence for {T'}}je; with respect to (¥, Z).

Proof. The definition of {F?}Jg implies that for every i,j € I

() =T ( ) EAT) =) WUEALE;
kel kel

—k —k
== E 5ikAk*:j :Ai‘:j'

kel

Therefore W;(T'})* = A;Z5. Now, by Lemma 1.1 we have

2 Characterizations of equivalence of the g-R-dual sequence

In this section we obtain the g-frame conditions for a sequence of operators and its g-R-dual
sequence. We also characterize those pairs of g-frames and their g-R-dual sequences, which are
equivalent (unitarily equivalent). Recall that a family {A;};cs is a g-frame sequence with respect
to {V;}ier if, it is a g-frame for span{A;(V;) }ie; with respect to {V;}icr.

Definition 3. A sequence I' = {I'; € B(H,W;)| j € I} is called a g-Riesz basis for # with
respect to {W;}jer, if {I';};er is a g-complete set for . with respect to {W;},c; and there exist
constants 0 < A < B < oo such that:

A gl < 13"l < BY gl (2.1)

jel jeI jel

for all sequences {g;}jer € (Zje[ &W;) .. We define the g-Riesz basis bounds for {I';};¢; to
be the largest number A and the smallest number B such that this inequality (2.1) holds. If
{I'j}jer is a g-Riesz basis only for span{I';(W})} e, we call it is a g-Riesz basic sequence for H
with respect to {W,};er.

The following result is a characterization of g-Riesz bases for H, see, e.g., [1] for a proof of
this standard result.

Lemma 2.1. Let {=;},c; be an g-orthonormal basis for H with respect to {W,};er. Then the
following holds.

(i) I ={T'; € B(H,W;)| j € I} is a g-Riesz basis for H with respect to {W;};er, if and only
if there ewists a bounded bijective operator U : H — H such that I'; = Z;U* for all j € 1.
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(i1) Assume that span{lI';(W;)};er = H and that || > el ]gJH2 = > jer lgjlI?; for all sequences
{g;}jer € (Zjel &W;) .. Then {L;}jes is an g-orthonormal basis for H with respect to
{Witier-

The next result gives a characterization of g-frame sequences which keeps the information
about the g-frame bounds.

Proposition 2.1. Let A = {A; € B(H,V;) : i € I}. Then the following conditions are
equivalent.

(1) A={A;}icr is a g-frame sequence with respect to {V;}ic; with g-frame bounds A and B.
(13) The synthesis operator Ty is well defined on (Zie[ @Vi)gz and satisfies the condition:

Allg'le < I1Txd'11° < Bllg 1, Vg € (kerry)".

Proof. We note that if f € span{A;(V;)}it;, then ||A;f||> = (f,AjA;f) = 0 for all i € I. This
implies that the upper bound condition with bound B is equivalent to the right-hand inequality
in (i7). We therefore assume that {A;};c; is a g-Bessel sequence for H with respect to {V; };e; and
prove the equivalence of the lower bound condition with the left-hand inequality in (i7). First,
assume that {A;},c; satisfies the lower bound condition with bound A. Then Rr; is closed
because Ry, is closed. Therefore (kerpy)* = Ry, = Ry, iLe., (kerpy)t = {Tuf : [ € H}.
Now, for any f € H we have

ITafll = KT, )P = [(Saf, f)!2 < ISafIFIFIF
_1
ISafIP D IAfI? = HSAJC“ZHTAJC”??‘

el

:b- |

This implies that

AITaf1% < 1SafI? = || T2 (T f)|,

as desired. For the other implication, assume that the left-hand inequality in (ii) is satisfied.
We prove that Rp; is closed. Let {f,}o2, C Ry; and lim, o fn, = f for some f € H. There
exists a sequence {g},}>>, C (kerp:)* such that TAgn = fn. Now (ii) implies that {g,}>°, is a
Cauchy sequence. Therefore {g],}>2, converges to some ¢’ € (3., OVi) o
of Ty we have Tyg' = f. Thus Ry; is closed. Let (T%)' denote the pseudo-inverse of T, then we
have T3 (T)IT; = T% and the operator (Tx)'Ty is the orthogonal projection onto (kers;)*, and
the operator Ty (T3)! is the orthogonal projection onto Ryr. Thus, for any ¢ € (ZZE[ @Vi)
the inequality (27) implies that

which by continuity

627
AT TR 1P < TR (TR NP = I1Txd 11
Since ker gz = Ry, therefore [|(T3)7||> < A~". But TITy is the orthogonal projection onto
RT; = (ker(TX)*)L = (ker(TX)T)L = RTX,

so for all f € span{A;j(V;)}icr = Rr; we obtain

1 1
1P = ITATaf I < S ITaf 1P = 5 > IAf I

el

This shows that A = {A;};c; satisfies the lower bound condition as desired. O
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The next result shows a basic connection between a sequence of operators and its g-R-dual
sequence which will be used frequently in what follows.

Proposition 2.2. Let A = {A;}ics be a g-Bessel sequence for H with respect {V;}icr. For every
{gj}jel S (Zje[ @M/j)gza {gi}ier € (Zie[ 63‘/;)@27 let = Zje] E;gj and h = Zie] Wigi. Then

2 2
(DTN I S ) SN DA I S I
Jel el el J€el

In particular, ||T1:“A([f}5)|| = [|Taf|lez and HTX([f]\p)H = ||Tra flle2, for every f € H.

Proof. Tt is easy to check that
[Zwsral =[5 (Canwys] - |Zwn
Z \P:Aif, STWAF =D (M T f)

i€l jEI iel jeI
=Y D (NN =Y I
iel jel iel
Similarly, the second claim follows from Theorem 1.1. O]

There exists an interesting relation between the synthesis operator of A = {A;};c; and the
span of {(F;\)*(Wj)}je_[, which will turn out to be very useful in the sequel.

Proposition 2.3. Let A = {A;}ier be a g-Bessel sequence for H with respect to {V;}ier with
g-R-dual sequence {Fé\}je] with respect to (2, V). Then the following statements hold.

(i) f € (span{(T2)*(W)}jer) if and only if [f]u € ker T;.
(ii) f € (5pan{A;(V))}jer) ™ if and only if [f]= € ker Ty,
In particular,
dim (5pan{(I))*(W))}jer) " = dimker Tf  and  dim (span{A’(V;)}er)” = dimker Tis.

Proof. Let f € H. First for each j € J and g; € W we observe that

(FL T = (FUAEg) = (O NUf,Eg) = (Ti([fle). Eg;)-

ieJ i€J

Since Z = {E;};es is a g-orthonormal basis for # with respect to {W;}jer, (Ti([flw),E5g;) =0

for all j € I and g; € W;, if and only if T([f]y) = 0. Thus, f € (span{(rf)*(Wj)}jg)L is
equivalent to [f]y € ker T{. Similarly, the second claim follows from Theorem 1.1. O

The next result shows a kind of equilibrium between a sequence of operators and its R-dual
sequence. It can be viewed as a general version of [4, Proposition 13].

Corollary 2.1. The following conditions are equivalent.
(1) A={A;}icr is a g-frame sequence with respect to {V;}ier with g-frame bounds A, B.

(i1) {T'}}jer is a g-frame sequence with respect to {W;}je; with g-frame bounds A, B.
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(441) {F?}jel is a g-Riesz basic sequence with respect to {W;},er with g-frame bounds A, B.

Proof. (i) < (ii) Proposition 2.1 and Proposition 2.3 imply that A = {A;}ics is a g-frame
sequence with respect to {V;}ic; with g-frame bounds A, B if and only if

Allfloll? < NTX()I? < Bl Aol
for all f € span{(F?)*(Wj)}jQ. Now, Proposition 2.2 implies
AlfIP < I Tea fllZ: < BILFIP.
(1) < (4i1) This equivalence follows immediately from Proposition 2.2. O

The dimension condition in Proposition 2.3 will play a crucial role for the g-R-dual sequence.
Using Proposition 2.3 we can derive a simple characterization of an g-Riesz basic sequence being
an g-R-dual sequence of a g-frame in the tight case.

Theorem 2.1. Let A = {A;}icr be a A-tight g-frames for H with respect to {V;}ie; and let
{T'j}jer be a A-tight g-Riesz basic sequence in H with respect to {W;}ier. Then {';}jer is a
g-R-dual sequence of {\;}ier with respect to (2,V), if and only if

dim (span{T;(W;)}jer)” = dimker T (2.2)

Proof. The necessity of the condition in (2.2) follows from Proposition 2.3. Now, assume that
(2.2) holds. Then, according to Lemma 2.1 the sequence {\/LZFj }jer is an g-orthonormal system
for H with respect to {W,};e;. Suppose that = = {=,};e; and ¥ = {¥; },c; are g-orthonormal
bases for H with respect to {W;};er and {V;};e; respectively. Consider the g-R-dual {©,};c; of
A = {A;}ier with respect to (2,¥), i.e. ©; = ., Z;A7V;, j € I. By Corollary 2.1 {O;}e;
is a A-tight g-Riesz basic sequence with respect to {W,};c; and hence {\/Lz@j}jel is also an
g-orthonormal system for H with respect to {W,},;c;. By Proposition 2.3 and (2.2),

dim (span{©*(W;)}ser)” = dimker T; = dim (span{T;(W;)}jer) " (2.3)

In case (spaun{@j(VV]-)}]E])l = (span{l“;f(V[/j)}jel)L = {0}, the g-orthonormality of the se-
quences {ﬁ@i}ig and {\/LZFZ-}Z-GI implies that there exists unitary operator

U:H—>H, by [;=0,U%, Vjel.
In case (s.pﬁ{@j(V[/j)}jel)L # {0}, letting {®;},e; and {€;};c; be g-orthonormal bases for
(span{©5(W))},er)”  and  (span{T;(W;)}ser)
with respect to {W;},e; respectively. (2.3) implies that there exists unitary operator
U:H—H, by D;=0,U0%, Q=&U Vjel
In both cases, we have

Ty =0,U" = (D) _ENW)U =Y EAWUY, Vjiel,

iel i€l

which shows that {I';};c; is a g-R-dual sequence of {A;},c; with respect to {Z,};e; and
{U;U" }ier. O
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The following result is about different types of equivalence of g-frames, which is taken from
[10]. This result will moreover be employed in several proofs in the sequel.

Proposition 2.4. Let A = {A;}ie; and N = {Al}ier be Parseval g-frames for Hy and Hy with
respect to {V;}icr, respectively. Then A is unitarily equivalent to A if and only if the analysis
operators T and Ty have the same range. Likewise, two g-frames with respect to {V;}ier are
equivalent if and only if their analysis operators have the same range.

In the following we characterize those pairs of g-frames and their g-R-dual sequences, which
are equivalent (unitarily equivalent).

Theorem 2.2. Let {A;}ier and {A}}ier be g-frames for H with respect to {V;}icr. Then
(1) {A;}ier is equivalent to {A\}}icr in H with respect to {V;}icr if and only if
span{(I'})"(W;)}jer = span{ (1)) (W;)}jer-
(13) {A;}ier is unitarily equivalent to {A\;}icr in H with respect to {V;}ier if and only if Spa =
Spar.

) {Fj-\}jel is unitarily equivalent to {F?/}jel in H with respect to {W;},er if and only if
Sx = Sa.

Proof. (i) By Proposition 2.4 {A;}ic; and {A}}ier are equivalent in H with respect to {V; }ies, if
and only if Ry, = Rr,,. Therefore, ker Ty = ker T}},. Now the conclusion follows by Proposition
2.3.

(#7) Using Propositions 2.1 and 2.4, {A;};c; is unitarily equivalent to {A’},c; if and only if

IS A = 1D AT ¥ {gitier € (Rer T)..

el el

turn equivalent to

(Seaf, £y =Y I =Y ITFFIP = (Spw £, ),

Jjel jerl

for all f € H and g, =V, f (i € I). Hence Spa = Spar, as required.
(7i) The proof follows immediately from (i7) and Theorem 1.1. O

Corollary 2.2. Let {A;}icr be a g-frame for H with respect to {V;}ic;. Then
span{(I'})*(W;)};er = span{(T'})*(W;)}jer,
where {Ki}ie] is the canonical dual g-frame of {A\;}icr-

Proof. Since {Ki}iel is equivalent to {A;};c;. Therefore the conclusion follows by Theorem
2.2. ]
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