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MUKHTARBAY OTELBAEV

(to the 75th birthday)

On October 3, 2017 was the 75th birthday of Mukhtarbay Otel-
baev, Doctor of Physical and Mathematical Sciences (1978), Pro-
fessor (1983), academician of the National Academy of Sciences of
the Republic of Kazakhstan (2004), Honored Worker of the Repub-
lic of Kazakhstan (2012), laureate of the State Prize of the Republic
of Kazakhstan in the �eld of science and technology (2007), Direc-
tor of the Eurasian Mathematical Institute (since 2001), Professor
of the Department â�»Fundamental Mathematicsâ��ê of the L.N.
Gumilyov Eurasian National University, the editor-in-chief of the
Eurasian Mathematical Journal (together with V.I. Burenkov and
V.A. Sadovnichy).

M. Otelbaev was born in the village of Karakemer of the Kurdai
district, Zhambyl region. He graduated from the M.V. Lomonosov

Moscow State University (1969) and then completed his postgraduate studies at the same uni-
versity (1972). There he defended his doctor of sciences thesis (1978).

Professor Otelbaev's scienti�c interests are related to functional analysis, di�erential equa-
tions, computational mathematics, and theoretical physics.

He introduced the q-averaging, which is now called the Otelbaev function; using it he ob-
tained a number of fundamental results. For embedding of the Sobolev weighted spaces and the
resolvent of the Schrödinger operator, he established criterions for the compactness and �niteness
of the type, as well as estimates of the eigenvalues of the Schrödinger and Dirac operators that
are exact in order. He was the �rst to establish that there is no universal asymptotic formula
for the distribution function of the Sturm-Liouville operator. He obtained e�ective conditions
for the separation of the di�erential operators with nonsmooth and oscillating coe�cients, he
developed an abstract theory of extension and contraction of operators which are not necessarily
linear in linear topological spaces. M. Otelbaev proposed a new numerical method for solving
boundary value problems, and a method for approximate calculation of eigenvalues and eigen-
vectors of compact operators. He obtained the fundamental results in the theory of nonlinear
evolution equations and in theoretical physics.

He has published more than 70 scienti�c papers in leading international journals entering the
rating lists of Thomson Reuters and Scopus. Under his supervision 70 postgraduate students
have defended their candidate of sciences theses, 9 of them became doctors of sciences. In 2006
and 2011 he was awarded the state grant "The best university teacher".

The Editorial Board of the Eurasian Mathematical Journal congratulates Mukhtarbay Otel-
baev on the occasion of his 75th birthday and wishes him good health and new achievements in
mathematics and mathematical education.



Award for the Eurasian Mathematical Journal

Dear readers, authors, reviewers and members of the Editorial Board of the Eurasian
Mathematical Journal,

we are happy to inform you that in November 2017 the Eurasian Mathematical Journal was
awarded the title "Leader of Science 2017" by the National Center of State Scienti�c-Technical
Expertise of the Committee of Science of the Ministry of Education and Science of the Republic
of Kazakhstan in the nomination "Leader of Kazakhstan Scienti�c Publications" for the high
level of publication activities and high level of citations in Web of Science Core Collection in
2014-2016.

Recall that the Eurasian Mathematical Journal was founded by the L.N. Gumilyov Eurasian
National University in 2010 in co-operation with the M.V. Lomonosov Moscow State University,
the Peoples' Friendship University of Russia and the University of Padua (see [1]).

The journal pulishes carefully selected original research papers in all areas of mathematics,
survey papers, and short communications. It publishes 4 issues in a year. The language of the
paper must be English only. Papers accepted for publication are edited from the point of view
of English.

More than 280 papers were published written by mathematicians from more than 40 countries
representing all continents.

In 2014 the journal was registered in Scopus and in September 2014 the Elsevier-Kazakhstan
Research Excellence Forum was held at the L.N. Gumilyov Eurasian National University dedi-
cated to this occasion in which the Elsevier Chairman Professor Y.S. Chi participated (see [3]
for details).

In 2015 the Eurasian Mathematical Journal was included in the list of Scopus mathematical
journals, quartile Q4, and it is on the way to entering quartile Q3 (see [3]).

Attached is the invitation letter to the Rector of the L.N. Gumilyov Eurasian National
University Professor E.B. Sydykov to the ceremony of awarding, which took place in Almaty on
November 8, 2017.

On behalf of the Editorial Board of the EMJ V.I. Burenkov, E.D. Nursultanov,
T.Sh. Kalmenov, R. Oinarov, M. Otelbaev, T.V. Tararykova, A.M. Temirkhanova
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Abstract. In this paper we study some comparative growth properties of entire and meromor-
phic functions on the basis of their relative type and relative weak type.

1 Introduction, de�nitions and notations

We denote by C the set of all �nite complex numbers. Let f be a meromorphic function and
g be an entire function de�ned on C. The maximum modulus function corresponding to entire
g is de�ned as Mg (r) = max {|g (z)| : |z| = r}. The order (lower order) of an entire function g
which is generally used for computational purposes is de�ned in terms of the growth of g with
respect to the function exp z which is de�ned as follows:

ρg = lim sup
r→∞

log logMg (r)

log logMexp z (r)
= lim sup

r→∞

log logMg (r)

log (r)(
λg = lim inf

r→∞

log logMg (r)

log logMexp z (r)
= lim inf

r→∞

log logMg (r)

log (r)

)
.

An entire function for which the order and lower order are the same is said to be of regular
growth. Functions which are not of regular growth are said to be of irregular growth.

For meromrophic function f ,Mf (r) cannot be de�ned since f is not analytic. In this case one
may de�ne another function Tf (r) known as Nevanlinna's Characteristic function of f, playing
the same role as the maximum modulus function, in the following manner:

Tf (r) = Nf (r) +mf (r) ,

where the function Nf (r, a)

(
−
Nf (r, a)

)
known as the counting function of a-points (distinct

a-points) of a meromorphic f is de�ned as

Nf (r, a) =

r∫
0

nf (t, a)− nf (0, a)

t
dt+

−
nf (0, a) log r

 −
Nf (r, a) =

r∫
0

−
nf (t, a)− −

nf (0, a)

t
dt+

−
nf (0, a) log r

 ,
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moreover we denote by nf (r, a)
(
−
nf (r, a)

)
the number of a-points (distinct a-points) of f in

|z| ≤ r and an ∞ -point is a pole of f . In many occasions Nf (r,∞) and
−
Nf (r,∞) are denoted

by Nf (r) and
−
Nf (r) respectively.

Also the function mf (r,∞) alternatively denoted by mf (r) known as the proximity function
of f is de�ned as follows:

mf (r) =
1

2π

2π∫
0

log+
∣∣f (reiθ)∣∣ dθ, where

log+ x = max (log x, 0) for all x > 0 .

Also we denote m
(
r, 1

f−a

)
by mf (r, a).

If f is an entire function, then Nevanlinna's Characteristic function Tf (r) of f is de�ned as

Tf (r) = mf (r) .

Further, if f is a non-constant entire function, then Tf (r) is a strictly increasing and con-
tinuous function of r. Also its inverse T−1

f : (Tf (0) ,∞) → (0,∞) exists and is such that

lim
s→∞

T−1
f (s) = ∞. However, in the case of meromorphic functions, the growth indicators such

as order and lower order which are classical in complex analysis are de�ned in terms of their
growths with respect to the function exp z as follows:

ρf = lim sup
r→∞

log Tf (r)

log Texp z (r)
= lim sup

r→∞

log Tf (r)

log
(
r
π

) = lim sup
r→∞

log Tf (r)

log (r) +O(1)(
λf = lim inf

r→∞

log Tf (r)

log Texp z (r)
= lim inf

r→∞

log Tf (r)

log
(
r
π

) = lim inf
r→∞

log Tf (r)

log (r) +O(1)

)
.

A meromorphic function for which the order and lower order are the same is said to be of
regular growth. Functions which are not of regular growth are said to be of irregular growth.

To compare the relative growth of two meromorphic functions having same non zero �nite
order with respect to another meromorphic function, one can recall the de�nition of type of a
meromorphic function which is another type of classical growth indicator. Next we give the
de�nitions of the type and weak type of meromorphic functions which are as follows:

De�nition 1. The type σf and lower type σf of a meromorphic function f are de�ned as

σf = lim sup
r→∞

Tf (r)

rρf
and σf = lim inf

r→∞

Tf (r)

rρf
, 0 < ρf <∞ .

Datta and Jha [4] introduced the de�nition of the weak type of a meromorphic function of
�nite positive lower order in the following way:

De�nition 2. [4] The weak type τf and the growth indicator τ f of a meromorphic function f
of �nite positive lower order λf are de�ned by

τ f = lim sup
r→∞

Tf (r)

rλf
and τf = lim inf

r→∞

Tf (r)

rλf
, 0 < λf <∞ .
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Extending the notion of the relative order introduced by Bernal {[1], [2]}, Lahiri and Banerjee
[7] gave the de�nition of the relative order of a meromorphic function f with respect to an entire
function g, denoted by ρg (f) as follows:

ρg (f) = inf {µ > 0 : Tf (r) < Tg (rµ) for all su�ciently large r}

= lim sup
r→∞

log T−1
g Tf (r)

log r
.

The de�nition coincides with the classical one [7] if g (z) = exp z.
In the same way, one can de�ne the relative lower order of a meromorphic function f with

respect to an entire function g denoted by λg (f) in the following manner :

λg (f) = lim inf
r→∞

log T−1
g Tf (r)

log r
.

In the case of meromorphic functions, it therefore seems reasonable to de�ne suitably the
relative type and relative weak type of a meromorphic function with respect to an entire function
to determine the relative growth of two meromorphic functions having same non zero �nite
relative order or relative lower order with respect to an entire function. Datta and Biswas also
[5] gave such de�nitions of relative type and relative weak type of a meromorphic function f with
respect to an entire function g which are as follows:

De�nition 3. [5] The relative type σg (f) of a meromorphic function f with respect to an entire
function g are de�ned as

σg (f) = lim sup
r→∞

T−1
g Tf (r)

rρg(f)
, where 0 < ρg (f) <∞.

Similarly, one can de�ne the lower relative type σg (f) in the following way:

σg (f) = lim inf
r→∞

T−1
g Tf (r)

rρg(f)
, where 0 < ρg (f) <∞.

De�nition 4. [5] The relative weak type τg (f) of a meromorphic function f with respect to an
entire function g with �nite positive relative lower order λg (f) is de�ned by

τg (f) = lim inf
r→∞

T−1
g Tf (r)

rλg(f)
.

In a similar manner, one can de�ne the growth indicator τ g (f) of a meromorphic function f
with respect to an entire function g with �nite positive relative lower order λg (f) as

τ g (f) = lim sup
r→∞

T−1
g Tf (r)

rλg(f)
.

Considering g = exp z one may easily verify that De�nition 3 and De�nition 4 coincide with
the classical de�nitions of the type (lower type) and weak type of a meromorphic function.

For entire and meromorphic functions, the notion of their growth indicators such as order, type
and weak type are classical in complex analysis and during the past decades, several researchers
have already continued their studies in the area of comparative growth properties of entire and
meromorphic functions in di�erent directions using the growth indicators such as order, type and
weak type. But at that time, the concepts of the relative order and consequently relative type
and relative weak type of meromorphic function with respect to another entire function which
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have already been discussed above were mostly unknown in complex analysis and researchers
were not aware of the technical advantages given by such notion which gives an idea to avoid
comparing growth just with exp function to calculate order, type and weak type respectively. In
the paper we study some relative growth properties of entire and meromorphic functions with
respect to another entire function on the basis of relative type and relative weak type. We use
the standard notations and de�nitions of the theory of entire and meromorphic functions which
are available in [6] and [9]. Hence we do not explain those in detail.

2 Lemmas

First of all let us recall the following theorem due to Debnath et al. [3]
Theorem A. Let f be a meromorphic function and g be an entire functions with non-zero �nite
order and lower order. Then

λf
ρg
≤ λg (f) ≤ min

{
λf
λg
,
ρf
ρg

}
≤ max

{
λf
λg
,
ρf
ρg

}
≤ ρg (f) ≤ ρf

λg
.

From the conclusion of the above theorem, we present the following two lemmas which will
be needed in the sequel.

Lemma 2.1. [3] Let f be a meromorphic function with 0 < λf ≤ ρf < ∞ and g be an entire
function of regular growth with non-zero �nite order. Then

ρg (f) =
ρf
ρg

and λg (f) =
λf
λg

.

Lemma 2.2. [3] Let f be a meromorphic function of regular growth with non-zero �nite order
and g be an entire function with 0 < λg ≤ ρg <∞. Then

ρg (f) =
λf
λg

and λg (f) =
ρf
ρg

.

3 Main results

In this section we state the main results of the paper.

Theorem 3.1. Let f be a meromorphic function with 0 < ρf <∞ and g be an entire function
of regular growth with non-zero �nite order. Then[

σf
σg

] 1
ρg

≤ σg (f) ≤ min

{[
σf
σg

] 1
ρg

,

[
σf
σg

] 1
ρg

}
≤ max

{[
σf
σg

] 1
ρg

,

[
σf
σg

] 1
ρg

}
≤ σg (f) ≤

[
σf
σg

] 1
ρg

.

Proof. From the de�nitions of σf and σf , we have that for any ε > 0 that all su�ciently large
values of r that

Tf (r) ≤ (σf + ε) · rρf , (3.1)

Tf (r) ≥ (σf − ε) · rρf (3.2)

and we also get that for a sequence of values of r tending to in�nity

Tf (r) ≥ (σf − ε) · rρf , (3.3)

Tf (r) ≤ (σf + ε) · rρf . (3.4)
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Similarly from the de�nitions of σg and σg, it follows that for all su�ciently large values of r

Tg (r) ≤ (σg + ε) · rρg

i.e., r ≤ T−1
g [(σg + ε) · rρg ]

i.e., T−1
g (r) ≥

[(
r

(σg + ε)

) 1
ρg

]
, (3.5)

Tg (r) ≥ {(σg − ε) · rρg}
i.e., r ≥ T−1

g [{(σg − ε) · rρg}]

i.e., T−1
g (r) ≤

[(
r

(σg − ε)

) 1
ρg

]
(3.6)

and that for a sequence of values of r tending to in�nity

Tg (r) ≥ {(σg − ε) · rρg}
i.e., r ≥ T−1

g {(σg − ε) · rρg}

i.e., T−1
g (r) ≤

[(
r

(σg − ε)

) 1
ρg

]
, (3.7)

Tg (r) ≤ {(σg + ε) · rρg}
i.e., r ≤ T−1

g [{(σg + ε) · rρg}]

i.e., T−1
g (r) ≥

[(
r

(σg − ε)

) 1
ρg

]
. (3.8)

Now from (3.3) and in view of (3.5) , we get that for a sequence of values of r tending to in�nity

T−1
g Tf (r) ≥ T−1

g [{(σf − ε) · rρf}]

i.e., T−1
g Tf (r) ≥

(
{(σf − ε) · rρf}

(σg + ε)

) 1
ρg

i.e., T−1
g Tf (r) ≥

[
(σf − ε)
(σg + ε)

] 1
ρg

· r
ρf

ρg

i.e.,
T−1
g Tf (r)

r
ρf

ρg

≥
[

(σf − ε)
(σg + ε)

] 1
ρg

. (3.9)

As ε (> 0) is arbitrary, in view of Lemma 2.1 it follows that

lim sup
r→∞

T−1
g Tf (r)

r
ρg(f)

≥
[
σf
σg

] 1
ρg

i.e., σg (f) ≥
[
σf
σg

] 1
ρg

. (3.10)

Analogously from (3.2) and in view of (3.8) , it follows that for a sequence of values of r tending
to in�nity

T−1
g Tf (r) ≥ T−1

g

[{
(σf − ε) · r

ρf
}]
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i.e., T−1
g Tf (r) ≥

(
{(σf − ε) · rρf}

(σg + ε)

) 1
ρg

i.e., T−1
g Tf (r) ≥

[
(σf − ε)
(σg + ε)

] 1
ρg

· r
ρf
ρg

i.e.,
T−1
g Tf (r)

r
ρf
ρg

≥
[

(σf − ε)
(σg + ε)

] 1
ρg

. (3.11)

Since ε (> 0) is arbitrary, we get from above and Lemma 2.1 that

lim sup
r→∞

T−1
g Tf (r)

r
ρg(f)

≥
[
σf
σg

] 1
ρg

i.e., σg (f) ≥
[
σf
σg

] 1
ρg

. (3.12)

Again in view of (3.6) , we have from (3.1) that for all su�ciently large values of r

T−1
g Tf (r) ≤ T−1

g [{(σf + ε) · rρf}]

i.e., T−1
g Tf (r) ≤

(
{(σf + ε) · rρf}

(σg − ε)

) 1
ρg

i.e., T−1
g Tf (r) ≤

[
(σf + ε)

(σg − ε)

] 1
ρg

· r
ρf
ρg

i.e.,
T−1
g Tf (r)

r
ρf
ρg

≤
[

(σf + ε)

(σg − ε)

] 1
ρg

. (3.13)

Since ε (> 0) is arbitrary, we obtain in view of Lemma 2.1 that

lim sup
r→∞

T−1
g Tf (r)

r
ρg(f)

≤
[
σf
σg

] 1
ρg

i.e., σg (f) ≤
[
σf
σg

] 1
ρg

. (3.14)

Again from (3.2) and in view of (3.5) , we get that for all su�ciently large values of r

T−1
g Tf (r) ≥ T−1

g [{(σf − ε) · rρf}]

i.e., T−1
g Tf (r) ≥

(
{(σf − ε) · rρf}

(σg + ε)

) 1
ρg

i.e., T−1
g Tf (r) ≥

[
(σf − ε)
(σg + ε)

] 1
ρg

· r
ρf
ρg

i.e.,
T−1
g Tf (r)

r
ρf
ρg

≥
[

(σf − ε)
(σg + ε)

] 1
ρg

. (3.15)
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As ε (> 0) is arbitrary, it follows from the above and Lemma 2.1 that

lim inf
r→∞

T−1
g Tf (r)

r
ρg(f)

≥
[
σf
σg

] 1
ρg

i.e., σg (f) ≥
[
σf
σg

] 1
ρg

. (3.16)

Also in view of (3.7) , we get from (3.1) that for a sequence of values of r tending to in�nity

T−1
g Tf (r) ≤ T−1

g [{(σf + ε) · rρf}]

i.e., T−1
g Tf (r) ≤

(
{(σf + ε) · rρf}

(σg − ε)

) 1
ρg

i.e., T−1
g Tf (r) ≤

[
(σf + ε)

(σg − ε)

] 1
ρg

· r
ρf
ρg

i.e.,
T−1
g Tf (r)

r
ρf
ρg

≤
[

(σf + ε)

(σg − ε)

] 1
ρg

. (3.17)

Since ε (> 0) is arbitrary, we get from Lemma 2.1 and the above that

lim inf
r→∞

T−1
g Tf (r)

r
ρg(f)

≤
[
σf
σg

] 1
ρg

i.e., σg (f) ≤
[
σf
σg

] 1
ρg

. (3.18)

Similarly from (3.4) and in view of (3.6) , it follows that for a sequence of values of r tending to
in�nity

T−1
g Tf (r) ≤ T−1

g [{(σf + ε) · rρf}]

i.e., T−1
g Tf (r) ≤

(
{(σf + ε) · rρf}

(σg − ε)

) 1
ρg

i.e., T−1
g Tf (r) ≤

[
(σf + ε)

(σg − ε)

] 1
ρg

· r
ρf
ρg

i.e.,
T−1
g Tf (r)

r
ρf
ρg

≤
[

(σf + ε)

(σg − ε)

] 1
ρg

. (3.19)

As ε (> 0) is arbitrary, we obtain from Lemma 2.1 and the above

lim inf
r→∞

T−1
g Tf (r)

r
ρg(f)

≤
[
σf
σg

] 1
ρg

i.e., σg (f) ≤
[
σf
σg

] 1
ρg

. (3.20)

Thus the theorem follows from (3.10) , (3.12) , (3.14) , (3.16) , (3.18) and (3.20) .
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Theorem 3.2. Let f be a meromorphic function of regular growth with non zero �nite order
and g be an entire function with 0 < λg <∞. Then[

τf
τ g

] 1
λg

≤ σg (f) ≤ min

{[
τf
τg

] 1
λg

,

[
τ f
τ g

] 1
λg

}
≤ max

{[
τf
τg

] 1
λg

,

[
τ f
τ g

] 1
λg

}
≤ σg (f) ≤

[
τ f
τg

] 1
λg

.

Proof. From the de�nitions of τ f and τf , we have that for all su�ciently large values of r

Tf (r) ≤ (τ f + ε) · rλf ,
Tf (r) ≥ (τf − ε) · rλf

and also that for a sequence of values of r tending to in�nity

Tf (r) ≥ (τ f − ε) · rλf ,
Tf (r) ≤ (τf + ε) · rλf .

Similarly from the de�nitions of τ g and τg, it follows that for all su�ciently large values of r

Tg (r) ≤ (τ g + ε) · rλg

i.e., r ≤ T−1
g

[
(τ g + ε) · rλg

]
i.e., T−1

g (r) ≥

[(
r

(τ g + ε)

) 1
λg

]
,

Tg (r) ≥ (τg − ε) · rλg

i.e., r ≥ T−1
g

[
(τg − ε) · rλg

]
i.e., T−1

g (r) ≤

[(
r

(τg − ε)

) 1
λg

]
and that for a sequence of values of r tending to in�nity

Tg (r) ≥ (τ g − ε) · rλg

i.e., r ≥ T−1
g

[
(τ g − ε) · rλg

]
i.e., T−1

g (r) ≤

[(
r

(τ g − ε)

) 1
λg

]
,

Tg (r) ≤ (τg + ε) · rλg

i.e., r ≤ T−1
g

[
(τg + ε) · rλg

]
i.e., T−1

g (r) ≥

[(
r

(τg − ε)

) 1
λg

]
.

Now using the same technique of Theorem 3.1, one can easily prove the conclusion of the
present theorem by the help of Lemma 2.2 and the above inequalities. Therefore the remaining
part of the proof of the present theorem is omitted.

Similarly in the line of Theorem 3.1 and Theorem 3.2 and with the help of Lemma 2.1 and
Lemma 2.2, one may easily prove the following two theorems and therefore their proofs are
omitted.
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Theorem 3.3. Let f be a meromorphic function with 0 < λf <∞ and g be an entire function
of regular growth with non zero �nite order. Then

[
τf
τ g

] 1
λg

≤ τg (f) ≤ min

{[
τf
τg

] 1
λg

,

[
τ f
τ g

] 1
λg

}
≤ max

{[
τf
τg

] 1
λg(m,p)

,

[
τ f
τ g

] 1
λg

}
≤ τ g (f) ≤

[
τ f
τg

] 1
λg

.

Theorem 3.4. Let f be a meromorphic function of regular growth with non zero �nite order
and g be an entire function with 0 < ρg <∞. Then

[
σf
σg

] 1
ρg

≤ τg (f) ≤ min

{[
σf
σg

] 1
ρg

,

[
σf
σg

] 1
ρg

}
≤ max

{[
σf
σg

] 1
ρg

,

[
σf
σg

] 1
ρg

}
≤ τ g (f) ≤

[
σf
σg

] 1
ρg

.
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