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MUKHTARBAY OTELBAEV
(to the 75th birthday)

On October 3, 2017 was the 75th birthday of Mukhtarbay Otel-
baev, Doctor of Physical and Mathematical Sciences (1978), Pro-
fessor (1983), academician of the National Academy of Sciences of
the Republic of Kazakhstan (2004), Honored Worker of the Repub-
lic of Kazakhstan (2012), laureate of the State Prize of the Republic
of Kazakhstan in the field of science and technology (2007), Direc-
tor of the Eurasian Mathematical Institute (since 2001), Professor
of the Department s BmFundamental Mathematicss Dk of the L.N.
Gumilyov Eurasian National University, the editor-in-chief of the
Eurasian Mathematical Journal (together with V.I. Burenkov and
V.A. Sadovnichy).

M. Otelbaev was born in the village of Karakemer of the Kurdai
district, Zhambyl region. He graduated from the M.V. Lomonosov
Moscow State University (1969) and then completed his postgraduate studies at the same uni-
versity (1972). There he defended his doctor of sciences thesis (1978).

Professor Otelbaev’s scientific interests are related to functional analysis, differential equa-
tions, computational mathematics, and theoretical physics.

He introduced the g-averaging, which is now called the Otelbaev function; using it he ob-
tained a number of fundamental results. For embedding of the Sobolev weighted spaces and the
resolvent of the Schrodinger operator, he established criterions for the compactness and finiteness
of the type, as well as estimates of the eigenvalues of the Schrodinger and Dirac operators that
are exact in order. He was the first to establish that there is no universal asymptotic formula
for the distribution function of the Sturm-Liouville operator. He obtained effective conditions
for the separation of the differential operators with nonsmooth and oscillating coefficients, he
developed an abstract theory of extension and contraction of operators which are not necessarily
linear in linear topological spaces. M. Otelbaev proposed a new numerical method for solving
boundary value problems, and a method for approximate calculation of eigenvalues and eigen-
vectors of compact operators. He obtained the fundamental results in the theory of nonlinear
evolution equations and in theoretical physics.

He has published more than 70 scientific papers in leading international journals entering the
rating lists of Thomson Reuters and Scopus. Under his supervision 70 postgraduate students
have defended their candidate of sciences theses, 9 of them became doctors of sciences. In 2006
and 2011 he was awarded the state grant "The best university teacher".

The Editorial Board of the Eurasian Mathematical Journal congratulates Mukhtarbay Otel-
baev on the occasion of his 75th birthday and wishes him good health and new achievements in
mathematics and mathematical education.




Award for the Eurasian Mathematical Journal

Dear readers, authors, reviewers and members of the Editorial Board of the Eurasian
Mathematical Journal,

we are happy to inform you that in November 2017 the Eurasian Mathematical Journal was
awarded the title "Leader of Science 2017" by the National Center of State Scientific-Technical
Expertise of the Committee of Science of the Ministry of Education and Science of the Republic
of Kazakhstan in the nomination "Leader of Kazakhstan Scientific Publications" for the high
level of publication activities and high level of citations in Web of Science Core Collection in
2014-2016.

Recall that the Eurasian Mathematical Journal was founded by the L.N. Gumilyov Eurasian
National University in 2010 in co-operation with the M.V. Lomonosov Moscow State University,
the Peoples’ Friendship University of Russia and the University of Padua (see [1]).

The journal pulishes carefully selected original research papers in all areas of mathematics,
survey papers, and short communications. It publishes 4 issues in a year. The language of the
paper must be English only. Papers accepted for publication are edited from the point of view
of English.

More than 280 papers were published written by mathematicians from more than 40 countries
representing all continents.

In 2014 the journal was registered in Scopus and in September 2014 the Elsevier-Kazakhstan
Research Excellence Forum was held at the L.N. Gumilyov Eurasian National University dedi-
cated to this occasion in which the Elsevier Chairman Professor Y.S. Chi participated (see [3]
for details).

In 2015 the Eurasian Mathematical Journal was included in the list of Scopus mathematical
journals, quartile Q4, and it is on the way to entering quartile Q3 (see [3]).

Attached is the invitation letter to the Rector of the L.N. Gumilyov Eurasian National
University Professor E.B. Sydykov to the ceremony of awarding, which took place in Almaty on
November 8, 2017.

On behalf of the Editorial Board of the EMJ V.I. Burenkov, E.D. Nursultanov,
T.Sh. Kalmenov, R. Oinarov, M. Otelbaev, T.V. Tararykova, A.M. Temirkhanova
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Abstract. In this paper we study some comparative growth properties of entire and meromor-
phic functions on the basis of their relative type and relative weak type.

1 Introduction, definitions and notations

We denote by C the set of all finite complex numbers. Let f be a meromorphic function and
g be an entire function defined on C. The maximum modulus function corresponding to entire
g is defined as M, (r) = max {|g (z)| : |2| = r}. The order (lower order) of an entire function ¢
which is generally used for computational purposes is defined in terms of the growth of g with
respect to the function exp z which is defined as follows:

’ loglog M, (r) i log log M, (r)
= ]1m su = 1mmsup———
Pg r—)ooplOg log Mexp - (1) 7“—>°°p log (r)

log log M, log log M.
A = liminf 08108 Mo (1), o ploslos My (r)
r—oo loglog Mexp - (1) 00 log (r)

An entire function for which the order and lower order are the same is said to be of regular
growth. Functions which are not of regular growth are said to be of irregular growth.

For meromrophic function f, My (r) cannot be defined since f is not analytic. In this case one
may define another function T (r) known as Nevanlinna’s Characteristic function of f, playing
the same role as the maximum modulus function, in the following manner:

Ty (r) = Ny (r) +my(r),

where the function Ny (7, a) (N 7 (r, a)) known as the counting function of a-points (distinct

a-points) of a meromorphic f is defined as

T

t — _
Ny (r,a) = /nf( @) t ny (O’G)dt—i—nf (0,a)logr

_ - t 0 .
Nf(r,a):/nf(’a) tnf(o’a)dt+nf(0,a)logr :
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moreover we denote by ny (r,a) (n_f (, a)) the number of a-points (distinct a-points) of f in

|z] <r and an oo -point is a pole of f. In many occasions Ny (r,00) and ]\_ff (r,00) are denoted

by Ny (r) and ]\_7f (r) respectively.
Also the function my (r, 00) alternatively denoted by m (r) known as the proximity function
of f is defined as follows:

2
1 .
my (r) = 2—/10g+ }f (re’) ’ df, where
s
0
log™ 2 = max (log z,0) for all 2 >0 .

Also we denote m (r, #) by my (1, a).

If f is an entire function, then Nevanlinna’s Characteristic function T () of f is defined as

Ty (r) =my (r) .

Further, if f is a non-constant entire function, then T (r) is a strictly increasing and con-
tinuous function of r. Also its inverse Tf_1 : (T§(0),00) — (0,00) exists and is such that

lim 7' ' (s) = oco. However, in the case of meromorphic functions, the growth indicators such
§—00

as order and lower order which are classical in complex analysis are defined in terms of their
growths with respect to the function exp z as follows:

: log Ty (r) .. log Ty (r) _ .. log T (r)
= limsup———"—+ = limsup———~— = limsup——————
Pt r—>oop10g Texpz (T) 'r—>oop lOg (%) r—>oop10g (7”) + O(].)

logT loc T log T
A = lim BT ) g plog T () e TorTr ()
r—00 log Texpz (7”) r—00 log (%) r—00 log (’I") + 0(1)

A meromorphic function for which the order and lower order are the same is said to be of
reqular growth. Functions which are not of reqular growth are said to be of irreqular growth.

To compare the relative growth of two meromorphic functions having same non zero finite
order with respect to another meromorphic function, one can recall the definition of type of a
meromorphic function which is another type of classical growth indicator. Next we give the
definitions of the type and weak type of meromorphic functions which are as follows:

Definition 1. The type o; and lower type ¢ of a meromorphic function f are defined as

T T
oy = limsup s (r) and o = liminf s (r)
Pf

r—00 rPf r—00

) O<,0f<OO.

Datta and Jha [4] introduced the definition of the weak type of a meromorphic function of
finite positive lower order in the following way:

Definition 2. [4] The weak type 7; and the growth indicator 7 of a meromorphic function f
of finite positive lower order A; are defined by

T T
?leinlsup 71;(:’) and Tf:ligglf%, 0<Af<o0.
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Extending the notion of the relative order introduced by Bernal {[1], [2]}, Lahiri and Banerjee
[7] gave the definition of the relative order of a meromorphic function f with respect to an entire
function g, denoted by p, (f) as follows:

pg (f) = inf{pu>0:Tf(r) <T,(r") for all sufficiently large r}

. log T, ' T (r)
= limsup————.
r—00 log r

The definition coincides with the classical one [7] if g (2) = exp 2.
In the same way, one can define the relative lower order of a meromorphic function f with
respect to an entire function g denoted by A, (f) in the following manner :

log 71T
A (F) = lim g 28 Lo L5 ()

r—00 log T

In the case of meromorphic functions, it therefore seems reasonable to define suitably the
relative type and relative weak type of a meromorphic function with respect to an entire function
to determine the relative growth of two meromorphic functions having same non zero finite
relative order or relative lower order with respect to an entire function. Datta and Biswas also
[5] gave such definitions of relative type and relative weak type of a meromorphic function f with
respect to an entire function g which are as follows:

Definition 3. [5] The relative type o, (f) of a meromorphic function f with respect to an entire
function g are defined as
T, 'Ty (r)

o, (f) = limsupngT, where 0 < p, (f) < o0.

7—00

Similarly, one can define the lower relative type @, (f) in the following way:

~1
T4 (f) =lim infw

m inf—=—-7—, where 0 < p, (f) < oco.

Definition 4. [5] The relative weak type 7, (f) of a meromorphic function f with respect to an
entire function g with finite positive relative lower order A, (f) is defined by

T,y (r)
o . . g
T (f) = It =5

In a similar manner, one can define the growth indicator 7, (f) of a meromorphic function f
with respect to an entire function g with finite positive relative lower order A, (f) as
17Ty (r)

— o . g
Tg (f) - hl;«ILSOgP T)‘g(f) .

Considering g = exp z one may easily verify that Definition 3 and Definition 4 coincide with
the classical definitions of the type (lower type) and weak type of a meromorphic function.

For entire and meromorphic functions, the notion of their growth indicators such as order, type
and weak type are classical in complex analysis and during the past decades, several researchers
have already continued their studies in the area of comparative growth properties of entire and
meromorphic functions in different directions using the growth indicators such as order, type and
weak type. But at that time, the concepts of the relative order and consequently relative type
and relative weak type of meromorphic function with respect to another entire function which
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have already been discussed above were mostly unknown in complex analysis and researchers
were not aware of the technical advantages given by such notion which gives an idea to avoid
comparing growth just with exp function to calculate order, type and weak type respectively. In
the paper we study some relative growth properties of entire and meromorphic functions with
respect to another entire function on the basis of relative type and relative weak type. We use
the standard notations and definitions of the theory of entire and meromorphic functions which
are available in [6] and [9]. Hence we do not explain those in detail.

2 Lemmas

First of all let us recall the following theorem due to Debnath et al. 3]
Theorem A. Let f be a meromorphic function and g be an entire functions with non-zero finite
order and lower order. Then

Af : {/\f pf} {/\f Pf} Py
LA <min<{ —,— » <max{ —,— » < < =
Pg ! )< Ay Py Ay Py Po () Ag

From the conclusion of the above theorem, we present the following two lemmas which will
be needed in the sequel.

Lemma 2.1. [3| Let f be a meromorphic function with 0 < Ay < py < 0o and g be an entire
function of reqular growth with non-zero finite order. Then

_Pr _ M
py (f) = Py and N\, (f) = N

Lemma 2.2. [3| Let f be a meromorphic function of reqular growth with non-zero finite order
and g be an entire function with 0 < \; < p, < 0co. Then

A
pg(f)—A—; and Ag<f>—’/j—fg‘.

3 Main results

In this section we state the main results of the paper.

Theorem 3.1. Let f be a meromorphic function with 0 < py < oo and g be an entire function
of reqular growth with non-zero finite order. Then

2] soin = 2 2]} {51 2en <[z

Proof. From the definitions of oy and 7, we have that for any € > 0 that all sufficiently large
values of r that

(Uf+5) P,
(@7 —¢e)-r*

IV IA

(Uf - 5) P (33)
<5f +e)-rfi.

IN IV
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Similarly from the definitions of o, and &, it follows that for all sufficiently large values of r

T,(r) < (0, +¢) 1"

e, r < T, (og+¢)-rP]

b 11 () (w;;@)é], 5
7,00 > {(7,-) ")
ie,r > T (7= <))

ie, T,'(r) < (@%g))pq] (3.6)

and that for a sequence of values of r tending to infinity

Ty(r) = {(og—¢)-r7}
ie, v > T {(og—¢)-rP1}

i.e., T, (r) (m) ] : (3.7)
Ty(r) < {(og+¢e)-r"}
e, r < T, [{(oy+e) rP}]

ie, T, (r) > (@—_8)) ] : (3.8)

Now from (3.3) and in view of (3.5), we get that for a sequence of values of r tending to infinity

T Ty (r) > T, [{(op — ) - r*7}]

«@—e»wa)é

(04 +¢)

i.e., Tg_le (r) > (

S

o Pg °r
f :| - rPg

ie, T,'Ty(r) > [Eag _5§
(o7 —¢)
(0g +¢)

TTy (r o
ie., 9—]{”() > { o ] . (3.9)
T P9
As € (> 0) is arbitrary, in view of Lemma 2.1 it follows that
Ty (r %
lim supgTj;)() > [ﬂ]
r—00 rt Og
1
ie., o,(f) > [ﬂ] " (3.10)
99

Analogously from (3.2) and in view of (3.8), it follows that for a sequence of values of r tending
to infinity

Ty (r) > T, [{(af o) H
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{7 —2) })

1

ie, T, Ty (r) = {E?;:Li))] -
e, IO [ff_?]é.
; L@y te

ros
Since € (> 0) is arbitrary, we get from above and Lemma 2.1 that

1

T, Ty (r) . {@} Py

lim sup —
r—00 ’I"pg(f> Ug
1
) ayf|re
ie., o,(f) > {_—} )
Og

Again in view of (3.6), we have from (3.1) that for all sufficiently large values of r

T, Ty (r) < T, [{(of +e) 17}

{(af+g)~rpf})£g

ie., T,'Ty(r) < ( @, —¢)

g

1

e, 1 0) < [(ZE9]7 R
ie., w < [Eaﬁs;}pg |
f e

res
Since € (> 0) is arbitrary, we obtain in view of Lemma 2.1 that

1

T (r P
lim sup—2——— > (J;)( ) S {?} ’
r—00 r Og
1
P
ie., o,(f) < {2} "
Og

Again from (3.2) and in view of (3.5), we get that for all sufficiently large values of r

T, Ty (r) 2 T, [{(Gy — &) -}

g

ie., T Ty (r) >

g
o= p
i, TO\Ty(r) > ﬁ‘o’_j:))} res
o DO (9]
oy (0, +¢)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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As e (> 0) is arbitrary, it follows from the above and Lemma 2.1 that

1

1 - 7=
hmmfw > |91
r—00 rPg(f) - O-g

i, 7,(f) > [@]pg .
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(3.16)

Also in view of (3.7), we get from (3.1) that for a sequence of values of r tending to infinity

Ty () < T [{(og +2) - 777

i.e., Tgfle (r) < (

(04 —¢)
e T, T ) < ngjﬂ*.ﬁﬁ
ie., M < {Qy
/ pa—

res
Since € (> 0) is arbitrary, we get from Lemma 2.1 and the above that

Ty (r) ofl%e
liminf=2 2/ < |ZL
r—00 rﬂg(f) - O—g

1

ie., 7, (f) < {ﬁ}pg .

(3.17)

(3.18)

Similarly from (3.4) and in view of (3.6), it follows that for a sequence of values of r tending to

infinity
T, Ty (r) < T, [{(@) +2) - )]

{wf+@~w4)é

@y —¢)

ie., T, Ty (r) < (

. _ +€) Pg Pr
e, T7'T < [ 2
e T < [ 225
_ _ 1
i.e., —Tg 173 ) < {(if T 5)] "
reg (@, —¢)

As e (> 0) is arbitrary, we obtain from Lemma 2.1 and the above

1

T (r T lvg
liminfg—f() < ? ’
r—00 TPg(f) O—g
o 5%
.€. < — .
1.e ) Ug (f) — |:5g:|

Thus the theorem follows from (3.10), (3.12), (3.14), (3.16), (3.18) and (3.20) .

(3.19)

(3.20)
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Theorem 3.2. Let f be a meromorphic function of regular growth with non zero finite order
and g be an entire function with 0 < \; < co. Then

21 snanzum(2]* [ {20 2] coan< 2]
Tg Tg Tg Tg Tg Tg

Proof. From the definitions of 7, and 7, we have that for all sufficiently large values of r

Ti(r) < (Tp+e)r,
Tr(r) 2 (rp—e)-r

and also that for a sequence of values of r tending to infinity
Ti(r) = (Fp—e) 1,
Ti(r) < (rp+¢) 7.
Similarly from the definitions of 74 and 7, it follows that for all sufficiently large values of r

Ty(r) < (Tg+e): ro

ie, m < TV [(Fg4e) 1]

i.e., Tg_1 (r) ((?gis));g ’
Ty(r) > (rg—¢) -1
ie,r > Tt [(Tg_g)lrxg]

i.e., Tg’1 (r) ((Tgr_g))*g

and that for a sequence of values of r tending to infinity

Ty(r) > (Fg—e)-r

i, r > Tgl_[(?g—a)-lr’\g]
()]

(1, +€) -1

<
ie, r < Tg_1 [(Tg +¢) -TAQ}

—

Now using the same technique of Theorem 3.1, one can easily prove the conclusion of the
present theorem by the help of Lemma 2.2 and the above inequalities. Therefore the remaining
part of the proof of the present theorem is omitted. n

Similarly in the line of Theorem 3.1 and Theorem 3.2 and with the help of Lemma 2.1 and
Lemma 2.2, one may easily prove the following two theorems and therefore their proofs are
omitted.
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Theorem 3.3. Let f be a meromorphic function with 0 < Ay < 0o and g be an entire function
of reqular growth with non zero finite order. Then

) s ool 7 ) srans 2
Tyg Tg Tg Tg Tg Tg

Theorem 3.4. Let f be a meromorphic function of regular growth with non zero finite order
and g be an entire function with 0 < p, < oo. Then

Efi . Efi O'fé Efi O'fi _ Ufi
& ST“J‘“““HE—J 17] }Smﬂaﬂ 1] }W”S{a—g] '
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