Eurasian Mathematical Journal

2017, Volume 8, Number 4

Founded in 2010 by
the L.N. Gumilyov Eurasian National University
in cooperation with
the M.V. Lomonosov Moscow State University
the Peoples' Friendship University of Russia
the University of Padua

Supported by the ISAAC (International Society for Analysis, its Applications and Computation) and by the Kazakhstan Mathematical Society

Published by
the L.N. Gumilyov Eurasian National University
Astana, Kazakhstan

EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors-in-Chief

V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (China), O.V. Besov (Russia), N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud (France), A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov (Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia), M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany), A. Hasanoglu (Turkey), M. Huxley (Great Britain), M. Imanaliev (Kyrgyzstan), P. Jain (India), T.Sh. Kalmenov (Kazakhstan), B.E. Kangyzhin (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin (Great Britain), V. Kokilashvili (Georgia), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic), L.K. Kussainova (Kazakhstan), P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), V.G. Maz'ya (Sweden), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan), K.N. Ospanov (Kazakhstan), I.N. Parasidis (Greece), J. Pečarić (Croatia), S.A. Plaksa (Ukraine), L.-E. Persson (Sweden), E.L. Presman (Russia), M.A. Ragusa (Italy), M.D. Ramazanov (Russia), M. Reissig (Germany), M. Ruzhansky (Great Britain), S. Sagitov (Sweden), T.O. Shaposhnikova (Sweden), A.A. Shkalikov (Russia), V.A. Skvortsov (Poland), G. Sinnamon (Canada), E.S. Smailov (Kazakhstan), V.D. Stepanov (Russia), Ya.T. Sultanaev (Russia), I.A. Taimanov (Russia), T.V. Tararykova (Great Britain), J.A. Tussupov (Kazakhstan), U.U. Umirbaev (Kazakhstan), Z.D. Usmanov (Tajikistan), N. Vasilevski (Mexico), Dachun Yang (China), B.T. Zhumagulov (Kazakhstan)

Managing Editor

A.M. Temirkhanova

Aims and Scope

The Eurasian Mathematical Journal (EMJ) publishes carefully selected original research papers in all areas of mathematics written by mathematicians, principally from Europe and Asia. However papers by mathematicians from other continents are also welcome.

From time to time the EMJ publishes survey papers.

The EMJ publishes 4 issues in a year.

The language of the paper must be English only.

The contents of EMJ are indexed in Scopus, Web of Science (ESCI), Mathematical Reviews, MathSciNet, Zentralblatt Math (ZMATH), Referativnyi Zhurnal – Matematika, Math-Net.Ru.

The EMJ is included in the list of journals recommended by the Committee for Control of Education and Science (Ministry of Education and Science of the Republic of Kazakhstan) and in the list of journals recommended by the Higher Attestation Commission (Ministry of Education and Science of the Russian Federation).

Information for the Authors

<u>Submission.</u> Manuscripts should be written in LaTeX and should be submitted electronically in DVI, PostScript or PDF format to the EMJ Editorial Office via e-mail (eurasianmj@yandex.kz).

When the paper is accepted, the authors will be asked to send the tex-file of the paper to the Editorial Office.

The author who submitted an article for publication will be considered as a corresponding author. Authors may nominate a member of the Editorial Board whom they consider appropriate for the article. However, assignment to that particular editor is not guaranteed.

Copyright. When the paper is accepted, the copyright is automatically transferred to the EMJ. Manuscripts are accepted for review on the understanding that the same work has not been already published (except in the form of an abstract), that it is not under consideration for publication elsewhere, and that it has been approved by all authors.

<u>Title page</u>. The title page should start with the title of the paper and authors' names (no degrees). It should contain the <u>Keywords</u> (no more than 10), the <u>Subject Classification</u> (AMS Mathematics Subject Classification (2010) with primary (and secondary) subject classification codes), and the Abstract (no more than 150 words with minimal use of mathematical symbols).

Figures. Figures should be prepared in a digital form which is suitable for direct reproduction.

<u>References</u>. Bibliographical references should be listed alphabetically at the end of the article. The authors should consult the Mathematical Reviews for the standard abbreviations of journals' names.

<u>Authors' data.</u> The authors' affiliations, addresses and e-mail addresses should be placed after the References.

<u>Proofs.</u> The authors will receive proofs only once. The late return of proofs may result in the paper being published in a later issue.

Offprints. The authors will receive offprints in electronic form.

Publication Ethics and Publication Malpractice

For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the EMJ implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The EMJ follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/New_Code.pdf). To verify originality, your article may be checked by the originality detection service CrossCheck http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the EMJ.

The Editorial Board of the EMJ will monitor and safeguard publishing ethics.

The procedure of reviewing a manuscript, established by the Editorial Board of the Eurasian Mathematical Journal

1. Reviewing procedure

- 1.1. All research papers received by the Eurasian Mathematical Journal (EMJ) are subject to mandatory reviewing.
- 1.2. The Managing Editor of the journal determines whether a paper fits to the scope of the EMJ and satisfies the rules of writing papers for the EMJ, and directs it for a preliminary review to one of the Editors-in-chief who checks the scientific content of the manuscript and assigns a specialist for reviewing the manuscript.
- 1.3. Reviewers of manuscripts are selected from highly qualified scientists and specialists of the L.N. Gumilyov Eurasian National University (doctors of sciences, professors), other universities of the Republic of Kazakhstan and foreign countries. An author of a paper cannot be its reviewer.
- 1.4. Duration of reviewing in each case is determined by the Managing Editor aiming at creating conditions for the most rapid publication of the paper.
- 1.5. Reviewing is confidential. Information about a reviewer is anonymous to the authors and is available only for the Editorial Board and the Control Committee in the Field of Education and Science of the Ministry of Education and Science of the Republic of Kazakhstan (CCFES). The author has the right to read the text of the review.
 - 1.6. If required, the review is sent to the author by e-mail.
 - 1.7. A positive review is not a sufficient basis for publication of the paper.
- 1.8. If a reviewer overall approves the paper, but has observations, the review is confidentially sent to the author. A revised version of the paper in which the comments of the reviewer are taken into account is sent to the same reviewer for additional reviewing.
 - 1.9. In the case of a negative review the text of the review is confidentially sent to the author.
- 1.10. If the author sends a well reasoned response to the comments of the reviewer, the paper should be considered by a commission, consisting of three members of the Editorial Board.
- 1.11. The final decision on publication of the paper is made by the Editorial Board and is recorded in the minutes of the meeting of the Editorial Board.
- 1.12. After the paper is accepted for publication by the Editorial Board the Managing Editor informs the author about this and about the date of publication.
- 1.13. Originals reviews are stored in the Editorial Office for three years from the date of publication and are provided on request of the CCFES.
 - 1.14. No fee for reviewing papers will be charged.

2. Requirements for the content of a review

- 2.1. In the title of a review there should be indicated the author(s) and the title of a paper.
- 2.2. A review should include a qualified analysis of the material of a paper, objective assessment and reasoned recommendations.
 - 2.3. A review should cover the following topics:
 - compliance of the paper with the scope of the EMJ;
 - compliance of the title of the paper to its content;
- compliance of the paper to the rules of writing papers for the EMJ (abstract, key words and phrases, bibliography etc.);
- a general description and assessment of the content of the paper (subject, focus, actuality of the topic, importance and actuality of the obtained results, possible applications);
- content of the paper (the originality of the material, survey of previously published studies on the topic of the paper, erroneous statements (if any), controversial issues (if any), and so on);

- exposition of the paper (clarity, conciseness, completeness of proofs, completeness of bibliographic references, typographical quality of the text);
- possibility of reducing the volume of the paper, without harming the content and understanding of the presented scientific results;
- description of positive aspects of the paper, as well as of drawbacks, recommendations for corrections and complements to the text.
- 2.4. The final part of the review should contain an overall opinion of a reviewer on the paper and a clear recommendation on whether the paper can be published in the Eurasian Mathematical Journal, should be sent back to the author for revision or cannot be published.

Web-page

The web-page of EMJ is www.emj.enu.kz. One can enter the web-page by typing Eurasian Mathematical Journal in any search engine (Google, Yandex, etc.). The archive of the web-page contains all papers published in EMJ (free access).

Subscription

For Institutions

- US\$ 200 (or equivalent) for one volume (4 issues)
- US\$ 60 (or equivalent) for one issue

For Individuals

- US\$ 160 (or equivalent) for one volume (4 issues)
- US\$ 50 (or equivalent) for one issue.

The price includes handling and postage.

The Subscription Form for subscribers can be obtained by e-mail:

eurasianmj@yandex.kz

The Eurasian Mathematical Journal (EMJ)
The Editorial Office
The L.N. Gumilyov Eurasian National University
Building no. 3
Room 306a
Tel.: +7-7172-709500 extension 33312
13 Kazhymukan St
010008 Astana
Kazakhstan

MUKHTARBAY OTELBAEV

(to the 75th birthday)

On October 3, 2017 was the 75th birthday of Mukhtarbay Otelbaev, Doctor of Physical and Mathematical Sciences (1978), Professor (1983), academician of the National Academy of Sciences of the Republic of Kazakhstan (2004), Honored Worker of the Republic of Kazakhstan (2012), laureate of the State Prize of the Republic of Kazakhstan in the field of science and technology (2007), Director of the Eurasian Mathematical Institute (since 2001), Professor of the Department вЪњ Fundamental Mathematics въќ of the L.N. Gumilyov Eurasian National University, the editor-in-chief of the Eurasian Mathematical Journal (together with V.I. Burenkov and V.A. Sadovnichy).

M. Otelbaev was born in the village of Karakemer of the Kurdai district, Zhambyl region. He graduated from the M.V. Lomonosov

Moscow State University (1969) and then completed his postgraduate studies at the same university (1972). There he defended his doctor of sciences thesis (1978).

Professor Otelbaev's scientific interests are related to functional analysis, differential equations, computational mathematics, and theoretical physics.

He introduced the q-averaging, which is now called the Otelbaev function; using it he obtained a number of fundamental results. For embedding of the Sobolev weighted spaces and the resolvent of the Schrödinger operator, he established criterions for the compactness and finiteness of the type, as well as estimates of the eigenvalues of the Schrödinger and Dirac operators that are exact in order. He was the first to establish that there is no universal asymptotic formula for the distribution function of the Sturm-Liouville operator. He obtained effective conditions for the separation of the differential operators with nonsmooth and oscillating coefficients, he developed an abstract theory of extension and contraction of operators which are not necessarily linear in linear topological spaces. M. Otelbaev proposed a new numerical method for solving boundary value problems, and a method for approximate calculation of eigenvalues and eigenvectors of compact operators. He obtained the fundamental results in the theory of nonlinear evolution equations and in theoretical physics.

He has published more than 70 scientific papers in leading international journals entering the rating lists of Thomson Reuters and Scopus. Under his supervision 70 postgraduate students have defended their candidate of sciences theses, 9 of them became doctors of sciences. In 2006 and 2011 he was awarded the state grant "The best university teacher".

The Editorial Board of the Eurasian Mathematical Journal congratulates Mukhtarbay Otel-baev on the occasion of his 75th birthday and wishes him good health and new achievements in mathematics and mathematical education.

Award for the Eurasian Mathematical Journal

Dear readers, authors, reviewers and members of the Editorial Board of the Eurasian Mathematical Journal,

we are happy to inform you that in November 2017 the Eurasian Mathematical Journal was awarded the title "Leader of Science 2017" by the National Center of State Scientific-Technical Expertise of the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan in the nomination "Leader of Kazakhstan Scientific Publications" for the high level of publication activities and high level of citations in Web of Science Core Collection in 2014-2016.

Recall that the Eurasian Mathematical Journal was founded by the L.N. Gumilyov Eurasian National University in 2010 in co-operation with the M.V. Lomonosov Moscow State University, the Peoples' Friendship University of Russia and the University of Padua (see [1]).

The journal pulishes carefully selected original research papers in all areas of mathematics, survey papers, and short communications. It publishes 4 issues in a year. The language of the paper must be English only. Papers accepted for publication are edited from the point of view of English.

More than 280 papers were published written by mathematicians from more than 40 countries representing all continents.

In 2014 the journal was registered in Scopus and in September 2014 the Elsevier-Kazakhstan Research Excellence Forum was held at the L.N. Gumilyov Eurasian National University dedicated to this occasion in which the Elsevier Chairman Professor Y.S. Chi participated (see [3] for details).

In 2015 the Eurasian Mathematical Journal was included in the list of Scopus mathematical journals, quartile Q4, and it is on the way to entering quartile Q3 (see [3]).

Attached is the invitation letter to the Rector of the L.N. Gumilyov Eurasian National University Professor E.B. Sydykov to the ceremony of awarding, which took place in Almaty on November 8, 2017.

On behalf of the Editorial Board of the EMJ V.I. Burenkov, E.D. Nursultanov, T.Sh. Kalmenov, R. Oinarov, M. Otelbaev, T.V. Tararykova, A.M. Temirkhanova

References

- [1] B. Abdrayim, Opening address by the rector of the L.N. Gumilyov Eurasian National University, Eurasian Math. J. 1 (2010), no. 1, p. 5.
 - [2] Eurasian Mathematical Journal is indexed in Scopus, Eurasian Math. J. 5 (2014), no. 3, 6-8.
- [3] V.I. Burenkov, E.D. Nursultanov, T.Sh. Kalmenov, R. Oinarov, M. Otelbaev, T.V. Tararykova, A.M. Temirkhanova, *EMJ: from Scopus Q4 to Scopus Q3 in two years?!*, Eurasian Math. J. 7 (2016), no. 3, p. 6.

ҚАЗАҚСТАН РЕСПУБЛИКАСЫ БІЛІМ ЖӘНЕ ҒЫЛЫМ МИНИСТРІПТІ ҒЫЛЫМ КОМИТЕТІ

«ҰЛТТЫҚ МЕМЛЕКЕТТІК ҒЫЛЫМИ-ТЕХНИКАЛЫҚ САРАПТАМА ОРТАЛЫҒЫ» АКЦИОНЕРЛІК ҚОҒАМЫ

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН КОМИТЕТ НАУКИ

АКЦИОНЕРНОЕ ОБЩЕСТВО «НАЦИОНАЛЬНЫЙ ЦЕНТР ГОСУДАРСТВЕННОЙ НАУЧНО-ТЕХНИЧЕСКОЙ ЭКСПЕРТИЗЫ

050026, Құзақстан Республикасы Алматы қ., Бөгенбай батыр көш., 221 Тел.: +7 (727) 378-05-09 Email: info@neste.kz http://www.inti.kz

NCX No: 3367/11-04

050026, Республика Казахстан г. Алматы, ул. Богенбай батыра, 221 Тел.: +7 (727) 378-05-09 Email: info@neste.kz http://www.inti.kz

Ректору Евразийского национального университета имени Л.Н.Гумилева г-ну Сыдыкову Е.Б.

Уважаемый Ерлан Батташевич!

АО «Национальный центр государственной научно-технической экспертизы» (далее АО «НЦГНТЭ») и компания Clarivate Analytics имеют честь пригласить Вас на церемонию вручения независимой награды «Лидер науки-2017» за высокие показатели публикационной активности и цитируемости в Web of Science Core Collection в период 2014-2016 годы.

Ваш журнал «Eurasian Mathematical Journal» награждается в номинации «Лидер казахстанских научных изданий».

Торжественное мероприятие состоится 8 ноября 2017 года по адресу: г. Алматы, ул. Богенбай батыра 221, Актовый зал, начало в 10.00, регистрация с 09.00 ч.

Для участия в мероприятии просим пройти онлайн регистрацию на сайте www.nauka.kz до 6 ноября 2017 года.

По всем вопросам обращаться по тел.:+7 727 378 05 78, e-mail: 3780544@bk.ru.

Президент

Ибраев А.Ж.

лим, немірсіл карамсью больял тобиладая. Жауол кайтарадай міндетті турає біццін (ко жина куні вероктілу карек. Алаж без серемінсто номера не драствителян. При отвене обязательно скалаться на наш Ке и дату.

EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879

Volume 8, Number 4 (2017), 35 – 44

COMPARATIVE GROWTH ANALYSIS OF ENTIRE AND MEROMORPHIC FUNCTIONS USING THEIR RELATIVE TYPES AND RELATIVE WEAK TYPES

S.K. Datta, T. Biswas

Communicated by E.S. Smailov

Key words: meromorphic function, entire function, relative order, relative lower order, relative type, relative weak type.

AMS Mathematics Subject Classification: 30D20, 30D30, 30D35.

Abstract. In this paper we study some comparative growth properties of entire and meromorphic functions on the basis of their relative type and relative weak type.

1 Introduction, definitions and notations

We denote by \mathbb{C} the set of all finite complex numbers. Let f be a meromorphic function and g be an entire function defined on \mathbb{C} . The maximum modulus function corresponding to entire g is defined as $M_g(r) = \max\{|g(z)| : |z| = r\}$. The order (lower order) of an entire function g which is generally used for computational purposes is defined in terms of the growth of g with respect to the function $\exp z$ which is defined as follows:

$$\rho_{g} = \limsup_{r \to \infty} \frac{\log \log M_{g}\left(r\right)}{\log \log M_{\exp z}\left(r\right)} = \limsup_{r \to \infty} \frac{\log \log M_{g}\left(r\right)}{\log \left(r\right)}$$

$$\left(\lambda_{g} = \liminf_{r \to \infty} \frac{\log \log M_{g}\left(r\right)}{\log \log M_{\exp z}\left(r\right)} = \liminf_{r \to \infty} \frac{\log \log M_{g}\left(r\right)}{\log \left(r\right)}\right).$$

An entire function for which the order and lower order are the same is said to be of regular growth. Functions which are not of regular growth are said to be of irregular growth.

For meromrophic function f, $M_f(r)$ cannot be defined since f is not analytic. In this case one may define another function $T_f(r)$ known as Nevanlinna's Characteristic function of f, playing the same role as the maximum modulus function, in the following manner:

$$T_f(r) = N_f(r) + m_f(r),$$

where the function $N_f(r, a) \left(\overline{N}_f(r, a) \right)$ known as the counting function of a-points (distinct a-points) of a meromorphic f is defined as

$$N_{f}(r, a) = \int_{0}^{r} \frac{n_{f}(t, a) - n_{f}(0, a)}{t} dt + \bar{n_{f}}(0, a) \log r$$

$$\left(\bar{N}_{f}\left(r,a\right) = \int_{0}^{r} \frac{\bar{n}_{f}\left(t,a\right) - \bar{n}_{f}\left(0,a\right)}{t} dt + \bar{n}_{f}\left(0,a\right) \log r\right),$$

moreover we denote by $n_f(r,a)\left(\bar{n_f}(r,a)\right)$ the number of a-points (distinct a-points) of f in $|z| \leq r$ and an ∞ -point is a pole of f. In many occasions $N_f(r,\infty)$ and $\bar{N_f}(r,\infty)$ are denoted by $N_f(r)$ and $\bar{N_f}(r)$ respectively.

Also the function $m_f(r, \infty)$ alternatively denoted by $m_f(r)$ known as the proximity function of f is defined as follows:

$$m_f(r) = \frac{1}{2\pi} \int_0^{2\pi} \log^+ |f(re^{i\theta})| d\theta$$
, where $\log^+ x = \max(\log x, 0)$ for all $x \ge 0$.

Also we denote $m\left(r, \frac{1}{f-a}\right)$ by $m_f\left(r, a\right)$.

If f is an entire function, then Nevanlinna's Characteristic function $T_{f}(r)$ of f is defined as

$$T_f(r) = m_f(r)$$
.

Further, if f is a non-constant entire function, then $T_f(r)$ is a strictly increasing and continuous function of r. Also its inverse $T_f^{-1}:(T_f(0),\infty)\to(0,\infty)$ exists and is such that $\lim_{s\to\infty}T_f^{-1}(s)=\infty$. However, in the case of meromorphic functions, the growth indicators such as order and lower order which are classical in complex analysis are defined in terms of their growths with respect to the function $\exp z$ as follows:

$$\rho_{f} = \limsup_{r \to \infty} \frac{\log T_{f}(r)}{\log T_{\exp z}(r)} = \limsup_{r \to \infty} \frac{\log T_{f}(r)}{\log \left(\frac{r}{\pi}\right)} = \limsup_{r \to \infty} \frac{\log T_{f}(r)}{\log (r) + O(1)}$$

$$\left(\lambda_{f} = \liminf_{r \to \infty} \frac{\log T_{f}(r)}{\log T_{\exp z}(r)} = \liminf_{r \to \infty} \frac{\log T_{f}(r)}{\log \left(\frac{r}{\pi}\right)} = \liminf_{r \to \infty} \frac{\log T_{f}(r)}{\log (r) + O(1)}\right).$$

A meromorphic function for which the *order* and *lower order* are the same is said to be of regular growth. Functions which are not of regular growth are said to be of irregular growth.

To compare the relative growth of two meromorphic functions having same non zero finite order with respect to another meromorphic function, one can recall the definition of type of a meromorphic function which is another type of classical growth indicator. Next we give the definitions of the type and weak type of meromorphic functions which are as follows:

Definition 1. The type σ_f and lower type $\overline{\sigma}_f$ of a meromorphic function f are defined as

$$\sigma_{f} = \limsup_{r \to \infty} \frac{T_{f}(r)}{r^{\rho_{f}}} \text{ and } \overline{\sigma}_{f} = \liminf_{r \to \infty} \frac{T_{f}(r)}{r^{\rho_{f}}}, \quad 0 < \rho_{f} < \infty.$$

Datta and Jha [4] introduced the definition of the weak type of a meromorphic function of finite positive lower order in the following way:

Definition 2. [4] The weak type τ_f and the growth indicator $\overline{\tau}_f$ of a meromorphic function f of finite positive lower order λ_f are defined by

$$\overline{\tau}_{f} = \limsup_{r \to \infty} \frac{T_{f}\left(r\right)}{r^{\lambda_{f}}} \text{ and } \tau_{f} = \liminf_{r \to \infty} \frac{T_{f}\left(r\right)}{r^{\lambda_{f}}}, \ 0 < \lambda_{f} < \infty \ .$$

Extending the notion of the relative order introduced by Bernal $\{[1], [2]\}$, Lahiri and Banerjee [7] gave the definition of the relative order of a meromorphic function f with respect to an entire function g, denoted by $\rho_g(f)$ as follows:

$$\rho_g(f) = \inf \{ \mu > 0 : T_f(r) < T_g(r^{\mu}) \text{ for all sufficiently large } r \}$$

$$= \limsup_{r \to \infty} \frac{\log T_g^{-1} T_f(r)}{\log r}.$$

The definition coincides with the classical one [7] if $g(z) = \exp z$.

In the same way, one can define the relative lower order of a meromorphic function f with respect to an entire function g denoted by $\lambda_g(f)$ in the following manner:

$$\lambda_g(f) = \liminf_{r \to \infty} \frac{\log T_g^{-1} T_f(r)}{\log r}.$$

In the case of meromorphic functions, it therefore seems reasonable to define suitably the relative type and relative weak type of a meromorphic function with respect to an entire function to determine the relative growth of two meromorphic functions having same non zero finite relative order or relative lower order with respect to an entire function. Datta and Biswas also [5] gave such definitions of relative type and relative weak type of a meromorphic function f with respect to an entire function g which are as follows:

Definition 3. [5] The relative type $\sigma_g(f)$ of a meromorphic function f with respect to an entire function g are defined as

$$\sigma_{g}\left(f\right) = \limsup_{r \to \infty} \frac{T_{g}^{-1}T_{f}\left(r\right)}{r^{\rho_{g}\left(f\right)}}, \text{ where } 0 < \rho_{g}\left(f\right) < \infty.$$

Similarly, one can define the lower relative type $\overline{\sigma}_{g}(f)$ in the following way:

$$\overline{\sigma}_{g}\left(f\right) = \liminf_{r \to \infty} \frac{T_{g}^{-1}T_{f}\left(r\right)}{r^{\rho_{g}\left(f\right)}}, \text{ where } 0 < \rho_{g}\left(f\right) < \infty.$$

Definition 4. [5] The relative weak type $\tau_g(f)$ of a meromorphic function f with respect to an entire function g with finite positive relative lower order $\lambda_g(f)$ is defined by

$$\tau_g(f) = \liminf_{r \to \infty} \frac{T_g^{-1} T_f(r)}{r^{\lambda_g(f)}}.$$

In a similar manner, one can define the growth indicator $\overline{\tau}_g(f)$ of a meromorphic function f with respect to an entire function g with finite positive relative lower order $\lambda_g(f)$ as

$$\overline{\tau}_{g}\left(f\right)=\underset{r\rightarrow\infty}{\limsup}\frac{T_{g}^{-1}T_{f}\left(r\right)}{r^{\lambda_{g}\left(f\right)}}.$$

Considering $g = \exp z$ one may easily verify that Definition 3 and Definition 4 coincide with the classical definitions of the type (lower type) and weak type of a meromorphic function.

For entire and meromorphic functions, the notion of their growth indicators such as order, type and weak type are classical in complex analysis and during the past decades, several researchers have already continued their studies in the area of comparative growth properties of entire and meromorphic functions in different directions using the growth indicators such as order, type and weak type. But at that time, the concepts of the relative order and consequently relative type and relative weak type of meromorphic function with respect to another entire function which

have already been discussed above were mostly unknown in complex analysis and researchers were not aware of the technical advantages given by such notion which gives an idea to avoid comparing growth just with exp function to calculate *order*, type and weak type respectively. In the paper we study some relative growth properties of entire and meromorphic functions with respect to another entire function on the basis of relative type and relative weak type. We use the standard notations and definitions of the theory of entire and meromorphic functions which are available in [6] and [9]. Hence we do not explain those in detail.

2 Lemmas

First of all let us recall the following theorem due to Debnath et al. [3]

Theorem A. Let f be a meromorphic function and g be an entire functions with non-zero finite order and lower order. Then

$$\frac{\lambda_{f}}{\rho_{g}} \leq \lambda_{g}\left(f\right) \leq \min\left\{\frac{\lambda_{f}}{\lambda_{g}}, \frac{\rho_{f}}{\rho_{g}}\right\} \leq \max\left\{\frac{\lambda_{f}}{\lambda_{g}}, \frac{\rho_{f}}{\rho_{g}}\right\} \leq \rho_{g}\left(f\right) \leq \frac{\rho_{f}}{\lambda_{g}}.$$

From the conclusion of the above theorem, we present the following two lemmas which will be needed in the sequel.

Lemma 2.1. [3] Let f be a meromorphic function with $0 < \lambda_f \le \rho_f < \infty$ and g be an entire function of regular growth with non-zero finite order. Then

$$\rho_g\left(f\right) = \frac{\rho_f}{\rho_g} \quad and \quad \lambda_g\left(f\right) = \frac{\lambda_f}{\lambda_g}.$$

Lemma 2.2. [3] Let f be a meromorphic function of regular growth with non-zero finite order and g be an entire function with $0 < \lambda_g \le \rho_g < \infty$. Then

$$\rho_g\left(f\right) = \frac{\lambda_f}{\lambda_g} \quad and \quad \lambda_g\left(f\right) = \frac{\rho_f}{\rho_g}.$$

3 Main results

In this section we state the main results of the paper.

Theorem 3.1. Let f be a meromorphic function with $0 < \rho_f < \infty$ and g be an entire function of regular growth with non-zero finite order. Then

$$\left[\frac{\overline{\sigma}_{f}}{\sigma_{g}}\right]^{\frac{1}{\rho_{g}}} \leq \overline{\sigma}_{g}\left(f\right) \leq \min \left\{ \left[\frac{\overline{\sigma}_{f}}{\overline{\sigma}_{g}}\right]^{\frac{1}{\rho_{g}}}, \left[\frac{\sigma_{f}}{\sigma_{g}}\right]^{\frac{1}{\rho_{g}}}\right\} \leq \max \left\{ \left[\frac{\overline{\sigma}_{f}}{\overline{\sigma}_{g}}\right]^{\frac{1}{\rho_{g}}}, \left[\frac{\sigma_{f}}{\sigma_{g}}\right]^{\frac{1}{\rho_{g}}}\right\} \leq \sigma_{g}\left(f\right) \leq \left[\frac{\sigma_{f}}{\overline{\sigma}_{g}}\right]^{\frac{1}{\rho_{g}}}.$$

Proof. From the definitions of σ_f and $\overline{\sigma}_f$, we have that for any $\varepsilon > 0$ that all sufficiently large values of r that

$$T_f(r) \leq (\sigma_f + \varepsilon) \cdot r^{\rho_f},$$
 (3.1)

$$T_f(r) \geq (\overline{\sigma}_f - \varepsilon) \cdot r^{\rho_f}$$
 (3.2)

and we also get that for a sequence of values of r tending to infinity

$$T_f(r) \geq (\sigma_f - \varepsilon) \cdot r^{\rho_f},$$
 (3.3)

$$T_f(r) \leq (\overline{\sigma}_f + \varepsilon) \cdot r^{\rho_f} .$$
 (3.4)

Similarly from the definitions of σ_g and $\overline{\sigma}_g$, it follows that for all sufficiently large values of r

$$T_{g}(r) \leq (\sigma_{g} + \varepsilon) \cdot r^{\rho_{g}}$$

$$i.e., r \leq T_{g}^{-1} \left[(\sigma_{g} + \varepsilon) \cdot r^{\rho_{g}} \right]$$

$$i.e., T_{g}^{-1}(r) \geq \left[\left(\frac{r}{(\sigma_{g} + \varepsilon)} \right)^{\frac{1}{\rho_{g}}} \right], \qquad (3.5)$$

$$T_{g}(r) \geq \{(\overline{\sigma}_{g} - \varepsilon) \cdot r^{\rho_{g}}\}$$

$$i.e., r \geq T_{g}^{-1}[\{(\overline{\sigma}_{g} - \varepsilon) \cdot r^{\rho_{g}}\}]$$

$$i.e., T_{g}^{-1}(r) \leq \left[\left(\frac{r}{(\overline{\sigma}_{g} - \varepsilon)}\right)^{\frac{1}{\rho_{g}}}\right]$$

$$(3.6)$$

and that for a sequence of values of r tending to infinity

$$T_{g}(r) \geq \{(\sigma_{g} - \varepsilon) \cdot r^{\rho_{g}}\}\$$

$$i.e., r \geq T_{g}^{-1} \{(\sigma_{g} - \varepsilon) \cdot r^{\rho_{g}}\}\$$

$$i.e., T_{g}^{-1}(r) \leq \left[\left(\frac{r}{(\sigma_{g} - \varepsilon)}\right)^{\frac{1}{\rho_{g}}}\right],$$

$$(3.7)$$

$$T_{g}(r) \leq \{(\overline{\sigma}_{g} + \varepsilon) \cdot r^{\rho_{g}}\}$$

$$i.e., r \leq T_{g}^{-1}[\{(\overline{\sigma}_{g} + \varepsilon) \cdot r^{\rho_{g}}\}]$$

$$i.e., T_{g}^{-1}(r) \geq \left[\left(\frac{r}{(\overline{\sigma}_{g} - \varepsilon)}\right)^{\frac{1}{\rho_{g}}}\right].$$

$$(3.8)$$

Now from (3.3) and in view of (3.5), we get that for a sequence of values of r tending to infinity

$$T_g^{-1}T_f(r) \ge T_g^{-1}\left[\left\{\left(\sigma_f - \varepsilon\right) \cdot r^{\rho_f}\right\}\right]$$

$$\left\{\left(\sigma_f - \varepsilon\right) \cdot r^{\rho_f}\right\} \setminus r^{\frac{1}{\rho_g}}$$

i.e.,
$$T_g^{-1}T_f(r) \ge \left(\frac{\left\{\left(\sigma_f - \varepsilon\right) \cdot r^{\rho_f}\right\}}{\left(\sigma_g + \varepsilon\right)}\right)^{\frac{1}{\rho_g}}$$

$$i.e., T_g^{-1}T_f(r) \geq \left[\frac{(\sigma_f - \varepsilon)}{(\sigma_g + \varepsilon)}\right]^{\frac{1}{\rho_g}} \cdot r^{\frac{\rho_f}{\rho_g}}$$

$$i.e., \frac{T_g^{-1}T_f(r)}{r^{\frac{\rho_f}{\rho_g}}} \geq \left[\frac{(\sigma_f - \varepsilon)}{(\sigma_g + \varepsilon)}\right]^{\frac{1}{\rho_g}}.$$

$$(3.9)$$

As ε (> 0) is arbitrary, in view of Lemma 2.1 it follows that

$$\limsup_{r \to \infty} \frac{T_g^{-1} T_f(r)}{r^{\rho_g(f)}} \geq \left[\frac{\sigma_f}{\sigma_g}\right]^{\frac{1}{\rho_g}}$$

$$i.e., \ \sigma_g(f) \geq \left[\frac{\sigma_f}{\sigma_g}\right]^{\frac{1}{\rho_g}}.$$
(3.10)

Analogously from (3.2) and in view of (3.8), it follows that for a sequence of values of r tending to infinity

$$T_g^{-1}T_f(r) \ge T_g^{-1}\left[\left\{\left(\overline{\sigma}_f - \varepsilon\right) \cdot r^{\rho_f}\right\}\right]$$

i.e.,
$$T_g^{-1}T_f(r) \ge \left(\frac{\left\{\left(\overline{\sigma}_f - \varepsilon\right) \cdot r^{\rho_f}\right\}\right)^{\frac{1}{\rho_g}}}{\left(\overline{\sigma}_g + \varepsilon\right)}$$

$$i.e., \ T_g^{-1}T_f(r) \ge \left[\frac{(\overline{\sigma}_f - \varepsilon)}{(\overline{\sigma}_g + \varepsilon)}\right]^{\frac{1}{\rho_g}} \cdot r^{\frac{\rho_f}{\rho_g}}$$

$$i.e., \ \frac{T_g^{-1}T_f(r)}{r^{\frac{\rho_f}{\rho_g}}} \ge \left[\frac{(\overline{\sigma}_f - \varepsilon)}{(\overline{\sigma}_g + \varepsilon)}\right]^{\frac{1}{\rho_g}}.$$

$$(3.11)$$

Since ε (> 0) is arbitrary, we get from above and Lemma 2.1 that

$$\limsup_{r \to \infty} \frac{T_g^{-1} T_f(r)}{r^{\rho_g(f)}} \geq \left[\frac{\overline{\sigma}_f}{\overline{\sigma}_g} \right]^{\frac{1}{\rho_g}}$$

$$i.e., \ \sigma_g(f) \geq \left[\frac{\overline{\sigma}_f}{\overline{\sigma}_g} \right]^{\frac{1}{\rho_g}}.$$
(3.12)

Again in view of (3.6), we have from (3.1) that for all sufficiently large values of r

$$T_g^{-1}T_f(r) \le T_g^{-1}\left[\left\{\left(\sigma_f + \varepsilon\right) \cdot r^{\rho_f}\right\}\right]$$

i.e.,
$$T_g^{-1}T_f(r) \le \left(\frac{\left\{\left(\sigma_f + \varepsilon\right) \cdot r^{\rho_f}\right\}}{\left(\overline{\sigma}_g - \varepsilon\right)}\right)^{\frac{1}{\rho_g}}$$

$$i.e., \ T_g^{-1}T_f(r) \le \left[\frac{(\sigma_f + \varepsilon)}{(\overline{\sigma}_g - \varepsilon)}\right]^{\frac{1}{\rho_g}} \cdot r^{\frac{\rho_f}{\rho_g}}$$

$$i.e., \ \frac{T_g^{-1}T_f(r)}{r^{\frac{\rho_f}{\rho_g}}} \le \left[\frac{(\sigma_f + \varepsilon)}{(\overline{\sigma}_g - \varepsilon)}\right]^{\frac{1}{\rho_g}} . \tag{3.13}$$

Since ε (> 0) is arbitrary, we obtain in view of Lemma 2.1 that

$$\limsup_{r \to \infty} \frac{T_g^{-1} T_f(r)}{r^{\rho_g(f)}} \leq \left[\frac{\sigma_f}{\overline{\sigma}_g} \right]^{\frac{1}{\rho_g}}$$

$$i.e., \ \sigma_g(f) \leq \left[\frac{\sigma_f}{\overline{\sigma}_q} \right]^{\frac{1}{\rho_g}}.$$
(3.14)

Again from (3.2) and in view of (3.5), we get that for all sufficiently large values of r

$$T_q^{-1}T_f(r) \ge T_q^{-1}\left[\left\{\left(\overline{\sigma}_f - \varepsilon\right) \cdot r^{\rho_f}\right\}\right]$$

i.e.,
$$T_g^{-1}T_f(r) \ge \left(\frac{\left\{\left(\overline{\sigma}_f - \varepsilon\right) \cdot r^{\rho_f}\right\}\right)^{\frac{1}{\rho_g}}}{\left(\sigma_g + \varepsilon\right)}$$

$$i.e., \ T_g^{-1}T_f(r) \ge \left[\frac{(\overline{\sigma}_f - \varepsilon)}{(\sigma_g + \varepsilon)}\right]^{\frac{1}{\rho_g}} \cdot r^{\frac{\rho_f}{\rho_g}}$$

$$i.e., \ \frac{T_g^{-1}T_f(r)}{r^{\frac{\rho_f}{\rho_g}}} \ge \left[\frac{(\overline{\sigma}_f - \varepsilon)}{(\sigma_g + \varepsilon)}\right]^{\frac{1}{\rho_g}}.$$

$$(3.15)$$

As ε (>0) is arbitrary, it follows from the above and Lemma 2.1 that

$$\liminf_{r \to \infty} \frac{T_g^{-1} T_f(r)}{r^{\rho_g(f)}} \geq \left[\frac{\overline{\sigma}_f}{\sigma_g} \right]^{\frac{1}{\rho_g}}$$

$$i.e., \ \overline{\sigma}_g(f) \geq \left[\frac{\overline{\sigma}_f}{\sigma_g} \right]^{\frac{1}{\rho_g}}.$$
(3.16)

Also in view of (3.7), we get from (3.1) that for a sequence of values of r tending to infinity

$$T_g^{-1}T_f(r) \leq T_g^{-1} \left[\left\{ (\sigma_f + \varepsilon) \cdot r^{\rho_f} \right\} \right]$$

$$i.e., \ T_g^{-1}T_f(r) \leq \left(\frac{\left\{ (\sigma_f + \varepsilon) \cdot r^{\rho_f} \right\} \right\}}{(\sigma_g - \varepsilon)} \right)^{\frac{1}{\rho_g}}$$

$$i.e., \ T_g^{-1}T_f(r) \leq \left[\frac{(\sigma_f + \varepsilon)}{(\sigma_g - \varepsilon)} \right]^{\frac{1}{\rho_g}} \cdot r^{\frac{\rho_f}{\rho_g}}$$

$$i.e., \ \frac{T_g^{-1}T_f(r)}{\frac{\rho_f}{\rho_f}} \leq \left[\frac{(\sigma_f + \varepsilon)}{(\sigma_g - \varepsilon)} \right]^{\frac{1}{\rho_g}} . \tag{3.17}$$

Since ε (> 0) is arbitrary, we get from Lemma 2.1 and the above that

$$\liminf_{r \to \infty} \frac{T_g^{-1} T_f(r)}{r^{\rho_g(f)}} \leq \left[\frac{\sigma_f}{\sigma_g} \right]^{\frac{1}{\rho_g}}$$

$$i.e., \ \overline{\sigma}_g(f) \leq \left[\frac{\sigma_f}{\sigma_g} \right]^{\frac{1}{\rho_g}}.$$
(3.18)

Similarly from (3.4) and in view of (3.6), it follows that for a sequence of values of r tending to infinity

$$T_g^{-1}T_f(r) \le T_g^{-1} \left[\left\{ (\overline{\sigma}_f + \varepsilon) \cdot r^{\rho_f} \right\} \right]$$
i.e.,
$$T_g^{-1}T_f(r) \le \left(\frac{\left\{ (\overline{\sigma}_f + \varepsilon) \cdot r^{\rho_f} \right\}}{(\overline{\sigma}_g - \varepsilon)} \right)^{\frac{1}{\rho_g}}$$

$$i.e., \ T_g^{-1}T_f(r) \le \left[\frac{(\overline{\sigma}_f + \varepsilon)}{(\overline{\sigma}_g - \varepsilon)}\right]^{\frac{1}{\rho_g}} \cdot r^{\frac{\rho_f}{\rho_g}}$$

$$i.e., \ \frac{T_g^{-1}T_f(r)}{r^{\frac{\rho_f}{\rho_g}}} \le \left[\frac{(\overline{\sigma}_f + \varepsilon)}{(\overline{\sigma}_g - \varepsilon)}\right]^{\frac{1}{\rho_g}}.$$

$$(3.19)$$

As ε (> 0) is arbitrary, we obtain from Lemma 2.1 and the above

$$\liminf_{r \to \infty} \frac{T_g^{-1} T_f(r)}{r^{\rho_g(f)}} \leq \left[\frac{\overline{\sigma}_f}{\overline{\sigma}_g} \right]^{\frac{1}{\rho_g}}$$

$$i.e., \ \overline{\sigma}_g(f) \leq \left[\frac{\overline{\sigma}_f}{\overline{\sigma}_g} \right]^{\frac{1}{\rho_g}}.$$
(3.20)

Thus the theorem follows from (3.10), (3.12), (3.14), (3.16), (3.18) and (3.20).

Theorem 3.2. Let f be a meromorphic function of regular growth with non zero finite order and g be an entire function with $0 < \lambda_g < \infty$. Then

$$\left[\frac{\tau_{f}}{\overline{\tau}_{g}}\right]^{\frac{1}{\lambda_{g}}} \leq \overline{\sigma}_{g}\left(f\right) \leq \min\left\{\left[\frac{\tau_{f}}{\tau_{g}}\right]^{\frac{1}{\lambda_{g}}}, \left[\frac{\overline{\tau}_{f}}{\overline{\tau}_{g}}\right]^{\frac{1}{\lambda_{g}}}\right\} \leq \max\left\{\left[\frac{\tau_{f}}{\tau_{g}}\right]^{\frac{1}{\lambda_{g}}}, \left[\frac{\overline{\tau}_{f}}{\overline{\tau}_{g}}\right]^{\frac{1}{\lambda_{g}}}\right\} \leq \sigma_{g}\left(f\right) \leq \left[\frac{\overline{\tau}_{f}}{\tau_{g}}\right]^{\frac{1}{\lambda_{g}}}.$$

Proof. From the definitions of $\overline{\tau}_f$ and τ_f , we have that for all sufficiently large values of r

$$T_f(r) \leq (\overline{\tau}_f + \varepsilon) \cdot r^{\lambda_f},$$

 $T_f(r) > (\tau_f - \varepsilon) \cdot r^{\lambda_f}$

and also that for a sequence of values of r tending to infinity

$$T_f(r) \geq (\overline{\tau}_f - \varepsilon) \cdot r^{\lambda_f},$$

 $T_f(r) \leq (\tau_f + \varepsilon) \cdot r^{\lambda_f}.$

Similarly from the definitions of $\overline{\tau}_g$ and τ_g , it follows that for all sufficiently large values of r

$$T_{g}(r) \leq (\overline{\tau}_{g} + \varepsilon) \cdot r^{\lambda_{g}}$$

$$i.e., r \leq T_{g}^{-1} \left[(\overline{\tau}_{g} + \varepsilon) \cdot r^{\lambda_{g}} \right]$$

$$i.e., T_{g}^{-1}(r) \geq \left[\left(\frac{r}{(\overline{\tau}_{g} + \varepsilon)} \right)^{\frac{1}{\lambda_{g}}} \right],$$

$$T_{g}(r) \geq (\tau_{g} - \varepsilon) \cdot r^{\lambda_{g}}$$

$$i.e., r \geq T_{g}^{-1} \left[(\tau_{g} - \varepsilon) \cdot r^{\lambda_{g}} \right]$$

$$i.e., T_{g}^{-1}(r) \leq \left[\left(\frac{r}{(\tau_{g} - \varepsilon)} \right)^{\frac{1}{\lambda_{g}}} \right]$$

and that for a sequence of values of r tending to infinity

$$T_{g}(r) \geq (\overline{\tau}_{g} - \varepsilon) \cdot r^{\lambda_{g}}$$

$$i.e., r \geq T_{g}^{-1} \left[(\overline{\tau}_{g} - \varepsilon) \cdot r^{\lambda_{g}} \right]$$

$$i.e., T_{g}^{-1}(r) \leq \left[\left(\frac{r}{(\overline{\tau}_{g} - \varepsilon)} \right)^{\frac{1}{\lambda_{g}}} \right],$$

$$T_{g}(r) \leq (\tau_{g} + \varepsilon) \cdot r^{\lambda_{g}}$$

$$i.e., r \leq T_{g}^{-1} \left[(\tau_{g} + \varepsilon) \cdot r^{\lambda_{g}} \right]$$

$$i.e., T_{g}^{-1}(r) \geq \left[\left(\frac{r}{(\tau_{g} - \varepsilon)} \right)^{\frac{1}{\lambda_{g}}} \right].$$

Now using the same technique of Theorem 3.1, one can easily prove the conclusion of the present theorem by the help of Lemma 2.2 and the above inequalities. Therefore the remaining part of the proof of the present theorem is omitted.

Similarly in the line of Theorem 3.1 and Theorem 3.2 and with the help of Lemma 2.1 and Lemma 2.2, one may easily prove the following two theorems and therefore their proofs are omitted.

Theorem 3.3. Let f be a meromorphic function with $0 < \lambda_f < \infty$ and g be an entire function of regular growth with non zero finite order. Then

$$\left[\frac{\tau_{f}}{\overline{\tau}_{g}}\right]^{\frac{1}{\lambda_{g}}} \leq \tau_{g}\left(f\right) \leq \min\left\{\left[\frac{\tau_{f}}{\tau_{g}}\right]^{\frac{1}{\lambda_{g}}}, \left[\frac{\overline{\tau}_{f}}{\overline{\tau}_{g}}\right]^{\frac{1}{\lambda_{g}}}\right\} \leq \max\left\{\left[\frac{\tau_{f}}{\tau_{g}}\right]^{\frac{1}{\lambda_{g}(m,p)}}, \left[\frac{\overline{\tau}_{f}}{\overline{\tau}_{g}}\right]^{\frac{1}{\lambda_{g}}}\right\} \leq \overline{\tau}_{g}\left(f\right) \leq \left[\frac{\overline{\tau}_{f}}{\tau_{g}}\right]^{\frac{1}{\lambda_{g}}}.$$

Theorem 3.4. Let f be a meromorphic function of regular growth with non zero finite order and g be an entire function with $0 < \rho_g < \infty$. Then

$$\left[\frac{\overline{\sigma}_{f}}{\sigma_{g}}\right]^{\frac{1}{\rho_{g}}} \leq \tau_{g}\left(f\right) \leq \min\left\{\left[\frac{\overline{\sigma}_{f}}{\overline{\sigma}_{g}}\right]^{\frac{1}{\rho_{g}}}, \left[\frac{\sigma_{f}}{\sigma_{g}}\right]^{\frac{1}{\rho_{g}}}\right\} \leq \max\left\{\left[\frac{\overline{\sigma}_{f}}{\overline{\sigma}_{g}}\right]^{\frac{1}{\rho_{g}}}, \left[\frac{\sigma_{f}}{\sigma_{g}}\right]^{\frac{1}{\rho_{g}}}\right\} \leq \overline{\tau}_{g}\left(f\right) \leq \left[\frac{\sigma_{f}}{\overline{\sigma}_{g}}\right]^{\frac{1}{\rho_{g}}}.$$

References

- [1] L. Bernal, Crecimiento relativo de funciones enteras. Contribución al estudio de lasfunciones enteras con índice exponencial finito. Doctoral Dissertation, University of Seville, Spain, 1984.
- [2] L. Bernal, Orden relative de crecimiento de funciones enteras. Collect. Math. 39 (1988), 209-229.
- [3] L. Debnath, S.K. Datta, T. Biswas, A. Kar, Growth of meromorphic functions depending on (p,q)-th relative order. Facta Universitatis(NIS) Ser. Math. Inf. 31 (2016), no. 3, 691–705
- [4] S.K. Datta, A. Jha, On the weak type of meromorphic functions. Int. Math. Forum. 4 (2009), no. 12, 569–579.
- [5] S.K. Datta, A. Biswas, On relative type of entire and meromorphic functions. Advances in Applied Mathematical Analysis. 8 (2013), no. 2, 63–75.
- [6] W.K. Hayman, Meromorphic functions. The Clarendon Press, Oxford, 1964.
- [7] B.K. Lahiri, D. Banerjee, Relative order of entire and meromorphic functions. Proc. Nat. Acad. Sci. India Ser. A. 69(A) (1999), no. 3, 339–354.
- [8] E.C. Titchmarsh, The theory of functions, 2nd ed. Oxford University Press, Oxford, 1968.
- [9] G. Valiron, Lectures on the general theory of integral functions. Chelsea Publishing Company, 1949.

Sanjib Kumar Datta Department of Mathematics University of Kalyani P.O. Kalyani, Dist-Nadia,PIN- 741235, West Bengal, India. E-mails: sanjib kr datta@yahoo.co.in

Tanmay Biswas Rajbari, Rabindrapalli R. N. Tagore Road P.O. Krishnagar,Dist-Nadia,PIN- 741101, West Bengal, India. E-mail: tanmaybiswas math@rediffmail.com

> Received: 25.06.2016 Revised version: 19.02.2017