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MUKHTARBAY OTELBAEV

(to the 75th birthday)

On October 3, 2017 was the 75th birthday of Mukhtarbay Otel-
baev, Doctor of Physical and Mathematical Sciences (1978), Pro-
fessor (1983), academician of the National Academy of Sciences of
the Republic of Kazakhstan (2004), Honored Worker of the Repub-
lic of Kazakhstan (2012), laureate of the State Prize of the Republic
of Kazakhstan in the �eld of science and technology (2007), Direc-
tor of the Eurasian Mathematical Institute (since 2001), Professor
of the Department â�»Fundamental Mathematicsâ��ê of the L.N.
Gumilyov Eurasian National University, the editor-in-chief of the
Eurasian Mathematical Journal (together with V.I. Burenkov and
V.A. Sadovnichy).

M. Otelbaev was born in the village of Karakemer of the Kurdai
district, Zhambyl region. He graduated from the M.V. Lomonosov

Moscow State University (1969) and then completed his postgraduate studies at the same uni-
versity (1972). There he defended his doctor of sciences thesis (1978).

Professor Otelbaev's scienti�c interests are related to functional analysis, di�erential equa-
tions, computational mathematics, and theoretical physics.

He introduced the q-averaging, which is now called the Otelbaev function; using it he ob-
tained a number of fundamental results. For embedding of the Sobolev weighted spaces and the
resolvent of the Schrödinger operator, he established criterions for the compactness and �niteness
of the type, as well as estimates of the eigenvalues of the Schrödinger and Dirac operators that
are exact in order. He was the �rst to establish that there is no universal asymptotic formula
for the distribution function of the Sturm-Liouville operator. He obtained e�ective conditions
for the separation of the di�erential operators with nonsmooth and oscillating coe�cients, he
developed an abstract theory of extension and contraction of operators which are not necessarily
linear in linear topological spaces. M. Otelbaev proposed a new numerical method for solving
boundary value problems, and a method for approximate calculation of eigenvalues and eigen-
vectors of compact operators. He obtained the fundamental results in the theory of nonlinear
evolution equations and in theoretical physics.

He has published more than 70 scienti�c papers in leading international journals entering the
rating lists of Thomson Reuters and Scopus. Under his supervision 70 postgraduate students
have defended their candidate of sciences theses, 9 of them became doctors of sciences. In 2006
and 2011 he was awarded the state grant "The best university teacher".

The Editorial Board of the Eurasian Mathematical Journal congratulates Mukhtarbay Otel-
baev on the occasion of his 75th birthday and wishes him good health and new achievements in
mathematics and mathematical education.



Award for the Eurasian Mathematical Journal

Dear readers, authors, reviewers and members of the Editorial Board of the Eurasian
Mathematical Journal,

we are happy to inform you that in November 2017 the Eurasian Mathematical Journal was
awarded the title "Leader of Science 2017" by the National Center of State Scienti�c-Technical
Expertise of the Committee of Science of the Ministry of Education and Science of the Republic
of Kazakhstan in the nomination "Leader of Kazakhstan Scienti�c Publications" for the high
level of publication activities and high level of citations in Web of Science Core Collection in
2014-2016.

Recall that the Eurasian Mathematical Journal was founded by the L.N. Gumilyov Eurasian
National University in 2010 in co-operation with the M.V. Lomonosov Moscow State University,
the Peoples' Friendship University of Russia and the University of Padua (see [1]).

The journal pulishes carefully selected original research papers in all areas of mathematics,
survey papers, and short communications. It publishes 4 issues in a year. The language of the
paper must be English only. Papers accepted for publication are edited from the point of view
of English.

More than 280 papers were published written by mathematicians from more than 40 countries
representing all continents.

In 2014 the journal was registered in Scopus and in September 2014 the Elsevier-Kazakhstan
Research Excellence Forum was held at the L.N. Gumilyov Eurasian National University dedi-
cated to this occasion in which the Elsevier Chairman Professor Y.S. Chi participated (see [3]
for details).

In 2015 the Eurasian Mathematical Journal was included in the list of Scopus mathematical
journals, quartile Q4, and it is on the way to entering quartile Q3 (see [3]).

Attached is the invitation letter to the Rector of the L.N. Gumilyov Eurasian National
University Professor E.B. Sydykov to the ceremony of awarding, which took place in Almaty on
November 8, 2017.

On behalf of the Editorial Board of the EMJ V.I. Burenkov, E.D. Nursultanov,
T.Sh. Kalmenov, R. Oinarov, M. Otelbaev, T.V. Tararykova, A.M. Temirkhanova
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Abstract. Let (M, g) be an n-dimensional Riemannian manifold and TM its tangent bundle
equipped with Riemannian g−natural metrics which are linear combinations of the three classical
lifts of the base metric with constant coe�cients. The purpose of the present paper is three-fold.
Firstly, to study conditions for the tangent bundle TM to be locally conformally �at. Secondly, to
de�ne a metric connection on the tangent bundle TM with respect to the Riemannian g−natural
metric and study some its properties. Finally, to classify a�ne Killing and Killing vector �elds
on the tangent bundle TM .

1 Introduction

Let (M, g) be a Remannian manifold. On the tangent bundle TM of M one can construct
several (pseudo-) Riemannian metrics obtained by lifting the metric g from the base manifold
M to the tangent bundle TM . The �rst known Riemannian metric which is called the Sasaki
metric on the tangent bundle was constructed by S. Sasaki in [16]. It was shown in many papers
that the study of some geometric properties of the tangent bundle endowed with the Sasaki
metric led to the �atness of the base manifold (for recent survey related to the Sasaki metric,
see [7]). In the next years, using, in particular, various kinds of classical lifts of the metric g
from M to TM , some authors were interested in �nding other lifted metrics on the tangent
bundles, with quite interesting properties (e.g. [4, 5, 6, 15, 18, 20]). According to this concept
of lift, the Sasaki metric is no other than the diagonal lift of the base metric. V. Oproiu and
his collaborators constructed natural metrics on the tangent bundles of Riemannian manifolds
possessing interesting geometric properties ([11, 12, 13, 14]). All metrics mentioned above belong
to a wide class of the so-called g-natural metrics on the tangent bundle, initially classi�ed by O.
Kowalski and M. Sekizawa [10] and fully characterized by M.T.K Abbassi and M. Sarih [1, 2, 3]
(see also [9] for other presentation of the basic result from [10]).

In this paper we consider a tangent bundle TM equipped with a Riemanian g−natural
metrics of the form G = aSg + bHg + cV g, where a, b and c are constants satisfying a > 0 and
a(a + c) − b2 > 0, generated by the classical lifts: the Sasaki metric Sg, the horizontal lift Hg
and the vertical lift V g of g. The Riemanian g-natural metric G is a particular subclass of all
Riemannian g−natural metrics on TM in [1]. In [4], M.T.K. Abbassi and M. Sarih proved that
the Riemanian g−natural metric G is as rigid as the Sasaki metric in the following sense: if
(TM,G) is a space of constant scalar curvature, then (M, g) is �at. Our aim is to study some
properties of the Riemanian g−natural metric G in terms of adapted frame which allows the
tensor calculus to be e�ciently done in TM.
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Throughout this paper, all manifolds, tensor �elds and connections are always assumed to
be di�erentiable of class C∞. Also, we denote by =pq(M) the set of all tensor �elds of type (p, q)
on M , and by =pq(TM) the corresponding set on the tangent bundle TM .

2 Preliminaries

LetM be an n-dimensional Riemannian manifold and denote by π : TM →M its tangent bundle
which �bres the tangent spaces toM . Then TM is a 2n−dimensional smooth manifold and some
local charts induced naturally from local charts on M may be used. Namely a system of local

coordinates (U, xi) in M induces on TM a system of local coordinates
(
π−1 (U) , xi, xi = yi

)
,

i = n + i = n + 1, ..., 2n, where (yi) is the cartesian coordinates in each tangent space TPM
at P ∈ M with respect to the natural base

{
∂
∂xi
|P
}
, P being an arbitrary point in U whose

coordinates are (xi). Summation over repeated indices is always assumed.
Let X = X i ∂

∂xi
be the local expression in U of a vector �eld X on M . Then the vertical lift

VX and the horizontal lift HX of X are given, with respect to the induced coordinates, by

VX = X i∂i, (2.1)

HX = X i∂i − ysΓiskXk∂i, (2.2)

where ∂i = ∂
∂xi

, ∂i = ∂
∂yi

and Γisk are the coe�cients of the Levi-Civita connection ∇ of g.

Let S be a (p, q)−tensor �eld onM, q > 1. We then consider the tensor �eld γS ∈ =pq−1(TM)
on π−1 (U) de�ned by

γS = (ysS
j1...jp
si2...iq

)∂j1 ⊗ ...⊗ ∂jp ⊗ dx
i2 ⊗ ...⊗ dxiq

with respect to the induced coordinates (xi, yi)([20], p. 12). The tensor �eld γS de�ned on each
π−1 (U) determines global tensor �eld on TM . For any C ∈ =1

1(M), we easily see that γC has
components, with respect to the induced coordinates (xi, yi),

(γC) = ysCi
s∂i. (2.3)

Also, note that (γC)(V f) = 0, f ∈ =0
0(M) , i.e. γC is a vertical vector �eld on TM .

With the connection ∇g of g on M , we can introduce on each induced coordinate neighbour-
hood π−1(U) of TM a frame �eld which is very useful in our computation. The adapted frame
on π−1(U) consists of the following 2n linearly independent vector �elds:

Ej = ∂j − ysΓhsj∂h,
Ej = ∂j.

We write the adapted frame as {Eβ} =
{
Ej, Ej

}
. Straightforward calculations give the following

lemma.

Lemma 2.1. [19, 20] The Lie brackets of the adapted frame of TM satisfy the following identi-
ties: 

[Ej, Ei] = ybR a
ijbEa,

[Ej, Ei] = ΓajiEa,[
Ej, Ei

]
= 0,

where R a
ijb denote the components of the curvature tensor of M .
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Using (2.1), (2.2) and (2.3), we have

HX = XjEj, (2.4)

VX = XjEj, (2.5)

and

γC = ysCj
sEj (2.6)

with respect to the adapted frame {Eβ} (for details, see [20]).

3 On locally conformally �at tangent bundles with Riemannian

g−natural metrics of the form G = a Sg + bHg + c V g

The Riemannian g−natural metric G = a Sg + bHg + c V g on the tangent bundle TM over the
Riemannian manifold (M, g) is de�ned by the following three equations:

G(HX,H Y ) = (a+ c)V (g(X, Y )), (3.1)

G(VX,H Y ) = G(HX,V Y ) = bV (g(X, Y )), (3.2)

G(VX,V Y ) = aV (g(X, Y )) (3.3)

for all X, Y ∈ =1
0(M), where the inequalities a > 0 and a(a+ c)− b2 > 0 hold [4].

If g = gijdx
idxj is the expression of the Riemannian metric g on M , then from (3.1)-(3.3),

the Riemannian g−natural metric G is expressed in the adapted local frame by

G = (Gαβ) =

(
(a+ c)gij bgij
bgij agij

)
. (3.4)

For the Levi-Civita connection of the Riemannian g−natural metric G, we have the following.

Proposition 3.1. [4] Let (M, g) be a Riemannian manifold, ∇ its Levi-Civita connection and

R its curvature tensor. Then the corresponding Levi-Civita connection ∇̃ of TM with the Rie-
mannian g-natural metric of the form G = a Sg + bHg + c V g is characterized by the following
equalities

i) ∇̃HX
HY = H(∇XY ) +

ab

2α
H [R(y,X)Y +R(y, Y )X] (3.5)

+
b2

α
V (R(X, y)Y − a(a+ c)

2α
V (R(X, Y )y),

ii) ∇̃HX
V Y = − a

2

2α
H(R(Y, y)X) + V (∇XY ) +

ab

2α
V (R(Y, y)X),

iii) ∇̃VX
HY = − a

2

2α
H(R(X, y)Y +

ab

2α
V (R(X, y)Y ),

iv) ∇̃VX
V Y = 0

for all X, Y ∈ =1
0(M), where α = a(a+ c)− b2 and the inequalities a > 0 and a(a+ c)− b2 > 0

hold.
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For the tangent bundle (TM,G), the conformal curvature tensor C̃ is given by:

C̃αγβσ = R̃αγβσ −
1

2(n− 1)
(GγσR̃αβ−GασR̃γβ+Gαβ R̃γσ− Gγβ R̃ασ)

+
S̃

2(n− 1)(2n− 1)
(GαβGγσ −GασGγβ).

A Riemannian manifold (M, g) (dimM ≥ 4) is called locally conformally �at if the conformal

curvature tensor C̃ = 0. In this section, we shall prove the following theorem.

Theorem 3.1. Let M be an n−dimensional Riemannian manifold and TM its tangent bundle
with the Riemannian g−natural metric G = aSg+bHg+cV g, such that a > 0 and a(a+c)−b2 >
0. The tangent bundle TM is locally conformally �at if and only if M is locally �at and the
Riemannian g−natural metric G is of the form G = a(Sg +H g) + cV g.

Now, let us consider the formula ∇̃EαEβ = Γ̃γαβEγ with respect to the adapted frame {Eβ},
where Γ̃γαβ denote the components of the Levi-Civita connection ∇̃ of G. On taking account of

(3.5) for the cases VX = Ei,
HX = Ei and

V Y = Ej,
HY = Ej, we have the following.

Lemma 3.1. The Levi-Civita connection ∇̃ of (TM,G) is characterized by the following equal-
ities



∇̃EiEj = {Γhij −
ab

2α
ys(R h

isj +R h
jsi)}Eh + {b

2

α
ysR h

isj −
a(a+ c)

2α
ysR h

ijs}Eh,

∇̃EiEj = {− a
2

2α
ysR h

jsi}Eh + {Γhij +
ab

2α
ysR h

jsi}Eh,

∇̃Ei
Ej = {− a

2

2α
ysR h

isj}Eh + { ab
2α
ysR h

isj}Eh,
∇̃Ei

Ej = 0,

(3.6)

with respect to the adapted frame {Eβ}, where Γhij, and R
s

hji respectively, denote the components
of the Levi-Civita connection ∇ and the curvature tensor �eld R of g on M with respect to the
natural frame {∂i}.

The Riemannian curvature tensor R̃ of (TM,G) is obtained from the well-known formula

R̃
(
X̃, Ỹ

)
Z̃ = ∇̃X̃∇̃Ỹ Z̃ − ∇̃Ỹ ∇̃X̃Z̃ − ∇̃[X̃,Ỹ ]Z̃

for all X̃, Ỹ , Z̃ ∈ =1
0(TM). For pairs X̃ = Em, Em and Ỹ = Ei, Ei and Z̃ = Ej, Ej, by Lemma 2.1

and 3.1, we get the following lemma.
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Lemma 3.2. The components of the curvature tensor R̃ of (TM,G) are as follows:

(i) R̃(Em, Ei)Ej

=

{
R k
mij +

ab

2α
ys
[
∇i

(
R k
msj +R k

jsm

)
−∇m

(
R k
isj +R k

jsi

)]
+
a2

4α
ypys

[
R k
hsmR

h
ijp −R k

hsi R
h

mjp − 2R h
mis R

k
hpj

]
+
a2b2

4α2
ypys

[
R k
msh

(
R h
ipj +R h

jpi

)
−R k

ish

(
R h
mpj +R h

jpm

)]}
Ek

+

{
b2

α
ys
[
∇mR

k
isj −∇iR

k
msj

]
+
a (a+ c)

2α
ys
[
∇iR

k
mjs −∇mR

k
ijs

]
+
ab3

4α2
ypys

[
R k
smh

(
R h
ipj +R h

jpi

)
+R k

ish

(
R h
mpj +R h

jpm

)]
+
ab

4α
ypys[R k

mhs

(
R h
ipj +R h

jpi

)
−R k

ihs

(
R h
mpj +R h

jpm

)
+R k

hsi R
h

mjp −R k
hsmR

h
ijp + 2R h

mis R
k

hpj ]
}
Ek

(ii) R̃(Em, Ei)Ej

=

{
a2

2α
ys
(
∇iR

k
jsm −∇mR

k
jsi

)
+
a3b

4α2
ypys

[
R h
jpi R

k
msh −R h

jpmR
k

ish

]}
Ek

+

{
R k
mij +

ab

2α
ys
(
∇mR

k
jsi −∇iR

k
jsm

)
+
a2b2

4α2
ypys

[
R h
jpi R

k
smh +R h

jpmR
k

ish

]
+
a2

4α
ypys

[
R k
mhsR

h
jpi −R k

ihs R
h

jpm

]}
Ek

(iii) R̃(Em, Ei)Ej

=

{
ab

2α
(R k

mij +R k
jim )− a2

2α
ys∇mR

k
isj

+
a3b

4α2
ypys

[
R h
ipj R

k
msh −R k

ish

(
R h
mpj +R h

jpm

)]}
Ek

+

{
−b2

α
R k
mij +

a(a+ c)

2α
R k
mji +

ab

2α
ys∇mR

k
isj +

a2

4α
ypysR k

mhsR
h

ipj

+
a2b2

4α2
ypys

[
R k
ish

(
R h
mpj +R h

jpm

)
+R h

ipj R
k

smh

]}
Ek

(iv) R̃(Em, Ei)Ej

=

{
−ab
2α

(R k
imj +R k

jmi ) +
a2

2α
ys∇iR

k
msj

+
a3b

4α2
ypys

[
R k
mph

(
R h
jsi +R h

isj

)
−R k

ish R
h

mpj

]}
Ek

+

{
b2

α
R k
imj −

a(a+ c)

2α
R k
ijm −

ab

2α
ys∇iR

k
msj

− a2b2

4α2
ypys

[
R k
msh

(
R h
jpi +R h

ipj

)
+R h

mpjR
k

sih

]
− a

2

4α
ypysR k

ish R
h

mpj

}
Ek
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(v) R̃(Em, Ei)Ej =

{
a2

2α
R k
jim −

a4

4α2
ypysR k

ish R
h

jpm

}
Ek

+

{
−ab
2α

R k
jim +

a3b

4α2
ypysR k

ish R
h

jpm

}
Ek

(vi) R̃(Em, Ei)Ej =

{
− a

2

2α
R k
jmi +

a4

4α2
ypysR k

mshR
h

jpi

}
Ek

+

{
ab

2α
R k
jmi −

a3b

4α2
ypysR k

mshR
h

jpi

}
Ek

(vii) R̃(Em, Ei)Ej =

{
a2

α
R k
mij +

a4

4α2
ypys

[
R k
mshR

h
ipj −R k

ish R
h

mpj

]}
Ek

+

{
ab

α
R k
imj −

a3b

4α2
ypys

[
R k
mshR

h
ipj −R k

ish R
h

mpj

]}
Ek

(viii) R̃(Em, Ei)Ej = 0

with respect to the adapted frame {Eβ}, where α = a(a + c)− b2 (for invariant forms of R̃, see
[4]).

Let R̃αβ = R̃ σ
σαβ denote the components of Ricci tensor of (TM,G). From Lemma 3.2 we

have

Lemma 3.3. The components R̃αβ of the Ricci tensor of (TM,G) are as follows:

(i) R̃ij = − a4

4α2
ypysR m

ish R h
jpm

(ii) R̃ij = − ab
2α
Rji +

a2

2α
ys(∇sRji −∇jRsi)

− a
3b

4α2
ypysR h

pjmR
m

sih ,

(iii) R̃ij = − ab
2α
Rij +

a2

2α
ys(∇sRij −∇iRsj)

− a
3b

4α2
ypysR h

pim R
m

sjh ,

(iv) R̃ij = (1− b2

α
)Rij +

ab

2α
ys(2∇sRij −∇iRsj −∇jRis)

+
a2

4α
ypys(R m

shi R h
mjp +R m

his R h
mpj − 2R h

mis R
m

hpj )

−a
2b2

4α2
ypys(R m

ish R h
mpj +R m

ish R h
jpm )

with respect to the adapted frame {Eβ} .

The scalar curvature S̃ of (TM,G) is de�ned by S̃ = GαβR̃αβ, where G
αβ denote the com-

ponents of the inverse matrix of (Gαβ) in (3.4) which has the following local expression:

G−1 = (Gβγ) =

(
a
α
gjk − b

α
gjk

− b
α
gjk (a+c)

α
gjk

)
.

In view of Lemma 3.3, the following result is obtained.
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Lemma 3.4. The scalar curvature S̃ of (TM,G) is given by

S̃ =
a

α
S − a3

2α4
ypysRpijmR

ijm
s ,

where S denote the scalar curvature of (M, g).

Proof of Theorem 3.1. The tangent bundle (TM,G) is locally conformally �at if and only if the

components of the curvature tensor R̃ of (TM,G) satisfy the following equations:

R̃αγβσ =
1

2(n− 1)
(GγσR̃αβ−GασR̃γβ+GαβR̃γσ− Gγβ R̃ασ) (3.7)

− S̃

2(2n− 1)(n− 1)
(GαβGγσ −GασGγβ),

where R̃αγβσ = GσεR̃
ε

αγβ .

In the cases of α = m, γ = i, β = j, σ = l and α = m, γ = i, β = j, σ = l in (3.7), we get

R̃mijl =
1

2(n− 1)
(bgilR̃mj−bgmlR̃ij+agmjR̃il−agijR̃ml) (3.8)

− S̃

2(2n− 1)(n− 1)
(abgmjgil − abgmlgij)

and

R̃mijl =
1

2(n− 1)
(agilR̃mj−agmlR̃ij+agmjR̃il−agijR̃ml) (3.9)

− S̃

2(2n− 1)(n− 1)
(a2gmjgil − a2gmlgij).

By using (viii) of Lemma 3.2 and (3.4) we have R̃mijk = 0 and R̃mijk = 0. Thus the equations
(3.8) and (3.9) reduce to the followings:

S̃

2(2n− 1)(n− 1)
(abgmjgil − abgmlgij) (3.10)

=
1

2(n− 1)
(bgilR̃mj−bgmlR̃ij+agmjR̃il−agijR̃ml)

and

S̃

2(2n− 1)(n− 1)
(a2gmjgil − a2gmlgij) (3.11)

=
1

2(n− 1)
(agilR̃mj−agmlR̃ij+agmjR̃il−agijR̃ml).

Comparing (3.10) with (3.11), we obtain a = b and R̃il = R̃il. From here, by means of (i) and
(iii) of Lemma 3.3, we get

Rij = 0

and

R̃il = − a4

4α2
ypysR m

pih R h
slm . (3.12)
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Transvecting (3.11) by gil and then by gmj respectively, we have

an

2n− 1
S̃ = 2gilR̃il. (3.13)

By (3.12), we calculate

gilR̃il = − a4

4α2
ypysgilR m

pih R h
slm (3.14)

=
a4

4α2
ypysRpihjR

ihj
s

= −aα
2

2
S̃.

Substituting (3.14) into (3.13), we obtain

(
an

2n− 1
+ aα2)S̃ = 0

from which S̃ = 0, i.e. RpihjR
ihj

s = 0 which gives Rpihj = 0. This completes the proof.

4 Metric connection with torsion of Riemannian g-natural metrics of

the form G = aSg + bHg + cV g

It is well-known that a linear connection∇ on a Riemannian manifold (M, g) is metric connection
with repect to g if ∇g = 0. The (unique) metric connection ∇ which is torsion-free is called
the Levi-Civita connection of g. But there exist other metric connections whose torsion tensor
is non-zero on a Riemannian manifold (M, g). In this section we consider a metric connection
on (TM,G) with a non-zero torsion tensor.

The horizontal lift H∇ of a linear connection on M to TM is the unique linear connection
de�ned on TM by the following conditions

H∇ H
HX Y = H(∇XY ), H∇ V

HX Y = V (∇XY )
H∇ H

VX Y = 0, H∇ V
VX Y = 0

for all X, Y ∈ =1
0(M). The torsion tensor T̃ of H∇ satis�es the conditions

T̃ (VX,V Y ) = 0, T̃ (VX,H Y ) =V (T (X, Y )),

T̃ (HX,H Y ) = H(T (X, Y ))− γR(X, Y )

where T and R are respectively the torsion and curvature tensor �elds of the linear connection
∇ on M (for details, see, [20]). From the last identities above, we say that the connection H∇
has non-zero torsion tensor even if ∇ is selected as the Levi-Civita connection ∇g of g on the
Riemannian manifold (M, g). By using the de�nition of the horizontal lift H∇ and (3.1)-(3.3),
on calculating

(H∇X̃G)(Ỹ , Z̃) = X̃(G(Ỹ , Z̃))−G(H∇X̃ Ỹ , Z̃)−G(Ỹ ,H ∇X̃Z̃)

for all X̃, Ỹ , Z̃ ∈ =1
0(TM), we get

(H∇VXG)(V Y,V Z) = 0, (H∇HXG)(V Y,V Z) = a V ((∇Xg)(Y, Z)),

(H∇VXG)(V Y,H Z) = 0, (H∇HXG)(V Y,H Z) = b V ((∇Xg)(Y, Z)),

(H∇VXG)(HY,V Z) = 0, (H∇HXG)(HY,V Z) = b V ((∇Xg)(Y, Z)),

(H∇VXG)(HY,H Z) = 0, (H∇HXG)(HY,H Z) = (a+ c) V ((∇Xg)(Y, Z)).
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If ∇ = ∇g, where ∇g is the Levi-Civita connection of g on the Riemannian manifold (M, g),
then H∇G = 0. This gives the following result.

Theorem 4.1. The horizontal lift H(∇g) of the Levi-Civita connection ∇g of a Riemannian
manifold (M, g) is a metric connection with a non-zero torsion on TM with respect to the
Riemannian g−natural metric G = aSg + bHg + cV g, such that a > 0 and a(a+ c)− b2 > 0.

The metric connection H(∇g) is given by
∇EiEj = ΓhijEh,

∇̃EiEj = ΓhijEh,

∇̃Ei
Ej = 0, ∇̃Ei

Ej = 0,

with respect to the adapted frame {Eβ}. Also we can say that the metric connection H(∇g)

and the Levi-Civita connection ∇̃ of G coincide if and only if (M, g) is �at. On computing the
contracted curvature tensor (Ricci tensor) of H(∇g), we have the components

HRαβ =H R γ
γαβ

such that
HRij = Rij,

HRij = 0, HRij = 0, HRij = 0

with respect to the adapted frame, where Rij is the Ricci tensor of ∇g on M ([20], p.154). For
the scalar curvature of H(∇g) with respect to G, we get

HS = Gαβ HRαβ =
a

α
gijRij

=
a

α
S.

From the last identity, we can state the following theorem.

Theorem 4.2. Let (M, g) be a Riemannian manifold and TM its tangent bundle with the
Riemannian g−natural metric G = aSg+ bHg+ cV g, such that a > 0 and a(a+ c)− b2 > 0. The
scalar curvature HS of the tangent bundle TM with the metric connection H(∇g) with respect to
G is zero if and only if the scalar curvature S of ∇g on (M, g) is zero.

5 A�ne Killing and Killing Vectors with respect to Riemannian g-

natural metrics of the form G = aSg + bHg + cV g

Let A is a (1, 1)−tensor �eld on M with the components (Aij), then
∗A de�ned by

∗A = {Aisyf}Ei,

with respect to the adapted frame {Eβ} is a smooth vector �eld on TM [17].

Let LX̃ be the Lie derivation with respect to the vector �eld X̃. We shall �rst state following
lemma which are needed later on.

Lemma 5.1. (see [8]) The Lie derivations of the adapted frame and its dual basis with respect

to X̃ = vhEh + vhEh are given as follows:

(1) LX̃Eh = −(Ehv
a)Ea +

{
ybvcR a

hcb − vbΓab h − (Ehv
a)
}
Ea

(2) LX̃Eh = −(Ehv
a)Ea +

{
vbΓab h − (Ehv

a)
}
Ea

(3) LX̃dx
h = (Eav

h)dxa + (Eāv
h)δya

(4) LX̃δy
h =

{
ycvbR h

bac + vbΓhb a + (Eav
h)
}
dxa

−
{
vbΓhb a − (Eav

h)
}
δya.
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The general forms of a�ne Killing vector �elds on (TM,G) are given by

Theorem 5.1. Let (M, g) be a Riemannian manifold and TM its tangent bundle with the
Riemannian g−natural metric G = aSg + bHg + cV g, such that a > 0 and a(a + c) − b2 > 0.

Then the vector �eld X̃ is an a�ne Killing vector �eld on (TM,G) if and only if the vector

�eld X̃ de�ned by
X̃ = HB +V D + γC + ∗A,

where B = (Bh), D = (Dh) ∈ =1
0(M) and A = (Ahi ), C = (Ch

i ) ∈ =1
1(M) satisfying

(i) ∇iA
h
j = a2

2α
R h
jli Dl,

(ii) ∇iC
h
j = −R h

lij Bl − ab
2α
R h
jli Dl,

(iii) LBΓhji = ab
2α

(R h
jli +R h

ilj )Dl,

(iv) LDΓhji = −a(a+c)
α

(R h
jli − 1

2
R h
jil )Dl,

(v) R h
ajl A

l
i = 0,

(vi) a2

2α
Bl∇lR

h
jsi = a2

2α
R l
jsi ∇lB

h − a2

2α
R h
jsl ∇iB

l − a2

2α
R h
lsi C l

j

− a2

2α
R h
jli C l

s − ab
2α
R l
jsi A

h
l ,

(vii) R l
jsi ( ab

2α
∇lB

h − b2

2α
Ahl − ab

2α
Ch
l + a2

2α
∇lD

h) = 0,

(viii) ab
2α
Dl∇jR

h
lis = R h

lsi ( b
2

α
∇jB

l + ab
2α
∇jD

l − b2

α
C l
j) + ab

2α
R h
lsj ∇iD

l

−a(a+c)
2α

[R h
jil (C l

s +∇sB
l) +R h

jls (C l
i +∇iB

l) +R h
lis (C l

j +∇jB
l)]

−ab2+a2(a+c)
2bα

R l
jis ∇lD

h.

Proof. Let X̃ = vhEh + vhEh be an a�ne Killing vector on TM :

(L
X̃
∇̃)(Ỹ , Z̃) = LX̃(∇̃Ỹ Z̃)− ∇̃Ỹ (LX̃Z̃)− ∇̃(L

X̃
Ỹ )Z̃ = 0 (5.1)

for any X̃, Ỹ , Z̃ ∈ =1
0(TM).

Putting Ỹ = Ej and Z̃ = Ei in (5.1), by virtue of Lemma 3.1 and 5.1 we have

(LX̃∇̃)(Ej̄, Ei)

= LX̃(∇̃Ej̄Ei)− ∇̃Ej̄(LX̃Ei)− ∇̃(L
X̃
Ej̄)Ei

= LX̃ Γ̃h
ji
Eh + LX̃ Γ̃h

ji
Eh

= {∂j̄∂ivh +
a2

2α
yb(R h

bic ∂j̄v
c +R h

bjc ∂iv
c)}Eh

+{∂j̄∂ivh̄ −
ab

2α
yb(R h

bic ∂j̄v
c +R h

bjc ∂iv
c)}Eh̄

= 0.

From LX̃ Γ̃h
ji

= LX̃ Γ̃h
ji

= 0, we respectively obtain

∂j̄∂iv
h +

a2

2α
yb(R h

bic ∂j̄v
c +R h

bjc ∂iv
c) = 0 (5.2)

and

∂j̄∂iv
h̄ − ab

2α
yb(R h

bic ∂j̄v
c +R h

bjc ∂iv
c) = 0. (5.3)

The equation (5.2) is rewritten as follow:

2α

a2
∂j̄∂iv

h = −∂j̄(ybR h
bic v

c)− ∂i(ybR h
bjc v

c). (5.4)
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Di�erentiating (5.4) partially, we have

2α
a2 ∂k̄∂j̄∂iv

h = −∂k̄∂j̄(ybR h
bic v

c)− ∂k̄∂i(ybR h
bjc v

c)
= −∂j̄∂i(ybR h

bkc v
c)− ∂j̄∂k̄(ybR h

bic v
c)

= −∂i∂k̄(ybR h
bjc v

c)− ∂i∂j̄(ybR h
bkc v

c).

Therefore we get ∂k̄∂j̄(
α
a2∂iv

h + ybR h
bic v

c) = 0, hence we can put

∂j̄(
α

a2
∂iv

h + ybR h
bic v

c) =: P h
ji (5.5)

and
α

a2
∂iv

h + ybR h
bic v

c = Ahi + yaP h
ai, (5.6)

where Ahi and P
h

ji are certain functions which depend only on the variables (xh). The coordinate
transformation rule implies that A = (Ahi ) ∈ =1

1(M) and P = (P h
ji) ∈ =1

2(M).
From (5.2), we have

P h
ij + P h

ji = 2∂i∂j̄v
h +

a2

α
yb{R h

bic (∂j̄v
c) +R h

bjc (∂iv
c)} = 0,

from which

∂i(y
bR h

bjc vc)− ∂j̄(ybR h
bic vc) = P h

ij − P h
ji = 2P h

ij.

Thus we have

2yaP h
ai = ya∂ā(y

bR h
bic vc)− ya∂i(ybR h

bac v
c)

= −2yaR h
iac vc + ybyaR h

aic ∂b̄v
c. (5.7)

From (5.6) and (5.7), we get

α

a2
∂iv

h − 1

2
ybyaR h

aic ∂b̄v
c = Ahi , (5.8)

which gives
α

a2
ya∂āv

h = yaAha. (5.9)

Therefore, substituting (5.9) into (5.8), it follows that

α

a2
∂iv

h = Ahi +
1

2
ybyaR h

aic A
c
b (5.10)

from which

∂j̄∂iv
h =

a2

2α
ya(R h

aic A
c
j +R h

jic A
c
a). (5.11)

On the other hand, substituting (5.10) into (5.2), we obtain

∂j̄∂iv
h = − a4

2α2y
a(R h

aic A
c
j +R h

ajc A
c
i)

− a4

4α2y
aybyk(R h

aic R
c

kjl A
l
b +R h

ajc R
c

kil A
l
b).

(5.12)

Comparing (5.11) with (5.12), we get(
a2

2α
+

a4

2α2

)
R h
aic A

c
j +

a2

2α
R h
jic A

c
a +

a4

2α2
R h
ajc A

c
i = 0,
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from which, changing the roles j and i, and adding together, we have(
a2

2α
+
a4

α2

)
[R h

aic A
c
j +R h

ajc A
c
i ] = 0,

that is,
R h
aic A

c
j +R h

ajc A
c
i = 0.

Furthermore, by virtue of the �rst Bianchi identity we obtain

R h
ajc A

c
i = 0. (5.13)

From (5.11) and (5.13), we have
∂iv

h = Ahi .

Hence we can put
vh = yaAha +Bh, (5.14)

where Bh are certain functions which depend only on (xh). The coordinate transformation rule
implies that B = (Bh) ∈ =1

0(M). Here, substituting (5.14) into (5.5) and using (5.13), we get

P h
ji = Rh

jic B
c. (5.15)

Substituting (5.14) into (5.3), by using (5.13), we get

vh̄ = yaCh
a +Dh, (5.16)

where Ch
a and D

h are certain functions which depend only on the variables (xh) and C = (Ch
a ) ∈

=1
1(M) and D = (Dh) ∈ =1

0(M).

Putting Ỹ = Ej and Z̃ = Ei in (5.1), using (5.13), (5.14), (5.16), Lemma 3.1 and 5.1, we
obtain

(LX̃∇̃)(Ej̄, Ei) (5.17)

= LX̃(∇̃Ej̄Ei)− ∇̃Ej̄(LX̃Ei)− ∇̃(L
X̃
Ej̄)Ei

= LX̃ Γ̃h
ji
Eh + LX̃ Γ̃h

ji
Eh

=

{
∇iA

h
j −

a2

2α
R h
jli D

l +

[
a2

2α
(−Bl∇lR

h
jsi +R l

jsi ∇lB
h −R h

jsl ∇iB
l

−R h
lsi C

l
j −R h

jli C
l
s)−

ab

2α
R l
jsi A

h
l

]
ys +

[
a2

2α
(−Alk∇lR

h
jsi

+R l
jsi ∇lA

h
k −R h

jsl ∇iA
l
k)
]
ysyk

}
Eh

+

{
∇iC

h
j +R h

lij Bl +
ab

2α
R h
jli D

l +

[
a2

2α
R l
jsi ∇lD

h +
ab

2α
(R h

jsl ∇iB
l

+Bl∇lR
h

jsi +R h
lsi C

l
j +R h

jli C
l
s −R l

jsi C
h
l )
]
ys +

[
ab

2α
(Alk∇lR

h
jsi

+R h
jkl ∇iA

l
s) +

a2

2α
(R l

jsi ∇lC
h
k −R c

jsi R
h

clk B
l)

]
ysyk

}
Eh.

From LX̃Γh
ji

= 0 in (5.17), we obtain

∇iA
h
j =

a2

2α
R h
jli D

l, (5.18)
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a2

2α
Bl∇lR

h
jsi =

a2

2α
R l
jsi ∇lB

h − a2

2α
R h
jsl ∇iB

l (5.19)

− a
2

2α
R h
lsi C

l
j −

a2

2α
R h
jli C

l
s −

ab

2α
R l
jsi A

h
l

and
−Alk∇lR

h
jsi +R l

jsi ∇lA
h
k −R h

jsl ∇iA
l
k = 0.

By means of (5.13), (5.18) and the second Bianchi identity, the last equation holds.

From LX̃Γh
ji

= 0 in (5.17), it follows that

∇iC
h
j = −R h

lij Bl − ab

2α
R h
jli D

l (5.20)

a2

2α
R l
jsi ∇lD

h +
ab

2α
(R h

jsl ∇iB
l +Bl∇lR

h
jsi +R h

lsi C
l
j +R h

jli C
l
s −R l

jsi C
h
l ) = 0 (5.21)

and
ab

2α
(Alk∇lR

h
jsi +R h

jkl ∇iA
l
s) +

a2

2α
(R l

jsi ∇lC
h
k −R c

jsi R
h

clk B
l) = 0. (5.22)

Contracting j and h in (5.22), then (5.22) can be written as

ab

2α
(Alk∇lRsi +Rkl∇iA

l
s) +

a2

2α
(R l

jsi ∇lC
j
k −R

c
jsi R

j
clk B

l) = 0. (5.23)

The equation (5.23) holds. In fact, by virtue of (5.13) and (5.18) and (5.20) and the second
Bianchi identity, we get

ab

2α
(Als∇iRls +Rls∇iA

l
s + Als∇jR

j
lik ) +

a2

2α
(R l

jsi (∇lC
j
k +R j

clk B
c))

= − a
3b

4α2
(R l

jis +R l
jsi )R j

kcl D
c = 0.

From (5.19) and (5.21), we obtain

R l
jsi

(
ab

2α
∇lB

h − b2

2α
Ahl −

ab

2α
Ch
l +

a2

2α
∇lD

h

)
= 0. (5.24)

Putting Ỹ = Ej and Z̃ = Ei in (5.1), using (5.13), (5.14), (5.16), (5.18), (5.19), (5.20) and
(5.24), after tremendous calculations give the followings:

LBΓhji −
ab

2α
(R h

jli +R h
ilj )Dl = 0,

LDΓhji +
a(a+ c)

α
(R h

jli −
1

2
R h
jil )Dl = 0,

ab

2α
Dl∇jR

h
lis

= R h
lsi (

b2

α
∇jB

l +
ab

2α
∇jD

l − b2

α
C l
j) +

ab

2α
R h
lsj ∇iD

l

−a(a+ c)

2α
[R h

jil (C l
s +∇sB

l) +R h
jls (C l

i +∇iB
l) +R h

lis (C l
j +∇jB

l)]

−ab
2 + a2(a+ c)

2bα
R l
jis ∇lD

h.

Conversely, if Bh, Dh and Ahi , C
h
i are given so that they satisfy (i) − (viii), reversing the

above steps, we see that X̃ = HB +V D + γC+ ∗A is an a�ne Killing vector �eld on (TM,G).
Hence, the proof is complete.
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Let X̃ be a vector �eld on TM with components (vh, vh) with respect to the adapted frame

{Eh, Eh}. Then X̃ is a �bre-preserving vector �eld on TM if and only if vh depend only on the

variables
(
xh
)
. In the case, the vector �eld X̃ in Theorem 5.1 reduces X̃ = HB +V D + γC.

Hence, as a corollary to Theorem 5.1, we obtain the following conclusion.

Corollary 5.1. Let (M, g) be a Riemannian manifold and TM its tangent bundle with the
Riemannian g−natural metric G = aSg + bHg + cV g, such that a > 0 and a(a + c)− b2 > 0. If

TM admits a �bre-preserving a�ne Killing vector �eld X̃, then the �bre-preserving vector �eld
X̃ de�ned by

X̃ = HB +V D + γC,

where B = (Bh), D = (Dh) ∈ =1
0(M) and C = (Ch

i ) ∈ =1
1(M) satisfying

(i) ∇iC
h
j = −R h

lij Bl,

(ii) LBΓhji = 0,
(iii)LDΓhji = 0,

(iv) a(a+c)
2α

[R h
jil (C l

s +∇sB
l) +R h

jls (C l
i +∇iB

l) +R h
lis (C l

j +∇jB
l)]

+a2(a+c)
2bα

R l
jis ∇lD

h = 0.

As an application of Theorem 5.1, we state a result related to a classi�cation of Killing vector
�elds on TM with respect to the Riemannian g−natural metric G. Firstly we give the following
lemma.

Lemma 5.2. Let (M, g) be a Riemannian manifold and TM its tangent bundle with the Rie-
mannian g−natural metric G = aSg + bHg + cV g. The Lie derivatives LX̃G with respect to the

vector �eld X̃ = vaEa + vaEa are given as follows:

LX̃G

=
{

(a+ c) [vhEhgij + ghj
(
Eiv

h
)

+ gih
(
Ejv

h
)
] + bgih[y

cvbR h
bjc

+vbΓhbj + (Ejv
h)] + bghj[y

cvbR h
bic + vbΓhbi + (Eiv

h)]
}
dxidxj

+
{

(a+ c) ghi(Ejv
h) + b[vhEhgij + ghj

(
Eiv

h
)
− gihvbΓhbj

+gih(Ejv
h)] + aghj[y

cvbR h
bic + vbΓhbi + (Eiv

h)]
}
dxiδyj

+
{
a[vhEhgij − ghjvbΓhbi − gihvbΓhbj + ghj(Eiv

h) + gih(Ejv
h)]

+b[ghj(Eiv
h) + gih(Ejv

h)]
}
δyiδyj.

Proof. The proof is similar to that of the Proposition 2.3 [19], so we omit it.

The general forms of Killing vector �elds on (TM,G) are given by

Theorem 5.2. Let (M, g) be a Riemannian manifold and TM its tangent bundle with the
Riemannian g−natural metric G = aSg + bHg + cV g, such that a > 0 and a(a + c) − b2 > 0.

Then the vector �eld X̃ is a Killing vector �eld on (TM,G) if and only if the vector �eld X̃
de�ned by

X̃ = HB +V D + γC + ∗A

where B = (Bh), D = (Dh) ∈ =1
0(M) and A = (Ahi ), C = (Ch

i ) ∈ =1
1(M) satisfying

(i) ∇iA
h
j = a2

2α
R h
jli Dl,

(ii) ∇iC
h
j = −R h

lij Bl − ab
2α
R h
jli Dl,

(iii) LBΓhji − ab
2α

(R h
jli +R h

ilj )Dl = 0,
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(iv)LDΓhji + a(a+c)
α

(R h
jli − 1

2
R h
jil )Dl = 0

(v)R h
ajc A

c
i = 0,

(vi) (a+ c)LBgij + bLDgij = 0,
(vii) ghi((a+ c)Ahj + bCh

j ) + ghj(b∇iB
h + a∇iD

h) = 0,
(viii) a(ghjC

h
i + gihC

h
j ) + b(ghjA

h
i + gihA

h
j ) = 0.

Proof. Let TM be the tangent bundle over M with the Riemannian g−natural metric of the
form G = aSg + bHg + cV g. Let X̃ be a Killing vector �eld on (TM,G) such that LX̃G = 0.
Since it is also an a�ne Killing vector �eld, according to Theorem 5.1, it can be expressed the
following form

X̃ = HB +V D + γC + ∗A (5.25)

where B = (Bh), D = (Dh) ∈ =1
0(M) and A = (Ahi ), C = (Ch

i ) ∈ =1
1(M) satisfy the conditions

listed in Theorem 5.1.
Substituting (5.25) into Lemma 5.2, by means of (i)− (v) in Theorem 5.1, we get

LX̃G̃

= {(a+ c)LBgij + bLDgij}dxidxj

+{ghi((a+ c)Ahj + bCh
j ) + ghj(b∇iB

h + a∇iD
h)}dxiδyj

+{a(ghjC
h
i + gihC

h
j ) + b(ghjA

h
i + gihA

h
j )}δyiδyj

= 0

from which
(a+ c)LBgij + bLDgij = 0,

ghi((a+ c)Ahj + bCh
j ) + ghj(b∇iB

h + a∇iD
h) = 0,

and
a(ghjC

h
i + gihC

h
j ) + b(ghjA

h
i + gihA

h
j ) = 0.

Conversely, it is easily seen that X̃ = HB+V D+γC+ ∗A is a Killing vector �elds on (TM,G)
under which of the conditions (i)− (viii). This completes the proof.
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