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ERLAN DAUTBEKOVICH NURSULTANOV
(to the 60th birthday)

On May 25, 2017 was the 60th birthday of Yerlan Dautbekovich Nur-
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the real Lyons-Petre interpolation method, the multiplier problem for trigonometric Fourier
series, the lower and upper bounds complementary to the Hardy-Littlewood inequalities for
various orthonormal systems were solved. The convergence of series and Fourier transforms
were studied with sufficiently general monotonicity conditions. The lower bounds for the norm
of the convolution operator are obtained, and its upper bounds are improved (a stronger result
than the O’Neil inequality). An exact cubature formula with explicit nodes and weights for
functions belonging to spaces with a dominated mixed derivative is constructed, and a number
of other problems in this area are solved.

He has published more than 50 scientific papers in high rating international journals included
in the lists of Thomson Reuters and Scopus. 2 doctor of sciences, 9 candidate of sciences and 4
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His merits and achievements are marked with badges of the Ministry of Education and
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established by Springer Nature together with JSC "National Center for Scientific and Technical
Information".

The Editorial Board of the Eurasian Mathematical Journal congratulates Erlan Dautbekovich
Nursultanov on the occasion of his 60th birthday and wishes him good health and successful
work in mathematics and mathematical education.
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Systems Department of the L.N. Gumilyov Eurasian National University,
member of the Kazakhstan and American Mathematical Societies, member
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putability, computable structures, abstract data types, ontology, formal semantics. He solved
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e the problems of S.S. Goncharov and M.S. Manasse: the problem of characterizing relative
categoricity in the hyperarithmetical hierarchy given levels of complexity of Scott fami-
lies, and the problem on the relationship between categoricity and relative categoricity of
computable structures in the arithmetical and hyperarithmetical hierarchies;

e the problem of Yu.L. Ershov: the problem of finite algorithmic dimension in the arithmeti-
cal and hyperarithmetical hierarchies;

e the problem of C.J. Ash and A. Nerode: the problem of the interplay of relations of
bounded arithmetical and hyperarithmetical complexity in computable presentations and
the definability of relations by formulas of given complexity;

e the problem of S. Lempp: the problem of structures having presentations in just the degrees
of all sets X such that for algebraic classes as symmetric irreflexive graphs, nilpotent groups,
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The Editorial Board of the Eurasian Mathematical Journal congratulates Dr. Professor
Jamalbek Tussupov on the occasion of his 60th aniversary and wishes him strong health, new
achievements in science, inspiration for new ideas and fruitfull results.
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1 Introduction

In this final part of the work we accomplish in Theorem 4.2 the claim of extending the classical
stability problem to the framework of bundles of 2—spaces and consequently to obtain stability
results for operators acting in different Banach spaces. Let us describe the principal steps
required for this result.

(0, &) —structures are central in constructing in [21, Theorem 2.1] the section of
Co—semigroups U continuous at x.,. However the presence in their definition of the uniform
convergence over compact subsets of a topological space Y rather than the pointwise conver-
gence, drastically restricts in general the fulfillment of the property (1.2) (with I'(£) replaced by
I'(p)) characterizing invariant structures. Possible exceptions are those where the base space X
is compact and under suitable hypothesis the above property is used to determine I'(p), see |20,
Remark 11].

Now first of all the property (1.2) is basic to establish in Corollary 4.2 the essential step (1.3)
toward the main result (1.6). Here P is a suitable section of spectral projectors of the infinitesimal
generators of the semigroups {U(z)},cx. For instance for obtaining (4.37) we apply Lemma 4.2.
Secondly in order to prove (1.3) we need the concept of p—relatedness provided in Definition 9
requiring p—integrable Hlcs valued maps. Indeed see the technical Corollary 4.1 resulting by the
bundle type generalization of the Lebesgue Theorem we establish in Theorem 4.1 and by Lemma
4.1, remarkable results by themself. Finally for defining P(x) we apply to U(z) the well-known
integral formula (3.1) for any x € X.

Therefore it appears natural in the present context to replace (0, &) —structures based on
function spaces of continuous maps provided with the topology of compact convergence, with
those based on function spaces, provided with the topology of pointwise convergence, of Hausdorff
locally convex space valued integrable maps defined on a locally compact space provided with a
Radon measure.

To this end we introduce for any Radon measure ; on a locally compact space Y the concept
of (©,&, n) —structure Definition 10. Roughly a (6, &, u) —structure (0,9, X,Y) where Q =
((9,7),£,X,9) and U = ((&,7),m, X,M), is defined in the same way as a (0, E) —structure
except that

), induces the topology on ), of pointwise convergence on Y.
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Here for any € X we recall that Lg,(€,) is the Hles of continuous linear maps on &, provided
with the topology of uniform convergence over the sets belonging to S,. (0, Q, X,Y") is invariant
if in addition ,
{F e [[ 91t ey)(Fee©)c F(w))} - T(¢). (1.2)
zeX
The main reason behind the intoduction of this concept is represented by the following
result. Let U be a Banach bundle, T" be a suitable section of closed densely defined linear
operators satisfying the property of separation of the spectrum, I' be a curve associated with
T and (K, A, ¢) be a triplet associated with I', a straight extension to the bundle case of the
separation of the spectrum introduced by Kato (Definition 4). If (0, Q, X, R") is an invariant
(©,&,q) —structure for all q € {v?,n?|s € K} (Definition 5) and (0, 3,H) is q—related such
that H, = 9, for all z € X, then under additional hypothesis Corollary 4.2

Wi € I (€) = P o I'zg () C "= (). (1.3)

As we describe below, by letting n be the Lebesgue measure on R™ we shall apply this result
to a n—related set and to the (0, &, n) —structure underlying the (0, &) —structure used in [21,
Theorem 2.1].

Now central in proving (1.3) is the fact that the global relation (1.2) implies the pointwise
one. More exactly for any invariant (©,&, u) —structure (U, D, X,Y) with a suitable ©, by
denoting ® = ((B,3),7n, X, £), we have Lemma 4.2

zeX

He [(H %) m] | (Vt € Y)(H, @ £(©) C T%>=(r)) p C %= (p). (1.4)

peq

To derive (1.3) we use this inclusion for the case Y = R™ and multiple times Corollary 4.1. (1.4)
can be extended to invariant (0, &) —structures whenever Comp(Y') = P, (Y’), we shall use this
remark in the case Y = {pt}.

Now if £(©) C I'(n) and if we show that

P o Tl () C [7(), (1.5)

then
P e I"=(n), (1.6)

follows by (1.4) for the special case Y = {pt}. It is worthwhile remarking that (1.5) represents
a satisfactory result for all practical purposes concerning the stability of P. However in order to
interpret P satisfying (1.5) as a bounded section continuous at z,, we need to employ (1.4).
Next let Y = R*. To prove (1.5) we apply (1.3) to the section of contractions U continuous at
Too Obtained in 21, Theorem 2.1] and to the (O, £, n) —structure underlying the (0, £) —structure
used in [21, Theorem 2.1]. More exactly given a suitable (0, &) —structure (0,20, X, Y") which
in general is not a (0, &, 1) — structure and by letting 20 = (M, ), p, X, R), [21, Theorem 2.1]
states the existence of a section T' of closed operators such that U = Wyr € I'*=(p). So under
the additional hypothesis that there exists an F' € I'(p) such that F'(zo) = U(z) we obtain

U erli=(p). (1.7)

In order to apply (1.3) we need a procedure to extract from the initial (0, &) —structure a
structure (0,9, X,Y) which is a (0, &, q) —structure for all q € {v?,n?|s € K} and such that

[3=(p) € T (E). (1.8)
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This is performed by applying a general construction called the (©,&, u)—structure
(B, B(M* T(p)), X,Y) underlying (0,20, X,Y) and defined in Definition 12.

In view of the property (1.8) we have to maintain the vicinity of the initial and the underlying
structure. This is performed by applying the by now usual general result [12, Theorem 5.8] for
constructing bundles with a given subspace of bounded continuous sections. Thus the choice we
perform in Definition 12 for the stalks M is essentially the weakest one in order to satisfy (1.1)
and to allow the space I'(p) of bounded continuous sections of 20 to be a subspace of the space
['(mmeu) of bounded continuous sections of the underlying bundle U(M*,T'(p)).

Proposition 4.2 shows that our choice is the right one indeed

I (p) S T (mmn). (1.9)

It remains only to select the right measure p in order to satisfy the hypothesis of Corollary 4.2
in particular such that the (©, &, u) —structure underlying (0,20, X, Y) is a (0, &, q) —structure
for all g € {v?,n?|s € K}. To this end let us say that (20J,3) satisfies the n—hypothesis,
if the (©,&,n) —structure underlying (0,20, X,Y’) is invariant, (0,3, M") is n—related and
£2(Y,n) » I'(¢) C I'(¢) (where I'(¢) is the space of bounded continuous sections of 3 and »
is defined in Definition 7). Now it is possible to show that if (20, 3) satisfies the n—hypothesis,
then (U, B(M",I'(p)), X,Y) is an invariant (O, &, q) —structure and (0, 3, M") is g—related for
all g € {v?,n?|s € K}. In other words the hypothesis in Corollary 4.2 for obtaining (1.3) holds
true with the position Q = B(M",I'(p)).

Finally provided that (20, 3) satisfies the n—hypothesis we conclude that (1.5) and conse-
quently (1.6), follow by (1.7), (1.9) with the position x = n and (1.3).

Except when explicitly stated, we assume all the notations set in [20, 21| in particular all the
vector spaces are over C.

2 (v,n, E,Z T) invariant set with respect to F

In the present Section 2 let us fix a consistent class of data O (|21, Definition 5|) and let &
denote the locally convex space relative to O ([21, Definition 9]).

Definition 1. Let Z,T be two locally compact spaces, E € Hlcs, v € Radon(Z) and n €
Radon(T)%. Set

an(T, E,n,0) = {F e N &(T.B.n) | (z 520 [Fls)n(s) € E) € 2(Z,F, u>}
AeZ
Corollary 2.1. Let Z be a locally compact space, v € Radon(Z), n € Radon(Y)?,

D € [LexP(€), D = [l,ex®: and assume (A) of [21, Lemma 4.4]. Thus (VF €
2(1,1)(}/, @,7’], I/))(VZL’ € X)(V?J S D)

pro | [ ([F@ i) a0 = | [ ([ pro@)enwants) ) ],

Proof. Let F € Lay(Y,8,n,v), 2 € X and v € D. By [21, Theorem 4.2]

e | [ ([F@ ) )| @) = [erov ([ Feyane) o) an.
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Moreover VA € Z

prow ([ Fls)ano(s) ) (ot = Pro [ Fs)din(s) ) o ulote)
— [ P (s) o Prov(e) dis)

T

_ /f;r(q/(F))(s)v(x) dna(s),

where in the first equality we used [21, Proposition 4.7], while in the second one |21, Theorem 4.2].
Then the statement follows. m

Definition 2. V is a (v,n, E, Z,T) invariant set with respect to F if
1. T, Z are two locally compact spaces;
2. E € Hles
3. there exists M € Hlcs and b : E x M — M bilinear;
4. V C M linear subspace;
5. v € Radon(Z) and n € Radon(T)Z;
6. F C Lan(T,E,n,v)
7. VFeF
[ / ( / F(s) dm(s)) dy(A)} vev,
where we denote b(e,m) by em, for any e € E and m € M.

Proposition 2.1. Let us assume the hypotheses of Corollary 2.1 and V' be a (v,n,&,7Z,Y)
invariant set with respect to F such that VN D # (0. ThenVYv € VN D and VF € F

<X SN [ / ( / Pr(¥(F))(s)o(2) dm(s)> dy(A)} e @) cv

Proof. By Corollary 2.1. ]

3 Construction of sets in Ag (U, 0,2, £, X,R") through invariant sets

In the present Section 3 let us fix an entire consistent class of data © (|21, Definition 5|) such
that R is its locally compact space, v defined in Definition 5 is its Radon measure, the primary
family E = {€&,},cx underlying O is a family of Banach spaces and such that for any x € X
the corresponding element of the secondary family underlying © is the strong operator topology
on L(€&,). Let & denote the locally convex space relative to O (|21, Definition 9]). For any
Banach space C' let Cld(C) denote, the set of all closed linear operators densely defined in C
and at values in C. For any T' € Cld(C) let P(T') denote the resolvent set of 7" and 3(7") be the
spectrum of T. Let R(T;-): P(T) > ¢~ (T — ()~ € B(C) be the resolvent map of T In the
next definition we adapt to our framework a definition provided in [14, Chapter 9, §1, n°4.
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Definition 3. Let M > 1 and § € R. Let G(M, 8, E) be the set of all T' € []
that |3, 00[C P(—T(x)) and (V¢ > 5)(Vk € N)(Vz € X)

(T (@) + &) *llpe.) < M(§—p)"

Moreover let us denote by {e7#7(®)},p+ the strongly continuous semigroup generated by —7'(x).

Cld(€&,) such

rzeX

In the following definition we adapt to our framework the definition of separation of the
spectrum for a closed operator provided in [14, n°4,§6, Chapter 3].

Definition 4. Let M > 1 and § € R. We say that T" € G(M, 3, E) satisfies the property of
separation of the spectrum if (3T)(Va € X)(3X5,) C E(T'(2)))(3 Ar(z) € Op(C)) such that I
is a regular closed curve in C, Z}(I) is bounded and

() C Ar@) C Oi(T), By C Oc(T).

Here O;(T) is the interior of I', namely the compact set of C whose frontier is I', O (') = CO;(T") is
the exterior of I', finally E,}(x) =3(T(z))N EZ’T(x). We call any curve I' with the above property
a curve associated with T, while we call (K, A, ¢) a triplet associated with T iff K C R* is
compact, A is an open neighbourhood of K and ¢ : A — C is such that ¢ € C;(A,R?)? and
B(K) =T

Let T € G(M, (3, E) satisfy the property of separation of the spectrum and I" a curve associated
with T, then Vo € X we set

Pl) = ——— [ R(T(x):¢)d¢ € B(&,), (3.1)

21 Jr

where the integration is with respect to the norm topology on B(€&,). Moreover for any triplet
(K, A, ¢) associated with T set R} € [Lex £ (€,)%" such that R%(z)(s) = R(T(x); ¢(s)), for all
xeXandseK,WhlleR?( )(s) =0,if s € R* — K.

Remark 1. Let M > 1, g € R, T € G(M, ,E) satisfy the property of separation of the
spectrum and I a curve associated with 7. Then for all x € X by [14, Theorem 6.17, Chapter 3],
P(x) € Pr(€,) and €, = M, @M direct sum of two closed subspaces of &,, where M = P(x)€&,
and M = (1, — P(z))€,. Moreover T'(z) decomposes according the previous decomposition,
namely T'(z) | M, € B(M,,) such that X(T, [ M) = X7 and T, [ M is a closed operator in
M such that X(T, | M) = X7, .

Definition 5. Let K C R™ be a compact set, A an open neighbourhood of K and ¢ : A — C
be such that ¢ € C(A,R?) and ¢(K) =T. For any s € K define n? € Radon(R") such that

n:Cos (RT) 3 f PO (t) dt
R+

Moreover let v? € Radon(R*) be the 0—extension of u{f € Radon(K ) such that

9 —
/ 2m

Finally let M > 1, 8 € R and T € G(M, 3,E), then we set Wr € ]
(Vx € X)(Vt € RT)

U(Bs(€,)) such that

zeX

Fp = AWr),
where A has been defined in [21, Definition 11].

3By identifying C with R?, so ¢ is derivable with contiuous derivative

{WT< )(t) = e T,
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Lemma 3.1. Let M > 1, € R and T € G(M, 3,E) satisfy the property of separation of the
spectrum. Assume that there exists a curve I' associated with T such that

Re(I) C R~ (3.2)

Then for any triple (K, A, ¢) associated with I' we have that Vx € X and Vv, € €,

P(x)v, = —% i %(S)R(T(ZL‘); o(8))vs ds, (3.3)
and Vs € K,
R(T(x),¢(s))v, = /OOO e?@le @y, dt = . W () (t)v,, dn? (t). (3.4)

Here the integration is with respect to the norm topology on €,. If Fr € Lan(RT, &, 0%, %)
and V is a <V¢,n¢, 8, K, R+> invariant set with respect to {Fr}, then

PeV CV. (3.5)

Proof. By (3.1), [4, IV.35, Theorem 1], and by the norm continuity of the map B(€&,) > A —
Aw € €, for any w € €,, we have (3.3). Moreover by (3.2) we can apply |14, equation (1.28),
n°3, §1, Chapter 9] and (3.4) follows by Definition 5. Fix v € V so Vo € X

Pl)o(r) =~ [ 9 ()R @) o)) o) ds
L[ do

([ wetoionarin) as

2w J ds °

_ / ( / Pr (¥(Fr)) (t)o(x) dnf(t)> v (s). (3.6)
K \JR+ 7

Here the first equality comes by (3.3), the second one by (3.4) and the third one by [21,

Proposition 4.7] and Definition 5. Next with the notation in [21, Corollary 4.1] we choose

(Vo € X)(S: = Pu(€,)), and since O is entire we can select D(z) = &,, for all z € X, in other

words pj ; is the strong operator topology on L£(€,). Thus (A) of [21, Lemma 4.4] is satisfied

since [21, Corollary 4.1], so the statement follows by (3.6) and Proposition 2.1. O

Corollary 3.1. Under the hypothesis of [21, Theorem 2.1] let the primary family E of O be the
family of stalks of the Banach Bundle 0 of which in [21, Theorem 2.1]. Assume that the hypoth-
esis of Lemma 8.1 are satisfied, where T is such that —T(x) is the infinitesimal generator of U(x)
for all x € X, where U is the section of semigroups construcuted in [21, Theorem 2.1]. Moreover
let (0,9, X, {pt}) be an invariant (0, &) —structure such that £(©) C I'(r) and let (K, A, ¢) be
a triplet associated with a curve associated with T. If £(©) is a <V¢,77¢, 6 K, R+> invariant set
with respect to {Fr} and Fr € £41(RY, &,n%,1?), then {U} € Ao (V,D,20,E, X,RT).

Proof. Since (3.5) and the definition of invariant (6, £)—structures. O

4 Construction of sets in A (0,9,0,¢)

Assumptions 1. In this section X is a topological space, Y is a locally compact space u is a
Radon measure on Y. Let £°(Y, ) denote the linear space of all complex valued maps defined on
Y which are y—measurable and bounded in measure for the measure . Let U = ((&,7) , 7, X, )
be a bundle of Q—spaces, we indicate with 9 = {v; | j € J} the directed set of seminorms on €.
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Definition 6. Let Z € Hlcs and {v; |i € I} a fundamental set of seminorms on Z. We denote
by
(2"),

the Hlecs whose underlying linear space is Z¥ and whose locally convex topology is generated
by the following set of seminorms

{¢;|s€Y,iel}, (4.1)
. 27 > [ = di(f(s)) '
Moreover for any B C Z¥ we shall denote by B, the Hlc subspace of (ZY)S. Notice that
this definition is well-set being independent by the choice of the fundamental set of seminorms,
indeed the topology is that of uniform convergence over the finite subsets of Y.
Definition 7. Set
“w
‘ . HIEX El(Yv sznu) - H:L‘EX ¢
“w
2) = [ H(z)(s) du(s) € &,
for all H € [[,cx £1(Y, €,, 1) and for all z € X. Moreover define

»: C" x [](e)" = [](e

(f» H)(x)(s) = f(s)H(x)(s),
VfeC  He [[(€.)  zeX seY.

zeX

Notice that
Y, ) e [T &Y€) € [ &Y, €0 ).

zeX zeX

Definition 8. Set

{* [ Lex £(€ )V % [Tiex € — HzeX
(Vz € X)(Vs € Y)(FHkv)(z)(s) = (ﬁ)(s)(v(x))

Definition 9. (U, 3) are u—related if
1. 3=((%,7),¢ X, R) ia a bundle of Q—spaces;

2. forallz e X ¢

T, € Meas(Y, €, ) L1(Y, €4, 1),

Re = 35UD(, jyeo @y | O € Pu(Y X J)} , (4.2)
1Ty D for vi(fa(s)), Vs €Y, j € J;

5])

3. T'(¢) c [Hiex ‘Zx} o

4. #(D(¢)) € I(m).

*In case €, is a Banach space Meas(Y, €., u) N L1(Y, €, p) = £1(Y, €, ).
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Here we set for all A C HZEX T,

A= { et e ([ swprtoe) ) <o) | (13)

Y zeX
Finally (0,3, H) are u—related if
1. H={H,}.ex such that H, C £(&,)¥ for all z € X,

2. (U, 3) are u—related

(H Hm> * <H ozx> c I = (4.4)

zeX zeX zeX

Theorem 4.1 (GLT). Let (U, 3) be u—related and let x € X such that its filter of neighbour-
hoods admits a countable basis. Thus
m

¢ ([F2(O),) € TS(m).

Proof. Let z € X and F € [I'}(()],; thus by [20, Corollary 3.1] there exists n € I'({) such that

forall je JseY

F pr—
lim. o v;(F(2)(s) —n(z)(s)) = 0.

Fix j € J thus by [4, Prop.6, No2, §1, Chapter 6| for all z € X

i ([ - a0 ) < [TuEae - dde @

Moreover v? is continuous by definition of bundles of Q2—spaces, while F'(z) and 7(z) are by
construction p—measurable, hence by [4, Theorem 1; Corollary 3, n°3, §5, Chapter 4| the
map Y 3 s — v;(F(2)(s) —n(z)(s)) is p—measurable thus |p|—measurable. Moreover by the
hypothesis on F' and by Definition 9 (3)

[ 5 E@E i) < [ (swpuF@)e) + sy ) dulls) < oo (@0
Therefore by [4, Proposition 9, n°3, §1, Chapter 5] the map Y 3 s — v;(F(2)(s) — n(z)(s))
is |p|— essentially integrable hence by the fact that [J fd|u| = [, fd|u| for all |p|—essentially
integrable map f, we have by (4.6)

i ([ a0 ) < [uEGE - due. 6
Let {z,}, C X be such that lim,cy 2, = x thus by (4.5)
i 4 (F (a0)(5) — () 5)) = 0. (49

ForallseY
vi(F(2)(s) = n(z)(s)) <supv;(F(z)(s)) + supv;(n(z)(s))

zeX zeX
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thus by the hypothesis on F, by Definition 9(3), by the fact that [J < [, by (4.9), and by the
Lebesgue Theorem [4, Theorem 6, n°3, §3, Chapter 4] we have

lim [ v;(F(2n)(s) = 1(2n)(s)) d|pl(s) = 0. (4.10)

neN

Finally by (4.8), (4.10) and the hypothesis on x we obtain

i, ([ FE© ) - [ a6 du) o

oy
thus the statement follows by Definition 9 (4) and [20, Corollary 3.1]. O
Definition 10 ((0, &, 1) —structure). We say that (0,9, X,Y)isa (0,&,u) — structure if

1. £ECI(m);

2. © C [[,cyx Bounded(&,);

3. VBe©

(a) D(B,&) # 0;
(b) Upeo B% is total in &, for all v € X;

4. Q =((9,0),¢, X,2) is a bundle of Q—spaces such that for all x € X

f)x g 21 (Y7 ﬁSm(€$)7/I’) ;
., = {sup(tJ’B)eO P(ﬁ’jﬁ) [ 9,10 € P,y (Y x J X @)}
Piip & (Y, Ls,(€;), 1) D F = sup,eppe) Vi (F(t)v(x)), VE €Y, B€O,j € J.

(4.11)

Here S,, Bf and D(B,€&) are defined in |20, equation (5.3)]. Moreover (0,9, X,Y) is an
invariant (0,&, 1) — structure if it is a (0, &, u) — structure such that

{F e [[9:1(vtey)(Feg©)C r(w))} = T(e). (4.12)

zeX

Definition 11. Let py for all A > 0 be defined as in |21, Definition 1|, let (0,9, X, R*) be
a (0,&, u) — structure and denote Q = (($,0),&, X, &), moreover let x € X, O C I'(¢) and
D CTI'(m). Set

Lap(V)(z) = [ | L1(RY, Ls, (€,); 1)

A>0
Assume that

L5(€) [ Lap(V)(z) # 0 (4.13)

We say that (0,09, X,R") has the weak-Laplace duality property on O and D at x, shortly
w — LD, (O, D) if VA > 0

m,, (T5(6)(\Lap()(x), T5(r)) € (),
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Definition 12. Let (0,20, X,Y) be a (©,&) —structure and denote 20 = (M, v), p, X, R).
Assume that for all x € X

M, € L1 (Y, Ls, (€), 1) (4.14)
Set M# = {(M¥, @x)}mex where for all z € X

ME = {o(z)|o € I'(p)} closure in the space £ (Y, Lg, (&), 1),;
D, ={ sup P My |O e P,(Y xJx0O)}
(t,5,B)€O

Notice that M* is a nice family of Hles, and that I'(p) satisfies by construction F M (3) with
respect to M#. Moreover by [20, equation (5.7)] and the fact that {t} € Comp(Y) for all t € Y

Pii) = 4(1).5.8) (4.15)

By [12, Corollary 1.6.(iii)| we deduce that I'(p) satisfies F'M(4) with respect to {(9M,, R,) }rex.
Therefore we obtain by [20, equation (5.6)] and (4.15) that for allt € Y, j € J, B € © and for
all 0 € I'(p)

X3 a2 P, p(o(z))is us.c.

Moreover the upper envelope of a finite set of u.s.c. maps is an u.s.c. map, see |2, Theorem 4,56.2.,
Chapter 4], therefore for all O € P, (Y x J x O)

Xox— sup Pg,p(o(z))isus.c (4.16)
(t,3,B)€eO

Hence I'(p) satisfies F'M (4) with respect to M*. Finally by the boundedness of T'(p) by definition
and by (4.15) we have also that for all o € I'(p) and O € P, (Comp(Y) x J x O)

sup sup P, p(o(z)) < 0.
z€X (t,5,B)eO

Therefore we can construct the bundle generated by the couple (M* T'(p)) [20, Definition 15]
B(M¥, T(p)).

Clearly (U, U(M*, T'(p)), X,Y) is a (©,&, u) —structure that we call the (0,&, u) —structure
underlying (0,200, X, Y).

Definition 13. Let (0,9, X,Y) be a (0,&, 1) — structure and A C [[,.y $He. Define Ay,
as the set of all pointwise equicontinuous elements in A, and A, as the set of all compactly
equicontinuous elements in A, see [20, Definition 7].

Remark 2. [20, Lemma 5.1] holds by replacing a (0,&) —structure (0,20, X,Y) with a
(0,&, 1) — structure (U, 9, X,Y) and K € Comp(Y) with ¢t € Y. In what follows when re-
ferring to |20, Lemma 5.1| for a (©,&, u) — structure we shall mean the corresponding result
with the replacements described here.

Lemma 4.1. Let (0,Q,X,Y) be a (0, 1) — structure and (0,3, H) be u—related, where
D = <<'57Jaf)/> 757X79;)> and Hx :f)m fO'f' all v € X. Thus

L(E*E(O) CT(¢) = (Y € X) (IT(&)pegk T (o) (m) S T3(C)) -
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Proof. Let j € J, z € X and w € I'g (), so there exists v € £(O) such that v(z) = w(x) then
by [20, Corollary 3.1]
lim vj(w(z) —v(z)) = 0. (4.17)

zZ—T

Moreover let F' € T'2(&), so by [20, Lemma 5.1] 3o € I'(¢) such that F(x) = o(z) and for all
teY

lim v (F (=)
)

Moreover (Vt € Y)(3 My > 0)(3 51 € J)(Vz € X)

t(z) —o(2)(t)v(z)) = 0. (4.18)

)
< v (F(2)(t)(w(z) —v(z))) +
( .

< Mejyvp (w
Therefore by (4.17) and (4.18) for allt € Y
lim v; (Few)(2)(t) — (0 %v)(2)(t)) = 0.
Moreover (Vt € Y)(I My > 0)(3j1 € J)

sup v (Fokw) (2)(1) < Moy suprs, (w(2) < oo, (4.19)

By the antecedent of the implication of the statement we deduce that ovv € I'({) hence the
statement follows by [20, Corollary 3.1], (4.2), by the fact that by (4.4) Fw € [[,.y T, and

by (4.19). O
Proposition 4.1. Let (0,20, X, Y) be a compatible (©,E) —structure. Then for all v € X

(TS (P)peg)r @ Te(ey () € T5(7) (4.20)
Proof. Notice that (Fywv)(t) = F; e v, thus if we set Y = {pt} the statement follows by Lemma
4.1. [

Corollary 4.1. Let (0,9, X,Y) be a (©,&, pu) — structure and (0,3, H) be u—related. If v € X

18 such that its filter of neighbourhoods admits a countable basis, then

DE*E©) CT(C) = & ([5(E)ekTEe(7)],) € T2,
Here 9 = ((9,7),6,X,9), 3 = ((%,6),¢, X, &) and H, = 9, for all z € X.
Proof. By Theorem 4.1 and Lemma 4.1. O

Lemma 4.2. Let (0,9, X,Y) be an invariant (©,E,u) — structure where © defined in [21,
equation (2.16)]. Then for all xz € X

He [(H m) ] |(Vt € Y)(H, o £(0) C T%(n)) § € T(¢). (4.21)

zeX o peq

Proof. Let v € £(0©), t € Y and H belong to the set in the left side of (4.21). Thus by (4.12)
JF € I'(¢) such that F,ev € I'(m), F(z) = H(xz) and H; @ v € I'*() by construction. Then by
[20, Corollary 3.1| we obtain for all j € J

lim v;(H(2)(t)v(z) — F(2)(t)v(z)) = 0.

Z—T

Therefore the statement follows by [20, Lemma 5.1] and |21, equation (2.17)]. O
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Remark 3. Notice that Lemma 4.2 holds if we replace invariant (©,&, ) — structure with
invariant (0, &) — structure, see |20, Definition 6] and assume that Comp(Y') = P, (Y).

By recalling Definition 5 and Definition 4 we can state the following significant

Corollary 4.2. Let U be a Banach bundle and set E = {€,},cx. Let M > 1, 5 € R and
let T € G(M,B,E) satisfy the property of separation of the spectrum. Let x € X admitting a
countable basis of its filter of neighbourhoods. Let T be a curve associated with T and (K, A, ¢)
be a triplet associated with T' (Definition 4) such that

{Re(r) <R (4.22)
B>0=—p¢ Re(l).
Moreover let Q = ((9,71),§, X, R) and 3 = ((T,72),(, X, R) be such that

1. (0,9, X,R") is an invariant (0,&, p) —structure for all p € {v?,n?|s € K}, with ©
determined by € by [21, equation (2.16)];

2. (90,3, H) is p—related for all p € {v*,n?|s € K}, moreover H, = 9, for all z € X;
3. there exist F,G € T'(€) such that F(x) = Wr(z) and G(x) = R?(x);
4. forall ze X

Ccs (R+ ‘CS ( )) C f)z; (423)
L(E)*E(O) € T(Q).
Thus

Wr € T%(§) = P e T'gg)(m) CT(n). (4.24)
Moreover let ® = ((B,y3),n, X, L) be such that (V,D,X,{pt}) is an invariant
(0, &) —structure. Pr(€,) C B, for all = € X and there exists N € I'(n) such that

N(z) = P(z), then
Wr e T%(§) = P € T%(n). (4.25)

Proof. In this proof we denote R? simply by R?. R? is K —supported by construction, moreover
the resolvent map R?(z) being analytic is || - || ge,)— continuous hence continuous as a map
valued in Lg_(€,) for any z € X. So

R e [] Cs (RT, Ls.(€2))
zeX
hence by (4.23) follows
R’ e [] 9-. (4.26)

zeX

By (3.4) for all s € K, z € X and Vv, € €,

IR(T'(2), p(s))v-|l S/* e I =Ty, || dt
R (4.27)

" 6= MJv|
< M| [ eB-IRe@END g — A
I ). 8= [Re(6(s))]

where fﬂ; is the upper integral on R™ with respect to the Lebesgue measure. We considered in
the first inequality [4, Proposition 6, §1, Chapter 6], in the second one the inequality [14, (1.37),
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n°4, §1, Chapter 9|, finally in the equality the Laplace transform of the map exp(ft). Therefore

by (4.26) and (4.27)
¢ e (H sﬁz> .
zeX peq

Thus by (4.27), |21, equation (2.16)| and (4.11)

¢ c (H sﬁz> . (4.28)

By (4.26) and (4.4) we have that R%v € [[.. T. for all v € [[%. €.. By hypothesis (4.22)
we deduce that W is defined on K, hence continuous and integrable in it, thus by (4.27)

B—|Re(o
Ro%ve |[]] - (4.29)
zeX wi
a2 I .
By the continuity of m on K we deduce that the map quﬁ)(‘s))\ is integrable in K.
Hence by (4.27) and (3.3)
PG oe < D% 5 [ oo (430
su = — ds. .
cex e =TT i e B = |Re >|
Therefore for all v € £ by considering that £ C HZeX ¢
sup || P(z)v(2)[pe.) < Dsup [lv(z)le. < oc.
zeX zeX
Thus ,
Pe]]s. (4.31)
zeX
Let z € X and v € I'; (). By (3.4) for all s € K
ng
(R7%v)(2)(s) = $(Wrkv)(2). (4.32)
Moreover by (3.3)
V9
Pev=¢(R%v). (4.33)
Notice that (R?%v)(z)(s) = (R?(:)(s) ®v) (z) so by (4.32) for all s € K
ng
R?(-)(s) e v = #(Wrkv). (4.34)

If Wr € T%(€) then by [14, Chapter 9, §1, n°4, (1.37)] and hypothesis (3) follows that Wy €
I'S(E)peq- Therefore for all w € I'g g () by using [14, Chapter 9, §1, n°4, (1.37)] we can apply
Corollary 4.1 to Wrykw and then since (4.34) we obtain for all s € K

R?(-)(s) ew € I'*(m). (4.35)
By construction £(©) C I'(7) so £(0) C I'¢ g (), hence

R?(-)(s) « £(©) C I'(n). (4.36)
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Moreover by (4.28) and hypothesis (3) follows that

usl

©- peq

Hence by Lemma 4.2 and (4.36)
R? € T%(E) peq- (4.37)

Finally (4.24) follows by (4.37), (4.33), (4.29) and Corollary 4.1. Next since (4.31), (4.30) and
the hypothesis that there exists N € I'(n) such that N(z) = P(x), we obtain that

(12,

©- peq

Thus (4.25) follows by (4.24), Remark 3 and by £(0) C I'g (). O

Remark 4. |21, Proposition 4.2] can be used in order to verify part of hypothesis (1) of Corol-
lary 4.2.

The following general result shall permit to apply Corollary 4.2 to [21, Theorem 2.1].

Proposition 4.2. Let (0,200, X,Y) be a (0,&)—structure and let us denote W =
(M, 0),p, X,R). Assume that (4.14) holds for all x € X and let (L, B(M*,T'(p)), X,Y) be
the (©,&, 1) — structure underlying (0,20, X,Y). Then for all x € X

IS(p) C i) (), (4.38)
wmclusion to be considered modulo canonical isomorphism.

Proof. By construction it results that I'(p) C I'(myx) modulo the canonical isomorphism, thus
the statement follows since |20, Lemma 5.1] and (4.15). O

Definition 14. We call X = (U0, z.,Uy) a quasi-appropriate set of contractions (isometries)
if the following holds. U = ((&,7), 7, X, | -||) is a Banach bundle where X is a completely
regular space, x,, € X such that its filter of neighbourhoods admits a countable basis and
Uy € Tl,ex, C(RT, By(€,;)) such that Up(z) is a Cy—semigroup of contractions (isometries) on
¢, for all z € Xy = X — {2 }. Moreover let T, be the infinitesimal generator of the semigroup
Up(z) for any = € X, let ((E(E®), 7(E®,E?)) , mea, X, n?®) be the bundle direct sum of the family
{0,0}° and set

To is the map on X, such that

76(37) = G?“aph(Tx), YIS X07

® = {¢ € I'">(mee) | (Vz € Xo)(o(z) € To(x))},

E={vel(m)| (3¢ € ®)(v(zx) = ¢1(2))}

By: X3z {v(x)}, Vv € []ex € (4.39)
©={B,|we&},

T is the map on X extending 7Ty and such that

T(200) = {¢(200) | ¢ € @},
| D(T.) = P> (T(w.)) = {61(0) | 6 € D},
We call X = (0, x,,Up) an appropriate set of contractions (isometries) if it is a quasi-appropriate
set of contractions (isometries) and all the following holds.

Swell-set since 9B is full by the Dupre’ theorem
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1. D(T,.) is dense in &

2. {v(z)|v € £} is dense in €, for all z € Xy;

hence according to |21, Theorem 2.1| what follows

Txoo : D(Txm) > (ﬁl(ilfoo) —> ¢2($w),

defines a linear operator. We require that 3\ > 0 (I\g > 0,A; < 0) such that the range
RN — T, ) is dense in &, , (the ranges R(\g — Ty..) and R(A\; — T),)) are dense in &, ).
Thus according to [21, Theorem 2.1] T, is the infinitesimal generator of a Cho—semigroup of
contractions (isometries) on &, . Therefore we can define section of semigroups associated with
X the following map
Ue [] Upioe, (£s.(€2)),
zeX

(U € J],ex Vis(Ls,(€,))) such that U(x) is the Cp—semigroup of contractions (isometries) on
¢, whose infinitesimal generator is 7T}, for all x € X. Finally set

T: X3z T, € Cld(€&,).

We require that T satisfies the property of separation of the spectrum and that there exists a
curve I' associated with T such that

Re(I') CR™.
We call T section of generators associated with X. Finally for any curve I' associated with

T such that Re(I') € R~ we define section of projectors associated with X and T' the map
P € [l,cx Pr(€,) such that for all z € X

1
21 r
Here we recall that R(—T,;-) : P(—=T,) 2 ( — (=T, —¢)~! € B(€,) is the resolvent map of —T,
and P(—T,) is its resolvent set, while the integration is with respect to the norm topology on
B(€&,).

Theorem 4.2 (MAIN2). Let X = (U, o0, Uy) be a quasi-appropriate set of contractions (isome-
tries), let us denote U = (&, 1), m, X,| - ||) and use the notation in (4.39). Assume that
{v(z) |v € E} is dense in €,_. Then Dom(T,_) is dense in €,_. Next assume that X
satisfies all the remaining requests in order to be an appropriate set of contractions (isometries).
Let U be the section of semigroups associated with X, T' be a curve associated with the section
of generators associated with X such that Re(I') C R™, (K, A, ¢) be a triplet associated with T’
and P be the section of projectors associated with X and I'. Let n denote the Lebesque measure
on RT. We assume that there exist 20 = ((IM,0),p, X,R) and 3 = ((T,72),(, X, R) with the

following properties.
1. (0,20, X,R") is a (©,E) —structure;

2. forallz e X
Ccs (R+> ‘CSI(QEz)) g m:}: g £1(R+, ESz(ex)a n);

3. (B, B(M". T (p)), X,R")6 is invariant and (B,3,M") is n—related such that £°(R*,n) »
I'(¢) € T'(¢);

6Definition 12
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4. T(p)*&(O) € T(C);
9. UH'”B(@;E)(ﬁs’I(€$>) g ml‘ (Uzs(ﬁsz(@x)) g mgc), fOT’ all x € X;
6. AF € I'(p) such that F(rs) =U(x) and

i (0,2, X,R") has the LD,__({F},&) or it has the LD({F'},E);

€);
ii for any v € & there exists ¢ € D such that v(rs) = ¢1(2a) and (V{zn}tnen C

X | limpen 2, = Too) we have that {U(z,)()P1(2n) — F(2,)(-)v(2n) tnen is a bounded
equUIcONtINUOUS SEquence.

Thus we can state what follows.
1. If 3G € T'(p) such that G(rs) = R(2s,), then P e [ete)(m) S I ().

2. Let ©® = ((B,73),n, X, L) be such that (0,0, X, {pt}) is an invariant (©,E) —structure.
If Pr(€,) C B, for all x € X and if there exists N € T'(n) such that N(rs) = P(ZTso),
then

P e T (n), (4.40)

and

(T 200, ®)} € A (T, D,0,E) . (4.41)

Proof. 0 is full since the Dupre’ theorem |12, Corollary 2.10]. So by |21, Proposition 2.2| and
the density assumption follows that Dom(T,_ ) is dense in &,_. Since [12, 2.2| we deduce that
the set of all bounded continuous sections of any bundle of {2—spaces over a completely regular
space satisfies the property F'M(3). Therefore 9, C M2 for all z € X, since the immersion
(M, R,) — L1 (Y, Lg,(€,),n), is continuous. Thus

Ces (R, L, (€,)) C M. (4.42)

Now since Re(I') C R~ and since d¢/ds is continuous and then bounded on K, we deduce by
hypothesis (3) that

(B, B(M",T(p)), X,R") is an invariant (0, €, 1) —structure and

4.43
(0,3, M") is p—related, Vu € {v?,n?|s € K}. (4.43)

In particular [21, equation (2.14)] holds, so we can apply |21, Theorem 2.1] to obtain U € T'*>(p)
and in virtue of hypothesis (6) that & € I'*>(p). Thus by Proposition 4.2 we have

U € T (). (4.44)

Now for the position Q = U(M",T'(p)) the hypotheses (1) and (2) of Corollary 4.2 are satisfied
since (4.43). Moreover F,G € I'(myn) indeed I'(p) C I'(mun) modulo the canonical isomorphism,
so hypothesis (3) of Corollary 4.2 is satisfied. Hence statement (1) follows by (4.44) and (4.24),
while (4.40) follows by (4.44) and (4.25). Next (T, zoo, ®) € Gr(0,U) since [21, Theorem 2.1],
while P(z)T, C T,P(x) for all x € X since the resolvent map of any operator commutes with
its operator see for example [14, § 6.1. Chapter 3|, thus (4.41) follows by (4.40). O

Remark 5. By |20, equation (5.8)] follows that (4.40) is equivalent to say that for all v € £

lim [|(P(2) — N(2)) v(z)]| = 0,

2—Too
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5 Kurtz Bundle Construction

In this section we construct a special bundle & of Banach space such that for it [21, Theorem 2.1]
reduces to the [15, Theorem 2.1.] showing in this way that (a particular case) of the construction
of Kurtz falls into the general setting of bundle of {2—spaces.

Notation 1. In this section we shall use the notation of [15] with the additional specification of
denoting with || - ||, the norm in the Banach space L,,. Moreover we denote by X the Alexandrov
(one-point) compactification of the locally compact space N with the discrete topology. Here
we recall some definitions given in [15]. (L, | - ||) is a Banach space and {(Ly, || - ||n) }nen is
a sequence of Banach spaces, moreover {P, € B(L, L,)}nen is a sequence of bounded linear
operators such that Vf € L

Tim (1P = I£1. (5.1)
Given an element f € L and a sequence {f, }nen such that f, € L, for all n € N we set
lim f, < f & Tim || £y = Puflln = 0. (5.2)
n—0o0 n—oo

In addition to the requirements of [15] we assume also that

(Vn € N)(Bo(L) = L) (5.3)

We shall set here Lo, = L, || - || = || - ||, where || - || is the norm on L. Finally for all Z we
recall that By(Z) is the locally convex space of all linear bounded operators on Z with the strong
operator topology.

1=

Lemma 5.1. Let f,g € L and {f,}nen such that f, € L, for alln € N. Then (lim,,_ fnr
PN (i fo £ 9) = f =g
Proof. Let (lim, o0 frn £ f) and (lim,,_ fn K g) thus

lim [ P,(f ~ g)l| < lm [P, f — ]|+ lim | Pog — full =0,
so the statement follows by (5.1). O
Definition 15. Set

E(L)={o?|f €L},
where o/ € [,y Lo such that o/(n) = P,f for all n € N and ¢/ (c0) = f.

{L = {(Lo, || 1le) Yoexs

Definition 16. By (5.1) the sequence {||P,f||n}nen is bounded for all f € L so o/ € HZex L,.
Moreover by (5.1) E(L) satisfies F'M(4), finally by the request (5.3) it satisfies also F'M(3).
Therefore we can define the Kurtz bundle the following bundle

V(L E(L))
generated by the couple (L, E(L)), see in |20, Definition 15|.
Remark 6. By |20, Remark 11| we have that
E(L) C T'(m) modulo the canonical isomorphism. (5.4)

Finally by applying the principle of uniform boundedness, [14, Theorem 1.29, No3, Chapter 3],
we deduce that the sequence {||P,||5(z,L,)}nen is bounded.
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Definition 17. Fix Uy € [,y C (RT, By(Ly)) such that Uy(x) is a (Cy) —semigroup of isometries
on L, for all n € N. Denote by T,, the infinitesimal generator of the semigroup Uy(n) for any
n € N. Let us take the positions [21, equation (2.18)], where ((€(E®),7(E®, £9)), mga, X, n®)
is the bundle direct sum of the family {U(L,E(L)), V(L,E(L))}. In addition we maintain the
[21, Notation 1] where U has to be considered the Kurtz bundle and z., = oo, thus T €
[L,ex Graph(L, x L,) so that T [ X — {oc} = Ty and

T(20) = {d(c0) |6 € @},
and D(Ty) = Pr{°(T (00)) = {¢1(c0) | ¢ € ®}. Finally S = {S, }.ex where (VB € ©)(Vz € X)

D(B,€) = €N ([L,ex B:)
BE = {v(z)|v e D(B,E&)}} (5:5)
Sy = {Bj|B € 6}.

Proposition 5.1. Let f € [[,.y L, Thus

lim f(n) = f(c0) & f € (),

n—oo
Proof. By (5.4) and implication (3) = (1) of [20, Corollary 3.1] we have that lim,, f(n) £
f(o0) implies that

f is continuous at oo,

indeed ¢/(®) ¢ I'(m) modulo isomorphism. By the upper semicontinuity of | - || : ¢ — R,
due to the construction of the bundle U(L, (L)) and to [15, 1.6.(i7)], and by the fact that the
composition of any u.s.c. map with any continuous one at a point is an u.s.c. map in the same
point, we deduce that || - || o f is u.s.c. at co. Thus sup,y ||f(z)||l. < oo, indeed we applied to
the u.s.c. map || - || o f the fact that X is compact (so quasi compact), —|| - || o f is Ls.c, the [2,
Theorem 3, §6.2., Chapter 4] and |2, formula (2), §5.4, Chapter 4|. Therefore

b
fell L.
zeX

Then f € I'°(7). The remaining implication follows by [20, Corollary 3.1] and by the fact that
Y(L,E(L)) is full since X is compact so completely regular and since the Dupre’ theorem see for
example [12, Corollary 2.10]. ]

Proposition 5.2. We have
I (mpe) = {01 Doy|o; € H L., lim o;(n) X o(00),i = 1,2} .
n—oo
reX
Here, we used the [20, Convention 1] and set (o1 ® 03)(x) = 01(x) B 02(x).

Proof. By |20, Convention 1] and [20, Corollary 4.1] o1 @ o3 is continuous at oo if and only if o;
is continuous at oo for all ¢ = 1,2. Thus the statement follows by Proposition 5.1. O

Proposition 5.3. Let Uy € [],.yC(RT, By(Ly)) be such that Uy(z) is a (Coy)—semigroup of
contractions on L, for all n € N. Moreover let us denote by T,, the infinitesimal generator of
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the semigroup Up(n) for any n € N. Thus with the positions [21, equation (2.18)] where U is
the Kurtz bundle we have

= {01 @ o |(Vie{l,2})(0i € [Lex La)(1 —2)}
(1) limyyyo0 03(n) Z 7;(00) (5.6)
(2)(¥n € N)(0(n), 03(n)) € Graph(T),
and
E={0" 0y € [[ex Lo(1—2-3)}
(1) limy, 00 01 (n) = 01(00)
(2)(¥n € N)(o1(n) € Dom(T,))
(3)(3f € Loo)(limn o0 Thor(n) £ f).
Moreover, there ezists a unique function [ satisfying (3) in (5.7) and (Vo, € E)((01,02) € @),
where 0y € [[,cy Lo such that (Vn € N)(oa2(n) = T,01(n)) and oy(c0) = f.
Proof. The first statement follows by Proposition 5.2, while the second one follows by the first
one and Lemma 5.1. O

Assumptions 2. We assume 3{I,, € B(L,, L) }en such that

SupnGN HInHB(LmL) < 0, (58)
(Vf e L)(¥Yn e N)(I, 0 P, = Id).

Moreover we assume that o
lim | P.|| < 1. (5.9)

In addition we assume that (Vg € L)(301 € [[,.yx Lz) such that

zeX

(1) lim,, 00 1(n2) LS o1(00)
(2)(Vn € N)(o1(n) € Dom(Tn))K (5.10)
(3)(Ff € Loo)(limy,—y00 Tro1(n) = f)
(4)g = 01(0).
Set
U={F eC(R*,By(L)) | (Vs e R")(Vv € L)(| F(s)v|| = [Jv]]) } . (5.11)

In the following definition we shall give the data for constructing a bundle 20 such that
(U(L,E(L)), 2, X,RT) would be a (©,E) —structure.

Definition 18. Set Py, = I, = Id : L — L, moreover YU € U set Fyy € [, Cc (RY, Lg, (Ly))
such that Vx € X

Fy(z) = P,oU(-) o I,
P,oU(:)ol,:Rt* > s+ P,oU(s)o I, € B(L,).
Now we can define Vo € X
M, = span {Fy(z) |U € U} .

M, has to be considered as Hlcs with the topology induced by that on C.(R',Lg, (L,)). T
Moreover set
M =span{Fy |U € U}.

C.(RT,Ls,(Ly)) is Hausdorff for all # € X by the fact that (Jz.o B = La, see later Proposition 5.4.
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Theorem 5.1. M, as Hles is well-defined for any x € X, moreover M C Hiex M, and M, =
{F(z)| F € M}. Finally M satisfies FM(3) — FM(4) with respect to M.

Proof. By |21, Remark 4] we have that C. (R*, Bs(L,)) C C. (R", Ls,(L;)) hence for the first
sentence of the statement it is sufficient to show that P, o U(+) o I, € C.(R™, Bs(L,)) for any
U € . For z = oo is trivial so let n € N and f,, € L, thus for all s € R" and all net {s,}aep
in RT converging at s we have

iienll) [ PnoU(sa) o In(fn) = ProU(s) o Lu(fu)|ln = ilenll) | Pn(U(sa) = U(8)) L fulln = 0,

where we used the fact that U is strongly continuous and P, is norm continuous by construction.
Thus the first sentence of the statement follows. Let v € £ and U € 4 thus VK € Comp(R™")

sup sup || P,U(s) I (n )||n§MSUPSUP||U() (1)

neN se K neN se K

= M sup || I,v(n)]|s

neN
< Msup ||| sup [[v(n)]e < o0
neN neN

Here M = sup,,cy || Pl|, in the second one the hypothesis that U(s) is an isometry for all s € R,
in the final inequality we considered ( 8), &€ C HZGX L, and that M < oo by Remark 6.

Therefore by [21, Remark 4] M C me M,. The equality M, = {F(x)|F € M} comes by
construction, in particular M satisfies the F'M(3) with respect to the M. Vv € €

lim sup || P,U(s)L,o(n)||, < lim (||Pn|] sup ||U(s)]nv(n)||n) , |2, Proposition 11, §5.6, Chapter 4]
n—o0 seK

n—oo seK

< lim ||P,|| lim sup ||U(s)I,v(n)]|,,[2, Proposition 13, §5.7, Chapter 4]
n—oo n—oo SGK

< Iim [[L0(n)]|, (5.9), (5.11)
:T@OHIHPHJCHOO, ve& Cl(n)~E&(L)
= [|.flloo; (5.8)
= ||[v(00) |-

Thus by considering that U is a map of isometries we have

lim sup || P,U (s) Lo (n) || < sup || PaU (8) Loov(00) [ oo-
nN—=0 sc K seK

Hence by |2, Proposition 3, §7.1, Chapter 4| and |2, formula (13), §5.6, Chapter 4] we deduce

that

X 3z sup ||PU(s)v(x)], is u.s.c. at oo,
seK

therefore it is u.s.c. on X because of it is continuous in each point in N due to the fact that the
topology induced on N by that on X is the discrete topology. So M satisfies the F'M(4) with
respect to the M. O

Definition 19. Theorem 5.1 allows us to construct a bundle of 2—space, namely the bundle
U (M, M) generated by the couple (M, M), see |20, Definition 15].

Remark 7. By |20, Remark 11| we have
M C I'(my) modulo the canonical isomorphism. (5.12)

Hence by M, = {F(z)| F' € M} we have that U(M, M) is full.
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Proposition 5.4. We have that UgeoBs = L. for all € X. Moreover,
(B(L,E(L)), VM, M), X,RT) is a (©,E) —structure.

Proof. By assumptions (5.10), (5.3), Proposition 5.3 and |21, Remark 4| we obtain that
Ugeo B = L, for all x € X. The remaining part of the statement follows by the construction
of M and M. n

Corollary 5.1. If D(T,.) is dense in €,_, and INg > 0, \; < 0 such that the ranges R(\g —
T;..) and R(M — Ty, ) are dense in €, ), then (T, 00, ®) € Gr(U(L,E(L)), B(L,E(L))) and the
following

Ty : D(Too) > gbl(oo) — ¢2(OO)
1s a well-defined operator which is the generator of a Coy—semigroup of isometries on €.

Proof. By Propositions 5.4 and 5.5 we have that the first part of hypotheses of [21, Theorem 2.1|
is satisfied so the statement follows by the first part of the statement of [21, Theorem 2.1|. [

Definition 20. Let us denote by U, the Cy—semigroup of isometries on L. Moreover set
Uc HmGX UiS<BS(Lx)) itU | N=Uy and Z/[(oo) =U.

Theorem 5.2. (3 F € ['(mn))(F(o0) = U(c0)) such that (Vv € £)(Fp € D) s.t. d1(T00) = V(T00)
and (V{znfnen C X | limpen 20 = o) we have that {U(z,)(-)P1(zn) — F(20)(-)v(20) bnen s a
bounded equicontinuous sequence. Moreover we can choose F' such that F' = Fy,__.

Proof. By Proposition 5.3 and (5.12) the statement is equivalent to showing that Vo, € [,y Lo
satisfying (1 — 2 — 3) of (5.7) and (V{z, }neny C X | lim,en 2, = 00) we have that

{U(z)()01(20) = Fue (2) ()0 (20) e (5.13)
is a bounded equicontinuous sequence. Moreover by the second assumption (5.8) and (5.13)
{U(20)(1)o1(2n) = P Uoo(20)(-)01(00) Fnen (5.14)

is a bounded equicontinuous sequence. Set oy € [[,.y L, such that oy(x) = T,01(x), for all
xr € X, thus
o; € I'™°(m),

for all i = 1,2, indeed for ¢ = 1 follows by (1) of (5.7) and Proposition 5.1, while for i = 2
follows by construction of T, the second part of Proposition 5.3, the fact that by construction
® C T'(mga ), see |21, equation (2.18)], and finally by [20, Corollary 4.1]. Therefore in particular

0; is continuous at co. Thus by considering that 0(>) € T'(m ) modulo isomorphism by (5.4)
and that U(L, (L)) is full we deduce by [20, Proposition 3.1]

han loi(zn) — i) (7 0 0i(2n)) |l ro0s(2) = 0

ne

Then by considering that m o o; = Id because of o0, is a section, we have
lir% \|loi(2) — P, 04(00)||., = 0. (5.15)
ne

The statement now follows by (5.15), (5.14) and by using the same argumentation used in proof
of [15, Theorem 1.2] for proving a similar result. O

Proposition 5.5. With the notation of [21, Definition 1] we have that

Mz - ﬂ £1<R+7 ES:(, (Lz>’ /~L>\)7

A>0

and [21, equation (2.14)] holds.
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Proof. Follows by |21, Proposition 4.2|. ]

Theorem 5.3. (U(L,E(L)), B(M, M), X,R") has the full Laplace duality property, moreover
VU € Uy (Bs(L)), VA > 0 and Vf € L we have that

£(Fr) ()W)l () = o007,
Here Ty is the infinitesimal generator of the semigroup U.

Proof. Let f € L and U € 4 thus for all z € X and A > 0 we have
/ e PU(s) .07 (z)ds = / e PU(s)f ds
0 0
= Px/ e MU(s)f ds, (5.16)
0

where the first equality follows by the second assumption 5.8, while the second one by the
linearity and continuity of P, and by [4, Proposition 1, n°, §1, Chapter 6]. Thus the first
sentence of the statement by (5.4) and (5.12). The second sentence of the statement folllows by

the (5.16) and by Hille-Yosida Theorem, see [15, Theorem 1.2.]. O
Corollary 5.2. Let us assume the hypotheses of Corollary 5.1. Then (Vg € L)(VK €
Comp(RY))
lim sup | U(=)(s) o P. — P. 0 Use(s)) g]| = 0. (5.17)
Z—00 seK
Moreover
Uecl>(p). (5.18)
In particular
{(T,00,®)} € Ao (V(L,E), BM, M), E, X, RT). (5.19)

Proof. By Proposition 5.5 follows |21, equation (2.14)], hypothesis (7) of [21, Theorem 2.1] follows
by Theorem 5.3, (i) by Theorem (5.2), finally (7iz) follows by |2, Corollary of Proposition 16,
§2.9, Chapter 9| and by the fact that {{n}|n € N} is a base for the topology on N. Thus by
[21, Theorem 2.1] we obtain (5.18), (5.19) and (Vv € £)(VK € Comp(R™T))

lim sup ||U(z)(s)v(z) — F(2)(s)v(2)]| =0, (5.20)

Z—00 seK

where F' is any map in Theorem 5.2. Now by Theorem 5.2 we can take in the previous equation
F = Fy__, moreover by (5.7) and assumption (5.10) we have

&£={o"lge L},
therefore by (5.8) Vs € RT, Vz € X and Vg € L
Fu (2)09(z) = (P, oUx(8))g.

Hence (5.17) follows by (5.20). O
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