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1 Introduction

In this �nal part of the work we accomplish in Theorem 4.2 the claim of extending the classical
stability problem to the framework of bundles of Ω−spaces and consequently to obtain stability
results for operators acting in di�erent Banach spaces. Let us describe the principal steps
required for this result.

(Θ, E)−structures are central in constructing in [21, Theorem 2.1] the section of
C0−semigroups U continuous at x∞. However the presence in their de�nition of the uniform
convergence over compact subsets of a topological space Y rather than the pointwise conver-
gence, drastically restricts in general the ful�llment of the property (1.2) (with Γ(ξ) replaced by
Γ(ρ)) characterizing invariant structures. Possible exceptions are those where the base space X
is compact and under suitable hypothesis the above property is used to determine Γ(ρ), see [20,
Remark 11].

Now �rst of all the property (1.2) is basic to establish in Corollary 4.2 the essential step (1.3)
toward the main result (1.6). Here P is a suitable section of spectral projectors of the in�nitesimal
generators of the semigroups {U(x)}x∈X . For instance for obtaining (4.37) we apply Lemma 4.2.
Secondly in order to prove (1.3) we need the concept of µ−relatedness provided in De�nition 9
requiring µ−integrable Hlcs valued maps. Indeed see the technical Corollary 4.1 resulting by the
bundle type generalization of the Lebesgue Theorem we establish in Theorem 4.1 and by Lemma
4.1, remarkable results by themself. Finally for de�ning P(x) we apply to U(x) the well-known
integral formula (3.1) for any x ∈ X.

Therefore it appears natural in the present context to replace (Θ, E)−structures based on
function spaces of continuous maps provided with the topology of compact convergence, with
those based on function spaces, provided with the topology of pointwise convergence, of Hausdor�
locally convex space valued integrable maps de�ned on a locally compact space provided with a
Radon measure.

To this end we introduce for any Radon measure µ on a locally compact space Y the concept
of (Θ, E , µ)−structure De�nition 10. Roughly a (Θ, E , µ)−structure 〈V,Q, X, Y 〉 where Q =
〈〈H, γ〉 , ξ,X,Y〉 and V = 〈〈E, τ〉 , π,X,N〉, is de�ned in the same way as a (Θ, E)−structure
except that {

Hx ⊆ L1 (Y,LSx(Ex), µ) ,

Yx induces the topology on Hx of pointwise convergence on Y .
(1.1)
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Here for any x ∈ X we recall that LSx(Ex) is the Hlcs of continuous linear maps on Ex provided
with the topology of uniform convergence over the sets belonging to Sx. 〈V,Q, X, Y 〉 is invariant
if in addition {

F ∈
b∏

z∈X

Hz | (∀t ∈ Y )(Ft • E(Θ) ⊆ Γ(π))

}
= Γ(ξ). (1.2)

The main reason behind the intoduction of this concept is represented by the following
result. Let V be a Banach bundle, T be a suitable section of closed densely de�ned linear
operators satisfying the property of separation of the spectrum, Γ be a curve associated with
T and (K,A, φ) be a triplet associated with Γ, a straight extension to the bundle case of the
separation of the spectrum introduced by Kato (De�nition 4). If 〈V,Q, X,R+〉 is an invariant
(Θ, E , q)−structure for all q ∈ {νφ, ηφs | s ∈ K} (De�nition 5) and 〈V,Z,H〉 is q−related such
that Hz = Hz for all z ∈ X, then under additional hypothesis Corollary 4.2

WT ∈ Γx∞(ξ)⇒ P • Γx∞E(Θ)(π) ⊆ Γx∞(π). (1.3)

As we describe below, by letting n be the Lebesgue measure on R+ we shall apply this result
to a n−related set and to the (Θ, E , n)−structure underlying the (Θ, E)−structure used in [21,
Theorem 2.1].

Now central in proving (1.3) is the fact that the global relation (1.2) implies the pointwise
one. More exactly for any invariant (Θ, E , µ)−structure 〈V,D, X, Y 〉 with a suitable Θ, by
denoting D = 〈〈B, γ3〉 , η,X,L〉, we have Lemma 4.2H ∈

[(
b∏

z∈X

Bz

)x∞

�

]
peq

| (∀t ∈ Y )(Ht • E(Θ) ⊆ Γx∞(π))

 ⊆ Γx∞� (η). (1.4)

To derive (1.3) we use this inclusion for the case Y = R+ and multiple times Corollary 4.1. (1.4)
can be extended to invariant (Θ, E)−structures whenever Comp(Y ) = Pω(Y ), we shall use this
remark in the case Y = {pt}.

Now if E(Θ) ⊆ Γ(π) and if we show that

P • Γx∞E(Θ)(π) ⊆ Γx∞(π), (1.5)

then
P ∈ Γx∞(η), (1.6)

follows by (1.4) for the special case Y = {pt}. It is worthwhile remarking that (1.5) represents
a satisfactory result for all practical purposes concerning the stability of P . However in order to
interpret P satisfying (1.5) as a bounded section continuous at x∞ we need to employ (1.4).

Next let Y = R+. To prove (1.5) we apply (1.3) to the section of contractions U continuous at
x∞ obtained in [21, Theorem 2.1] and to the (Θ, E , n)−structure underlying the (Θ, E)−structure
used in [21, Theorem 2.1]. More exactly given a suitable (Θ, E)−structure 〈V,W, X, Y 〉 which
in general is not a (Θ, E , µ)− structure and by letting W = 〈〈M, γ〉 , ρ,X,R〉, [21, Theorem 2.1]
states the existence of a section T of closed operators such that U = WT ∈ Γx∞(ρ). So under
the additional hypothesis that there exists an F ∈ Γ(ρ) such that F (x∞) = U(x∞) we obtain

U ∈ Γx∞� (ρ). (1.7)

In order to apply (1.3) we need a procedure to extract from the initial (Θ, E)−structure a
structure 〈V,Q, X, Y 〉 which is a (Θ, E , q)−structure for all q ∈ {νφ, ηφs | s ∈ K} and such that

Γx∞� (ρ) ⊆ Γx∞(ξ). (1.8)
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This is performed by applying a general construction called the (Θ, E , µ)−structure
〈V,V(Mµ,Γ(ρ)), X, Y 〉 underlying 〈V,W, X, Y 〉 and de�ned in De�nition 12.

In view of the property (1.8) we have to maintain the vicinity of the initial and the underlying
structure. This is performed by applying the by now usual general result [12, Theorem 5.8] for
constructing bundles with a given subspace of bounded continuous sections. Thus the choice we
perform in De�nition 12 for the stalks Mµ

x is essentially the weakest one in order to satisfy (1.1)
and to allow the space Γ(ρ) of bounded continuous sections of W to be a subspace of the space
Γ(πMµ) of bounded continuous sections of the underlying bundle V(Mµ,Γ(ρ)).

Proposition 4.2 shows that our choice is the right one indeed

Γx∞� (ρ) ⊆ Γx∞(πMµ). (1.9)

It remains only to select the right measure µ in order to satisfy the hypothesis of Corollary 4.2
in particular such that the (Θ, E , µ)−structure underlying 〈V,W, X, Y 〉 is a (Θ, E , q)−structure
for all q ∈ {νφ, ηφs | s ∈ K}. To this end let us say that (W,Z) satis�es the n−hypothesis,
if the (Θ, E , n)−structure underlying 〈V,W, X, Y 〉 is invariant, 〈V,Z,Mn〉 is n−related and
L∞(Y, n) I Γ(ζ) ⊆ Γ(ζ) (where Γ(ζ) is the space of bounded continuous sections of Z and I
is de�ned in De�nition 7). Now it is possible to show that if (W,Z) satis�es the n−hypothesis,
then 〈V,V(Mn,Γ(ρ)), X, Y 〉 is an invariant (Θ, E , q)−structure and 〈V,Z,Mn〉 is q−related for
all q ∈ {νφ, ηφs | s ∈ K}. In other words the hypothesis in Corollary 4.2 for obtaining (1.3) holds
true with the position Q = V(Mn,Γ(ρ)).

Finally provided that (W,Z) satis�es the n−hypothesis we conclude that (1.5) and conse-
quently (1.6), follow by (1.7), (1.9) with the position µ = n and (1.3).

Except when explicitly stated, we assume all the notations set in [20, 21] in particular all the
vector spaces are over C.

2 〈ν, η, E, Z, T 〉 invariant set with respect to F

In the present Section 2 let us �x a consistent class of data O ([21, De�nition 5]) and let G
denote the locally convex space relative to O ([21, De�nition 9]).

De�nition 1. Let Z, T be two locally compact spaces, E ∈ Hlcs, ν ∈ Radon(Z) and η ∈
Radon(T )Z . Set

L(1,1)(T,E, η, ν) +

{
F ∈

⋂
λ∈Z

L1(T,E, ηλ) |
(
Z 3 λ 7→

∫
F (s)dηλ(s) ∈ E

)
∈ L1(Z,E, ν)

}

Corollary 2.1. Let Z be a locally compact space, ν ∈ Radon(Z), η ∈ Radon(Y )Z,
D ∈

∏
x∈X P(Ex), D =

∏
x∈X Dx and assume (A) of [21, Lemma 4.4]. Thus (∀F ∈

L(1,1)(Y,G, η, ν))(∀x ∈ X)(∀v ∈ D)

Pr
x
◦
[∫ (∫

F (s) dηλ(s)

)
dν(λ)

]
(v) =

[∫ (∫
Pr
x

(Ψ(F ))(s)v(x) dηλ(s)

)
dν(λ)

]
.

Proof. Let F ∈ L(1,1)(Y,G, η, ν), x ∈ X and v ∈ D. By [21, Theorem 4.2]

Pr
x
◦
[∫ (∫

F (s) dηλ(s)

)
dν(λ)

]
(v) =

∫
Pr
x
◦Ψ
(∫

F (s) dη(·)(s)

)
(λ)(v(x)) dν(λ).
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Moreover ∀λ ∈ Z

Pr
x
◦Ψ
(∫

F (s) dη(·)(s)

)
(λ)(v(x)) = Pr

x
◦
(∫

F (s) dηλ(s)

)
◦ ıx(v(x))

=

∫
Pr
x

(Ψ(F ))(s) ◦ Pr
x
◦ıx(v(x)) dηλ(s)

=

∫
Pr
x

(Ψ(F ))(s)v(x) dηλ(s),

where in the �rst equality we used [21, Proposition 4.7], while in the second one [21, Theorem 4.2].
Then the statement follows.

De�nition 2. V is a 〈ν, η, E, Z, T 〉 invariant set with respect to F if

1. T, Z are two locally compact spaces;

2. E ∈ Hlcs

3. there exists M ∈ Hlcs and b : E ×M →M bilinear;

4. V ⊆M linear subspace;

5. ν ∈ Radon(Z) and η ∈ Radon(T )Z ;

6. F ⊆ L(1,1)(T,E, η, ν)

7. ∀F ∈ F [∫ (∫
F (s) dηλ(s)

)
dν(λ)

]
V ⊆ V,

where we denote b(e,m) by em, for any e ∈ E and m ∈M .

Proposition 2.1. Let us assume the hypotheses of Corollary 2.1 and V be a 〈ν, η,G, Z, Y 〉
invariant set with respect to F such that V ∩D 6= ∅. Then ∀v ∈ V ∩D and ∀F ∈ F(

X 3 x 7→
[∫ (∫

Pr
x

(Ψ(F ))(s)v(x) dηλ(s)

)
dν(λ)

]
∈ Ex

)
∈ V.

Proof. By Corollary 2.1.

3 Construction of sets in ∆Θ 〈V,D,W, E , X,R+〉 through invariant sets

In the present Section 3 let us �x an entire consistent class of data O ([21, De�nition 5]) such
that R+ is its locally compact space, ν de�ned in De�nition 5 is its Radon measure, the primary
family E + {Ex}x∈X underlying O is a family of Banach spaces and such that for any x ∈ X
the corresponding element of the secondary family underlying O is the strong operator topology
on L(Ex). Let G denote the locally convex space relative to O ([21, De�nition 9]). For any
Banach space C let Cld(C) denote, the set of all closed linear operators densely de�ned in C
and at values in C. For any T ∈ Cld(C) let P (T ) denote the resolvent set of T and Σ(T ) be the
spectrum of T . Let R(T ; ·) : P (T ) 3 ζ 7→ (T − ζ)−1 ∈ B(C) be the resolvent map of T . In the
next de�nition we adapt to our framework a de�nition provided in [14, Chapter 9, §1, n◦4].
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De�nition 3. Let M > 1 and β ∈ R. Let G(M,β,E) be the set of all T ∈
∏

x∈X Cld(Ex) such
that ]β,∞[⊆ P (−T (x)) and (∀ξ > β)(∀k ∈ N)(∀x ∈ X)

‖(T (x) + ξ)−k‖B(Ex) ≤M(ξ − β)−k.

Moreover let us denote by {e−tT (x)}t∈R+ the strongly continuous semigroup generated by −T (x).

In the following de�nition we adapt to our framework the de�nition of separation of the
spectrum for a closed operator provided in [14, n◦4,§6, Chapter 3].

De�nition 4. Let M > 1 and β ∈ R. We say that T ∈ G(M,β,E) satis�es the property of
separation of the spectrum if (∃Γ)(∀x ∈ X)(∃Σ′T (x) ⊆ Σ(T (x)))(∃AT (x) ∈ Op(C)) such that Γ
is a regular closed curve in C, Σ′T (x) is bounded and

Σ′T (x) ⊂ AT (x) ⊂ Oi(Γ), Σ′′T (x) ⊂ Oe(Γ).

HereOi(Γ) is the interior of Γ, namely the compact set of C whose frontier is Γ, Oe(Γ) + {Oi(Γ) is
the exterior of Γ, �nally Σ′′T (x) + Σ(T (x))∩{Σ′T (x). We call any curve Γ with the above property

a curve associated with T , while we call (K,A, φ) a triplet associated with Γ i� K ⊂ R+ is
compact, A is an open neighbourhood of K and φ : A → C is such that φ ∈ C1(A,R2)3 and
φ(K) = Γ.

Let T ∈ G(M,β,E) satisfy the property of separation of the spectrum and Γ a curve associated
with T , then ∀x ∈ X we set

P (x) + − 1

2πi

∫
Γ

R(T (x); ζ) dζ ∈ B(Ex), (3.1)

where the integration is with respect to the norm topology on B(Ex). Moreover for any triplet
(K,A, φ) associated with Γ set Rφ

T ∈
∏

x∈X L(Ex)
R+

such that Rφ
T (x)(s) + R(T (x);φ(s)), for all

x ∈ X and s ∈ K, while Rφ
T (x)(s) + 0, if s ∈ R+ −K.

Remark 1. Let M > 1, β ∈ R, T ∈ G(M,β,E) satisfy the property of separation of the
spectrum and Γ a curve associated with T . Then for all x ∈ X by [14, Theorem 6.17, Chapter 3],
P (x) ∈ Pr(Ex) and Ex = M ′

x⊕M ′′
x direct sum of two closed subspaces of Ex, whereM

′
x = P (x)Ex

and M ′′
x = (1x − P (x))Ex. Moreover T (x) decomposes according the previous decomposition,

namely T (x) � M ′
x ∈ B(M ′

x) such that Σ(Tx � M ′
x) = Σ′Tx and Tx � M

′′
x is a closed operator in

M ′′
x such that Σ(Tx �M ′′

x ) = Σ′′Tx .

De�nition 5. Let K ⊂ R+ be a compact set, A an open neighbourhood of K and φ : A → C
be such that φ ∈ C1(A,R2) and φ(K) = Γ. For any s ∈ K de�ne ηφs ∈ Radon(R+) such that

ηφs : Ccs
(
R+
)
3 f 7→

∫
R+

eφ(s)tf(t) dt.

Moreover let νφ ∈ Radon(R+) be the 0−extension of νφ0 ∈ Radon(K) such that

νφ0 : Ccs (K) 3 g 7→
∫
K

−g(s)

2πi

dφ

ds
(s) ds.

Finally let M > 1, β ∈ R and T ∈ G(M,β,E), then we set WT ∈
∏

x∈X U(Bs(Ex)) such that
(∀x ∈ X)(∀t ∈ R+) {

WT (x)(t) + e−T (x)t,

F T + Λ(WT ),

where Λ has been de�ned in [21, De�nition 11].
3By identifying C with R2, so φ is derivable with contiuous derivative
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Lemma 3.1. Let M > 1, β ∈ R and T ∈ G(M,β,E) satisfy the property of separation of the
spectrum. Assume that there exists a curve Γ associated with T such that

Re(Γ) ⊆ R−. (3.2)

Then for any triple (K,A, φ) associated with Γ we have that ∀x ∈ X and ∀vx ∈ Ex

P (x)vx = − 1

2πi

∫
K

dφ

ds
(s)R(T (x);φ(s))vx ds, (3.3)

and ∀s ∈ K,

R(T (x), φ(s))vx =

∫ ∞
0

eφ(s)te−tT (x)vx dt =

∫
R+

WT (x)(t)vx dη
φ
s (t). (3.4)

Here the integration is with respect to the norm topology on Ex. If F T ∈ L(1,1)(R+,G, ηφ, νφ)
and V is a

〈
νφ, ηφ,G, K,R+

〉
invariant set with respect to {F T}, then

P • V ⊆ V. (3.5)

Proof. By (3.1), [4, IV.35, Theorem 1], and by the norm continuity of the map B(Ex) 3 A 7→
Aw ∈ Ex for any w ∈ Ex, we have (3.3). Moreover by (3.2) we can apply [14, equation (1.28),
n◦3, §1, Chapter 9] and (3.4) follows by De�nition 5. Fix v ∈ V so ∀x ∈ X

P (x)v(x) = − 1

2πi

∫
K

dφ

ds
(s)R(T (x);φ(s))v(x) ds

= − 1

2πi

∫
K

dφ

ds
(s)

(∫
R+

WT (x)(t)v(x) dηφs (t)

)
ds

=

∫
K

(∫
R+

Pr
x

(
Ψ(F T )

)
(t)v(x) dηφs (t)

)
dνφ(s). (3.6)

Here the �rst equality comes by (3.3), the second one by (3.4) and the third one by [21,
Proposition 4.7] and De�nition 5. Next with the notation in [21, Corollary 4.1] we choose
(∀x ∈ X)(Sx = Pω(Ex)), and since O is entire we can select D(x) = Ex, for all x ∈ X, in other
words pxlx,jx is the strong operator topology on L(Ex). Thus (A) of [21, Lemma 4.4] is satis�ed
since [21, Corollary 4.1], so the statement follows by (3.6) and Proposition 2.1.

Corollary 3.1. Under the hypothesis of [21, Theorem 2.1] let the primary family E of O be the
family of stalks of the Banach Bundle V of which in [21, Theorem 2.1]. Assume that the hypoth-
esis of Lemma 3.1 are satis�ed, where T is such that −T (x) is the in�nitesimal generator of U(x)
for all x ∈ X, where U is the section of semigroups construcuted in [21, Theorem 2.1]. Moreover
let 〈V,D, X, {pt}〉 be an invariant (Θ, E)−structure such that E(Θ) ⊂ Γ(π) and let (K,A, φ) be
a triplet associated with a curve associated with T . If E(Θ) is a

〈
νφ, ηφ,G, K,R+

〉
invariant set

with respect to {F T} and F T ∈ L(1,1)(R+,G, ηφ, νφ), then {U} ∈ ∆Θ 〈V,D,W, E , X,R+〉.

Proof. Since (3.5) and the de�nition of invariant (Θ, E)−structures.

4 Construction of sets in ∆ 〈V,D,Θ, E〉

Assumptions 1. In this section X is a topological space, Y is a locally compact space µ is a
Radon measure on Y . Let L∞(Y, µ) denote the linear space of all complex valued maps de�ned on
Y which are µ−measurable and bounded in measure for the measure µ. LetV = 〈〈E, τ〉 , π,X,N〉
be a bundle of Ω−spaces, we indicate with N + {νj | j ∈ J} the directed set of seminorms on E.
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De�nition 6. Let Z ∈ Hlcs and {ψi | i ∈ I} a fundamental set of seminorms on Z. We denote
by (

ZY
)
s

the Hlcs whose underlying linear space is ZY and whose locally convex topology is generated
by the following set of seminorms{

{qis | s ∈ Y, i ∈ I},
qis : ZY 3 f 7→ ψi(f(s)).

(4.1)

Moreover for any B ⊆ ZY we shall denote by Bs the Hlc subspace of
(
ZY
)
s
. Notice that

this de�nition is well-set being independent by the choice of the fundamental set of seminorms,
indeed the topology is that of uniform convergence over the �nite subsets of Y .

De�nition 7. Set 
µ

� :
∏

x∈X L1(Y,Ex, µ)→
∏

x∈X Ex,
µ

�(H)(x) +
∫
H(x)(s) dµ(s) ∈ Ex,

for all H ∈
∏

x∈X L1(Y,Ex, µ) and for all x ∈ X. Moreover de�ne

I: CY ×
∏
x∈X

(Ex)
Y →

∏
x∈X

(Ex)
Y ,

(f I H)(x)(s) + f(s)H(x)(s),

∀f ∈ CY , H ∈
∏
x∈X

(Ex)
Y , x ∈ X, s ∈ Y.

Notice that

L∞(Y, µ) I
∏
x∈X

L1(Y,Ex, µ) ⊆
∏
x∈X

L1(Y,Ex, µ).

De�nition 8. Set {
F :

∏
x∈X L(Ex)

Y ×
∏

x∈X Ex →
∏

x∈X EYx ,

(∀x ∈ X)(∀s ∈ Y )(FFv)(x)(s) + F (x)(s)(v(x)).

De�nition 9. 〈V,Z〉 are µ−related if

1. Z + 〈〈T, γ〉 , ζ,X,K〉 ia a bundle of Ω−spaces;

2. for all x ∈ X 4 
Tx ⊆Meas(Y,Ex, µ)

⋂
L1(Y,Ex, µ),

Kx =
{

sup(s,j)∈O q
x
(s,j) |O ∈ Pω(Y × J)

}
,

qx(s,j) : Tx 3 fx 7→ νj(fx(s)),∀s ∈ Y, j ∈ J ;

(4.2)

3. Γ(ζ) ⊂
[∏b

x∈X Tx

]
ui
;

4.
µ

�(Γ(ζ)) ⊆ Γ(π).

4In case Ex is a Banach space Meas(Y,Ex, µ)
⋂
L1(Y,Ex, µ) = L1(Y,Ex, µ).
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Here we set for all A ⊆
∏b

x∈X Tx

[A]ui +

{
H ∈ A | (∀j ∈ J)

(∫ •
Y

sup
x∈X

νj(H(x)(s)) d|µ|(s) <∞
)}

(4.3)

Finally 〈V,Z,H〉 are µ−related if

1. H = {Hx}x∈X such that Hx ⊆ L(Ex)
Y for all x ∈ X,

2. 〈V,Z〉 are µ−related

3. (∏
x∈X

Hx

)
F

(∏
x∈X

Ex

)
⊆
∏
x∈X

Tx. (4.4)

Theorem 4.1 (GLT). Let 〈V,Z〉 be µ−related and let x ∈ X such that its �lter of neighbour-
hoods admits a countable basis. Thus

µ

� ([Γx�(ζ)]ui) ⊆ Γx�(π).

Proof. Let x ∈ X and F ∈ [Γx�(ζ)]ui thus by [20, Corollary 3.1] there exists η ∈ Γ(ζ) such that
for all j ∈ J, s ∈ Y {

F (x) = η(x)

limz→x νj(F (z)(s)− η(z)(s)) = 0.
(4.5)

Fix j ∈ J thus by [4, Prop.6, No2, §1, Chapter 6] for all z ∈ X

νj

(∫
(F (z)(s)− η(z)(s)) dµ(s)

)
≤
∫ •

νj(F (z)(s)− η(z)(s)) d|µ|(s) (4.6)

Moreover νzj is continuous by de�nition of bundles of Ω−spaces, while F (z) and η(z) are by
construction µ−measurable, hence by [4, Theorem 1; Corollary 3, n◦3, § 5, Chapter 4] the
map Y 3 s 7→ νj(F (z)(s) − η(z)(s)) is µ−measurable thus |µ|−measurable. Moreover by the
hypothesis on F and by De�nition 9 (3)∫ •

νj(F (z)(s)− η(z)(s)) d|µ|(s) ≤
∫ •(

sup
x∈X

νj(F (x)(s)) + sup
x∈X

νj(η(x)(s))

)
d|µ|(s) <∞. (4.7)

Therefore by [4, Proposition 9, n◦3, §1, Chapter 5] the map Y 3 s 7→ νj(F (z)(s) − η(z)(s))
is |µ|− essentially integrable hence by the fact that

∫ •
Y
f d|µ| =

∫
Y
f d|µ| for all |µ|−essentially

integrable map f , we have by (4.6)

νj

(∫
(F (z)(s)− η(z)(s)) dµ(s)

)
≤
∫
νj(F (z)(s)− η(z)(s)) d|µ|(s). (4.8)

Let {zn}n ⊂ X be such that limn∈N zn = x thus by (4.5)

lim
n∈N

νj(F (zn)(s)− η(zn)(s)) = 0. (4.9)

For all s ∈ Y
νj(F (z)(s)− η(z)(s)) ≤ sup

x∈X
νj(F (x)(s)) + sup

x∈X
νj(η(x)(s))
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thus by the hypothesis on F , by De�nition 9(3), by the fact that
∫ •
Y
≤
∫ ∗
Y
, by (4.9), and by the

Lebesgue Theorem [4, Theorem 6, n◦3, §3, Chapter 4] we have

lim
n∈N

∫
νj(F (zn)(s)− η(zn)(s)) d|µ|(s) = 0. (4.10)

Finally by (4.8), (4.10) and the hypothesis on x we obtain

lim
z→x

νj

(∫
F (z)(s) dµ(s)−

∫
η(z)(s) dµ(s)

)
= 0,

thus the statement follows by De�nition 9 (4) and [20, Corollary 3.1].

De�nition 10 ((Θ, E , µ)−structure). We say that 〈V,Q, X, Y 〉 is a (Θ, E , µ)− structure if

1. E ⊆ Γ(π);

2. Θ ⊆
∏

x∈X Bounded(Ex);

3. ∀B ∈ Θ

(a) D(B, E) 6= ∅;
(b)

⋃
B∈Θ BxB is total in Ex for all x ∈ X;

4. Q = 〈〈H, δ〉 , ξ,X,Y〉 is a bundle of Ω−spaces such that for all x ∈ X
Hx ⊆ L1 (Y,LSx(Ex), µ) ,

Yx =
{

sup(t,j,B)∈O P
x
(t,j,B) � Hx |O ∈ Pω (Y × J ×Θ)

}
P x

(t,j,B) : L1 (Y,LSx(Ex), µ) 3 F 7→ supv∈D(B,E) νj(F (t)v(x)), ∀t ∈ Y,B ∈ Θ, j ∈ J.
(4.11)

Here Sx, BxB and D(B, E) are de�ned in [20, equation (5.3)]. Moreover 〈V,Q, X, Y 〉 is an
invariant (Θ, E , µ)− structure if it is a (Θ, E , µ)− structure such that{

F ∈
b∏

z∈X

Hz | (∀t ∈ Y )(Ft • E(Θ) ⊆ Γ(π))

}
= Γ(ξ). (4.12)

De�nition 11. Let µλ for all λ > 0 be de�ned as in [21, De�nition 1], let 〈V,Q, X,R+〉 be
a (Θ, E , µ)− structure and denote Q = 〈〈H, δ〉 , ξ,X,S〉, moreover let x ∈ X, O ⊆ Γ(ξ) and
D ⊆ Γ(π). Set

Lap(V)(x) +
⋂
λ>0

L1(R+,LSx(Ex);µλ).

Assume that

ΓxO(ξ)
⋂

Lap(V)(x) 6= ∅ (4.13)

We say that 〈V,Q, X,R+〉 has the weak-Laplace duality property on O and D at x, shortly
w − LDx(O,D) if ∀λ > 0

�µλ

(
ΓxO(ξ)

⋂
Lap(V)(x),ΓxD(π)

)
⊆ Γx(π).
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De�nition 12. Let 〈V,W, X, Y 〉 be a (Θ, E)−structure and denote W = 〈〈M, γ〉 , ρ,X,R〉.
Assume that for all x ∈ X

Mx ⊆ L1 (Y,LSx(Ex), µ) . (4.14)

Set Mµ +
{
〈Mµ

x,Yx〉
}
x∈X where for all x ∈ X

Mµ
x + {σ(x) |σ ∈ Γ(ρ)} closure in the space L1 (Y,LSx(Ex), µ)s;

Yx + { sup
(t,j,B)∈O

P x
(t,j,B) � M

µ
x |O ∈ Pω(Y × J ×Θ)}.

Notice that Mµ is a nice family of Hlcs, and that Γ(ρ) satis�es by construction FM(3) with
respect to Mµ. Moreover by [20, equation (5.7)] and the fact that {t} ∈ Comp(Y ) for all t ∈ Y

P x
(t,j,B) = qx({t},j,B). (4.15)

By [12, Corollary 1.6.(iii)] we deduce that Γ(ρ) satis�es FM(4) with respect to {〈Mx,Rx〉}x∈X .
Therefore we obtain by [20, equation (5.6)] and (4.15) that for all t ∈ Y , j ∈ J , B ∈ Θ and for
all σ ∈ Γ(ρ)

X 3 x 7→ P x
(t,j,B)(σ(x)) is u.s.c.

Moreover the upper envelope of a �nite set of u.s.c.maps is an u.s.c.map, see [2, Theorem 4,§6.2.,
Chapter 4], therefore for all O ∈ Pω(Y × J ×Θ)

X 3 x 7→ sup
(t,j,B)∈O

P x
(t,j,B)(σ(x)) is u.s.c. (4.16)

Hence Γ(ρ) satis�es FM(4) with respect to Mµ. Finally by the boundedness of Γ(ρ) by de�nition
and by (4.15) we have also that for all σ ∈ Γ(ρ) and O ∈ Pω(Comp(Y )× J ×Θ)

sup
x∈X

sup
(t,j,B)∈O

P x
(t,j,B)(σ(x)) <∞.

Therefore we can construct the bundle generated by the couple 〈Mµ,Γ(ρ)〉 [20, De�nition 15]

V(Mµ,Γ(ρ)).

Clearly 〈V,V(Mµ,Γ(ρ)), X, Y 〉 is a (Θ, E , µ)−structure that we call the (Θ, E , µ)−structure
underlying 〈V,W, X, Y 〉.

De�nition 13. Let 〈V,Q, X, Y 〉 be a (Θ, E , µ)− structure and A ⊂
∏

x∈X Hx. De�ne Apeq
as the set of all pointwise equicontinuous elements in A, and Aceq as the set of all compactly
equicontinuous elements in A, see [20, De�nition 7].

Remark 2. [20, Lemma 5.1] holds by replacing a (Θ, E)−structure 〈V,W, X, Y 〉 with a
(Θ, E , µ)− structure 〈V,Q, X, Y 〉 and K ∈ Comp(Y ) with t ∈ Y . In what follows when re-
ferring to [20, Lemma 5.1] for a (Θ, E , µ)− structure we shall mean the corresponding result
with the replacements described here.

Lemma 4.1. Let 〈V,Q, X, Y 〉 be a (Θ, E , µ)− structure and 〈V,Z,H〉 be µ−related, where
Q + 〈〈H, γ〉 , ξ,X,Y〉 and Hx + Hx for all x ∈ X. Thus

Γ(ξ)FE(Θ) ⊆ Γ(ζ)⇒ (∀x ∈ X)
(
Γx�(ξ)peqFΓxE(Θ)(π) ⊆ Γx�(ζ)

)
.
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Proof. Let j ∈ J , x ∈ X and w ∈ ΓxE(Θ)(π), so there exists v ∈ E(Θ) such that v(x) = w(x) then

by [20, Corollary 3.1]
lim
z→x

νj(w(z)− v(z)) = 0. (4.17)

Moreover let F ∈ Γx�(ξ), so by [20, Lemma 5.1] ∃σ ∈ Γ(ξ) such that F (x) = σ(x) and for all
t ∈ Y

lim
z→x

νj (F (z)(t)v(z)− σ(z)(t)v(z)) = 0. (4.18)

Moreover (∀t ∈ Y )(∃M(t,j) > 0)(∃ j1 ∈ J)(∀z ∈ X)

νj ((FFw)(z)(t)− (σFv)(z)(t)) = νj (F (z)(t)w(z)− σ(z)(t)v(z))

≤ νj (F (z)(t)(w(z)− v(z))) + νj (F (z)(t)v(z)− σ(z)(t)v(z))

≤M(t,j)νj1(w(z)− v(z)) + νj (F (z)(t)v(z)− σ(z)(t)v(z)) .

Therefore by (4.17) and (4.18) for all t ∈ Y

lim
z→x

νj ((FFw)(z)(t)− (σFv)(z)(t)) = 0.

Moreover (∀t ∈ Y )(∃M(t,j) > 0)(∃ j1 ∈ J)

sup
z∈X

νj((FFw)(z)(t)) ≤M(t,j) sup
z∈X

νj1(w(z)) <∞. (4.19)

By the antecedent of the implication of the statement we deduce that σFv ∈ Γ(ζ) hence the
statement follows by [20, Corollary 3.1], (4.2), by the fact that by (4.4) FFw ∈

∏
x∈X Tx and

by (4.19).

Proposition 4.1. Let 〈V,W, X, Y 〉 be a compatible (Θ, E)−structure. Then for all x ∈ X

(Γx�(ρ)peq)t • ΓxE(Θ)(π) ⊆ Γx�(π) (4.20)

Proof. Notice that (FFv)(t) = Ft • v, thus if we set Y = {pt} the statement follows by Lemma
4.1.

Corollary 4.1. Let 〈V,Q, X, Y 〉 be a (Θ, E , µ)− structure and 〈V,Z,H〉 be µ−related. If x ∈ X
is such that its �lter of neighbourhoods admits a countable basis, then

Γ(ξ)FE(Θ) ⊆ Γ(ζ)⇒
µ

�
([

Γx�(ξ)peqFΓxE(Θ)(π)
]
ui

)
⊆ Γx�(π).

Here Q + 〈〈H, γ〉 , ξ,X,Y〉, Z + 〈〈T, δ〉 , ζ,X,K〉 and Hx + Hx for all x ∈ X.

Proof. By Theorem 4.1 and Lemma 4.1.

Lemma 4.2. Let 〈V,Q, X, Y 〉 be an invariant (Θ, E , µ)− structure where Θ de�ned in [21,
equation (2.16)]. Then for all x ∈ XH ∈

[(
b∏

z∈X

Hz

)x

�

]
peq

| (∀t ∈ Y )(Ht • E(Θ) ⊆ Γx(π))

 ⊆ Γx�(ξ). (4.21)

Proof. Let v ∈ E(Θ), t ∈ Y and H belong to the set in the left side of (4.21). Thus by (4.12)
∃F ∈ Γ(ξ) such that Ft • v ∈ Γ(π), F (x) = H(x) and Ht • v ∈ Γx(π) by construction. Then by
[20, Corollary 3.1] we obtain for all j ∈ J

lim
z→x

νj(H(z)(t)v(z)− F (z)(t)v(z)) = 0.

Therefore the statement follows by [20, Lemma 5.1] and [21, equation (2.17)].



96 B. Silvestri

Remark 3. Notice that Lemma 4.2 holds if we replace invariant (Θ, E , µ)− structure with
invariant (Θ, E)− structure, see [20, De�nition 6] and assume that Comp(Y ) = Pω(Y ).

By recalling De�nition 5 and De�nition 4 we can state the following signi�cant

Corollary 4.2. Let V be a Banach bundle and set E + {Ez}z∈X . Let M > 1, β ∈ R and
let T ∈ G(M,β,E) satisfy the property of separation of the spectrum. Let x ∈ X admitting a
countable basis of its �lter of neighbourhoods. Let Γ be a curve associated with T and (K,A, φ)
be a triplet associated with Γ (De�nition 4) such that{

Re(Γ) ⊆ R−,
β > 0⇒ −β /∈ Re(Γ).

(4.22)

Moreover let Q = 〈〈H, γ1〉 , ξ,X,R〉 and Z = 〈〈T, γ2〉 , ζ,X,K〉 be such that

1. 〈V,Q, X,R+〉 is an invariant (Θ, E , µ)−structure for all µ ∈ {νφ, ηφs | s ∈ K}, with Θ
determined by E by [21, equation (2.16)];

2. 〈V,Z,H〉 is µ−related for all µ ∈ {νφ, ηφs | s ∈ K}, moreover Hz + Hz, for all z ∈ X;

3. there exist F,G ∈ Γ(ξ) such that F (x) =WT (x) and G(x) = Rφ(x);

4. for all z ∈ X
Ccs
(
R+,LSz(Ez)

)
⊆ Hz; (4.23)

5. Γ(ξ)FE(Θ) ⊆ Γ(ζ).

Thus
WT ∈ Γx(ξ)⇒ P • ΓxE(Θ)(π) ⊆ Γx(π). (4.24)

Moreover let D = 〈〈B, γ3〉 , η,X,L〉 be such that 〈V,D, X, {pt}〉 is an invariant
(Θ, E)−structure. If Pr (Ez) ⊂ Bz for all z ∈ X and there exists N ∈ Γ(η) such that
N(x) = P (x), then

WT ∈ Γx(ξ)⇒ P ∈ Γx(η). (4.25)

Proof. In this proof we denote Rφ
T simply by Rφ. Rφ is K−supported by construction, moreover

the resolvent map Rφ(z) being analytic is ‖ · ‖B(Ez)− continuous hence continuous as a map
valued in LSz(Ez) for any z ∈ X. So

Rφ ∈
∏
z∈X

Ccs
(
R+,LSz(Ez)

)
,

hence by (4.23) follows

Rφ ∈
∏
z∈X

Hz. (4.26)

By (3.4) for all s ∈ K, z ∈ X and ∀vz ∈ Ez

‖R(T (z), φ(s))vz‖ ≤
∫ ∗
R+

e−|Re(φ(s))|t‖e−tT (z)vz‖dt

≤M‖vz‖
∫ ∗
R+

e(β−|Re(φ(s))|)tdt =
M‖vz‖

β − |Re(φ(s))|
,

(4.27)

where
∫ ∗
R+ is the upper integral on R+ with respect to the Lebesgue measure. We considered in

the �rst inequality [4, Proposition 6, §1, Chapter 6], in the second one the inequality [14, (1.37),
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n◦4, §1, Chapter 9], �nally in the equality the Laplace transform of the map exp(βt). Therefore
by (4.26) and (4.27)

Rφ ∈

(∏
z∈X

Hz

)
peq

.

Thus by (4.27), [21, equation (2.16)] and (4.11)

Rφ ∈

(
b∏

z∈X

Hz

)
peq

. (4.28)

By (4.26) and (4.4) we have that RφFv ∈
∏

z∈X Tz for all v ∈
∏b

z∈X Ez. By hypothesis (4.22)
we deduce that 1

β−|Re(φ(s))| is de�ned on K, hence continuous and integrable in it, thus by (4.27)

RφFv ∈

[∏
z∈X

Tz

]
ui

. (4.29)

By the continuity of 1
β−|Re(φ(s))| on K we deduce that the map

| dφ
ds

(s)|
β−|Re(φ(s))| is integrable in K.

Hence by (4.27) and (3.3)

sup
z∈X
‖P (z)‖B(Ez) ≤ D +

1

2πi

∫
K

M
∣∣dφ
ds

(s)
∣∣

β − |Re(φ(s))|
ds. (4.30)

Therefore for all v ∈ E by considering that E ⊂
∏b

z∈X Ez

sup
z∈X
‖P (z)v(z)‖B(Ez) ≤ D sup

z∈X
‖v(z)‖Ez <∞.

Thus

P ∈
b∏

z∈X

Bz. (4.31)

Let z ∈ X and v ∈ ΓzE(Θ)(π). By (3.4) for all s ∈ K

(RφFv)(z)(s) =
ηφs
�(WTFv)(z). (4.32)

Moreover by (3.3)

P • v =
νφ

�(RφFv). (4.33)

Notice that (RφFv)(z)(s) =
(
Rφ(·)(s) • v

)
(z) so by (4.32) for all s ∈ K

Rφ(·)(s) • v =
ηφs
�(WTFv). (4.34)

If WT ∈ Γx(ξ) then by [14, Chapter 9, §1, n◦4, (1.37)] and hypothesis (3) follows that WT ∈
Γx�(ξ)peq. Therefore for all w ∈ ΓxE(Θ)(π) by using [14, Chapter 9, §1, n◦4, (1.37)] we can apply

Corollary 4.1 to WTFw and then since (4.34) we obtain for all s ∈ K

Rφ(·)(s) • w ∈ Γx(π). (4.35)

By construction E(Θ) ⊆ Γ(π) so E(Θ) ⊆ ΓxE(Θ)(π), hence

Rφ(·)(s) • E(Θ) ⊆ Γx(π). (4.36)
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Moreover by (4.28) and hypothesis (3) follows that

Rφ ∈

[(
b∏

z∈X

Hz

)x

�

]
peq

.

Hence by Lemma 4.2 and (4.36)
Rφ ∈ Γx�(ξ)peq. (4.37)

Finally (4.24) follows by (4.37), (4.33), (4.29) and Corollary 4.1. Next since (4.31), (4.30) and
the hypothesis that there exists N ∈ Γ(η) such that N(x) = P (x), we obtain that

P ∈

[(
b∏

z∈X

Bz

)x

�

]
peq

.

Thus (4.25) follows by (4.24), Remark 3 and by E(Θ) ⊆ ΓxE(Θ)(π).

Remark 4. [21, Proposition 4.2] can be used in order to verify part of hypothesis (1) of Corol-
lary 4.2.

The following general result shall permit to apply Corollary 4.2 to [21, Theorem 2.1].

Proposition 4.2. Let 〈V,W, X, Y 〉 be a (Θ, E)−structure and let us denote W =
〈〈M, δ〉 , ρ,X,R〉. Assume that (4.14) holds for all x ∈ X and let 〈V,V(Mµ,Γ(ρ)), X, Y 〉 be
the (Θ, E , µ)− structure underlying 〈V,W, X, Y 〉. Then for all x ∈ X

Γx�(ρ) ⊆ ΓxΓ(ρ)(πMµ), (4.38)

inclusion to be considered modulo canonical isomorphism.

Proof. By construction it results that Γ(ρ) ⊆ Γ(πMµ) modulo the canonical isomorphism, thus
the statement follows since [20, Lemma 5.1] and (4.15).

De�nition 14. We call X = 〈V, x∞,U0〉 a quasi-appropriate set of contractions (isometries)
if the following holds. V = 〈〈E, τ〉 , π,X, ‖ · ‖〉 is a Banach bundle where X is a completely
regular space, x∞ ∈ X such that its �lter of neighbourhoods admits a countable basis and
U0 ∈

∏
x∈X0

C (R+, Bs(Ex)) such that U0(x) is a C0−semigroup of contractions (isometries) on
Ex for all x ∈ X0 + X − {x∞}. Moreover let Tx be the in�nitesimal generator of the semigroup
U0(x) for any x ∈ X0, let 〈〈E(E⊕), τ(E⊕, E⊕)〉 , πE⊕ , X, n⊕〉 be the bundle direct sum of the family
{V,V}5 and set 

T0 is the map on X0 such that

T0(x) + Graph(Tx), x ∈ X0,

Φ + {φ ∈ Γx∞(πE⊕) | (∀x ∈ X0)(φ(x) ∈ T0(x))},
E + {v ∈ Γ(π) | (∃φ ∈ Φ)(v(x∞) = φ1(x∞))},
Bv : X 3 x 7→ {v(x)}, ∀v ∈

∏
x∈X Ex,

Θ + {Bw |w ∈ E} ,
T is the map on X extending T0 and such that

T (x∞) + {φ(x∞) |φ ∈ Φ},
D(Tx∞) + Prx∞1 (T (x∞)) = {φ1(x∞) |φ ∈ Φ}.

(4.39)

We call X = 〈V, x∞,U0〉 an appropriate set of contractions (isometries) if it is a quasi-appropriate
set of contractions (isometries) and all the following holds.

5well-set since B is full by the Dupre' theorem
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1. D(Tx∞) is dense in Ex∞ ,

2. {v(x) | v ∈ E} is dense in Ex for all x ∈ X0;

hence according to [21, Theorem 2.1] what follows

Tx∞ : D(Tx∞) 3 φ1(x∞) 7→ φ2(x∞),

de�nes a linear operator. We require that ∃λ0 > 0 (∃λ0 > 0, λ1 < 0) such that the range
R(λ0 − Tx∞) is dense in Ex∞ , (the ranges R(λ0 − Tx∞) and R(λ1 − Tx∞) are dense in Ex∞).
Thus according to [21, Theorem 2.1] Tx∞ is the in�nitesimal generator of a C0−semigroup of
contractions (isometries) on Ex∞ . Therefore we can de�ne section of semigroups associated with
X the following map

U ∈
∏
x∈X

U‖·‖B(Ex)
(LSx(Ex)),

(U ∈
∏

x∈X Uis(LSx(Ex))) such that U(x) is the C0−semigroup of contractions (isometries) on
Ex whose in�nitesimal generator is Tx for all x ∈ X. Finally set

T : X 3 x 7→ −Tx ∈ Cld(Ex).

We require that T satis�es the property of separation of the spectrum and that there exists a
curve Γ associated with T such that

Re(Γ) ⊆ R−.
We call T section of generators associated with X. Finally for any curve Γ associated with
T such that Re(Γ) ⊆ R− we de�ne section of projectors associated with X and Γ the map
P ∈

∏
x∈X Pr(Ex) such that for all x ∈ X

P(x) + − 1

2πi

∫
Γ

R(−Tx; ζ) dζ ∈ B(Ex).

Here we recall that R(−Tx; ·) : P (−Tx) 3 ζ 7→ (−Tx− ζ)−1 ∈ B(Ex) is the resolvent map of −Tx
and P (−Tx) is its resolvent set, while the integration is with respect to the norm topology on
B(Ex).

Theorem 4.2 (MAIN2). Let X = 〈V, x∞,U0〉 be a quasi-appropriate set of contractions (isome-
tries), let us denote V = 〈〈E, τ〉 , π,X, ‖ · ‖〉 and use the notation in (4.39). Assume that
{v(x∞) | v ∈ E} is dense in Ex∞. Then Dom(Tx∞) is dense in Ex∞. Next assume that X
satis�es all the remaining requests in order to be an appropriate set of contractions (isometries).
Let U be the section of semigroups associated with X, Γ be a curve associated with the section
of generators associated with X such that Re(Γ) ⊆ R−, (K,A, φ) be a triplet associated with Γ
and P be the section of projectors associated with X and Γ. Let n denote the Lebesgue measure
on R+. We assume that there exist W = 〈〈M, δ〉 , ρ,X,R〉 and Z = 〈〈T, γ2〉 , ζ,X,K〉 with the
following properties.

1. 〈V,W, X,R+〉 is a (Θ, E)−structure;

2. for all x ∈ X
Ccs
(
R+,LSx(Ex)

)
⊆Mx ⊆ L1(R+,LSx(Ex), n);

3. 〈V,V(Mn,Γ(ρ)), X,R+〉6 is invariant and 〈V,Z,Mn〉 is n−related such that L∞(R+, n) I
Γ(ζ) ⊆ Γ(ζ);

6De�nition 12
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4. Γ(ρ)FE(Θ) ⊆ Γ(ζ);

5. U‖·‖B(Ex)
(LSx(Ex)) ⊆Mx (Uis(LSx(Ex)) ⊆Mx), for all x ∈ X;

6. ∃F ∈ Γ(ρ) such that F (x∞) = U(x∞) and

i 〈V,W, X,R+〉 has the LDx∞({F}, E) or it has the LD({F}, E);

ii for any v ∈ E there exists φ ∈ Φ such that v(x∞) = φ1(x∞) and (∀{zn}n∈N ⊂
X | limn∈N zn = x∞) we have that {U(zn)(·)φ1(zn) − F (zn)(·)v(zn)}n∈N is a bounded
equicontinuous sequence.

Thus we can state what follows.

1. If ∃G ∈ Γ(ρ) such that G(x∞) = Rφ(x∞), then P • Γx∞E(Θ)(π) ⊆ Γx∞(π).

2. Let D = 〈〈B, γ3〉 , η,X,L〉 be such that 〈V,D, X, {pt}〉 is an invariant (Θ, E)−structure.
If Pr (Ex) ⊂ Bx for all x ∈ X and if there exists N ∈ Γ(η) such that N(x∞) = P(x∞),
then

P ∈ Γx∞(η), (4.40)

and
{〈T , x∞,Φ〉} ∈ ∆ 〈V,D,Θ, E〉 . (4.41)

Proof. V is full since the Dupre' theorem [12, Corollary 2.10]. So by [21, Proposition 2.2] and
the density assumption follows that Dom(Tx∞) is dense in Ex∞ . Since [12, 2.2] we deduce that
the set of all bounded continuous sections of any bundle of Ω−spaces over a completely regular
space satis�es the property FM(3). Therefore Mx ⊂ Mn

x for all x ∈ X, since the immersion
〈Mx,Rx〉 ↪→ L1 (Y,LSx(Ex), n)s is continuous. Thus

Ccs
(
R+,LSx(Ex)

)
⊂ Mn

x. (4.42)

Now since Re(Γ) ⊆ R− and since dφ/ds is continuous and then bounded on K, we deduce by
hypothesis (3) that〈

V,V(Mn,Γ(ρ)), X,R+
〉
is an invariant (Θ, E , µ)−structure and

〈V,Z,Mn〉 is µ−related, ∀µ ∈ {νφ, ηφs | s ∈ K}.
(4.43)

In particular [21, equation (2.14)] holds, so we can apply [21, Theorem 2.1] to obtain U ∈ Γx∞(ρ)
and in virtue of hypothesis (6) that U ∈ Γx∞� (ρ). Thus by Proposition 4.2 we have

U ∈ Γx∞� (πMn). (4.44)

Now for the position Q = V(Mn,Γ(ρ)) the hypotheses (1) and (2) of Corollary 4.2 are satis�ed
since (4.43). Moreover F,G ∈ Γ(πMn) indeed Γ(ρ) ⊆ Γ(πMn) modulo the canonical isomorphism,
so hypothesis (3) of Corollary 4.2 is satis�ed. Hence statement (1) follows by (4.44) and (4.24),
while (4.40) follows by (4.44) and (4.25). Next 〈T , x∞,Φ〉 ∈ Gr(V,V) since [21, Theorem 2.1],
while P(x)Tx ⊆ TxP(x) for all x ∈ X since the resolvent map of any operator commutes with
its operator see for example [14, § 6.1. Chapter 3], thus (4.41) follows by (4.40).

Remark 5. By [20, equation (5.8)] follows that (4.40) is equivalent to say that for all v ∈ E

lim
z→x∞

‖(P(z)−N(z)) v(z)‖ = 0.
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5 Kurtz Bundle Construction

In this section we construct a special bundle E of Banach space such that for it [21, Theorem 2.1]
reduces to the [15, Theorem 2.1.] showing in this way that (a particular case) of the construction
of Kurtz falls into the general setting of bundle of Ω−spaces.

Notation 1. In this section we shall use the notation of [15] with the additional speci�cation of
denoting with ‖·‖n the norm in the Banach space Ln. Moreover we denote by X the Alexandrov
(one-point) compacti�cation of the locally compact space N with the discrete topology. Here
we recall some de�nitions given in [15]. 〈L, ‖ · ‖〉 is a Banach space and {〈Ln, ‖ · ‖n〉}n∈N is
a sequence of Banach spaces, moreover {Pn ∈ B(L,Ln)}n∈N is a sequence of bounded linear
operators such that ∀f ∈ L

lim
n→∞

‖Pnf‖n = ‖f‖. (5.1)

Given an element f ∈ L and a sequence {fn}n∈N such that fn ∈ Ln for all n ∈ N we set

lim
n→∞

fn
K
= f

def⇔ lim
n→∞

‖fn − Pnf‖n = 0. (5.2)

In addition to the requirements of [15] we assume also that

(∀n ∈ N)(Pn(L) = Ln) (5.3)

We shall set here L∞ + L, ‖ · ‖ + ‖ · ‖∞, where ‖ · ‖ is the norm on L. Finally for all Z we
recall that Bs(Z) is the locally convex space of all linear bounded operators on Z with the strong
operator topology.

Lemma 5.1. Let f, g ∈ L and {fn}n∈N such that fn ∈ Ln for all n ∈ N. Then (limn→∞ fn
K
=

f) ∧ (limn→∞ fn
K
= g)⇒ f = g

Proof. Let (limn→∞ fn
K
= f) and (limn→∞ fn

K
= g) thus

lim
n∈N
‖Pn(f − g)‖ ≤ lim

n∈N
‖Pnf − fn‖+ lim

n∈N
‖Png − fn‖ = 0,

so the statement follows by (5.1).

De�nition 15. Set {
L + {〈Lx, ‖ · ‖x〉}x∈X ,
E(L) + {σf | f ∈ L},

where σf ∈
∏

x∈X Lx such that σf (n) + Pnf for all n ∈ N and σf (∞) + f .

De�nition 16. By (5.1) the sequence {‖Pnf‖n}n∈N is bounded for all f ∈ L so σf ∈
∏b

x∈X Lx.
Moreover by (5.1) E(L) satis�es FM(4), �nally by the request (5.3) it satis�es also FM(3).
Therefore we can de�ne the Kurtz bundle the following bundle

V(L, E(L))

generated by the couple 〈L, E(L)〉, see in [20, De�nition 15].

Remark 6. By [20, Remark 11] we have that

E(L) ⊆ Γ(πL) modulo the canonical isomorphism. (5.4)

Finally by applying the principle of uniform boundedness, [14, Theorem 1.29, No3, Chapter 3],
we deduce that the sequence {‖Pn‖B(L,Ln)}n∈N is bounded.
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De�nition 17. Fix U0 ∈
∏

n∈N C (R+, Bs(Ln)) such that U0(x) is a (C0)−semigroup of isometries
on Ln for all n ∈ N. Denote by Tn the in�nitesimal generator of the semigroup U0(n) for any
n ∈ N. Let us take the positions [21, equation (2.18)], where 〈〈E(E⊕), τ(E⊕, E⊕)〉 , πE⊕ , X, n⊕〉
is the bundle direct sum of the family {V(L, E(L)),V(L, E(L))}. In addition we maintain the
[21, Notation 1] where V has to be considered the Kurtz bundle and x∞ + ∞, thus T ∈∏

x∈X Graph(Lx × Lx) so that T � X − {∞} + T0 and

T (∞) + {φ(∞) |φ ∈ Φ},

and D(T∞) + Pr∞1 (T (∞)) = {φ1(∞) |φ ∈ Φ}. Finally S + {Sx}x∈X where (∀B ∈ Θ)(∀x ∈ X)
D(B, E) + E ∩

(∏
x∈X Bx

)
BxB + {v(x) | v ∈ D(B, E)}}
Sx + {BxB |B ∈ Θ}.

(5.5)

Proposition 5.1. Let f ∈
∏

x∈X Lx Thus

lim
n→∞

f(n)
K
= f(∞)⇔ f ∈ Γ∞(πL).

Proof. By (5.4) and implication (3) ⇒ (1) of [20, Corollary 3.1] we have that limn→∞ f(n)
K
=

f(∞) implies that

f is continuous at ∞,

indeed σf(∞) ∈ Γ(πL) modulo isomorphism. By the upper semicontinuity of ‖ · ‖ : E → R+,
due to the construction of the bundle V(L, E(L)) and to [15, 1.6.(ii)], and by the fact that the
composition of any u.s.c. map with any continuous one at a point is an u.s.c. map in the same
point, we deduce that ‖ · ‖ ◦ f is u.s.c. at ∞. Thus supx∈X ‖f(x)‖x <∞, indeed we applied to
the u.s.c. map ‖ · ‖ ◦ f the fact that X is compact (so quasi compact), −‖ · ‖ ◦ f is l.s.c, the [2,
Theorem 3, §6.2., Chapter 4] and [2, formula (2), §5.4, Chapter 4]. Therefore

f ∈
b∏

x∈X

Lx.

Then f ∈ Γ∞(πL). The remaining implication follows by [20, Corollary 3.1] and by the fact that
V(L, E(L)) is full since X is compact so completely regular and since the Dupre' theorem see for
example [12, Corollary 2.10].

Proposition 5.2. We have

Γ∞(πL⊕) =

{
σ1 ⊕ σ2 |σi ∈

∏
x∈X

Lx, lim
n→∞

σi(n)
K
= σ(∞), i = 1, 2

}
.

Here, we used the [20, Convention 1] and set (σ1 ⊕ σ2)(x) + σ1(x)⊕ σ2(x).

Proof. By [20, Convention 1] and [20, Corollary 4.1] σ1⊕ σ2 is continuous at ∞ if and only if σi
is continuous at ∞ for all i = 1, 2. Thus the statement follows by Proposition 5.1.

Proposition 5.3. Let U0 ∈
∏

n∈N C (R+, Bs(Ln)) be such that U0(x) is a (C0)−semigroup of
contractions on Ln for all n ∈ N. Moreover let us denote by Tn the in�nitesimal generator of
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the semigroup U0(n) for any n ∈ N. Thus with the positions [21, equation (2.18)] where V is
the Kurtz bundle we have

Φ =
{
σ1 ⊕ σ2 | (∀i ∈ {1, 2})(σi ∈

∏
x∈X Lx)(1− 2)

}
(1) limn→∞ σi(n)

K
= σi(∞)

(2)(∀n ∈ N)(σ1(n), σ2(n)) ∈ Graph(Tn),

(5.6)

and 
E =

{
σσ1(∞) |σ1 ∈

∏
x∈X Lx(1− 2− 3)

}
(1) limn→∞ σ1(n)

K
= σ1(∞)

(2)(∀n ∈ N)(σ1(n) ∈ Dom(Tn))

(3)(∃ f ∈ L∞)(limn→∞ Tnσ1(n)
K
= f).

(5.7)

Moreover, there exists a unique function f satisfying (3) in (5.7) and (∀σ1 ∈ E)((σ1, σ2) ∈ Φ),
where σ2 ∈

∏
x∈X Lx such that (∀n ∈ N)(σ2(n) + Tnσ1(n)) and σ2(∞) + f .

Proof. The �rst statement follows by Proposition 5.2, while the second one follows by the �rst
one and Lemma 5.1.

Assumptions 2. We assume ∃ {In ∈ B(Ln, L)}n∈N such that{
supn∈N ‖In‖B(Ln,L) <∞,
(∀f ∈ L)(∀n ∈ N)(In ◦ Pn = Id).

(5.8)

Moreover we assume that
lim
n→∞

‖Pn‖ ≤ 1. (5.9)

In addition we assume that (∀g ∈ L)(∃σ1 ∈
∏

x∈X Lx) such that
(1) limn→∞ σ1(n)

K
= σ1(∞)

(2)(∀n ∈ N)(σ1(n) ∈ Dom(Tn))

(3)(∃ f ∈ L∞)(limn→∞ Tnσ1(n)
K
= f)

(4)g = σ1(∞).

(5.10)

Set
U +

{
F ∈ C

(
R+, Bs(L)

)
| (∀s ∈ R+)(∀v ∈ L)(‖F (s)v‖ = ‖v‖)

}
. (5.11)

In the following de�nition we shall give the data for constructing a bundle W such that
〈V(L, E(L)),W, X,R+〉 would be a (Θ, E)−structure.

De�nition 18. Set P∞ + I∞ + Id : L→ L, moreover ∀U ∈ U set FU ∈
∏

x∈X Cc (R+,LSx(Lx))
such that ∀x ∈ X {

FU(x) + Px ◦ U(·) ◦ Ix,
Px ◦ U(·) ◦ Ix : R+ 3 s 7→ Px ◦ U(s) ◦ Ix ∈ B(Lx).

Now we can de�ne ∀x ∈ X
Mx + span {FU(x) |U ∈ U} .

Mx has to be considered as Hlcs with the topology induced by that on Cc (R+,LSx(Lx)). 7

Moreover set
M + span {FU |U ∈ U} .

7Cc (R+,LSx
(Lx)) is Hausdor� for all x ∈ X by the fact that

⋃
B∈Θ BxB = Lx, see later Proposition 5.4.
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Theorem 5.1. Mx as Hlcs is well-de�ned for any x ∈ X, moreover M ⊂
∏b

x∈X Mx and Mx =
{F (x) |F ∈M}. FinallyM satis�es FM(3)− FM(4) with respect to M.

Proof. By [21, Remark 4] we have that Cc (R+, Bs(Lx)) ⊂ Cc (R+,LSx(Lx)) hence for the �rst
sentence of the statement it is su�cient to show that Px ◦ U(·) ◦ Ix ∈ Cc (R+, Bs(Lx)) for any
U ∈ U. For x = ∞ is trivial so let n ∈ N and fn ∈ Ln thus for all s ∈ R+ and all net {sα}α∈D
in R+ converging at s we have

lim
α∈D
‖Pn ◦ U(sα) ◦ In(fn)− Pn ◦ U(s) ◦ In(fn)‖n = lim

α∈D
‖Pn(U(sα)− U(s))Infn‖n = 0,

where we used the fact that U is strongly continuous and Pn is norm continuous by construction.
Thus the �rst sentence of the statement follows. Let v ∈ E and U ∈ U thus ∀K ∈ Comp(R+)

sup
n∈N

sup
s∈K
‖PnU(s)Inv(n)‖n ≤M sup

n∈N
sup
s∈K
‖U(s)Inv(n)‖∞

= M sup
n∈N
‖Inv(n)‖∞

≤M sup
n∈N
‖In‖ sup

n∈N
‖v(n)‖∞ <∞.

HereM + supn∈N ‖Pn‖, in the second one the hypothesis that U(s) is an isometry for all s ∈ R+,

in the �nal inequality we considered (5.8), E ⊂
∏b

x∈X Lx and that M < ∞ by Remark 6.

Therefore by [21, Remark 4] M ⊂
∏b

x∈X Mx. The equality Mx = {F (x) |F ∈ M} comes by
construction, in particularM satis�es the FM(3) with respect to the M. ∀v ∈ E

lim
n→∞

sup
s∈K
‖PnU(s)Inv(n)‖n ≤ lim

n→∞

(
‖Pn‖ sup

s∈K
‖U(s)Inv(n)‖n

)
, [2, Proposition 11, §5.6, Chapter 4]

≤ lim
n→∞

‖Pn‖ lim
n→∞

sup
s∈K
‖U(s)Inv(n)‖n,[2, Proposition 13, §5.7, Chapter 4]

≤ lim
n→∞

‖Inv(n)‖∞, (5.9), (5.11)

= lim
n→∞

‖InPnf‖∞, v ∈ E ⊂ Γ(π) ' E(L)

= ‖f‖∞, (5.8)

= ‖v(∞)‖∞.

Thus by considering that U is a map of isometries we have

lim
n→∞

sup
s∈K
‖PnU(s)Inv(n)‖n ≤ sup

s∈K
‖P∞U(s)I∞v(∞)‖∞.

Hence by [2, Proposition 3, §7.1, Chapter 4] and [2, formula (13), §5.6, Chapter 4] we deduce
that

X 3 x 7→ sup
s∈K
‖PxU(s)Ixv(x)‖x is u.s.c. at ∞,

therefore it is u.s.c. on X because of it is continuous in each point in N due to the fact that the
topology induced on N by that on X is the discrete topology. SoM satis�es the FM(4) with
respect to the M.

De�nition 19. Theorem 5.1 allows us to construct a bundle of Ω−space, namely the bundle
V(M,M) generated by the couple 〈M,M〉, see [20, De�nition 15].

Remark 7. By [20, Remark 11] we have

M⊆ Γ(πM) modulo the canonical isomorphism. (5.12)

Hence by Mx = {F (x) |F ∈M} we have that V(M,M) is full.



Use of bundles of locally convex spaces in problems of convergence of semigroups of operators. III 105

Proposition 5.4. We have that
⋃
B∈Θ BxB = Lx for all x ∈ X. Moreover,

〈V(L, E(L)),V(M,M), X,R+〉 is a (Θ, E)−structure.

Proof. By assumptions (5.10), (5.3), Proposition 5.3 and [21, Remark 4] we obtain that⋃
B∈Θ BxB = Lx for all x ∈ X. The remaining part of the statement follows by the construction

ofM and M.

Corollary 5.1. If D(Tx∞) is dense in Ex∞, and ∃λ0 > 0, λ1 < 0 such that the ranges R(λ0 −
Tx∞) and R(λ1 − Tx∞) are dense in Ex∞), then 〈T ,∞,Φ〉 ∈ Gr(V(L, E(L)),V(L, E(L))) and the
following

T∞ : D(T∞) 3 φ1(∞) 7→ φ2(∞)

is a well-de�ned operator which is the generator of a C0−semigroup of isometries on E∞.

Proof. By Propositions 5.4 and 5.5 we have that the �rst part of hypotheses of [21, Theorem 2.1]
is satis�ed so the statement follows by the �rst part of the statement of [21, Theorem 2.1].

De�nition 20. Let us denote by U∞ the C0−semigroup of isometries on L∞. Moreover set
U ∈

∏
x∈X Uis(Bs(Lx)) if U � N = U0 and U(∞) = U∞.

Theorem 5.2. (∃F ∈ Γ(πM))(F (∞) = U(∞)) such that (∀v ∈ E)(∃φ ∈ Φ) s.t. φ1(x∞) = v(x∞)
and (∀{zn}n∈N ⊂ X | limn∈N zn = x∞) we have that {U(zn)(·)φ1(zn) − F (zn)(·)v(zn)}n∈N is a
bounded equicontinuous sequence. Moreover we can choose F such that F = FU∞.

Proof. By Proposition 5.3 and (5.12) the statement is equivalent to showing that ∀σ1 ∈
∏

x∈X Lx
satisfying (1− 2− 3) of (5.7) and (∀{zn}n∈N ⊂ X | limn∈N zn =∞) we have that

{U(zn)(·)σ1(zn)− FU∞(zn)(·)σσ1(∞)(zn)}n∈N (5.13)

is a bounded equicontinuous sequence. Moreover by the second assumption (5.8) and (5.13)

{U(zn)(·)σ1(zn)− PznU∞(zn)(·)σ1(∞)}n∈N (5.14)

is a bounded equicontinuous sequence. Set σ2 ∈
∏

x∈X Lx such that σ2(x) + Txσ1(x), for all
x ∈ X, thus

σi ∈ Γ∞(πL),

for all i = 1, 2, indeed for i = 1 follows by (1) of (5.7) and Proposition 5.1, while for i = 2
follows by construction of T∞, the second part of Proposition 5.3, the fact that by construction
Φ ⊆ Γ(πE⊕), see [21, equation (2.18)], and �nally by [20, Corollary 4.1]. Therefore in particular
σi is continuous at ∞. Thus by considering that σσi(∞) ∈ Γ(πL) modulo isomorphism by (5.4)
and that V(L, E(L)) is full we deduce by [20, Proposition 3.1]

lim
n∈N
‖σi(zn)− σσi(∞)(π ◦ σi(zn))‖π◦σi(zn) = 0.

Then by considering that π ◦ σi = Id because of σi is a section, we have

lim
n∈N
‖σi(zn)− Pznσi(∞)‖zn = 0. (5.15)

The statement now follows by (5.15), (5.14) and by using the same argumentation used in proof
of [15, Theorem 1.2] for proving a similar result.

Proposition 5.5. With the notation of [21, De�nition 1] we have that

Mx ⊂
⋂
λ>0

L1(R+,LSx(Lx);µλ),

and [21, equation (2.14)] holds.
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Proof. Follows by [21, Proposition 4.2].

Theorem 5.3. 〈V(L, E(L)),V(M,M), X,R+〉 has the full Laplace duality property, moreover
∀U ∈ U1,‖·‖(Bs(L)), ∀λ > 0 and ∀f ∈ L we have that

L(FU)(·)(λ)σf (·) = σ(λ−TU )−1f .

Here TU is the in�nitesimal generator of the semigroup U .

Proof. Let f ∈ L and U ∈ U thus for all x ∈ X and λ > 0 we have∫ ∞
0

e−λsPxU(s)Ixσ
f (x) ds =

∫ ∞
0

e−λsPxU(s)f ds

= Px

∫ ∞
0

e−λsU(s)f ds, (5.16)

where the �rst equality follows by the second assumption 5.8, while the second one by the
linearity and continuity of Px and by [4, Proposition 1, n◦, §1, Chapter 6]. Thus the �rst
sentence of the statement by (5.4) and (5.12). The second sentence of the statement folllows by
the (5.16) and by Hille-Yosida Theorem, see [15, Theorem 1.2.].

Corollary 5.2. Let us assume the hypotheses of Corollary 5.1. Then (∀g ∈ L)(∀K ∈
Comp(R+))

lim
z→∞

sup
s∈K
‖(U(z)(s) ◦ Pz − Pz ◦ U∞(s)) g‖ = 0. (5.17)

Moreover
U ∈ Γ∞(ρ). (5.18)

In particular
{〈T ,∞,Φ〉} ∈ ∆Θ

〈
V(L, E),V(M,M), E , X,R+

〉
. (5.19)

Proof. By Proposition 5.5 follows [21, equation (2.14)], hypothesis (i) of [21, Theorem 2.1] follows
by Theorem 5.3, (ii) by Theorem (5.2), �nally (iii) follows by [2, Corollary of Proposition 16,
§2.9, Chapter 9] and by the fact that {{n} |n ∈ N} is a base for the topology on N. Thus by
[21, Theorem 2.1] we obtain (5.18), (5.19) and (∀v ∈ E)(∀K ∈ Comp(R+))

lim
z→∞

sup
s∈K
‖U(z)(s)v(z)− F (z)(s)v(z)‖ = 0, (5.20)

where F is any map in Theorem 5.2. Now by Theorem 5.2 we can take in the previous equation
F = FU∞ , moreover by (5.7) and assumption (5.10) we have

E = {σg | g ∈ L},

therefore by (5.8) ∀s ∈ R+, ∀z ∈ X and ∀g ∈ L

FU∞(z)σg(z) = (Pz ◦ U∞(s))g.

Hence (5.17) follows by (5.20).
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