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ERLAN DAUTBEKOVICH NURSULTANOV

(to the 60th birthday)

On May 25, 2017 was the 60th birthday of Yerlan Dautbekovich Nur-
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of the apparatus introduced by him, the questions of reiteration in the o�-diagonal case for
the real Lyons-Petre interpolation method, the multiplier problem for trigonometric Fourier
series, the lower and upper bounds complementary to the Hardy-Littlewood inequalities for
various orthonormal systems were solved. The convergence of series and Fourier transforms
were studied with su�ciently general monotonicity conditions. The lower bounds for the norm
of the convolution operator are obtained, and its upper bounds are improved (a stronger result
than the O'Neil inequality). An exact cubature formula with explicit nodes and weights for
functions belonging to spaces with a dominated mixed derivative is constructed, and a number
of other problems in this area are solved.

He has published more than 50 scienti�c papers in high rating international journals included
in the lists of Thomson Reuters and Scopus. 2 doctor of sciences, 9 candidate of sciences and 4
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teacher of the university" for 2006 and 2011, the grant holder of the state scienti�c scholarship
for outstanding contribution to the development of science and technology of the Republic of
Kazakhstan for years 2007-2008, 2008 -2009. In 2017 he got the Top Springer Author award,
established by Springer Nature together with JSC "National Center for Scienti�c and Technical
Information".

The Editorial Board of the Eurasian Mathematical Journal congratulates Erlan Dautbekovich
Nursultanov on the occasion of his 60th birthday and wishes him good health and successful
work in mathematics and mathematical education.
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Systems Department of the L.N. Gumilyov Eurasian National University,
member of the Kazakhstan and American Mathematical Societies, member
of the Association of Symbolic Logic, member of the Editorial Board of the
Eurasian Mathematical Journal.
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and later on completed his postgraduate studies at S.L. Sobolev Institute
of Mathematics of the Academy of Sciences of Russia (Novosibirsk).

Professor Tussupov's research interests are in mathematical logic, com-
putability, computable structures, abstract data types, ontology, formal semantics. He solved
the following problems of computable structures:

• the problems of S.S. Goncharov and M.S. Manasse: the problem of characterizing relative
categoricity in the hyperarithmetical hierarchy given levels of complexity of Scott fami-
lies, and the problem on the relationship between categoricity and relative categoricity of
computable structures in the arithmetical and hyperarithmetical hierarchies;

• the problem of Yu.L. Ershov: the problem of �nite algorithmic dimension in the arithmeti-
cal and hyperarithmetical hierarchies;

• the problem of C.J. Ash and A. Nerode: the problem of the interplay of relations of
bounded arithmetical and hyperarithmetical complexity in computable presentations and
the de�nability of relations by formulas of given complexity;
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of all sets X such that for algebraic classes as symmetric irre�exive graphs, nilpotent groups,
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USA), "Erasmus+", 2016 (Poitiers University, France). He was awarded the title "The Best
Professor of 2012" (Kazakhstan). In 2015 Jamalbek Tussupov was also awarded for the contri-
bution to science in the Republic of Kazakhstan.

The Editorial Board of the Eurasian Mathematical Journal congratulates Dr. Professor
Jamalbek Tussupov on the occasion of his 60th aniversary and wishes him strong health, new
achievements in science, inspiration for new ideas and fruitfull results.
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Abstract. In this paper we consider a spectral problem for the Sturm-Liouville equation with a
spectral parameter in a boundary conditions. It is shown that under certain assumptions on the
coe�cients of boundary conditions, problems of this type cannot have more than two non-real
eigenvalues. Note that, in some special cases of boundary conditions, this kind of results have
usually been obtained by using the results of the theory of Pontryagin spaces. The aim of this
paper is to prove this result in a more general setting. Since the result was fairly predictable and
could also be proved by using Pontryagin space methods, the author does not claim the absolute
novelty of the obtained result but aims to provide an elementary proof, using only some facts of
mathematical analysis and theory of ordinary di�erential equations, which, probably, will make
the proof more accessible to a wide audience, especially to students.

1 Introduction

In this paper we consider the following spectral problem for the Sturm-Liouville di�erential
equation

−y′′(x) + q(x) · y(x) = λ · y(x), 0 < x < 1 (1.1)

with the spectral parameter dependent boundary conditions

(a0λ+ b0)y(0) = (c0λ+ d0)y′(0), (1.2)

(a1λ+ b1)y(1) = (c1λ+ d1)y′(1), (1.3)

where q is a real-valued continuous function on the segment [0, 1]; ai, bi, ci, di(i = 0, 1) are real
numbers and

a0d0 − b0c0 > 0, a1d1 − b1c1 > 0.

Boundary value problems for Sturm-Liouville equation with a spectral parameter in the
boundary conditions have been studied extensively (see, for example, [1]-[7], [9]-[25], [28]-[30]
and the bibliography therein). Problems of such type arise upon separation of variables in one
dimensional wave and heat equation and for a various type of physical problems. Most of the
known papers in this direction consider the case a0d0 − b0c0 ≤ 0, a1d1 − b1c1 ≥ 0. But in this
case (as can also be seen from Lemma 2.2 below) all eigenvalues are real numbers.

It is known that if a0d0 − b0c0 > 0, a1d1 − b1c1 > 0 then not all eigenvalues of the considered
problem are necessarily real. Some special cases of boundary conditions of this kind have been
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investigated in [2]-[7], [9]-[11], [14]. Note that in all known papers, information on the number
of non-real eigenvalues of the considered problem are obtained by associating it with self-adjoint
operators acting in Pontryagin spaces (spaces with inde�nite metric) and applying the results of
the theory of Pontryagin spaces (from [8, 26, 27]).

In this paper the boundary conditions of this kind are treated in a more general setting. It
is proved in this paper that under the mentioned assumptions on the coe�cients of boundary
conditions, the number of non-real eigenvalues of the considered problem cannot be more than
two. Since the result was fairly predictable and could also be proved by using Pontryagin space
methods, the author does not claim the absolute novelty of the obtained result but aims to
provide an elementary proof, using only some facts from mathematical analysis and theory of
ordinary di�erential equations, which, probably, will make the proof more accessible to a wide
audience, especially to students.

2 Auxiliary facts

Let us consider the following auxiliary problem

−w′′(x) + q(x) · w(x) = λ · w(x), 0 < x < 1, (2.1)

w(0) = c0λ+ d0, w
′(0) = a0λ+ b0, (2.2)

(a1λ+ b1)w(1) = (c1λ+ d1)w′(1). (2.3)

Lemma 2.1. The sets of complex (non-real) eigenvalues of problems (1.1)-(1.3) and (2.1)-(2.3)
is the same.

Proof. Let λ and w be an eigenvalue of the problem (2.1)-(2.3) and a corresponding eigenfunction,
respectively. Then it is obvious that λ is also an eigenvalue of the problem (1.1)-(1.3) and w is
an eigenfunction of this problem corresponding to an eigenvalue λ.

Now, let λ be an eigenvalue of the problem (1.1)-(1.3) and y a corresponding eigenfunction.
There are only two possibilities: y(0) = 0 and y(0) 6= 0.
We are going to show that the case y(0) = 0 is impossible. Assume the contrary: y(0) = 0.

Then from (1.2) we �nd that y′(0) = 0 (since λ is a nonreal number, c0λ+d0 6= 0 ). But, since y
is an eigenfunction, according to the de�nition of an eigenfunction y 6≡ 0. This and the previous
sentence imply that there is a nontrivial solution of the di�erential equation which satis�es the
initial conditions y(0) = 0 and y′(0) = 0. Contradiction: the solution of the Cauchy problem
is unique (it is evident that the unique solution of the considered Cauchy problem is a function
that is identically zero).

Consider the case y(0) 6= 0. It is evident that the function

w(x) =
c0λ+ d0

y(0)
· y(x)

is an eigenfunction of the problem (2.1)-(2.3) corresponding to an eigenvalue λ: λ is an eigenvalue
of the problem (2.1)-(2.3).

The lemma is proved.

Lemma 2.2. The following equality∫ 1

0

|w(x, λ)|2dx =
b1c1 − a1d1

|c1λ+ d1|2
· |w(1, λ)|2 + a0d0 − b0c0
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holds true for all λ with Imλ 6= 0.

Proof. Let w(x, λ) be an eigenfunction, corresponding to an eigenvalue λ. From (2.1) we obtain
the following equalities:

−w′′(x, λ)w(x, λ) + q(x) · w(x, λ)w(x, λ) = λ · w(x, λ)w(x, λ);

−
∫ 1

0

w′′(x, λ)w(x, λ)dx+

∫ 1

0

q(x) · |w(x, λ)|2dx = λ ·
∫ 1

0

|w(x, λ)|2dx;

−
∫ 1

0

w(x, λ)dw′(x, λ) +

∫ 1

0

q(x) · |w(x, λ)|2dx = λ ·
∫ 1

0

|w(x, λ)|2dx;

− w′(x, λ)w(x, λ)|10 +

∫ 1

0

|w′(x, λ)|2dx+

∫ 1

0

q(x) · |w(x, λ)|2dx =

= λ ·
∫ 1

0

|w(x, λ)|2dx;

−w′(1, λ)w(1, λ) + w′(0, λ)w(0, λ) +R0 = λ ·
∫ 1

0

|w(x, λ)|2dx,

where R0 =
∫ 1

0
|w′(x, λ)|2dx+

∫ 1

0
q(x) · |w(x, λ)|2dx;

−a1λ+ b1

c1λ+ d1

· |w(1, λ)|2 + (a0λ+ b0)(c0λ̄+ d0) +R0 = λ ·
∫ 1

0

|w(x, λ)|2dx;

− (a1λ+ b1)(c1λ̄+ d1)

|c1λ+ d1|2
· |w(1, λ)|2 + (a0c0|λ|2 + a0d0λ+

+ b0c0λ̄+ b0d0) +R0 = λ ·
∫ 1

0

|w(x, λ)|2dx;

−(a1c1|λ|2 + b1d1) + (a1d1λ+ b1c1λ̄)

|c1λ+ d1|2
· |w(1, λ)|2 +

(
a0c0|λ|2 + a0d0λ+

+b0c0λ̄+ b0d0) +R0 = λ ·
∫ 1

0

|w(x, λ)|2dx;

−a1d1λ+ b1c1λ̄

|c1λ+ d1|2
· |w(1, λ)|2 + a0d0λ+

+b0c0λ̄+R1 = λ ·
∫ 1

0

|w(x, λ)|2dx, (2.4)

where R1 = R0 − a1c1|λ|2+b1d1

|c1λ+d1|2 · |w(1, λ)|2 + a0c0|λ|2 + b0d0 .

Let λ = λ1 + iλ2, where λ1, λ2 ∈ R and λ2 6= 0. Then λ̄ = λ1 − iλ2 and from (2.4) we obtain
that
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− iλ2 · a1d1 − iλ2 · b1c1

|c1λ+ d1|2
· |w(1, λ)|2 + iλ2 · a0d0 − iλ2 · b0c0 +R2 =

= λ1 ·
∫ 1

0

|w(x, λ)|2dx+ iλ2 ·
∫ 1

0

|w(x, λ)|2dx,

where R2 = R1 + λ1

(
a0d0 + b0c0 − a1d1+b1c1

|c1λ+d1|2 · |w(1, λ)|2
)
is a real number. Comparing real and

imaginary parts of both - left and right hand sides, we arrive at the validity of the statement.
The lemma is proved.

Lemma 2.3. The following equality holds:

(w′(x, λ)w(x, µ)− w(x, λ)w′(x, µ)) |10 = (µ− λ) ·
∫ 1

0

w(x, λ)w(x, µ)dx.

Proof. Taking into account expressions of w′′(x, λ) and w′′(x, µ) from (2.1) in the following
equality

(w′(x, λ)w(x, µ)− w(x, λ)w′(x, µ))
′
= w′′(x, λ)w(x, µ)− w(x, λ)w′′(x, µ),

we �nd that

(w′(x, λ)w(x, µ)− w(x, λ)w′(x, µ))
′
= (q(x)− λ)w(x, λ)w(x, µ)−
− (q(x)− µ)w(x, λ)w(x, µ) = (µ− λ)w(x, λ)w(x, µ).

Integrating both sides of this equality from 0 to 1 we obtain that

(w′(x, λ)w(x, µ)− w(x, λ)w′(x, µ)) |10 = (µ− λ)

∫ 1

0

w(x, λ)w(x, µ)dx.

The lemma is proved.

Lemma 2.4. If µ 6= λ and µ 6= λ, then the following equalities∫ 1

0

w(x, λ)w(x, µ)dx =
b1c1 − a1d1

(c1λ+ d1)(c1µ+ d1)
w(1, λ)w(1, µ) + a0d0 − b0c0 (2.5)

and ∫ 1

0

w(x, λ)w(x, µ)dx =
b1c1 − a1d1

(c1λ̄+ d1)(c1µ+ d1)
w(1, λ)w(1, µ) + a0d0 − b0c0 (2.6)

hold.

Proof. Using

w′(1, λ)w(1, µ)− w(1, λ)w′(1, µ)− w′(0, λ)w(0, µ) + w(0, λ)w′(0, µ)

=
a1λ+ b1

c1λ+ d1

w(1, λ)w(1, µ)− a1µ+ b1

c1µ+ d1

w(1, λ)w(1, µ)

− (a0λ+ b0)(c0µ+ d0) + (a0µ+ b0)(c0λ+ d0)

= (µ− λ){ b1c1 − a1d1

(c1λ+ d1)(c1µ+ d1)
w(1, λ)w(1, µ) + a0d0 − b0c0}

and taking into account Lemma 2.3 , we immediately obtain the validity of the equality (2.5).
The equality (2.6) is proved in a similar way.

The lemma is proved
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For simplicity, let us denote

w(x, ξ) = uξ(x) + iνξ(x),

w(1, ξ)

c1ξ + d1

= Aξ + iBξ,

where uξ(x), νξ(x) are real valued functions and Aξ, Bξ are real numbers. Using this notation,
equalities in Lemma 2.2 (written for λ and µ separately) and Lemma 2.4 can be written in the
following form: ∫ 1

0

(
u2
λ(x) + ν2

λ(x)
)
dx = (b1c1 − a1d1)(A2

λ +B2
λ) + a0d0 − b0c0, (2.7)

∫ 1

0

(
u2
µ(x) + ν2

µ(x)
)
dx = (b1c1 − a1d1)

(
A2
µ +B2

µ

)
+ a0d0 − b0c0, (2.8)

∫ 1

0

(uλ(x) + iνλ(x)) (uµ(x) + iνµ(x))dx = (b1c1 − a1d1)×

×(Aλ + iBλ)(Aµ + iBµ) + a0d0 − b0c0, (2.9)

∫ 1

0

(uλ(x)− iνλ(x))(uµ(x) + iνµ(x))dx = (b1c1 − a1d1)×

×(Aλ − iBλ)(Aµ + iBµ) + a0d0 − b0c0. (2.10)

Lemma 2.5. Assume that equalities (2.7)-(2.10) hold for some real numbers ai, bi, ci, di(i = 0, 1),
Aξ, Bξ(ξ = λ, µ) and continuous functions uξ(x), νξ(x)(ξ = λ, µ). Then νλ(x) ≡ νµ(x) ≡ 0.

Proof. From (2.9) and (2.10) we obtain

2

∫ 1

0

uλ(x) · (uµ(x) + iνµ(x))dx = 2Aλ(b1c1 − a1d1)(Aµ + iBµ) + 2(a0d0 − b0c0). (2.11)

Now (2.7),(2.8) and (2.11) imply that

∫ 1

0

{u2
λ(x) + ν2

λ(x)}dx+

∫ 1

0

{u2
µ(x) + ν2

µ(x)}dx− 2

∫ 1

0

uλ(x) · (uµ(x) + iνµ(x))dx =

= (b1c1 − a1d1) · (A2
λ +B2

λ) + (b1c1 − a1d1) · (A2
µ +B2

µ) + 2Aλ · (a1d1 − b1c1) · (Aµ + iBµ).

We �nd from this equality (comparing real and imaginary parts of left and right hand sides)
that

∫ 1

0

{uλ(x)− uµ(x)}2dx+

∫ 1

0

ν2
λ(x)dx+

∫ 1

0

ν2
µ(x)dx =

= −(a1d1 − b1c1){(Aλ − Aµ)2 +B2
λ +B2

µ}.

Since a1d1 − b1c1 > 0, we obtain that
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νλ(x) ≡ Im{w(x, λ)} ≡ 0

and

νµ(x) ≡ Im{w(x, µ)} ≡ 0.

The lemma is proved.

Remark 1. It is obvious that if λ is an eigenvalue of the problem (1.1)-(1.3) and y(x) is a
corresponding eigenfunction, then λ̄ is also an eigenvalue of the problem (1.1)-(1.3) and y(x) is
an eigenfunction corresponding to λ̄.

3 Main result

The main result of this note is the following theorem.

Theorem 3.1. Nonreal eigenvalues of the problem (1.1)-(1.3) are not more than two.

Proof. Note that to prove the theorem it su�cies to show that complex numbers λ and µ can
not simultaneously be eigenvalues of the problem (1.1)-(1.3) if µ 6= λ and µ 6= λ̄.

Assume the contrary: µ 6= λ, µ 6= λ̄ and λ, µ are eigenvalues of the problem (1.1)-(1.3). Then
by Lemma 2.1 , λ and µ are also eigenvalues of the problem (2.1)-(2.3).

Since w(x, λ) and w(x, µ) are eigenfunctions corresponding to nonreal eigenvalues λ and µ,

νλ(x) ≡ Im{w(x, λ)} 6≡ 0

and

νµ(x) ≡ Im{w(x, µ)} 6≡ 0.

These two relations and Lemma 2.5 gives us contradiction which shows that our proposition
is false: if µ 6= λ and µ 6= λ̄, then nonreal numbers λ, µ cannot simultaneously be eigenvalues of
the problem (1.1)-(1.3).

The theorem is proved.

Remark 2. It can be easily seen that the result of this paper remains true in the case when
q(x) ∈ L2(0, 1) as well as when q(x) ∈ L1(0, 1).
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