Eurasian Mathematical Journal

2017, Volume 8, Number 3

Founded in 2010 by
the L.N. Gumilyov Eurasian National University
in cooperation with
the M.V. Lomonosov Moscow State University
the Peoples' Friendship University of Russia
the University of Padua

Supported by the ISAAC (International Society for Analysis, its Applications and Computation) and by the Kazakhstan Mathematical Society

Published by
the L.N. Gumilyov Eurasian National University
Astana, Kazakhstan

EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors-in-Chief

V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (China), O.V. Besov (Russia), N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud (France), A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov (Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia), M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany), A. Hasanoglu (Turkey), M. Huxley (Great Britain), M. Imanaliev (Kyrgyzstan), P. Jain (India), T.Sh. Kalmenov (Kazakhstan), B.E. Kangyzhin (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin (Great Britain), V. Kokilashvili (Georgia), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic), L.K. Kussainova (Kazakhstan), P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), V.G. Maz'ya (Sweden), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan), K.N. Ospanov (Kazakhstan), I.N. Parasidis (Greece), J. Pečarić (Croatia), S.A. Plaksa (Ukraine), L.-E. Persson (Sweden), E.L. Presman (Russia), M.A. Ragusa (Italy), M.D. Ramazanov (Russia), M. Reissig (Germany), M. Ruzhansky (Great Britain), S. Sagitov (Sweden), T.O. Shaposhnikova (Sweden), A.A. Shkalikov (Russia), V.A. Skvortsov (Poland), G. Sinnamon (Canada), E.S. Smailov (Kazakhstan), V.D. Stepanov (Russia), Ya.T. Sultanaev (Russia), I.A. Taimanov (Russia), T.V. Tararykova (Great Britain), J.A. Tussupov (Kazakhstan), U.U. Umirbaev (Kazakhstan), Z.D. Usmanov (Tajikistan), N. Vasilevski (Mexico), Dachun Yang (China), B.T. Zhumagulov (Kazakhstan)

Managing Editor

A.M. Temirkhanova

Aims and Scope

The Eurasian Mathematical Journal (EMJ) publishes carefully selected original research papers in all areas of mathematics written by mathematicians, principally from Europe and Asia. However papers by mathematicians from other continents are also welcome.

From time to time the EMJ publishes survey papers.

The EMJ publishes 4 issues in a year.

The language of the paper must be English only.

The contents of EMJ are indexed in Scopus, Web of Science (ESCI), Mathematical Reviews, MathSciNet, Zentralblatt Math (ZMATH), Referativnyi Zhurnal – Matematika, Math-Net.Ru.

The EMJ is included in the list of journals recommended by the Committee for Control of Education and Science (Ministry of Education and Science of the Republic of Kazakhstan) and in the list of journals recommended by the Higher Attestation Commission (Ministry of Education and Science of the Russian Federation).

Information for the Authors

<u>Submission.</u> Manuscripts should be written in LaTeX and should be submitted electronically in DVI, PostScript or PDF format to the EMJ Editorial Office via e-mail (eurasianmj@yandex.kz).

When the paper is accepted, the authors will be asked to send the tex-file of the paper to the Editorial Office.

The author who submitted an article for publication will be considered as a corresponding author. Authors may nominate a member of the Editorial Board whom they consider appropriate for the article. However, assignment to that particular editor is not guaranteed.

Copyright. When the paper is accepted, the copyright is automatically transferred to the EMJ. Manuscripts are accepted for review on the understanding that the same work has not been already published (except in the form of an abstract), that it is not under consideration for publication elsewhere, and that it has been approved by all authors.

<u>Title page</u>. The title page should start with the title of the paper and authors' names (no degrees). It should contain the <u>Keywords</u> (no more than 10), the <u>Subject Classification</u> (AMS Mathematics Subject Classification (2010) with primary (and secondary) subject classification codes), and the Abstract (no more than 150 words with minimal use of mathematical symbols).

Figures. Figures should be prepared in a digital form which is suitable for direct reproduction.

<u>References</u>. Bibliographical references should be listed alphabetically at the end of the article. The authors should consult the Mathematical Reviews for the standard abbreviations of journals' names.

<u>Authors' data.</u> The authors' affiliations, addresses and e-mail addresses should be placed after the References.

<u>Proofs.</u> The authors will receive proofs only once. The late return of proofs may result in the paper being published in a later issue.

Offprints. The authors will receive offprints in electronic form.

Publication Ethics and Publication Malpractice

For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the EMJ implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The EMJ follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/New_Code.pdf). To verify originality, your article may be checked by the originality detection service CrossCheck http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the EMJ.

The Editorial Board of the EMJ will monitor and safeguard publishing ethics.

The procedure of reviewing a manuscript, established by the Editorial Board of the Eurasian Mathematical Journal

1. Reviewing procedure

- 1.1. All research papers received by the Eurasian Mathematical Journal (EMJ) are subject to mandatory reviewing.
- 1.2. The Managing Editor of the journal determines whether a paper fits to the scope of the EMJ and satisfies the rules of writing papers for the EMJ, and directs it for a preliminary review to one of the Editors-in-chief who checks the scientific content of the manuscript and assigns a specialist for reviewing the manuscript.
- 1.3. Reviewers of manuscripts are selected from highly qualified scientists and specialists of the L.N. Gumilyov Eurasian National University (doctors of sciences, professors), other universities of the Republic of Kazakhstan and foreign countries. An author of a paper cannot be its reviewer.
- 1.4. Duration of reviewing in each case is determined by the Managing Editor aiming at creating conditions for the most rapid publication of the paper.
- 1.5. Reviewing is confidential. Information about a reviewer is anonymous to the authors and is available only for the Editorial Board and the Control Committee in the Field of Education and Science of the Ministry of Education and Science of the Republic of Kazakhstan (CCFES). The author has the right to read the text of the review.
 - 1.6. If required, the review is sent to the author by e-mail.
 - 1.7. A positive review is not a sufficient basis for publication of the paper.
- 1.8. If a reviewer overall approves the paper, but has observations, the review is confidentially sent to the author. A revised version of the paper in which the comments of the reviewer are taken into account is sent to the same reviewer for additional reviewing.
 - 1.9. In the case of a negative review the text of the review is confidentially sent to the author.
- 1.10. If the author sends a well reasoned response to the comments of the reviewer, the paper should be considered by a commission, consisting of three members of the Editorial Board.
- 1.11. The final decision on publication of the paper is made by the Editorial Board and is recorded in the minutes of the meeting of the Editorial Board.
- 1.12. After the paper is accepted for publication by the Editorial Board the Managing Editor informs the author about this and about the date of publication.
- 1.13. Originals reviews are stored in the Editorial Office for three years from the date of publication and are provided on request of the CCFES.
 - 1.14. No fee for reviewing papers will be charged.

2. Requirements for the content of a review

- 2.1. In the title of a review there should be indicated the author(s) and the title of a paper.
- 2.2. A review should include a qualified analysis of the material of a paper, objective assessment and reasoned recommendations.
 - 2.3. A review should cover the following topics:
 - compliance of the paper with the scope of the EMJ;
 - compliance of the title of the paper to its content;
- compliance of the paper to the rules of writing papers for the EMJ (abstract, key words and phrases, bibliography etc.);
- a general description and assessment of the content of the paper (subject, focus, actuality of the topic, importance and actuality of the obtained results, possible applications);
- content of the paper (the originality of the material, survey of previously published studies on the topic of the paper, erroneous statements (if any), controversial issues (if any), and so on);

- exposition of the paper (clarity, conciseness, completeness of proofs, completeness of bibliographic references, typographical quality of the text);
- possibility of reducing the volume of the paper, without harming the content and understanding of the presented scientific results;
- description of positive aspects of the paper, as well as of drawbacks, recommendations for corrections and complements to the text.
- 2.4. The final part of the review should contain an overall opinion of a reviewer on the paper and a clear recommendation on whether the paper can be published in the Eurasian Mathematical Journal, should be sent back to the author for revision or cannot be published.

Web-page

The web-page of EMJ is www.emj.enu.kz. One can enter the web-page by typing Eurasian Mathematical Journal in any search engine (Google, Yandex, etc.). The archive of the web-page contains all papers published in EMJ (free access).

Subscription

For Institutions

- US\$ 200 (or equivalent) for one volume (4 issues)
- US\$ 60 (or equivalent) for one issue

For Individuals

- US\$ 160 (or equivalent) for one volume (4 issues)
- US\$ 50 (or equivalent) for one issue.

The price includes handling and postage.

The Subscription Form for subscribers can be obtained by e-mail:

eurasianmj@yandex.kz

The Eurasian Mathematical Journal (EMJ)
The Editorial Office
The L.N. Gumilyov Eurasian National University
Building no. 3
Room 306a
Tel.: +7-7172-709500 extension 33312
13 Kazhymukan St
010008 Astana
Kazakhstan

ERLAN DAUTBEKOVICH NURSULTANOV

(to the 60th birthday)

On May 25, 2017 was the 60th birthday of Yerlan Dautbekovich Nursultanov, Doctor of Physical and Mathematical Sciences (1999), Professor (2001), Head of the Department of Mathematics and Informatics of the Kazakhstan branch of the M.V. Lomonosov Moscow State University (since 2001), member of the Editorial Board of the Eurasian Mathematical Journal.

E.D. Nursultanov was born in the city of Karaganda. He graduated from the Karaganda State University (1979) and then completed his post-graduate studies at the M.V. Lomonosov Moscow State University.

Professor Nursultanov's scientific interests are related to various areas of the theory of functions and functional analysis.

He introduced the concept of multi-parameter Lorentz spaces, network spaces and anisotropic Lorentz spaces, for which appropriate interpolation methods were developed. On the basis of the apparatus introduced by him, the questions of reiteration in the off-diagonal case for the real Lyons-Petre interpolation method, the multiplier problem for trigonometric Fourier series, the lower and upper bounds complementary to the Hardy-Littlewood inequalities for various orthonormal systems were solved. The convergence of series and Fourier transforms were studied with sufficiently general monotonicity conditions. The lower bounds for the norm of the convolution operator are obtained, and its upper bounds are improved (a stronger result than the O'Neil inequality). An exact cubature formula with explicit nodes and weights for functions belonging to spaces with a dominated mixed derivative is constructed, and a number of other problems in this area are solved.

He has published more than 50 scientific papers in high rating international journals included in the lists of Thomson Reuters and Scopus. 2 doctor of sciences, 9 candidate of sciences and 4 PhD dissertations have been defended under his supervision.

His merits and achievements are marked with badges of the Ministry of Education and Science of the Republic of Kazakhstan "For Contribution to the Development of Science" (2007), "Honored Worker of Education" (2011), "Y. Altynsarin" (2017). He is a laureate of the award named after K. Satpaev in the field of natural sciences for 2005, the grant holder "The best teacher of the university" for 2006 and 2011, the grant holder of the state scientific scholarship for outstanding contribution to the development of science and technology of the Republic of Kazakhstan for years 2007-2008, 2008 -2009. In 2017 he got the Top Springer Author award, established by Springer Nature together with JSC "National Center for Scientific and Technical Information".

The Editorial Board of the Eurasian Mathematical Journal congratulates Erlan Dautbekovich Nursultanov on the occasion of his 60th birthday and wishes him good health and successful work in mathematics and mathematical education.

JAMALBEK TUSSUPOV

(to the 60th birthday)

On April 10, 2017 was the 60th birthday of Jamalbek Tussupov, Doctor of Physical and Mathematical Sciences, Professor, Head of the Information Systems Department of the L.N. Gumilyov Eurasian National University, member of the Kazakhstan and American Mathematical Societies, member of the Association of Symbolic Logic, member of the Editorial Board of the Eurasian Mathematical Journal.

J. Tussupov was born in Taraz (Jambyl region of the Kazakh SSR). He graduated from the Karaganda State University (Kazakhstan) in 1979 and later on completed his postgraduate studies at S.L. Sobolev Institute of Mathematics of the Academy of Sciences of Russia (Novosibirsk).

Professor Tussupov's research interests are in mathematical logic, computability, computable structures, abstract data types, ontology, formal semantics. He solved the following problems of computable structures:

- the problems of S.S. Goncharov and M.S. Manasse: the problem of characterizing relative categoricity in the hyperarithmetical hierarchy given levels of complexity of Scott families, and the problem on the relationship between categoricity and relative categoricity of computable structures in the arithmetical and hyperarithmetical hierarchies;
- the problem of Yu.L. Ershov: the problem of finite algorithmic dimension in the arithmetical and hyperarithmetical hierarchies;
- the problem of C.J. Ash and A. Nerode: the problem of the interplay of relations of bounded arithmetical and hyperarithmetical complexity in computable presentations and the definability of relations by formulas of given complexity;
- the problem of S. Lempp: the problem of structures having presentations in just the degrees of all sets X such that for algebraic classes as symmetric irreflexive graphs, nilpotent groups, rings, integral domains, commutative semigroups, lattices, structure with two equivalences, bipartite graphs.

Professor Tussupov has published about 100 scientific papers, five textbooks for students and one monograph. Three PhD dissertations have been defended under his supervision.

Professor Tussupov is a fellow of "Bolashak" Scholarship, 2011 (Notre Dame University, USA), "Erasmus+", 2016 (Poitiers University, France). He was awarded the title "The Best Professor of 2012" (Kazakhstan). In 2015 Jamalbek Tussupov was also awarded for the contribution to science in the Republic of Kazakhstan.

The Editorial Board of the Eurasian Mathematical Journal congratulates Dr. Professor Jamalbek Tussupov on the occasion of his 60th aniversary and wishes him strong health, new achievements in science, inspiration for new ideas and fruitfull results.

EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879

Volume 8, Number 3 (2017), 70 – 76

ON FIXED POINTS OF CONTRACTION MAPS ACTING IN (q_1, q_2) -QUASIMETRIC SPACES AND GEOMETRIC PROPERTIES OF THESE SPACES

R. Sengupta

Communicated by V.I. Burenkov

Key words: fixed point, quasimetric space.

AMS Mathematics Subject Classification: 54H25, 47H04.

Abstract. We study geometric properties of (q_1, q_2) -quasimetric spaces and fixed point theorems in these spaces. In paper [1], a fixed point theorem was obtained for a contraction map acting in a complete (q_1, q_2) -quasimetric space. The graph of the map was assumed to be closed. In this paper, we show that this assumption is essential, i.e. we provide an example of a complete quasimetric space and a contraction map acting in it whose graph is not closed and which is fixed-point-free. We also describe some geometric properties of such spaces.

1 Introduction

The present paper is devoted to the problem of the existence of a fixed point of contraction maps in a complete (q_1, q_2) -quasimetric space and the geometry of (q_1, q_2) -quasimetric spaces. The basis for the theory of such spaces can be found in [1] where coincidence point theorems and a fixed point theorem for such spaces were obtained.

Let us recall the necessary definitions from [1]. Let positive real numbers q_1, q_2 and a set X be given.

Definition 1. A function $\rho_X : X \times X \to \mathbb{R}_+$, such that $\rho_X(x,y) = 0 \iff x = y$, is called a (q_1, q_2) -quasimetric, if the generalized (q_1, q_2) -triangle inequality holds:

$$\rho_X(x,z) \le q_1 \rho_X(x,y) + q_2 \rho_X(y,z) \quad \forall x, y, z \in X.$$

The pair (X, ρ_X) is called a (q_1, q_2) -quasimetric space. A (1, 1)-quasimetric space is called a quasimetric space.

In definitions below, we assume that (X, ρ_X) is a (q_1, q_2) -quasimetric space and (Y, ρ_Y) is a $(\widetilde{q}_1, \widetilde{q}_2)$ -quasimetric space.

Definition 2. Given $q_0 > 0$, a (q_1, q_2) -quasimetric is called q_0 -symmetric if

$$\rho_X(x,y) \le q_0 \rho_X(y,x) \quad \forall x, y \in X.$$

In this case, the pair (X, ρ_X) is called a q_0 -symmetric (q_1, q_2) -quasimetric space. If $q_0 = 1$, then the space is said to be symmetric.

Definition 3. The map $\Phi: X \to X$ is called β -Lipschitz if

$$\rho_X(\Phi(x), \Phi(y)) \le \beta \rho_X(x, y) \quad \forall x, y \in X.$$

If $\beta < 1$ then the map Φ is said to be a contraction map.

Definition 4. A sequence $\{x_i\}_{i=1}^{\infty} \subset X$ such that

$$\forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall i, j \in \mathbb{N} : i > j > N \Rightarrow \quad \rho_X(x_i, x_i) < \varepsilon$$

is called a Cauchy sequence.

Definition 5. A sequence $\{x_i\}_{i=1}^{\infty} \subset X$ is said to converge to a point $x_0 \in X$ in a quasimetric space (X, ρ_X) if $\lim_{i \to \infty} \rho_X(x_0, x_i) = 0$.

Definition 6. A quasimetric space (X, ρ_X) is said to be complete if any Cauchy sequence converges in this space.

Let a function $F: X \to Y$ be given. Denote $gphF = \{(x,y) \in X \times Y : y = F(x)\}.$

Definition 7. A map $F: X \to Y$ is said to be closed if the set gphF is closed, that is if for all sequences $\{x_i\} \subset X$ and $\{y_i\} \subset Y$, such that they converge to points x_0 and y_0 respectively and $(x_i, y_i) \in gph(F)$ for all i, we have $(x_0, y_0) \in gph(F)$.

Let us show that if a (q_1, q_2) -quasimetric space X is q_0 -symmetric then any contraction map $F: X \to X$ acting in it is closed. Consider the contrary: let there exist sequences $\{x_i\}$ and $\{y_i\}$, that converge to points x_0 and y_0 respectively and $(x_i, y_i) \in gph(F)$ for all i, however $(x_0, y_0) \notin gph(F)$. In other words, $\rho_X(y_0, F(x_0)) > 0$. While

$$\rho_X(y_0, F(x_0)) \le q_1 \rho_X(y_0, y_n) + q_2 \rho_X(y_n, F(x_0)) \le q_1 \rho_X(y_0, y_n) + \beta q_2 q_0 \rho_X(x_0, x_n) \to 0.$$

Thus, we obtained a contradiction.

The following example shows that the identity map in a (q_1, q_2) -quasimetric space is not necessarily closed.

Example 1 (proposed by S.E. Zhukovskiy). On the standard Euclidean space \mathbb{R}^2 by S(r) denote the circle of radius r with center at zero. Let \mathcal{X} be system of sets, consisting of all circles S(r), r > 1 and points x of the unit circle S(1). Set

$$d(U,V) = h_X^+(U,V), \quad U,V \in \mathcal{X},$$

$$h_X^+(U,V) = \inf\{\varepsilon \ge 0 : U \subset N_{\varepsilon}(V)\},$$
 (1.1)

$$N_{\varepsilon}(V) = \bigcup_{v \in V} \{ u \in \mathbb{R}^2 : |u - v| < \varepsilon \}.$$
 (1.2)

Then (\mathcal{X}, d) is a quasimetric space.

It is known that such a space (\mathcal{X}, d) is complete. For any point $x \in S(1)$, we have

$$d\left(x, S\left(1 + \frac{1}{n}\right)\right) = h_X^+\left(x, S\left(1 + \frac{1}{n}\right)\right) = \frac{1}{n} \to 0 \text{ as } n \to \infty.$$

Thus, every point $x \in S(1)$ is a limit of the sequence $\left\{S\left(1+\frac{1}{n}\right)\right\}$.

Let us show that the identity map F in this space is not closed. Let us denote $x_n = S\left(1 + \frac{1}{n}\right)$. Let us take two different points $a, b \in S(1)$. It was shown above that $x_n \to a$ and $x_n \to b$. It is obvious $(x_n, x_n) \in gph(F)$ for all n. However, $(a, b) \notin gph(F)$, since $a \neq b$. Thus, the identity map is not closed.

2 Main results

Let us consider the fixed point theorem from [1].

Theorem 2.1. A closed contraction map acting from a complete (q_1, q_2) -quasimetric space to itself has a unique fixed point.

Below we present an example showing that in Theorem 2.1 the assumption of the contraction map being closed is essential.

Before constructing the example, we introduce the concept of a stabilizing sequence.

Let (X, ρ) be a (q_1, q_2) -quasimetric space.

Definition 8. A sequence $\{x_i\} \subset X$ is said to stabilize to a point $a \in X$ if there exists $N \in \mathbb{N}$, such that $x_i = a$ for all $i \geq N$. This sequence is said to be stabilizing if there exists such a point $a \in X$.

It is obvious that any stabilizing sequence $\{x_i\} \subset X$ is Cauchy and convergent.

Lemma 2.1. Given a Cauchy sequence $\{x_n\}$, assume that there exists a subsequence $\{x_{n_k}\}$ that stabilizes to a certain $a \in X$. Then $\lim_{n \to \infty} x_n = a$ and a is the only limit of the sequence $\{x_n\}$.

Proof. Let us prove that the sequence $\{x_n\}$ converges to a. Assume that $\{x_n\}$ does not converge to a. Then there exists an $\varepsilon > 0$ such that for all $N \in \mathbb{N}$ there exists i > N, such that $\rho(a, x_i) > \varepsilon$. By virtue of the assumption, there exist arbitrarily large numbers j, such that $x_j = a$. Therefore, there exist arbitrarily large numbers i and j, such that i > j and $\rho(x_j, x_i) > \varepsilon$. The statement above contradicts the fact that $\{x_n\}$ is a Cauchy sequence.

Let us prove the uniqueness of the limit. Let there exist $b \in X$, such that $a \neq b$ and $x_n \to b$. Set $\rho(b,a) = \gamma > 0$. Let us pick $\varepsilon = \frac{\gamma}{2}$. Then by virtue of the assumption made there exist arbitrarily large numbers i such that $x_i = a$ and therefore $\rho(b,x_i) > \varepsilon$. The above contradicts the assumption that $\{x_n\}$ converges to b and proves that a is the unique limit. \square

Corollary 2.1. Let us consider a sequence $\{x_n\} \subset X$ such that it has subsequences $\{x_{n_k}\}, \{x_{n_l}\},$ which stabilize to $a, b \in X$ respectively, moreover $a \neq b$. Then the sequence $\{x_n\}$ is not a Cauchy sequence.

Corollary 2.2. If a Cauchy sequence $\{x_n\}$ has at least two different limits then any element of the sequence appears in $\{x_n\}$ a finite number of times.

Proof. Let a certain element c appear an infinite number of times. Then there exists a subsequence that stabilizes to c and therefore by virtue of Lemma 2.1, c is the only limit of the original sequence which contradicts the assumption.

The example below illustrates that in Theorem 2.1 the assumption of the contraction map being closed is essential.

Example 2. Set $X = \{0, 1, 2, 3, ...\}$. Let us define the function $\rho: X \times X \to \mathbb{R}_+$ by

$$\rho(k,n) = \begin{cases} \frac{1}{2^{n-1}} - \frac{1}{2^{k-1}}, & \text{if } k > n. \\ \frac{1}{2^n}, & \text{if } k < n. \\ 0, & \text{if } k = n. \end{cases}$$

Let us prove that ρ is a quasimetric. It is enough to verify the triangle inequality:

$$\rho(k,n) \le \rho(k,m) + \rho(m,n) \quad \forall k,m,n \in X.$$

It is obvious that if the values of at least two out of three variables $k, n, m \in X$ coincide, then this inequality holds. Let us assume that are $k, n, m \in X$ are pairwise non-identical. Consider 6 cases:

1. Let m > k > n. Then

$$\rho(k,m) + \rho(m,n) = \frac{1}{2^m} + \frac{1}{2^{m-1}} - \frac{1}{2^{m-1}} = \frac{1}{2^{m-1}} - \frac{1}{2^m} \ge \frac{1}{2^{m-1}} - \frac{1}{2^{k-1}} = \rho(k,n).$$

2. Let k > m > n. Then

$$\rho(k,m) + \rho(m,n) = \frac{1}{2^{m-1}} - \frac{1}{2^{k-1}} + \frac{1}{2^{n-1}} - \frac{1}{2^{m-1}} = \frac{1}{2^{n-1}} - \frac{1}{2^{k-1}} = \rho(k,n).$$

3. Let k > n > m. Then

$$\rho(k,m) + \rho(m,n) = \frac{1}{2^{m-1}} - \frac{1}{2^{k-1}} + \frac{1}{2^n} = \frac{1}{2^{m-1}} - \frac{1}{2^n} + \frac{1}{2^{n-1}} - \frac{1}{2^{k-1}} \ge \frac{1}{2^{n-1}} - \frac{1}{2^{k-1}} = \rho(k,n).$$

4. Let m > n > k. Then

$$\rho(k,m) + \rho(m,n) = \frac{1}{2^m} + \frac{1}{2^{m-1}} - \frac{1}{2^{m-1}} = \frac{2}{2^n} - \frac{1}{2^m} \ge \frac{2}{2^n} - \frac{1}{2^n} = \frac{1}{2^n} = \rho(k,n).$$

5. Let n > m > k. Then

$$\rho(k,m) + \rho(m,n) = \rho(k,m) + \frac{1}{2^n} \ge \frac{1}{2^n} = \rho(k,n).$$

6. Let n > k > m. Then

$$\rho(k,m) + \rho(m,n) = \rho(k,m) + \frac{1}{2^n} \ge \frac{1}{2^n} = \rho(k,n).$$

Therefore, ρ is a quasimetric.

Proof. Let us now prove that the constructed quasimetric space (X, ρ_X) is complete.

Let $\{x_i\}$ be a Cauchy sequence. If there exists a subsequence that stabilizes to a certain element from X then by virtue of Lemma 2.1, it converges to this element, which is the only limit of the sequence. Let us consider the case, when the Cauchy sequence $\{x_i\}$ does not contain a stabilizing subsequence. Then by definition every element of the sequence appears only a finite number of times. Therefore, for an arbitrary element $a \in X$, there exists a number $N(a) \in \mathbb{N}$ such that $x_i > a$ for all $i \geq N(a)$. Then $\rho(a, x_i) = \frac{1}{2^{x_i}}$. Let us take an arbitrary $\varepsilon > 0$ and a natural $N' \geq N(a)$ such that $\rho(a, x_i) = \frac{1}{2^{x_i}} < \varepsilon$ for all $i \geq N'$. By virtue of the arbitrary choice of ε , it follows that the sequence $\{x_i\}$ converges to a.

Thus, in the given space any Cauchy sequence converges. Therefore, the constructed quasimetric space (X, ρ_X) is complete.

Consider the map $\Phi: X \to X$, $\Phi(n) = n+1$ for all $n \in X$. The map Φ is a contraction map, since

$$\rho(\Phi(n), \Phi(m)) = \rho(n+1, m+1) = \frac{1}{2}\rho(n, m) \quad \forall n, m \in X.$$

It is obvious, that the map Φ does not have fixed points. Thus, the space (X, ρ) and the map Φ are desired.

Let us directly verify that the graph of Φ is not closed. In the example above, take two different points $a, b \in X$ such that $b \neq \Phi(a)$. Let us take $x_n = n$, then $x_n \to a$, $x_n \to b$ and $(x_n, x_{n+1}) \in gph(\Phi)$ for all $n \in \mathbb{N}$. However, $(a, b) \notin gph(\Phi)$, since $\Phi(a) \neq b$. Thus, the map Φ is not closed.

Let us discuss some geometric properties of (q_1, q_2) -quasimetric spaces. Let (X, ρ) be a (q_1, q_2) -quasimetric space and the set X consists of not less than two points. Then $q_1 \geq 1, q_2 \geq 1$.

In [1] a set Q was defined that consists of points $q=(q_1,q_2)\in\mathbb{R}^2$ such that $q_1\geq 1,q_2\geq 1$ and the (q_1,q_2) -generalized triangle inequality holds for the quasimetric ρ . It is obvious that the set Q is convex and closed. Besides, if a (q_1,q_2) -quasimetric space is symmetric then the set Q is symmetric with respect to the bisector of the first quadrant.

In [1] the concept of a best point was also defined. A point $q = (q_1, q_2) \in Q$ is said to be the best point, if $q \leq q'$ for all $q' \in Q$ (coordinatewise inequality is implied). The best point is unique, though it does not always exist. However, if (X, ρ) is symmetric and the best point $q = (q_1, q_2)$ exists, then $q_1 = q_2$.

A natural question arises: does there exist a (q_1, q_2) -quasimetric space (that is not symmetric), for which there exists a best point $q = (q_1, q_2) \in Q$, such that $q_1 \neq q_2$?

The example below illustrates that such a point can indeed exist for a nonsymmetric (q_1, q_2) -quasimetric space.

Example 3. Set

$$X = \{1, 2, 3, \dots\}.$$

Let us define the function $\rho: X \times X \to \mathbb{R}_+$ by

$$\rho(k,n) = \begin{cases} \frac{1}{2^{k-1}}, & \text{if } k > n. \\ \frac{1}{2^k}, & \text{if } k < n. \\ 0, & \text{if } k = n. \end{cases}$$

Let us prove that ρ is a (2,1)-quasimetric. For this it is enough to verify the (2,1)-generalized triangle inequality:

$$\rho(k,n) \le 2(\rho(k,m)) + \rho(m,n) \quad \forall k, m, n \in X.$$

It is obvious that if the values of at least two out of three variables $k, n, m \in X$ coincide, then this inequality holds. Let us assume that are $k, n, m \in X$ are pairwise non-identical. Consider 6 cases:

1. Let m > k > n. Then

$$2(\rho(k,m)) + \rho(m,n) = 2(\frac{1}{2^k}) + \frac{1}{2^{m-1}} \ge \frac{1}{2^{k-1}} = \rho(k,n).$$

2. Let k > m > n. Then

$$2(\rho(k,m)) + \rho(m,n) = 2(\frac{1}{2^{k-1}}) + \frac{1}{2^{m-1}} \ge \frac{1}{2^{k-1}} = \rho(k,n).$$

3. Let k > n > m. Then

$$2(\rho(k,m)) + \rho(m,n) = 2(\frac{1}{2^{k-1}}) + \frac{1}{2^m} \ge \frac{1}{2^{k-1}} = \rho(k,n).$$

4. Let m > n > k. Then

$$2(\rho(k,m)) + \rho(m,n) = 2(\frac{1}{2^k}) + \frac{1}{2^{m-1}} \ge \frac{1}{2^k} = \rho(k,n).$$

5. Let n > m > k. Then

$$2(\rho(k,m)) + \rho(m,n) = 2(\frac{1}{2^k}) + \frac{1}{2^m} \ge \frac{1}{2^k} = \rho(k,n).$$

6. Let n > k > m. Then

$$2(\rho(k,m)) + \rho(m,n) = 2(\frac{1}{2^{k-1}}) + \frac{1}{2^m} \ge \frac{1}{2^k} = \rho(k,n).$$

Therefore, ρ is a (2,1)-quasimetric and (2,1) is the best point, as in the case 1, an arbitrarily large number m could be taken so that the inequality does not hold for $q_1 < 2$.

Acknowledgments

The author is sincerely thankful to professors A.V. Arutyunov, A.V. Greshnov for the statement of the problem and to S.E. Zhukovskiy and P.I. Klimov for valuable comments and discussions.

This paper was supported by the grant of the Russian Science Foundation (project no. 17-11-01168).

76 R. Sengupta

References

[1] A.V. Arutyunov, A.V. Greshnov, Theory of (q_1, q_2) -quasimetric spaces and coincidence points. Doklady Mathematics. 94 (2016), no. 1, 434–437.

Richik Sengupta S.M. Nikol'skii Mathematical Institute Department of Nonlinear Analysis and Optimization Peoples' Friendship University of Russia (RUDN University) 6 Mikhluko-Maklaya St, 117198 Moscow, Russia E-mail: veryricheek@hotmail.com

Received: 30.04.2017