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ERLAN DAUTBEKOVICH NURSULTANOV

(to the 60th birthday)

On May 25, 2017 was the 60th birthday of Yerlan Dautbekovich Nur-
sultanov, Doctor of Physical and Mathematical Sciences (1999), Profes-
sor (2001), Head of the Department of Mathematics and Informatics of
the Kazakhstan branch of the M.V. Lomonosov Moscow State University
(since 2001), member of the Editorial Board of the Eurasian Mathematical
Journal.

E.D. Nursultanov was born in the city of Karaganda. He graduated
from the Karaganda State University (1979) and then completed his post-
graduate studies at the M.V. Lomonosov Moscow State University.

Professor Nursultanov's scienti�c interests are related to various areas of the theory of func-
tions and functional analysis.

He introduced the concept of multi-parameter Lorentz spaces, network spaces and anisotropic
Lorentz spaces, for which appropriate interpolation methods were developed. On the basis
of the apparatus introduced by him, the questions of reiteration in the o�-diagonal case for
the real Lyons-Petre interpolation method, the multiplier problem for trigonometric Fourier
series, the lower and upper bounds complementary to the Hardy-Littlewood inequalities for
various orthonormal systems were solved. The convergence of series and Fourier transforms
were studied with su�ciently general monotonicity conditions. The lower bounds for the norm
of the convolution operator are obtained, and its upper bounds are improved (a stronger result
than the O'Neil inequality). An exact cubature formula with explicit nodes and weights for
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The Editorial Board of the Eurasian Mathematical Journal congratulates Erlan Dautbekovich
Nursultanov on the occasion of his 60th birthday and wishes him good health and successful
work in mathematics and mathematical education.
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• the problems of S.S. Goncharov and M.S. Manasse: the problem of characterizing relative
categoricity in the hyperarithmetical hierarchy given levels of complexity of Scott fami-
lies, and the problem on the relationship between categoricity and relative categoricity of
computable structures in the arithmetical and hyperarithmetical hierarchies;

• the problem of Yu.L. Ershov: the problem of �nite algorithmic dimension in the arithmeti-
cal and hyperarithmetical hierarchies;

• the problem of C.J. Ash and A. Nerode: the problem of the interplay of relations of
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Jamalbek Tussupov on the occasion of his 60th aniversary and wishes him strong health, new
achievements in science, inspiration for new ideas and fruitfull results.
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Abstract. We study geometric properties of (q1, q2)-quasimetric spaces and �xed point theorems
in these spaces. In paper [1], a �xed point theorem was obtained for a contraction map acting
in a complete (q1, q2)-quasimetric space. The graph of the map was assumed to be closed. In
this paper, we show that this assumption is essential, i.e. we provide an example of a complete
quasimetric space and a contraction map acting in it whose graph is not closed and which is
�xed-point-free. We also describe some geometric properties of such spaces.

1 Introduction

The present paper is devoted to the problem of the existence of a �xed point of contraction
maps in a complete (q1, q2)-quasimetric space and the geometry of (q1, q2)-quasimetric spaces.
The basis for the theory of such spaces can be found in [1] where coincidence point theorems
and a �xed point theorem for such spaces were obtained.

Let us recall the necessary de�nitions from [1]. Let positive real numbers q1, q2 and a set X
be given.

De�nition 1. A function ρX : X ×X → R+ , such that ρX(x, y) = 0 ⇐⇒ x = y, is called a
(q1, q2)-quasimetric, if the generalized (q1, q2)-triangle inequality holds:

ρX(x, z) ≤ q1ρX(x, y) + q2ρX(y, z) ∀x, y, z ∈ X.

The pair (X, ρX) is called a (q1, q2)-quasimetric space. A (1, 1)-quasimetric space is called a
quasimetric space.

In de�nitions below, we assume that (X, ρX) is a (q1, q2)-quasimetric space and (Y, ρY ) is a
(q̃1, q̃2)-quasimetric space.

De�nition 2. Given q0 > 0, a (q1, q2)-quasimetric is called q0-symmetric if

ρX(x, y) ≤ q0ρX(y, x) ∀x, y ∈ X.

In this case, the pair (X, ρX) is called a q0-symmetric (q1, q2)-quasimetric space. If q0 = 1, then
the space is said to be symmetric.

De�nition 3. The map Φ : X → X is called β-Lipschitz if

ρX(Φ(x),Φ(y)) ≤ βρX(x, y) ∀x, y ∈ X.

If β < 1 then the map Φ is said to be a contraction map.
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De�nition 4. A sequence {xi}∞i=1 ⊂ X such that

∀ε > 0 ∃N ∈ N ∀i, j ∈ N : i > j > N ⇒ ρX(xj, xi) < ε

is called a Cauchy sequence.

De�nition 5. A sequence {xi}∞i=1 ⊂ X is said to converge to a point x0 ∈ X in a quasimetric
space (X, ρX) if lim

i→∞
ρX(x0, xi) = 0.

De�nition 6. A quasimetric space (X, ρX) is said to be complete if any Cauchy sequence con-
verges in this space.

Let a function F : X → Y be given. Denote gphF = {(x, y) ∈ X × Y : y = F (x)}.

De�nition 7. A map F : X → Y is said to be closed if the set gphF is closed, that is if for all
sequences {xi} ⊂ X and {yi} ⊂ Y , such that they converge to points x0 and y0 respectively and
(xi, yi) ∈ gph(F ) for all i, we have (x0, y0) ∈ gph(F ).

Let us show that if a (q1, q2)-quasimetric space X is q0-symmetric then any contraction map
F : X → X acting in it is closed. Consider the contrary: let there exist sequences {xi} and
{yi}, that converge to points x0 and y0 respectively and (xi, yi) ∈ gph(F ) for all i, however
(x0, y0) 6∈ gph(F ). In other words, ρX(y0, F (x0)) > 0. While

ρX(y0, F (x0)) ≤ q1ρX(y0, yn) + q2ρX(yn, F (x0)) ≤ q1ρX(y0, yn) + βq2q0ρX(x0, xn)→ 0.

Thus, we obtained a contradiction.
The following example shows that the identity map in a (q1, q2)-quasimetric space is not

necessarily closed.

Example 1 (proposed by S.E. Zhukovskiy). On the standard Euclidean space R2 by S(r) denote
the circle of radius r with center at zero. Let X be system of sets, consisting of all circles S(r),
r > 1 and points x of the unit circle S(1). Set

d(U, V ) = h+
X(U, V ), U, V ∈ X ,

h+
X(U, V ) = inf{ε ≥ 0 : U ⊂ Nε(V )}, (1.1)

Nε(V ) =
⋃
v∈V

{u ∈ R2 : |u− v| < ε}. (1.2)

Then (X , d) is a quasimetric space.
It is known that such a space (X , d) is complete. For any point x ∈ S(1), we have

d

(
x, S

(
1 +

1

n

))
= h+

X

(
x, S

(
1 +

1

n

))
=

1

n
→ 0 as n→∞.

Thus, every point x ∈ S(1) is a limit of the sequence

{
S

(
1 + 1

n

)}
.

Let us show that the identity map F in this space is not closed. Let us denote xn = S

(
1+ 1

n

)
.

Let us take two di�erent points a, b ∈ S(1). It was shown above that xn → a and xn → b. It is
obvious (xn, xn) ∈ gph(F ) for all n. However, (a, b) 6∈ gph(F ), since a 6= b. Thus, the identity
map is not closed.
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2 Main results

Let us consider the �xed point theorem from [1].

Theorem 2.1. A closed contraction map acting from a complete (q1, q2)-quasimetric space to
itself has a unique �xed point.

Below we present an example showing that in Theorem 2.1 the assumption of the contraction
map being closed is essential.

Before constructing the example, we introduce the concept of a stabilizing sequence.
Let (X, ρ) be a (q1, q2)-quasimetric space.

De�nition 8. A sequence {xi} ⊂ X is said to stabilize to a point a ∈ X if there exists N ∈ N,
such that xi = a for all i ≥ N. This sequence is said to be stabilizing if there exists such a point
a ∈ X.

It is obvious that any stabilizing sequence {xi} ⊂ X is Cauchy and convergent.

Lemma 2.1. Given a Cauchy sequence {xn}, assume that there exists a subsequence {xnk} that
stabilizes to a certain a ∈ X. Then lim

n→∞
xn = a and a is the only limit of the sequence {xn}.

Proof. Let us prove that the sequence {xn} converges to a. Assume that {xn} does not converge
to a. Then there exists an ε > 0 such that for allN ∈ N there exists i > N , such that ρ(a, xi) > ε.
By virtue of the assumption, there exist arbitrarily large numbers j, such that xj = a. Therefore,
there exist arbitrarily large numbers i and j, such that i > j and ρ(xj, xi) > ε. The statement
above contradicts the fact that {xn} is a Cauchy sequence.

Let us prove the uniqueness of the limit. Let there exist b ∈ X, such that a 6= b and xn → b.
Set ρ(b, a) = γ > 0. Let us pick ε = γ

2
. Then by virtue of the assumption made there exist

arbitrarily large numbers i such that xi = a and therefore ρ(b, xi) > ε. The above contradicts
the assumption that {xn} converges to b and proves that a is the unique limit.

Corollary 2.1. Let us consider a sequence {xn} ⊂ X such that it has subsequences {xnk}, {xnl},
which stabilize to a, b ∈ X respectively, moreover a 6= b. Then the sequence {xn} is not a Cauchy
sequence.

Corollary 2.2. If a Cauchy sequence {xn} has at least two di�erent limits then any element of
the sequence appears in {xn} a �nite number of times.

Proof. Let a certain element c appear an in�nite number of times. Then there exists a sub-
sequence that stabilizes to c and therefore by virtue of Lemma 2.1, c is the only limit of the
original sequence which contradicts the assumption.

The example below illustrates that in Theorem 2.1 the assumption of the contraction map
being closed is essential.
Example 2. Set X = {0, 1, 2, 3, ...}. Let us de�ne the function ρ : X ×X → R+ by

ρ(k, n) =


1

2n−1 − 1
2k−1 , if k > n.

1
2n
, if k < n.

0, if k = n.

Let us prove that ρ is a quasimetric. It is enough to verify the triangle inequality:

ρ(k, n) ≤ ρ(k,m) + ρ(m,n) ∀k,m, n ∈ X.
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It is obvious that if the values of at least two out of three variables k, n,m ∈ X coincide, then
this inequality holds. Let us assume that are k, n,m ∈ X are pairwise non-identical. Consider
6 cases:
1. Let m > k > n. Then

ρ(k,m) + ρ(m,n) =
1

2m
+

1

2n−1
− 1

2m−1
=

1

2n−1
− 1

2m
≥ 1

2n−1
− 1

2k−1
= ρ(k, n).

2. Let k > m > n. Then

ρ(k,m) + ρ(m,n) =
1

2m−1
− 1

2k−1
+

1

2n−1
− 1

2m−1
=

1

2n−1
− 1

2k−1
= ρ(k, n).

3. Let k > n > m. Then

ρ(k,m) + ρ(m,n) =
1

2m−1
− 1

2k−1
+

1

2n
=

1

2m−1
− 1

2n
+

1

2n−1
− 1

2k−1
≥ 1

2n−1
− 1

2k−1
= ρ(k, n).

4. Let m > n > k. Then

ρ(k,m) + ρ(m,n) =
1

2m
+

1

2n−1
− 1

2m−1
=

2

2n
− 1

2m
≥ 2

2n
− 1

2n
=

1

2n
= ρ(k, n).

5. Let n > m > k. Then

ρ(k,m) + ρ(m,n) = ρ(k,m) +
1

2n
≥ 1

2n
= ρ(k, n).

6. Let n > k > m. Then

ρ(k,m) + ρ(m,n) = ρ(k,m) +
1

2n
≥ 1

2n
= ρ(k, n).

Therefore, ρ is a quasimetric.

Proof. Let us now prove that the constructed quasimetric space (X, ρX) is complete.
Let {xi} be a Cauchy sequence. If there exists a subsequence that stabilizes to a certain

element from X then by virtue of Lemma 2.1, it converges to this element, which is the only
limit of the sequence. Let us consider the case, when the Cauchy sequence {xi} does not contain
a stabilizing subsequence. Then by de�nition every element of the sequence appears only a �nite
number of times. Therefore, for an arbitrary element a ∈ X, there exists a number N(a) ∈ N
such that xi > a for all i ≥ N(a). Then ρ(a, xi) = 1

2xi
. Let us take an arbitrary ε > 0 and a

natural N ′ ≥ N(a) such that ρ(a, xi) = 1
2xi

< ε for all i ≥ N ′. By virtue of the arbitrary choice
of ε, it follows that the sequence {xi} converges to a.

Thus, in the given space any Cauchy sequence converges. Therefore, the constructed quasi-
metric space (X, ρX) is complete.

Consider the map Φ : X → X, Φ(n) = n+ 1 for all n ∈ X. The map Φ is a contraction map,
since

ρ(Φ(n),Φ(m)) = ρ(n+ 1,m+ 1) =
1

2
ρ(n,m) ∀n,m ∈ X.

It is obvious, that the map Φ does not have �xed points. Thus, the space (X, ρ) and the map Φ
are desired.

Let us directly verify that the graph of Φ is not closed. In the example above, take two
di�erent points a, b ∈ X such that b 6= Φ(a). Let us take xn = n, then xn → a, xn → b and
(xn, xn+1) ∈ gph(Φ) for all n ∈ N. However, (a, b) 6∈ gph(Φ), since Φ(a) 6= b. Thus, the map Φ
is not closed.
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Let us discuss some geometric properties of (q1, q2)-quasimetric spaces. Let (X, ρ) be a
(q1, q2)-quasimetric space and the set X consists of not less than two points. Then q1 ≥ 1, q2 ≥ 1.

In [1] a set Q was de�ned that consists of points q = (q1, q2) ∈ R2 such that q1 ≥ 1, q2 ≥ 1
and the (q1, q2)-generalized triangle inequality holds for the quasimetric ρ . It is obvious that
the set Q is convex and closed. Besides, if a (q1, q2)-quasimetric space is symmetric then the set
Q is symmetric with respect to the bisector of the �rst quadrant.

In [1] the concept of a best point was also de�ned. A point q = (q1, q2) ∈ Q is said to be
the best point, if q ≤ q′ for all q′ ∈ Q (coordinatewise inequality is implied). The best point
is unique, though it does not always exist. However, if (X, ρ) is symmetric and the best point
q = (q1, q2) exists, then q1 = q2.

A natural question arises: does there exist a (q1, q2)-quasimetric space (that is not symmetric),
for which there exists a best point q = (q1, q2) ∈ Q, such that q1 6= q2?

The example below illustrates that such a point can indeed exist for a nonsymmetric (q1, q2)-
quasimetric space.
Example 3. Set

X = {1, 2, 3, ...}.
Let us de�ne the function ρ : X ×X → R+ by

ρ(k, n) =


1

2k−1 , if k > n.
1
2k
, if k < n.

0, if k = n.

Let us prove that ρ is a (2, 1)-quasimetric. For this it is enough to verify the (2, 1)-generalized
triangle inequality:

ρ(k, n) ≤ 2(ρ(k,m)) + ρ(m,n) ∀k,m, n ∈ X.
It is obvious that if the values of at least two out of three variables k, n,m ∈ X coincide, then

this inequality holds. Let us assume that are k, n,m ∈ X are pairwise non-identical. Consider
6 cases:
1. Let m > k > n. Then

2(ρ(k,m)) + ρ(m,n) = 2(
1

2k
) +

1

2m−1
≥ 1

2k−1
= ρ(k, n).

2. Let k > m > n. Then

2(ρ(k,m)) + ρ(m,n) = 2(
1

2k−1
) +

1

2m−1
≥ 1

2k−1
= ρ(k, n).

3. Let k > n > m. Then

2(ρ(k,m)) + ρ(m,n) = 2(
1

2k−1
) +

1

2m
≥ 1

2k−1
= ρ(k, n).

4. Let m > n > k. Then

2(ρ(k,m)) + ρ(m,n) = 2(
1

2k
) +

1

2m−1
≥ 1

2k
= ρ(k, n).

5. Let n > m > k. Then

2(ρ(k,m)) + ρ(m,n) = 2(
1

2k
) +

1

2m
≥ 1

2k
= ρ(k, n).

6. Let n > k > m. Then

2(ρ(k,m)) + ρ(m,n) = 2(
1

2k−1
) +

1

2m
≥ 1

2k
= ρ(k, n).

Therefore, ρ is a (2, 1)-quasimetric and (2, 1) is the best point, as in the case 1, an arbitrarily
large number m could be taken so that the inequality does not hold for q1 < 2.
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