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ERLAN DAUTBEKOVICH NURSULTANOV
(to the 60th birthday)

On May 25, 2017 was the 60th birthday of Yerlan Dautbekovich Nur-
sultanov, Doctor of Physical and Mathematical Sciences (1999), Profes-
sor (2001), Head of the Department of Mathematics and Informatics of
the Kazakhstan branch of the M.V. Lomonosov Moscow State University
(since 2001), member of the Editorial Board of the Eurasian Mathematical
Journal.

E.D. Nursultanov was born in the city of Karaganda. He graduated
from the Karaganda State University (1979) and then completed his post-
graduate studies at the M.V. Lomonosov Moscow State University.

Professor Nursultanov’s scientific interests are related to various areas of the theory of func-
tions and functional analysis.

He introduced the concept of multi-parameter Lorentz spaces, network spaces and anisotropic
Lorentz spaces, for which appropriate interpolation methods were developed. On the basis
of the apparatus introduced by him, the questions of reiteration in the off-diagonal case for
the real Lyons-Petre interpolation method, the multiplier problem for trigonometric Fourier
series, the lower and upper bounds complementary to the Hardy-Littlewood inequalities for
various orthonormal systems were solved. The convergence of series and Fourier transforms
were studied with sufficiently general monotonicity conditions. The lower bounds for the norm
of the convolution operator are obtained, and its upper bounds are improved (a stronger result
than the O’Neil inequality). An exact cubature formula with explicit nodes and weights for
functions belonging to spaces with a dominated mixed derivative is constructed, and a number
of other problems in this area are solved.

He has published more than 50 scientific papers in high rating international journals included
in the lists of Thomson Reuters and Scopus. 2 doctor of sciences, 9 candidate of sciences and 4
PhD dissertations have been defended under his supervision.

His merits and achievements are marked with badges of the Ministry of Education and
Science of the Republic of Kazakhstan "For Contribution to the Development of Science" (2007),
"Honored Worker of Education" (2011), "Y. Altynsarin" (2017). He is a laureate of the award
named after K. Satpaev in the field of natural sciences for 2005, the grant holder "The best
teacher of the university" for 2006 and 2011, the grant holder of the state scientific scholarship
for outstanding contribution to the development of science and technology of the Republic of
Kazakhstan for years 2007-2008, 2008 -2009. In 2017 he got the Top Springer Author award,
established by Springer Nature together with JSC "National Center for Scientific and Technical
Information".

The Editorial Board of the Eurasian Mathematical Journal congratulates Erlan Dautbekovich
Nursultanov on the occasion of his 60th birthday and wishes him good health and successful
work in mathematics and mathematical education.




JAMALBEK TUSSUPOV
(to the 60th birthday)

On April 10, 2017 was the 60th birthday of Jamalbek Tussupov, Doctor
of Physical and Mathematical Sciences, Professor, Head of the Information
Systems Department of the L.N. Gumilyov Eurasian National University,
member of the Kazakhstan and American Mathematical Societies, member
of the Association of Symbolic Logic, member of the Editorial Board of the
Eurasian Mathematical Journal.

J. Tussupov was born in Taraz (Jambyl region of the Kazakh SSR).
He graduated from the Karaganda State University (Kazakhstan) in 1979
and later on completed his postgraduate studies at S.L. Sobolev Institute
of Mathematics of the Academy of Sciences of Russia (Novosibirsk).

Professor Tussupov’s research interests are in mathematical logic, com-
putability, computable structures, abstract data types, ontology, formal semantics. He solved
the following problems of computable structures:

e the problems of S.S. Goncharov and M.S. Manasse: the problem of characterizing relative
categoricity in the hyperarithmetical hierarchy given levels of complexity of Scott fami-
lies, and the problem on the relationship between categoricity and relative categoricity of
computable structures in the arithmetical and hyperarithmetical hierarchies;

e the problem of Yu.L. Ershov: the problem of finite algorithmic dimension in the arithmeti-
cal and hyperarithmetical hierarchies;

e the problem of C.J. Ash and A. Nerode: the problem of the interplay of relations of
bounded arithmetical and hyperarithmetical complexity in computable presentations and
the definability of relations by formulas of given complexity;

e the problem of S. Lempp: the problem of structures having presentations in just the degrees
of all sets X such that for algebraic classes as symmetric irreflexive graphs, nilpotent groups,
rings, integral domains, commutative semigroups, lattices, structure with two equivalences,
bipartite graphs.

Professor Tussupov has published about 100 scientific papers, five textbooks for students and
one monograph. Three PhD dissertations have been defended under his supervision.

Professor Tussupov is a fellow of "Bolashak" Scholarship, 2011 (Notre Dame University,
USA), "Erasmus+", 2016 (Poitiers University, France). He was awarded the title "The Best
Professor of 2012" (Kazakhstan). In 2015 Jamalbek Tussupov was also awarded for the contri-
bution to science in the Republic of Kazakhstan.

The Editorial Board of the Eurasian Mathematical Journal congratulates Dr. Professor
Jamalbek Tussupov on the occasion of his 60th aniversary and wishes him strong health, new
achievements in science, inspiration for new ideas and fruitfull results.
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Abstract. The uniform convergence on a closed domain is studied of eigenfunction expansions
of continuous functions belonging to function spaces with mixed norm.

1 Introduction and preliminaries

Let  be a bounded domain in RY with a smooth boundary 9. Let A be the self-adjoint
extension of a positive formally elliptic differential operator of order 2m with regular boundary
conditions [1].

Denote by {u,(x)} a complete orthonormal in Ly(€2) system of eigenfunctions of the operator
A corresponding to the sequence of eigenvalues 0 < \; < Ay < .... < A\, = 00. For any function
[ € Ly(§2) we introduce the Riesz means of order s of the partial sums of the Fourier series

B = X (1) fnto) (L)

An <A

Here A >0, f, = (f,u,) are the Fourier coefficients of the function f with respect to the system
{un(2)}-
Note that if s = 0, then (1.1) is just the partial sum of the Fourier series of the function f.
Precise conditions of uniform convergence on compact subsets of the domain €2 of Fourier
series were established by V.A. I'in (see [9]).

Theorem 1.1. If
N -1
o> ,
- 2
then the Fourier series via the eigenfunctions of the Laplace operator of any function with com-

pact support belonging to the Sobolev space W;(Q) converges uniformly on any compact subset
of the domain Q.

ap>N, p>1 (1.2)

Convergence of the Riesz means (1.1) of smooth functions on compact subsets of the domain
Q requires modification of condition (1.2) in Theorem 1.1 as follows

N
a+ s> 5 ap>N, s>0, p>1. (1.3)

The sharpness of the first inequality in (1.3) for eigenfunction expansions associated with Laplace
operator was proved by V.A. II'in (see in [9]). The sharpness of the second inequality in (1.3)
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follows from the fact that the condition ap < N implies the existence of an unbounded function
with compact support belonging to the appropriate Sobolev space for which its Fourier series
cannot converge uniformly.

Moreover, conditions (1.3) are sufficient for functions in the Nikol’skii spaces H(€2). The
last statement was proved in the case of expansions associated with the eigenfunctions of the
Laplace operator by V.A. II'in and Sh.A. Alimov, in the case of expansions associated with elliptic
operators of second order with variable coefficients by V.A. I'in and E.I. Moiseev. Finally, for
general elliptic differential operators of order 2m Sh.A. Alimov has proved in [4] the following
statement

Theorem 1.2. If f belongs to the space Hg‘(Q) and has compact support in ), then under
conditions (1.3) the Riesz means E5 f(x) converge as A — 400 to f uniformly on any compact

K cq.

Here H;(Q), (W;(Q)) is the closure of C3°(€2) with respect to the norm of the Nikol’skii
(Sobolev) space Hg(§2) (W (Q2)).

In the case in which the second condition in (1.3) is replaced by ap = N, it is necessary to
assume that the function f is continuous (see [3]):

Theorem 1.3. Let )y be an arbitrary open subset of 2 and let

N -1
a+ s> 5 ap=N, s>0, p>1. (1.4)

Then for any function [ € Wg(Q) continuous on €
lim EXf(x) = f(2). (1.5)
— 00

uniformly on any compact set K C .

The first condition o+ s > Y=L in (1.4) is also precise [3].

Theorem 1.4. Let xy be an arbitrary point of the domain Q0 and let

N -1
a+s:T, ap=N, s>0, p>1. (1.6)

Then there exists a function [ € Wpo‘(Q), which 1s continuous in €, and such that
lim ES f(zo) = +oc. (1.7)
A—00

These results were extended to the Nikol’skii spaces in [11].

2 Uniform convergence on closed domains

The uniform convergence of Fourier series on closed domains Q was studied by V.A. Il'in (see
[10]). In [10] for the eigenfunction expansions associated with the first, second and third bound-

N2
ary conditions for the Laplace operator it was proved that if f € W,? p > % and the

functions f,Af,....,APf, up to a certain order 3, satisfy the appropriate boundary conditions,
then the Fourier series of f converges uniformly on closed domain (2.

For the elliptic differential operator of order 2m with the regular boundary conditions G.I.
2N-—-1

Eskin (see [6]) proved that the eigenfunction expansion of a function in W, * '~ with any & > 0
converges uniformly on closed domains.
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E.I. Moiseev studied the problem for the elliptic operators of second order for the first bound-

ary value problem. In [12] it is proved that if f is a function with compact support in the space
N-—1

Wy 2 ,p> 22 such that the series
— | 5 24e 2
D A (Ind,)* e
n=1

converges, then its expansion via eigenfunctions converges uniformly on the closed domain €.
Moreover, it was proved in [12] that the following estimate

Z u?(z) = O(uN ' In? ) (2.1)
IVAn—pl<1

is valid uniformly on the closed domain €.

In [5] uniform convergence of expansions via eigenfunctions of the elliptic differential operator
of order 2m with the Lopatinsky boundary condition was studied and the following result was
proved.

Theorem 2.1. Let f be an arbitrary continuous function with compact support in Q. Then the
Riesz means EX f of order s > % converge to f uniformly on the closed domain €.

In [14] by using estimate (2.1) the condition s > & in Theorem 2.1 was replaced by s > &

We mention also the following result (see [13]).

Theorem 2.2. Let

N —1
ap>N, s>0, p>1. (2.2)

a4+ s> , =
2

Then for any continuous function f € H;“(Q) with compact support in the domain 2 uniformly
in Q
lim B f(x) = f(z). (2.3
—00

Note that it follows by Theorem 1.4 that in the case ap = N the condition a+s > (N —1)/2
is precise. In the case ap > N this problem is still open.

3 Convergence of expansions via eigenfunctions in the spaces with
mixed norm

The space of all measurable functions with finite norm

1 zpg ey = 1z, ) |2y rv-)

is called the space with mixed norm L,,(R"). If a function is defined in the domain 2 then the
corresponding space can be defined by extending a function by zero outside of the domain ).
By H,, we denote the Banach space of all measurable functions f with respect to the norm

1 argy) = 1 gty + D sup 2l IAZ" F ()| Lyieep

lk|=¢ *



On the uniform convergence of Fourier series in the closed domain. 63

Here a = (+k, ( isanon negative integer, 0 < k <1, p,q > 1, k = (ky, k2, ....., k) multi-index,
|k| = k1 + ko + ... +k,, and OFf denotes the weak derivative
ol £y
0" fly) = )

B oYM, oy, ... Oykn’
The symbol A20* f(y) denotes the second difference of the function 9" f(y) :

A2 f(y) = 0" f(y +2) — 20" f(y) + 0" (1)-
| fllz,, () denotes the norm in the space L,, and, for h >0, Q, = {z € Q:dist(z,00) > h}.
By I-Olz‘j‘q(Q) denote the closure of C5°(£2) with respect to the norm of the space Hy, (2) .
Using the methods of [3]-[4] for functions in the spaces with the mixed norm the appropriate
theorems on convergence of the spectral expansions associated with the Laplace operator on
compact subsets of the domain were obtained in [15].

The main result of the present paper is the following theorem on the uniform convergence
on the closed domain €2

Theorem 3.1. Lel f be a continuous function with compact support in the domain € belonging
to the space HS () and

o >

k k
+—-, 2<p<gq O0<Ek<N. (3.1)
p

Then uniformly on Q
Jim B} f(x) = f(x).
—00

4 Preliminary statements

Let h be a small positive number so that €2, is a non-empty proper subset of (2.
Let x € Q, and y € €. Consider the following function of the distance r = |z — y| :
- s I (rVA
D(s+1)2"(2m) F A S5 —, r<R
r2

s

0, T’>R7

V(z,y,\) = (4.1)

where R is a positive constant less than 2 and J,(¢) the Bessel function of the first kind of order
v.

For the eigenfunctions u,(z) we use the following mean value formula in a sphere {r < R}
centred at x € Q [10]:

—-N
| wwdy = @eRE 1y (RVAA () (12
r<Ri 2

By applying mean value formula (4.2) we get the following formula for the Fourier coefficients
of the function V(x,y, \)

=N N oo R
vMx) = 2T (s + 1)\, * /\Nﬁun(a:)/ J%Jrs(\/Xr)J%_l(\/)\nr)r_sdr. (4.3)
0
In order to evaluate the integral on the right-hand side of (4.3) we use following well-known
formula for the Bessel functions [16]:

a—1

(L=2Am) A, 2

o —_—a <
/ Ja—{-s(\/XT)Ja—s( V )\nr)risdr = 25F(s+1))\$ ’ An S A . (44)
0 0, An > A
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Then by splitting the integral in the right-hand side of (4.3) in two integrals

A

we get
A
v (x) = oun(x)(1 — 7”)3 —2°T(s+ 1)>\ T Ai’ﬁun( Vo(An, M), (4.5)
where Iy(A\,, A) defined by
PO _ N -1
(s \) = (M) / T s VA) Ty (A, m=0,[52] (46)
R
when m = 0 and §) = L A<
0, A\ > A

Multiplying both sides of (4.5) by w,(z) and summing in n, we get the following equality in
Lo - sense with the respect to the variable y

V(z,y,\) = 0%, v, A)_zsr(sﬂ)A%*%ZA T To( At ()t (1), (4.7)

n—1
where ©°(z,y,A) = >, ) un(T)un(y) is known as the spectral function [1].
Lemma 4.1. For any function f € Ly(2) the integral

/f Vi(z,y,A

is continuous in y on the closed domain ).

Proof. From estimate (2.1) it follows that for any positive number ¢ uniformly with respect to
y €
e N
S ukyi T =0\ W’ N). (4.8)
An>A

This can be proved if the sum in the left-hand side of (4.8) is represented in the form of a series:

767N e N
RIS DED DRI
An>A k=0 /X4k<vXn<VAtk+1

<Y (VA+ k)N > u2(y).
k=0 VA<V A <VA+E+1

Similarly from the estimate of integral (4.6) (see |16])

[ (A, An)| <

(4.9)

C
L+ VA= /A

(where ¢ > 0 is independent of A and n) and estimate (4.8) by application of the Cauchy-Schwarz
inequality it follows that the series

> fatn @A Ln(X A)
n=1

converges uniformly on the closed domain €. O]
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Let a function f € Ly(Q) has compact support in Q and suppf C . Then for y € Q Riesz
means (1.1) of the partial sums of the Fourier series of the function f via the eigenfunctions
un () can be written as

Esfly) = ) f(@)V(x,y, Ndz + +2°T(s + 1)\ anun Mt Lo(A An) (4.10)

Denote by B(R,y) the sphere of radius R centred at y € Q. Then, taking into consideration the
continuity of the function

f@)va(e = yl)do

with respect to y on the closed domain  and the fact that it is equal to the first term in the
right-hand side of (4.10) we obtain following representation for the Riesz means (1.1) in the
closed domain ¢

Bifw) = | f@)ede —y)drds + 2T(s + DXTTE Y fan@d DA (411
h n=1

We will study (4.11) when A — oo. Thus, further let A > e.
Lemma 4.2. Uniformly with respect to y € Q

i u’ At LM < O P, (4.12)

n=1

where X > e and C' > 0 s independent of X and y.
Proof. Similarly to (4.9) from (2.1) it follows

Z

> wk(yin T =0’ \). (4.13)
An<A

uniformly with respect to y € Q . Here ¢ is an arbitrary positive number.
When /A, <2 from (4.9) we have I,(\,Ay) = O(5) . Then from (4.12) with & =1/2
obtain the following estimate

N In?\
o w) At InW A = O(W) (4.14)
1< VA<
Similarly if 3v/A < 2/, from (4.9) we have I,,(\,\,) = O(\/E\TL) . Then from (4.8) with
e =1/2 obtain
1N In*\

S wky) M LA W) =0( (4.15)
VBA<L2V A,

)

The last interval for the eigenvalues | vA, — VA | < @ we represent (see below) as union
of the intervals 2m~1 < | /A, — N2\ | < 2™ . In the interval 2™t < | /A, — VA | < 2m
from (4.9) we get I,,(A\,A,) = O(z7=r) . Then from (2.1) obtain

Z ui<y> M 0 AP <
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k
1-N
< CZ Z ui(y) An® 47 < CInP),
m=lam-ig| VA —vVA | < 2m

where k is the smallest number satisfying 2**! > X and C > 0 is independent of . [

Lemma 4.3. Let f € H(Q), o=/ + K, where £ is a non negative integer, x € (0, 1].
Then uniformly with respect to y € )

£ N-1 InA
> hunl) M L) = O(5F ) I ls- (4.16)
n=1
Proof. Note, that for any € > 0 [3]
YoooRxNT < e s (4.17)

A<An <4X
where ¢. > 0 is independent of f and A. Then from (4.9) and (4.13) it follows that

£ N-1 In\
Z fnun(y) )‘721 : [K()‘a)‘n) < C)\%

1/ 1l g (4.18)

where ¢ > 0 is independent of f and A. If A, > 2 instead of (4.13) we use (4.8) and obtain
the estimate for such n.

Proof for the numbers n for which % < A\ < %\ is as follows. Let k be the least natural

number satisfying 2571 > v/X. Then using (2.1), (4.9) and (4.17) we obtain

IA
—~
(]~

IS
I
S

>

3

N
&
=
>
>

g
o
~—

[N
—~

R

>
3Q
~—

[NIE
IN

m=1 Qm—lglm,ﬁ‘gzm A<
< e A7 I | f]lag-
where ¢ > 0 is independent from f and . O
Let a function f belong to the class C§°(£2) and let the support of this function be contained
in Qh.
Denote by D the differential operator defined as
_d 1

Dy(r) = dr [7“

¥(r)], D' =D"[Dy]

Let y € Q and r € (0, R), where R < 2. Let the function F(r) be defined as

T'N_l

F(r) = /9 Fly 4 r0)do,

WN

where wy is surface area of the unite sphere in R and the integral is taken over the sphere of
radius r with the center at z € Q, = {y € Q : dist(y, 0Q2)} > r.
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Denote F,(r) =+ D™ 'F(r). Then (see [3])

w\’z
-
\2

/\
=

3
2

Fou(r) = ( o Z fo Un(y QT (4.19)

From the recurrent relations for the Bessel functions .J,(t) we obtain

l
Io(\ ) = (%)2 L) + () ) % Tx gy m(BVA) Ty (RVA) B2 (4.20)

m=1

§’|>

In (4.11) we obtained a representation of Rieszz means (1.1) in the closed domain Q for any
function f € L,. Transforming formula (4.11) by integrating by parts in the integral in the
right-hand side and replacing Iy(\, A,,) with the left-hand side of (4.20) we get

Ef(y) =2°T(s+1) D'F(r)dr+

N /R J%Jrs—e(r\/x)
0

N N
5 rg%’S*f

(2m)

—1

1 et ‘
+2T(s+ D) AT T D fuuam)A T L\ A +
n=1

VA () - [

+2°T'(s + 1)
2m) 2 0

m=1
Note that the Fourier series the function f € C§°(2) via the eigenfunctions of a converges
uniformly and absolutely in the closed domain Q. Thus the function F,(r) is continuous with
respect to the variables y and r. Moreover, F,,(r) tends to zero as r — 0.

Then taking into account the last note, we obtain the following representation of the Riesz
means

N s R Jﬂ S— (r\/x)
ESf(y) = 2T (s + 1)—2N_ A\ ¥ / Y DR
(2m)2 0 raz st
+ 2T+ 1) AT S fouam)A T T L), (4.21)
n=1

5 Proof of Theorem 3.1

Proof. Let f be a continuous function with compact support in the domain €2 belonging to the
space Hg () and (3.1) holds. Due to the density of Cg°(Q2) in the space H, (§2), the statement
of Theorem 3.1 follows from the inequality

B f@) < clllflmg, + Iflea)- (5.1)
It suffices to consider case @ = &1 — s+ ¢, where ¢ is a small positive number (smaller than k).
If 2 < p < g from the embedding H', — H3 and Lemma 4.3 we obtain the following estimate

for the second term in the left-hand side of (4.21)

> ¢ _N-1 InA

PT(s+1) AT 5 3 f, WM L) = (A

I lag, (52
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Thus, for the Riesz means we have

B = e 25 [ 2 i 0( A 1l (5.9

TV

where ¢, = 2°T(s + 1)—2x and v =5 +s— (.

(2m)
Note, as is shown in [3], there are constants A,,, such that

DeF PN %Z A or™ 7“)

where 9 (r fe (y + r0)do.
Then 1nequahty (5.1) follows from (5.3) and the following estimate (see [15])

[

R
/ LN e < C (1fllmg, + i1l ) AT
0

where C' > 0 is independent of f and .
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