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ERLAN DAUTBEKOVICH NURSULTANOV

(to the 60th birthday)
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series, the lower and upper bounds complementary to the Hardy-Littlewood inequalities for
various orthonormal systems were solved. The convergence of series and Fourier transforms
were studied with su�ciently general monotonicity conditions. The lower bounds for the norm
of the convolution operator are obtained, and its upper bounds are improved (a stronger result
than the O'Neil inequality). An exact cubature formula with explicit nodes and weights for
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The Editorial Board of the Eurasian Mathematical Journal congratulates Erlan Dautbekovich
Nursultanov on the occasion of his 60th birthday and wishes him good health and successful
work in mathematics and mathematical education.
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Systems Department of the L.N. Gumilyov Eurasian National University,
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• the problems of S.S. Goncharov and M.S. Manasse: the problem of characterizing relative
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lies, and the problem on the relationship between categoricity and relative categoricity of
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• the problem of Yu.L. Ershov: the problem of �nite algorithmic dimension in the arithmeti-
cal and hyperarithmetical hierarchies;

• the problem of C.J. Ash and A. Nerode: the problem of the interplay of relations of
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the de�nability of relations by formulas of given complexity;
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Jamalbek Tussupov on the occasion of his 60th aniversary and wishes him strong health, new
achievements in science, inspiration for new ideas and fruitfull results.
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Abstract. The uniform convergence on a closed domain is studied of eigenfunction expansions
of continuous functions belonging to function spaces with mixed norm.

1 Introduction and preliminaries

Let Ω be a bounded domain in RN with a smooth boundary ∂Ω. Let Â be the self-adjoint
extension of a positive formally elliptic di�erential operator of order 2m with regular boundary
conditions [1].

Denote by {un(x)} a complete orthonormal in L2(Ω) system of eigenfunctions of the operator
Â corresponding to the sequence of eigenvalues 0 < λ1 < λ2 < .... < λn →∞. For any function
f ∈ L2(Ω) we introduce the Riesz means of order s of the partial sums of the Fourier series

Es
λf(x) =

∑
λn<λ

(
1− λn

λ

)s
fnun(x). (1.1)

Here λ > 0, fn = (f, un) are the Fourier coe�cients of the function f with respect to the system
{un(x)}.

Note that if s = 0, then (1.1) is just the partial sum of the Fourier series of the function f .
Precise conditions of uniform convergence on compact subsets of the domain Ω of Fourier

series were established by V.A. Il'in (see [9]).

Theorem 1.1. If

α ≥ N − 1

2
, αp > N, p ≥ 1 (1.2)

then the Fourier series via the eigenfunctions of the Laplace operator of any function with com-
pact support belonging to the Sobolev space Wα

p (Ω) converges uniformly on any compact subset
of the domain Ω.

Convergence of the Riesz means (1.1) of smooth functions on compact subsets of the domain
Ω requires modi�cation of condition (1.2) in Theorem 1.1 as follows

α + s ≥ N − 1

2
, αp > N, s ≥ 0, p ≥ 1. (1.3)

The sharpness of the �rst inequality in (1.3) for eigenfunction expansions associated with Laplace
operator was proved by V.A. Il'in (see in [9]). The sharpness of the second inequality in (1.3)
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follows from the fact that the condition αp ≤ N implies the existence of an unbounded function
with compact support belonging to the appropriate Sobolev space for which its Fourier series
cannot converge uniformly.

Moreover, conditions (1.3) are su�cient for functions in the Nikol'skii spaces Hα
p (Ω). The

last statement was proved in the case of expansions associated with the eigenfunctions of the
Laplace operator by V.A. Il'in and Sh.A. Alimov, in the case of expansions associated with elliptic
operators of second order with variable coe�cients by V.A. Il'in and E.I. Moiseev. Finally, for
general elliptic di�erential operators of order 2m Sh.A. Alimov has proved in [4] the following
statement

Theorem 1.2. If f belongs to the space H̊α
p (Ω) and has compact support in Ω, then under

conditions (1.3) the Riesz means Es
λf(x) converge as λ→ +∞ to f uniformly on any compact

K ⊂ Ω.

Here H̊α
p (Ω), (W̊α

p (Ω)) is the closure of C∞0 (Ω) with respect to the norm of the Nikol'skii
(Sobolev) space Hα

p (Ω) (Wα
p (Ω)).

In the case in which the second condition in (1.3) is replaced by αp = N , it is necessary to
assume that the function f is continuous (see [3]):

Theorem 1.3. Let Ω0 be an arbitrary open subset of Ω and let

α + s >
N − 1

2
, αp = N, s ≥ 0, p ≥ 1. (1.4)

Then for any function f ∈ W̊α
p (Ω) continuous on Ω0

lim
λ→∞

Es
λf(x) = f(x). (1.5)

uniformly on any compact set K ⊂ Ω0.

The �rst condition α + s > N−1
2

in (1.4) is also precise [3].

Theorem 1.4. Let x0 be an arbitrary point of the domain Ω and let

α + s =
N − 1

2
, αp = N, s ≥ 0, p ≥ 1. (1.6)

Then there exists a function f ∈ W̊α
p (Ω), which is continuous in Ω, and such that

lim
λ→∞

Es
λf(x0) = +∞. (1.7)

These results were extended to the Nikol'skii spaces in [11].

2 Uniform convergence on closed domains

The uniform convergence of Fourier series on closed domains Ω was studied by V.A. Il'in (see
[10]). In [10] for the eigenfunction expansions associated with the �rst, second and third bound-

ary conditions for the Laplace operator it was proved that if f ∈ W
N+2

2
p , p > 2N

N−1
and the

functions f,∆f, ....,∆βf, up to a certain order β, satisfy the appropriate boundary conditions,
then the Fourier series of f converges uniformly on closed domain Ω.

For the elliptic di�erential operator of order 2m with the regular boundary conditions G.I.

Eskin (see [6]) proved that the eigenfunction expansion of a function in W̊
2N−1

4
+ε

p with any ε > 0
converges uniformly on closed domains.
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E.I. Moiseev studied the problem for the elliptic operators of second order for the �rst bound-
ary value problem. In [12] it is proved that if f is a function with compact support in the space

W
N−1

2
p , p > 2N

N−1
, such that the series

∞∑
n=1

λ
N−1

2
n (lnλn)2+εf 2

n

converges, then its expansion via eigenfunctions converges uniformly on the closed domain Ω.
Moreover, it was proved in [12] that the following estimate∑

|
√
λn−µ|≤1

u2
n(x) = O(µN−1 ln2 µ) (2.1)

is valid uniformly on the closed domain Ω.
In [5] uniform convergence of expansions via eigenfunctions of the elliptic di�erential operator

of order 2m with the Lopatinsky boundary condition was studied and the following result was
proved.

Theorem 2.1. Let f be an arbitrary continuous function with compact support in Ω. Then the
Riesz means Es

λf of order s > N
2
converge to f uniformly on the closed domain Ω.

In [14] by using estimate (2.1) the condition s > N
2
in Theorem 2.1 was replaced by s > N−1

2

.
We mention also the following result (see [13]).

Theorem 2.2. Let

α + s >
N − 1

2
, αp ≥ N, s ≥ 0, p ≥ 1. (2.2)

Then for any continuous function f ∈ H̊α
p (Ω) with compact support in the domain Ω uniformly

in Ω

lim
λ→∞

Es
λf(x) = f(x). (2.3)

Note that it follows by Theorem 1.4 that in the case αp = N the condition α+s > (N−1)/2
is precise. In the case αp > N this problem is still open.

3 Convergence of expansions via eigenfunctions in the spaces with

mixed norm

The space of all measurable functions with �nite norm

‖f‖Lpq(RN ) = ‖‖f‖Lp(Rk)‖Lq(RN−k)

is called the space with mixed norm Lpq(RN). If a function is de�ned in the domain Ω then the
corresponding space can be de�ned by extending a function by zero outside of the domain Ω.

By Hα
pq we denote the Banach space of all measurable functions f with respect to the norm

‖f‖Hα
pq(Ω) = ‖f‖Lpq(Ω) +

∑
|k|=`

sup
z
|z|−κ‖∆2

z∂
kf(y)‖Lpq(Ω|z|)
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Here α = `+κ, ` is a non negative integer, 0 < κ ≤ 1, p, q ≥ 1, k = (k1, k2, ....., kn) multi-index,
|k| = k1 + k2 + .....+ kn, and ∂kf denotes the weak derivative

∂kf(y) =
∂|k|f(y)

∂yk1
1 , ∂y

k2
2 , ....., ∂y

kn
n

.

The symbol ∆2
z∂

kf(y) denotes the second di�erence of the function ∂kf(y) :

∆2
z∂

kf(y) = ∂kf(y + z)− 2∂kf(y) + ∂kf(y).

‖f‖Lpq(Ω) denotes the norm in the space Lpq and, for h > 0, Ωh = {x ∈ Ω : dist(x, ∂Ω) > h}.
By H̊α

pq(Ω) denote the closure of C∞0 (Ω) with respect to the norm of the space Hα
pq(Ω) .

Using the methods of [3]-[4] for functions in the spaces with the mixed norm the appropriate
theorems on convergence of the spectral expansions associated with the Laplace operator on
compact subsets of the domain were obtained in [15].

The main result of the present paper is the following theorem on the uniform convergence
on the closed domain Ω

Theorem 3.1. Let f be a continuous function with compact support in the domain Ω belonging
to the space H̊α

pq(Ω) and

α >
N − 1

2
− s, α =

N − k
q

+
k

p
, 2 ≤ p < q, 0 < k < N. (3.1)

Then uniformly on Ω
lim
λ−→∞

Es
λf(x) = f(x).

4 Preliminary statements

Let h be a small positive number so that Ωh is a non-empty proper subset of Ω.
Let x ∈ Ωh and y ∈ Ω. Consider the following function of the distance r = |x− y| :

V (x, y, λ) =

Γ(s+ 1)zs(2π)
−N

2 λ
N−2s

4

JN
4 −s

(r
√
λ

r
N
2 s

, r ≤ R

0, r > R
, (4.1)

where R is a positive constant less than h
4
and Jν(t) the Bessel function of the �rst kind of order

ν.
For the eigenfunctions un(x) we use the following mean value formula in a sphere {r < R}

centred at x ∈ Ωh [10]: ∫
r<R

un(y)dy = (2πR)
N
2 JN

2
(R
√
λn)λ

−N
4
n un(x) (4.2)

By applying mean value formula (4.2) we get the following formula for the Fourier coe�cients
of the function V (x, y, λ)

vλn(x) = 2sΓ(s+ 1)λ
2−N

4
n λ

N−2s
4 un(x)

∫ R

0

JN
2

+s(
√
λr)JN

2
−1(
√
λnr)r

−sdr. (4.3)

In order to evaluate the integral on the right-hand side of (4.3) we use following well-known
formula for the Bessel functions [16]:∫ ∞

0

Ja+s(
√
λr)Ja−s(

√
λnr)r

−sdr =

 (1−λn
λ

)sλsλ
a−1

2
n

2sΓ(s+1)λ
a+s

2
, λn ≤ λ

0, λn > λ

. (4.4)
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Then by splitting the integral in the right-hand side of (4.3) in two integrals∫ R

0

=

∫ ∞
0

−
∫ ∞
R

we get

vλn(x) = δλnun(x)(1− λn
λ

)s − 2sΓ(s+ 1)λ
1−N

4
n λ

N−1
4
− s

2un(x)I0(λn, λ), (4.5)

where I0(λn, λ) de�ned by

Im(λn, λ) = (λλn)
1
4

∫ ∞
R

JN
2

+s−m(
√
λr)JN

2
−1−m(

√
λnr)r

−sdr, m = 0,
[N − 1

2

]
(4.6)

when m = 0 and δλn =

{
1, λn < λ

0, λn ≥ λ.

Multiplying both sides of (4.5) by un(x) and summing in n, we get the following equality in
L2 - sense with the respect to the variable y

V (x, y, λ) = Θs(x, y, λ)− 2sΓ(s+ 1)λ
N−1

4
− s

2

∞∑
n−1

λ
1−N

4
n I0(λ, λn)un(x)un(y), (4.7)

where Θs(x, y, λ) =
∑

λn<λ
un(x)un(y) is known as the spectral function [1].

Lemma 4.1. For any function f ∈ L2(Ω) the integral∫
Ω

f(x)V (x, y, λ)dx

is continuous in y on the closed domain Ω.

Proof. From estimate (2.1) it follows that for any positive number ε uniformly with respect to
y ∈ Ω ∑

λn>λ

u2
n(y)λ

−ε−N
2

n = O(λ−ε ln2 λ). (4.8)

This can be proved if the sum in the left-hand side of (4.8) is represented in the form of a series:∑
λn>λ

u2
n(y)λ

−ε−N
2

n ≤
∞∑
k=0

∑
√
λ+k<

√
λn<
√
λ+k+1

u2
n(y)λ

−ε−N
2

n ≤

≤
∞∑
k=0

(
√
λ+ k)−2ε−N

∑
√
λ+k<

√
λn<
√
λ+k+1

u2
n(y).

Similarly from the estimate of integral (4.6) (see [16])

|Im(λ, λn)| ≤ c

1 + |
√
λ−

√
λn|

(4.9)

(where c > 0 is independent of λ and n) and estimate (4.8) by application of the Cauchy-Schwarz
inequality it follows that the series

∞∑
n=1

fnun(y)λ
1−N

4
n Im(λ, λn)

converges uniformly on the closed domain Ω.
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Let a function f ∈ L2(Ω) has compact support in Ω and suppf ⊂ Ωh. Then for y ∈ Ω Riesz
means (1.1) of the partial sums of the Fourier series of the function f via the eigenfunctions
un(x) can be written as

Es
λf(y) =

∫
Ωh

f(x)V (x, y, λ)dx+ +2sΓ(s+ 1)λ
N−1

4
− s

2

∞∑
n=1

fnun(y)λ
1−N

4
n I0(λ, λn) (4.10)

Denote by B(R, y) the sphere of radius R centred at y ∈ Ω. Then, taking into consideration the
continuity of the function ∫

Ωh

f(x)vλn(|x− y|)dx

with respect to y on the closed domain Ω and the fact that it is equal to the �rst term in the
right-hand side of (4.10) we obtain following representation for the Riesz means (1.1) in the
closed domain Ω

Es
λf(y) =

∫
Ωh

f(x)vλn(|x− y|)dxdx+ 2sΓ(s+ 1)λ
N−1

4
− s

2

∞∑
n=1

fnun(y)λ
1−N

4
n I0(λ, λn) (4.11)

We will study (4.11) when λ→∞. Thus, further let λ ≥ e.

Lemma 4.2. Uniformly with respect to y ∈ Ω

∞∑
n=1

u2
n(y) λ

1−N
2

n [Im(λ, λn)]2 ≤ C ln2λ, (4.12)

where λ ≥ e and C > 0 is independent of λ and y.

Proof. Similarly to (4.9) from (2.1) it follows∑
λn<λ

u2
n(y)λ

ε−N
2

n = O(λε ln2 λ). (4.13)

uniformly with respect to y ∈ Ω . Here ε is an arbitrary positive number.

When
√
λn ≤

√
λ

2
from (4.9) we have Im(λ, λn) = O

(
1√
λ

)
. Then from (4.12) with ε = 1/2

obtain the following estimate∑
1≤
√
λn≤

√
λ

2

u2
n(y) λ

1−N
2

n [Im(λ, λn)]2 = O
( ln2λ√

λ

)
(4.14)

Similarly if 3
√
λ ≤ 2

√
λn from (4.9) we have Im(λ, λn) = O

(
1√
λn

)
. Then from (4.8) with

ε = 1/2 obtain ∑
√

3λ≤2
√
λn

u2
n(y) λ

1−N
2

n [Im(λ, λn)]2 = O
( ln2λ√

λ

)
(4.15)

The last interval for the eigenvalues |
√
λn−

√
λ | ≤

√
λ

2
we represent (see below) as union

of the intervals 2m−1 ≤ |
√
λn −

√
λ | ≤ 2m . In the interval 2m−1 ≤ |

√
λn −

√
λ | ≤ 2m

from (4.9) we get Im(λ, λn) = O
(

1
2m−1

)
. Then from (2.1) obtain∑

|
√
λn−
√
λ | ≤

√
λ

2

u2
n(y) λ

1−N
2

n [Im(λ, λn)]2 ≤
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≤ c
k∑

m=1

∑
2m−1≤|

√
λn−
√
λ | ≤ 2m

u2
n(y) λ

1−N
2

n 41−m ≤ C ln2λ,

where k is the smallest number satisfying 2k+1 ≥ λ and C > 0 is independent of λ.

Lemma 4.3. Let f ∈ H̊α
2 (Ω), α = `+ κ, where ` is a non negative integer, κ ∈ (0, 1].

Then uniformly with respect to y ∈ Ω

∞∑
n=1

fnun(y) λ
`
2
−N−1

4
n I`(λ, λn) = O

( lnλ
λ
κ
2

)
‖f‖Hα

2
. (4.16)

Proof. Note, that for any ε > 0 [3]∑
λ<λn<4λ

f 2
n λ

α−ε
n ≤ cε ‖f‖2

Hα
2
, (4.17)

where cε > 0 is independent of f and λ. Then from (4.9) and (4.13) it follows that∑
1<λn<

λ
4

fnun(y) λ
`
2
−N−1

4
n I`(λ, λn) ≤ c

lnλ

λ
κ
2

‖f‖Hα
2
, (4.18)

where c > 0 is independent of f and λ. If λn >
9λ
4
instead of (4.13) we use (4.8) and obtain

the estimate for such n.
Proof for the numbers n for which λ

4
< λn <

9λ
4
is as follows. Let k be the least natural

number satisfying 2k+1 ≥
√
λ. Then using (2.1), (4.9) and (4.17) we obtain∣∣ ∑
λ
4
<λn<

9λ
4

fnun(y) λ
`
2
−N−1

4
n I`(λ, λn)

∣∣ ≤
≤
( k∑
m=1

∑
2m−1≤|

√
λn−
√
λ|≤2m

u2
n(y) λ

1−N
2
−κ

n [I`(λ, λn)]2
) 1

2
( ∑
λ
4
<λn<

9λ
4

f 2
n λ

α
n

) 1
2 ≤

≤ c λ
κ
2 lnλ ‖f‖Hα

2
.

where c > 0 is independent from f and λ.

Let a function f belong to the class C∞0 (Ω) and let the support of this function be contained
in Ωh.

Denote by D the di�erential operator de�ned as

Dψ(r) =
d

dr

[1
r
ψ(r)

]
, Dkψ = Dk−1[Dψ]

Let y ∈ Ω and r ∈ (0, R), where R < h
4
. Let the function F (r) be de�ned as

F (r) =
rN−1

ωN

∫
θ

f(y + rθ)dθ,

where ωN is surface area of the unite sphere in RN and the integral is taken over the sphere of
radius r with the center at x ∈ Ωr = {y ∈ Ω : dist(y, ∂Ω)} > r.
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Denote Fm(r) = 1
r
Dm−1F (r). Then (see [3])

Fm(r) =
(2π)

N
2

ωN
r
N
2
−m

∞∑
n=1

fn un(y)
JN

2
−m(r

√
λn)

λ
N
4
−m

2
n

. (4.19)

From the recurrent relations for the Bessel functions Jµ(t) we obtain

I0(λ, λ) =
(λn
λ

) `
2 I`(λ, λn) +

( λ
λn

) 1
4

∑̀
m=1

(λn
λ

)m
JN

2
+s−m(R

√
λ) JN

2
−m(R

√
λn) R−s. (4.20)

In (4.11) we obtained a representation of Rieszz means (1.1) in the closed domain Ω for any
function f ∈ L2. Transforming formula (4.11) by integrating by parts in the integral in the
right-hand side and replacing I0(λ, λn) with the left-hand side of (4.20) we get

Es
λf(y) = 2sΓ(s+ 1)

ωN

(2π)
N
2

λ
N
4
− s+`

2

∫ R

0

JN
2

+s−`(r
√
λ)

r
N
2

+s−`
D`F (r)dr+

+ 2sΓ(s+ 1) λ
N−1

4
− s+`

2

∞∑
n=1

fn un(y)λ
`
2
−N−1

4
n I`(λ, λn) +

+2sΓ(s+ 1)
ωN

(2π)
N
2

(R
√
λ)−s

∑̀
m=1

(√λ
R

)N
2
−m[

Fm(R)−
[1

r
Dm−1F (r)

]∣∣∣R
0

]
Note that the Fourier series the function f ∈ C∞0 (Ω) via the eigenfunctions of a converges
uniformly and absolutely in the closed domain Ω. Thus the function Fm(r) is continuous with
respect to the variables y and r. Moreover, Fm(r) tends to zero as r → 0.

Then taking into account the last note, we obtain the following representation of the Riesz
means

Es
λf(y) = 2sΓ(s+ 1)

ωN

(2π)
N
2

λ
N
4
− s+`

2

∫ R

0

JN
2

+s−`(r
√
λ)

r
N
2

+s−`
D`F (r)dr+

+ 2sΓ(s+ 1) λ
N−1

4
− s+`

2

∞∑
n=1

fn un(y)λ
`
2
−N−1

4
n I`(λ, λn). (4.21)

5 Proof of Theorem 3.1

Proof. Let f be a continuous function with compact support in the domain Ω belonging to the
space H̊α

pq(Ω) and (3.1) holds. Due to the density of C∞0 (Ω) in the space H̊α
pq(Ω), the statement

of Theorem 3.1 follows from the inequality

|Es
λf(y)| ≤ c

(
‖f‖Hα

p,q
+ ‖f‖C(Ω)

)
. (5.1)

It su�ces to consider case α = N−1
2
− s+ ε, where ε is a small positive number (smaller than κ).

If 2 ≤ p < q from the embedding Hα
p,q → Hα

2 and Lemma 4.3 we obtain the following estimate
for the second term in the left-hand side of (4.21)

2sΓ(s+ 1) λ
N−1

4
− s+`

2

∞∑
n=1

fn un(y)λ
`
2
−N−1

4
n I`(λ, λn) = O

( lnλ

λ
κ−ε

2

)
‖f‖Hα

p,q
. (5.2)
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Thus, for the Riesz means we have

Es
λf(y) = cs λ

2κ+1
4

∫ R

0

Jν(r
√
λ)

rν
D`F (r)dr + O

( lnλ

λ
κ−ε

2

)
‖f‖Hα

p,q
, (5.3)

where cs = 2sΓ(s+ 1) ωN

(2π)
N
2

and ν = N
2

+ s− `.
Note, as is shown in [3], there are constants Am,` such that

D`F (r) = rN−1−2`
∑̀
m=0

Am,`r
mψ(m)(r),

where ψ(r) = 1
ωN

∫
θ
f(y + rθ)dθ.

Then inequality (5.1) follows from (5.3) and the following estimate (see [15])∫ R

0

rm+κ− 1
2Jν(r

√
λ)ψ(m)dr ≤ C

(
‖f‖Hα

p,q + ‖f‖L∞

)
λ
−κ
2
− 1

4 ,

where C > 0 is independent of f and λ.

Acknowledgments

In conclusion, the author considers it to be his pleasant duty to express his gratitude to Professor
Sh.A. Alimov for his interest in the work.

This research work is supported by IIUM FRGS 14 142 0383.



On the uniform convergence of Fourier series in the closed domain. 69

References

[1] Sh.A. Alimov, V.A. Il'in, E.M. Nikishin, Convergence problems of multiple trigonometric series and spectral
decompositions. I, Uspekhi Mat. Nauk. 31 (1976), no. 6(192), 28-83.

[2] Sh.A. Alimov, On the spectral expansions of continuous functions from the Sobolev spaces, Doklady AN
SSSR. 229 (1976), no. 3, 529-530.

[3] Sh.A. Alimov, On expanding continuous functions from Sobolev classes in eigenfunctions of Laplace operator,
Sib. Math. Zh. 19 (1978), no. 1, 721-734.

[4] Sh.A. Alimov, On spectral decompositions of functions in Hα
p , Math. Sbornik, USSR. 101 (1976), no. 1,

3-20.

[5] Sh.A. Alimov, A.A.Rakhimov, On the uniformly convergence of spectral expansions in a closed domain,
Dokl. Acad Nauk UzSSR. 10 (1986), 5-7.

[6] G.I. Eskin, Asymptotic near the boundary of spectral functions of elliptic self-adjoin boundary problems,
Izrael J. Math. 22 (1975), no. 3-4, 214-246.

[7] V.A. Il'in, E.I. Moiseev, On spectral expansions connected with with non-negative self-adjoin extension of
the second order elliptic operator, Doklady Akademii Nauk SSSR. 191 (1971), no. 4, 770-772.

[8] V.A. Il'in, Sh.A. Alimov, The conditions for convergence of the spectral expansions, related to self adjoint
extensions of the elliptic operators, Di�erential Equations. 7 (1971), no. 4, 670-710.

[9] V.A. Il'in, Spectral theory of the di�erential operators, Nauka, Moscow. 1991, 369pp. (in Russian).

[10] V.A. Il'in, On the uniformly convergence eigenfunction expansions associated with Laplace operator in a
closed domain, Mat. Sbornic. 45 (1958), no. 2, 195-232.

[11] N.N. Kozlova, On the Riesz summability of continuous functions from the Nikolsky spaces, J. Di�erential
equation. 20 (1984), no. 1, 46-56.

[12] E.I. Moiseev, The uniform convergence of certain expansions in a closed domain, Dokl. Akad. Nauk SSSR.
233 (1977), no. 6, 1042-1045.

[13] A.A. Rakhimov, On uniform convergence of spectral resolutions of a continuous function in a closed domain,
J. Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk. 6 (1987), 17-22.

[14] A.A. Rakhimov, On the uniform convergence of spectral expansions of continuous functions from the Nikol-
sky space in the closed domain, Dep. VINITI. 1564-B87 (1987), 18 pp.

[15] V.G. Sozanov, Uniform convergence and Riesz summability of spectral resolutions, J. Mat Zametki, 29
(1981), no. 6, 887-894.

[16] E.I. Titchmarsh, Decomposition by eigenvalues, related to di�erential equations of second order, M. Instr.
Liter. 2 (1961), 555 pp.

Abdumalik Abdumadjidovich Rakhimov
Department of Science in Engineering
International Islamic University Malaysia
Jalan Gombak St
53100 Kuala-Lumpur, Malaysia
E-mail: abdumalik@iium.edu.my

Received: 14.08.2014
Revised version: 20.04.2017


