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Abstract. One-phase models of inverse Stefan problems with unknown temperature-dependent
convection coe�cients are considered. The �nal observation is considered as an additional in-
formation on the solution of the direct Stefan problem. For such inverse problems we justify
the corresponding mathematical statements allowing to determine coe�cients multiplying the
lowest order derivatives in quasilinear parabolic equations in a one-phase domain with an un-
known moving boundary. On the basis of the duality principle conditions for the uniqueness of
their smooth solution are obtained. The proposed approach allows one to clarity a relationship
between the uniqueness property for coe�cient inverse Stefan problems and the density property
of solutions of the corresponding adjoint problems. It is shown that this density property follows,
in turn, from the known inverse uniqueness for linear parabolic equations.

1 Introduction

Inverse Stefan problems are inverse problems for parabolic equations in domains with free bound-
aries with material or energy balance conditions imposed on them. Such problems arise in the
modeling and control of processes connected with heat and mass transfer. The goal is, by using
some additional information, to determine the coe�cients of the equation or the Stefan condi-
tion at the free boundary, the initial or boundary functions which must be given in the direct
(classical) statement of the Stefan problem. Just like most of the inverse problems in mathe-
matical physics, inverse Stefan problems are ill-posed. This is a result of the violation of the
cause-e�ect relations in their statements. Unlike inverse problems for parabolic equations in do-
mains with �xed boundaries, this class of ill-posed problems is unsu�ciently studied, expecially
for quasilinear equations and in the case when the time dependence of the moving boundary
is unknown. The research on inverse Stefan problems is motivated by both theoretical interest
in such formulations and by their numerous applications to thermophysics and mechanics of
continuous media. The modern needs of technologies both in heat processes (e.g., metallurgy,
astronautics, and power engineering) and in hydrology, exploitation of oil-gas �elds, etc. lead to
various formulations of inverse Stefan problems depending on the unknown model characteristic
and the type of additional information, see, for example, [1�8].

This paper continues the investigation of quasilinear models of inverse Stefan problems begun
in [9�11]. Such models arise, for example, in the modeling of the high temperature processes
where it is necessary to take into account the dependence of thermophysical characteristics
upon the temperature. In a thermophysical interpretation, the one-phase models of inverse
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Stefan problems considered in this work consist of �nding the temperature �eld, phase transition
boundary (e.g. the melting front), and the temperature-dependent convection coe�cient under
the assumption that the temperature distribution and the phase boundary position are given
at a �nal time. The corresponding mathematical formulation is to determine the unknown
coe�cient multiplying the lowest order derivative in a quasilinear parabolic equation in a one-
phase domain whose external boundary is a phase front with an unknown time dependence.
Additional information is given in the form of �nal overdetermination.

A characteristic feature of ill-posed inverse Stefan problems of this type is that they possibly
do not have a solution or it is unstable with respect to errors in the input data [9]. However,
if there exists a solution, it should be unique. In the present paper, we justify mathematical
statements of the corresponding coe�cient inverse Stefan problems and obtain su�cient condi-
tions for the uniqueness of a solution in a class of smooth functions. To prove the uniqueness
theorems we use the duality principle by analogy with [12], where it was applied to a parabolic
equation with an unknown coe�cient multiplying the lowest order derivative in a domain with
�xed boundaries. For this end, the "straightening phase boundaries" substitution is carried out,
which transforms the phase domain into a rectangular domain of �xed width. The proposed
approach allows one to establish a relationship between the uniqueness property for inverse
Stefan problems and the density property of solutions of the corresponding adjoint problems.
These density properties follow, in turn, from the known inverse uniqueness for linear parabolic
equations [13, 14].

The principles of constructing stable approximate solutions of ill-posed inverse Stefan prob-
lems are described in [9], and they are applicable to the coe�cient inverse problems under study.

2 Justi�cation of mathematical statements in H�older classes

Suppose that the direct statement of a one-phase quasilinear Stefan problem consists of �nding
a function u(x, t) in the domain Q = {0 ≤ x ≤ ξ(t), 0 ≤ t ≤ T} and a phase boundary ξ(t) for
0 ≤ t ≤ T from the conditions

c(x, t, u)ut − Lu = f(x, t), (x, t) ∈ Q, (2.1)

u|x=0 = v(t), 0 < t ≤ T, (2.2)

u|x=ξ(t) = u∗(t), 0 < t ≤ T, (2.3)

u|t=0 = ϕ(x), 0 ≤ x ≤ l0, (2.4)

a(x, t, u)ux + χ(x, t, u)|x=ξ(t) = −γ(x, t, u)|x=ξ(t)ξt(t), 0 < t ≤ T, (2.5)

ξ|t=0 = l0, l0 > 0, (2.6)

where Lu is a uniformly elliptic operator of the form

Lu ≡ (a(x, t, u)ux)x − b(x, t, u)ux − d(x, t, u), (2.7)

a ≥ amin > 0, b, c ≥ cmin > 0, d, f , v, u∗, γ ≥ γmin > 0, χ, and ϕ are known functions, amin,
cmin, γmin, and l0 = const > 0.

If the function b(x, t, u) in (2.7) is unknown but the additional information of the solution of
the direct Stefan problem (2.1)�(2.6) is given at t = T

u|t=T = g(x), 0 ≤ x ≤ l, ξ|t=T = l, l > 0, (2.8)

then the following statement of a coe�cient inverse problem with �nal overdetermination arises.
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It is required to �nd a function u(x, t) in the domain Q, a phase boundary ξ(t) for 0 ≤ t ≤ T ,
and a coe�cient b(x, t, u) for (x, t) ∈ Q and u ∈ [−M0,M0] (where M0 ≥ max(x,t)∈Q |u|, M0

is the constant from the maximum principle for the boundary value problem (2.1)�(2.4)) that
satisfy conditions (2.1)�(2.7) and additional condition (2.8).

In what follows, we assume that b(x, t, u) has one of the structures

b(x, t, u) = p(u)b0(x, t),
b(x, t, u) = p(x, u)b0(x, t)

(2.9)

where b0(x, t) is a given function and p is an unknown coe�cient.

By using the standard notation for function classes in [15], we formulate requirements on the
input data, which imply the assumptions for the corresponding inverse Stefan problem.

(i) For (x, t) ∈ Q, |u| < ∞, the functions a, ax, au, b0, c, d, and f are uniformly bounded,
a ≥ amin > 0, c ≥ cmin > 0.

(ii) For (x, t, u) ∈ D = Q × [−M0,M0] the function a, its derivatives ax and au, and the
functions c, d, γ, and χ belong to H1,λ/2,1(D); the functions b0 and f belong to H1,λ/2(Q),
0 < λ < 1, γ ≥ γmin > 0.

(iii) The functions v, u∗, and ϕ belong to H1+λ/2[0, T ] and H2+λ[0, l0], respectively, and satisfy
the matching conditions

c(x, 0, ϕ)vt − Lϕ|x=0,t=0 = f(x, 0)|x=0,
c(x, 0, ϕ)u∗t − Lϕ|x=l0,t=0 = f(x, 0)|x=l0 .

(2.10)

(iv) The input data provide the nondegeneracy of the domain Q; i.e., the phase boundary does
not intersect the external boundary x = 0: β0 < ξ(t) for 0 ≤ t ≤ T , where β0 = const > 0
(for details, see [9]).

(v) The �nal function g belongs to H2+λ[0, l] and satis�es the matching conditions g|x=0 =
v|t=T , g|x=l = u∗|t=T .

According to [9], for any coe�cient p (see (2.9)) that belongs to the corresponding class

p(u) ∈ C1[−M0,M0], p(x, u) ∈ C1,1(Ω),

Ω = [0, β1]× [−M0,M0], β1 = max
0≤t≤T

ξ(t),

and satis�es the matching conditions (2.10), conditions (i)�(iv) ensure the unique solvability of
the direct quasilinear Stefan problem (2.1)�(2.6) in the H�older spaces u(x, t) ∈ H2+λ,1+λ/2(Q),
ξ(t) ∈ H1+λ/2[0, T ] and the ful�lment of the uniform estimates

|u|2+λ,1+λ/2

Q
≤M, |ξ|1+λ/2

[0,T ] ≤M, M,M = const > 0. (2.11)

For this reason, we de�ne a solution of the corresponding coe�cient inverse Stefan problem as
a collection of functions {u(x, t), ξ(t), p(u)} or {u(x, t), ξ(t), p(x, u)} that belong to the above-
mentioned classes and satisfy relations (2.1)�(2.8) in the usual sense. For this ill-posed problem
we eximane the conditions under which its solution (if it exists) is uniquely determined.
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3 Uniqueness of the solution of the inverse Stefan problem with the

unknown coe�cient p(u)

3.1. Preliminaries. The suggested approach to the proof of the corresponding uniqueness
conditions for the solution {u(x, t), ξ(t), p(u)} (provided that it exists) is as follows.

Let {u1, ξ1, p1} and {u2, ξ2, p2} be two solutions of the inverse problem in the classes
H2+λ,1+λ/2(Q)×H1+λ/2[0, T ]×C1[−M0,M0]. The functions {u1, ξ1} and {u2, ξ2} can be treated
as the solutions of the direct Stefan problem (2.1)�(2.6) that correspond to the coe�cients p1

and p2 in the operator Lu (see (2.7) and (2.9)). Therefore, they satisfy estimates (2.11) in the
H�older classes H2+λ,1+λ/2(Q)×H1+λ/2[0, T ].

Before proving that u1(x, t) ≡ u2(x, t) in Q, ξ1(t) ≡ ξ2(t) for 0 ≤ t ≤ T , and p1(u) ≡ p2(u)
for u ∈ [−M0,M0], we make "straightening phase boundary" substitution y = xξ−1(t). This
substitution transforms the phase domain Q into a rectangular domain of �xed width Π = {0 ≤
y ≤ 1, 0 ≤ t ≤ T}.

In variables (y, t) the inverse Stefan problem (2.1)�(2.8) becomes

cut − ξ−2(t)(auy)y + ξ−1(t){pb0 + cyξt(t)}uy + d = f, (y, t) ∈ Π, (3.1)

u|y=0 = v(t), u|y=1 = u∗(t), 0 < t ≤ T, (3.2)

u|t=0 = ϕ(yl0), ξ|t=0 = l0, 0 ≤ y ≤ 1, (3.3)

ξ−1(t)auy + χ|y=1 = −γ|y=1ξt(t), 0 < t ≤ T, (3.4)

u|t=T = g(yl), ξ|t=T = l, 0 ≤ y ≤ 1. (3.5)

The coe�cients in the equation (3.1) and in the Stefan condition (3.4) are the values of the
corresponding functions at the point (yξ(t), t, u). In view of (3.1)�(3.5) the di�erences ∆u =
u2 − u1, ∆ξ = ξ2 − ξ1, and ∆p = p2 − p1 satisfy relations that can be represented in the form

c∆ut − ξ−2
2 (t)(a∆uy)y +A∆uy + B∆u =

C∆ξ(t) +D∆ξt(t)− ξ−1
2 (t)b0u2y∆p(u2), (y, t) ∈ Π, (3.6)

∆u|y=0 = 0, ∆u|y=1 = 0, 0 < t ≤ T, (3.7)

∆u|t=0 = 0, 0 ≤ y ≤ 1, (3.8)

ξ−1
2 (t)a∆uy|y=1 = −γ|y=1∆ξt(t) + F|y=1∆ξ(t), 0 < t ≤ T, ∆ξ|t=0 = 0, (3.9)

with additional conditions at t = T

∆u|t=T = 0, 0 ≤ y ≤ 1, ∆ξ|t=T = 0. (3.10)

Here a, b0, c, γ, etc., are the values of these functions at the point (yξ2(t), t, u2). The coe�cients
A, B, C, D, and F depend appropriately on u2, its derivatives u2y, u2yy, and u2t. Moreover,
A, B, C, D, and F depend appropriately on the y- and u-derivatives of the coe�cients in
the equation (3.1) and the Stefan condition (3.4) at the intermediate point (yξ(t), t, u) with
ξ(t) = σξ1(t) + (1 − σ)ξ2(t) and u = θu1 + (1 − θ)u2 for 0 < σ < 1 and 0 < θ < 1. All these
coe�cients regarded as functions of (y, t) are inHλ,λ/2 in the domain Π = {0 ≤ y ≤ 1, 0 ≤ t ≤ T}
in view of smoothness conditions (i)�(iii) and estimates (2.11) in the H�older classes. In particular,
the coe�cient A(y, t) has the form A(y, t) = ξ−1(t){p2b0 + cyξt(t)− auuy} and is in Hλ,λ/2(Π) in
view of condition (ii) on b0, c, and au, estimates (2.11) for u1, u2, and since p2 ∈ C1[−M0,M0].

3.2. The duality principle and properties of adjoint problems. Let us proceed to the
proof of the assertion that ∆u ≡ 0 in Π, ∆ξ ≡ 0 for 0 ≤ t ≤ T , and ∆p ≡ 0 for u ∈ [−M0,M0].
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For this end, we use the duality principle by analogy with [12], where it was applied for the
coe�cient inverse problem in a domain with �xed boundary.

Namely, we remark that the relations (3.6)�(3.8) are linear with respect to ∆u, ∆ξ, and ∆p.
This allows one to start with the study of the corresponding boundary value problem for the
equation

c∆ut − L∆u = −ξ−1
2 (t)b0u2y∆p(u2), (y, t) ∈ Π, (3.11)

L∆u ≡ ξ−2
2 (t)(a∆uy)y −A∆uy − B∆u.

Consider the boundary value problem adjoint to (3.11), (3.7), (3.8),

(cψ)t + L∗ψ = 0, 0 < y < 1, 0 ≤ t < T, (3.12)

ψ|y=0 = 0, ψ|y=1 = 0, 0 ≤ t < T, (3.13)

ψ|t=T = η(y), 0 ≤ y ≤ 1, (3.14)

where η(y) is an arbitrary function from
0

C [0, 1] and

L∗ψ ≡ ξ−2
2 (t)(aψy)y + (Aψ)y − Bψ

is the operator adjoint to the operator L∆u.
The solution of this linear boundary value problem is de�ned by ψ(y, t; η). Next we investigate

the properties of ψ(y, t; η).

Lemma 3.1. Let conditions (i)�(v) hold and, moreover, the derivative ct be in Hλ,λ/2,1(D), the

derivative b0x be in H
λ,λ/2(Q). Then, for any function η(y) ∈

0

C [0, 1], the corresponding solution
ψ(y, t; η) of adjoint problem (3.12)�(3.14) belongs to C(Π) ∩ C2,1(Π) and satis�es the relation

T∫
0

1∫
0

ψ(y, t; η)h(y, t) dy dt = 0 ∀η ∈
0

C [0, 1],

h(y, t) = −ξ−1
2 (t)b0u2y∆p(u2).

(3.15)

Proof. Unique solvability of problem (3.12)�(3.14) in C(Π) ∩ C2,1(Π) for any

η ∈
0

C [0, 1] follows from [15] thanks to the corresponding smoothness of the coe�cients
in the equation (3.12); in particular, y-derivative of the coe�cient A(y, t) belongs to Hλ,λ/2(Π).

To prove (3.15) we consider the expression

I =

T∫
0

1∫
0

ψ{c∆ut − L∆u} dy dt+

T∫
0

1∫
0

∆u{(cψ)t + L∗ψ} dy dt.

On the one hand, from (3.11) and (3.12) it follows that

I =

T∫
0

1∫
0

ψ(y, t; η)h(y, t) dy dt.

On the other hand, integrating by parts and taking into account (3.7), (3.8) and (3.13), (3.14),
and �nal condition (3.10) for ∆u|t=T , we obtain

I =

1∫
0

{cψ∆u}
∣∣∣t=T
t=0

dy = 0,

which yields relation (3.15).
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It should be noted that the condition ∆u|t=T = 0 is just what η(y) in (3.14) can be an

arbitrary function from
0

C [0, 1]. As a result, adjoint problem (3.12)�(3.14) have the same
properties as a control problem with a control function in the initial condition. The role of this
function is played by η(y). The change of variable t′ = T−t in (3.12)�(3.14) gives a usual control
problem for a linear parabolic equation.

The following lemmas show that the function ψ(y, t; η) possesses density properties (by anal-
ogy with a solution of the control problem).

Lemma 3.2. Let the conditions of Lemma 3.1 be satis�ed; in addition, let the derivative at be

continuous in the domain D. Then, as the function η(y) ranges over the space
0

C [0, 1], the
corresponding set of values

{
ψ(y, t; η)|t=τ

}
is everywhere dense in L2[0, 1] at any time t = τ ;

i.e., the relation
1∫

0

ψ(y, t; η)|t=τ w(y) dy = 0, 0 < τ ≤ T,

for some function w(y) ∈
0

C [0, 1] implies that w(y) = 0 for 0 ≤ y ≤ 1.

Proof. To prove Lemma 3.2 we again use the duality principle but now for problem (3.12)�(3.14).
Namely, we consider the linear boundary value problem adjoint to (3.12)�(3.14) in the domain
Πτ = {0 ≤ y ≤ 1, τ ≤ t ≤ T}

czt − Lz = 0, 0 < y < 1, τ < t ≤ T, (3.16)

z|y=0 = 0, z|y=1 = 0, τ < t ≤ T, (3.17)

z|t=τ = θ(y; τ), 0 ≤ y ≤ 1, (3.18)

where the operator Lz has the same form as L∆u and

θ(y; τ) =
{
c(yξ2(t), t, u2)|t=τ

}−1
w(y).

Its solution z(y, t; τ) belongs to
0

C (Πτ )∩C2,1(Πτ ) and is a continuous function of the param-
eter τ in view of its stability with respect to the input data [15]. For it we obtain the additional
�nal condition z(y, t; τ)|t=T = 0 with the use of the continuous function

F (τ) =

T∫
τ

1∫
0

z{(cψ)t + L∗ψ} dy dt+

T∫
τ

1∫
0

ψ{czt − Lz} dy dt.

In fact, by virtue of (3.12)�(3.14) and (3.16)�(3.18), F (τ) can be reduced to the form

F (τ) =

1∫
0

c|t=T z(y, T ; τ)η(y) dy −
1∫

0

c|t=τθ(y; τ)ψ(y, τ ; η) dy = 0 (3.19)

for any η ∈
0

C [0, 1]. From here, taking into account the form of θ(y; τ) and the assertion about
w(y), we conclude that z(y, t; τ)|t=T = 0 (thanks to the assumption c ≥ cmin > 0 and density of

the space
0

C [0, 1] in L2[0, 1]).
This �nal condition permits one to treat equation (3.16) with conditions (3.17) as a homo-

geneous boundary value problem for a linear parabolic equation in inverse time. By smoothness
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and uniform boundedness in Πτ , the coe�cients of equation (3.16) considered as functions of
(y, t) satisfy the requirements [13, 14] that provide the so-called inverse uniqueness property for
such a problem. Hence z(y, t; τ) ≡ 0 in Πτ including t = τ ; i.e., θ(y; τ) = 0 and w(y) = 0
for 0 ≤ y ≤ 1. Thus, the fact that the set

{
ψ(y, t; η)|t=τ

}
is dense follows from the inverse

uniqueness property.

The following result is a generalization of Lemma 3.2 for an arbitrary time interval [0, T0],
0 < T0 ≤ T .

Lemma 3.3. Let the conditions of Lemma 3.2 for the input data hold. Assume that for any

function η ∈
0

C [0, 1], the corresponding solution ψ(y, t; η) of the adjoint problem satis�es the
relation on some interval [0, T0], 0 < T0 ≤ T ,

T0∫
0

1∫
0

ψ(y, t; η)α(y, t) dy dt = 0 ∀η ∈
0

C [0, 1], (3.20)

where α(y, t) is a function of constant signs with respect to t ∈ [0, T ] and, moreover, α(y, t) is
in Hλ,λ/2(Π). Then α(y, T0) = 0 for 0 ≤ y ≤ 1.

Proof. Just as in the proof of Lemma 3.2, consider problem (3.16)�(3.18) in the domain Πτ but
for θ(y; τ) of the form

θ(y; τ) =
{
c(yξ2(t), t, u2)|t=τ

}−1
α(y, τ)

and for all τ such that 0 ≤ τ ≤ T0.
The function F (τ) (see (3.19)) satis�es the relation

T0∫
0

F (τ) dτ =

1∫
0

T0∫
0

z(y, T ; τ) dτ c|t=Tη(y) dy −
T0∫

0

1∫
0

ψ(y, τ ; η)c|t=τθ(y; τ) dy dτ = 0.

In view of the form of θ(y; τ) this means (together with (3.20), the arbitrary choice of the function
η(y), and positiveness of the coe�cient c) that

T0∫
0

z(y, T ; τ) dτ = 0, 0 ≤ y ≤ 1,

where the integrand z(y, T ; τ) is the solution of problem (3.16)�(3.18) at the �nal time t = T .
By using Green's function G(y, x, t, τ) [15] for representation of the solution z(y, t; τ) of this
problem, we obtain

T0∫
0

z(y, T ; τ) dτ =

T0∫
0

1∫
0

G(y, x, T, τ)θ(x; τ) dx dτ = 0, 0 ≤ y ≤ 1.

We can write this equality in the form

T∫
0

1∫
0

G(y, x, T, τ)Θ(x; τ) dx dτ = 0, 0 ≤ y ≤ 1, (3.21)

where Θ(x; τ) =

{
θ(x; τ) for 0 < τ ≤ T0,

0 for T0 < τ ≤ T.
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Now we consider the boundary value problem in the domain Π = {0 ≤ y ≤ 1,
0 ≤ t ≤ T} for the nonhomogeneous equation

cZt − LZ = Θ(y, τ), 0 < y < 1, 0 < t ≤ T, (3.22)

Z|y=0 = 0, Z|y=1 = 0, 0 < t ≤ T, (3.23)

Z|t=0 = 0, 0 ≤ y ≤ 1, (3.24)

and show that its solution Z(y, t) is a smooth function in Π.
In fact, for 0 < y < 1, 0 < t ≤ T0 we have Θ(y, t) = θ(y, t) and θ(y, t) ∈ Hλ,λ/2, hence Z(y, t)

belongs to C2,1 for such values of y and t [15]. On the other hand, for T0 < t ≤ T the function
Θ(y, t) = 0. This means that for T0 < t ≤ T Z(y, t) can be represented as a solution z(y, t;T0) of
the boundary value problem in the domain ΠT0 = {0 ≤ y ≤ 1, T0 ≤ t ≤ T} for the homogeneous
equation

czt − Lz = 0, 0 < y < 1, T0 < t ≤ T,

with the homogeneous boundary conditions at y = 0, y = 1, and with the initial condition

z|t=T0 = Z(y, T0), 0 ≤ y ≤ 1,

where Z(y, T0) is a solution of problem (3.22)�(3.24) obtained at t = T0. Since Z(y, T0) ∈
0

C

[0, 1] ∩ C2(0, 1) then z(y, t;T0) belongs to
0

C (ΠT0) ∩ C2,1(ΠT0) [15]. This allows one to conclude

that Z(y, t) also belongs to
0

C (ΠT0) ∩ C2,1(ΠT0) as Z(y, t) coincides with z(y, t;T0) in this
domain. Thus, the solution Z(y, t) of problem (3.22)�(3.24) is continuous everywhere in the
domain Π = {0 ≤ y ≤ 1, 0 ≤ t ≤ T}, and Z(y, t) belongs to C2,1 in the above-mentioned
subdomains of this domain.

Since equality (3.21) is a representation of this solution at the �nal time t = T [15], then
from (3.21) it follows that Z(y, T ) = 0 for 0 ≤ y ≤ 1. But Z(y, T ) = z(y, T ;T0), hence
z(y, T ;T0) is also equal to 0 for 0 ≤ y ≤ 1. Thus, in the domain ΠT0 the solution of the
homogeneous equation with the homogeneous boundary conditions satis�es the �nal condition
z(y, t;T0)|t=T = 0 for 0 ≤ y ≤ 1. Just as in the proof of Lemma 3.2 we can use results of
[13, 14] on the inverse uniqueness property; i.e., z(y, t;T0) ≡ 0 in ΠT0 . Then it follows from
the initial condition z|t=T0 = Z(y, T0) that Z(y, T0) = 0 for 0 ≤ y ≤ 1. But Z(y, T0) satis�es
nonhomogeneous equation (3.22) with the right hand side Θ(y, t) = θ(y, t) for t = T0. Hence,
θ(y, T0) = 0 for 0 ≤ y ≤ 1. This means (see the form of the function θ(y, t)) that α(y, T0) = 0
for 0 ≤ y ≤ 1.

3.3. Conditions of unique identi�cation of p(u). The density properties for adjoint problem
(3.12)�(3.14) established with the help of the duality principle permit one to investigate the
uniqueness of a solution of inverse Stefan problem (2.1)�(2.8) with an unknown coe�cient p(u).

Theorem 3.1. Let the following conditions be satis�ed.

1. Assumptions (i)�(v) hold for the input data; in addition, the coe�cient b0 is positive for
(x, t) ∈ Q, the derivatives at, ct, and b0x belong to C(D), Hλ,λ/2,1(D), and Hλ,λ/2(Q),
respectively; the derivative of the �nal function g(x) is a sign-de�nite function: |gx(x)| > 0
for 0 ≤ x ≤ l.

2. There exists a solution {u(x, t), ξ(t), p(u)} of the considered inverse Stefan problem pos-
sessing the properties

u(x, t) ∈ H2+λ,1+λ/2(Q), p(u) ∈ C1[−M0,M0], 0 < λ < 1,
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u(x, t)x is a function of constant signs with respect to t ∈ [0, T ],

ξ(t) ∈ H1+λ/2[0, T ], 0 < β0 < ξ(t) ≤ β1 for 0 ≤ t ≤ T,

and satisfying relations (2.1)�(2.7), the �nal observation (2.8), and matching conditions
(2.10).

Then this solution is unique in the mentioned classes of smooth functions under one of the
following conditions

(j) p(u) is de�ned for u ∈ [−M0, gmin) and u ∈ (gmax,M0], where gmin = min0≤x≤l g(x) and
gmax = max0≤x≤l g(x),

(jj) p(u) is an analytic function for u ∈ (−M0,M0).

Proof. To prove this theorem, �rst we consider equation (3.11) with conditions (3.7), (3.8) and
corresponding adjoint boundary value problem (3.12)�(3.14). The assumptions on the input data
allow one to apply Lemma 3.3 to integral relation (3.15) of Lemma 3.1 with α(y, t) = h(y, t),
where we propose that ∆p is a function of constant signs with respect to u ∈ [M0,M0] (see the
form of the function h(y, t)). Hence, we conclude that

{ξ−1
2 (t)b0u2y∆p(u2)}

∣∣∣
t=T

= 0, 0 ≤ y ≤ 1.

Since ξ(t)|t=T = l then taking into account this fact and the inequalities b0(yl, T ) > 0 and
|gy(yl)| > 0 for 0 ≤ y ≤ 1, we obtain ∆p(g(yl)) = 0 for 0 ≤ y ≤ 1. Since the function g(x) is
continuous for 0 ≤ x ≤ l, we have ∆p(g) = 0 for g ∈ [gmin, gmax]. Under either of assumptions
(j) and (jj), this means that ∆p(u) = 0 for u ∈ [−M0,M0]. Then equation (3.11) together with
conditions (3.7), (3.8) implies ∆u(x, t) ≡ 0 in Q (in variables (x, t)) [15].

Now we return to equation (3.6) and consider its other linear part, namely

c∆ut − ξ−2
2 (t)(a∆uy)y +A∆uy + B∆u = C∆ξ(t) +D∆ξt(t), (y, t) ∈ Π. (3.25)

But from equation (3.25) and relations (3.7)�(3.9) it follows that ∆u(x, t) ≡ 0 in Q (in variables
(x, t)), ∆ξ(t) ≡ 0 for 0 ≤ t ≤ T since the direct quasilinear Stefan problem (2.1)�(2.7) with the
coe�cient b = p(u)b0(x, t) has a unique solution (see [9]).

Thus, results obtained for equations (3.11) and (3.25) with the corresponding boundary and
initial conditions allow one to complete the proof of Theorem 3.1.

4 Uniqueness of the solution of the inverse Stefan problem with the

unknown coe�cient p(x, u)

Conditions for the uniqueness of {u(x, t), ξ(t), p(x, u)} are established by the following theorem.

Theorem 4.1. Let Assumption 1 of Theorem 3.1 hold. In addition, suppose that there ex-
ists a solution {u(x, t), ξ(t), p(x, u)} satisfying relations (2.1)�(2.7), �nal observation (2.8), and
matching conditions (2.10) and having the properties

u(x, t) ∈ H2+λ,1+λ/2(Q), ξ(t) ∈ H1+λ/2[0, T ], p(x, u) ∈ C1+λ,1(Ω), 0 < λ < 1,

u(x, t)x is a function of constant signs with respect to t ∈ [0, T ],

0 < β0 < ξ(t) ≤ l0 = β1 for 0 ≤ t ≤ T, Ω = [0, β1]× [−M0,M0].

Then this solution is unique in the mentioned classes of smooth functions under one of the
following conditions
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(jjj) p(x, u) is de�ned in Ω outside the domain {(x, u) : 0 ≤ x ≤ l, gmin ≤ u ≤ gmax}, where
gmin = min0≤x≤l g(x) and gmax = max0≤x≤l g(x),

(jv) p(x, u) is an analytic function in the domain Ω.

Proof. The proof of these claims is similar to that of Theorem 3.1. In particular, an analogue
of equation (3.6) is given by the equation

c∆ut − ξ−2
2 (t)(a∆uy)y +A∆uy + B∆u =

C∆ξ(t) +D∆ξt(t)− ξ−1
2 (t)b0u2y∆p(yξ2(t), u2), (y, t) ∈ Π. (4.1)

Hence, the corresponding form of equation (3.11) becomes

c∆ut − L∆u = −ξ−1
2 (t)b0u2y∆p(yξ2(t), u2), (y, t) ∈ Π. (4.2)

Next, taking into account the assumptions of Theorem 4.1 on the input data and the solution
of this inverse problem, we can apply Lemma 3.3 with α(y, t) = h(y, t) to the integral relation
(3.15) of Lemma 3.1. Now the function h(y, t) has the form

h(y, t) = −ξ−1
2 (t)b0u2y∆p(yξ2(t), u2),

where yξ2(t) ∈ [0, l0] for any t ∈ [0, T ] and ∆p is a function of constant signs with respect to
u ∈ [M0,M0]. This leads to

{ξ−1
2 (t)b0u2y∆p(yξ2(t), u2)}|t=T = 0, 0 ≤ y ≤ 1.

From here it follows that ∆p(yl, g(yl)) = 0 for 0 ≤ y ≤ 1 since ξ(T ) = l, b0(yl, T ) > 0, and
|gy(yl)| > 0 for 0 ≤ y ≤ 1. This, together with the continuity of the �nal function g(x), implies
that ∆p(x, g) ≡ 0 for 0 ≤ x ≤ l, g ∈ [gmin, gmax]. Hence, any of assumptions (iii) and (iv) allows
one to conclude that ∆p(x, u) ≡ 0 in the entire domain Ω. But this means that the equation
(4.2) with conditions (3.7), (3.8) have a unique solution ∆u(x, t) ≡ 0 in Q (in variables (x, t))
[15].

Investigation of the other linear part of the equation (4.1) completely repeats the corre-
sponding claims for equation (3.25) and implies identities ∆u(x, t) ≡ 0 in Q (in variables (x, t)),
∆ξ(t) ≡ 0 for 0 ≤ t ≤ T since direct quasilinear Stefan problem (2.1)�(2.7) with the coe�cient
b = p(x, u)b0(x, t) has a unique solution (see [9]).

Remark. The function spaces chosen for the input data and the solution {u, ξ, p} of the con-
sidered inverse Stefan problems are natural in the sense that they are associated with the exact
di�erential dependences in H�older classes for the corresponding direct statement of one-phase
quasilinear Stefan problem (2.1)�(2.7) [9]. However, if the set of admissible solutions is expanded
by assuming that the desired coe�cient p in (2.9) also depends on the variable t, the uniqueness
property may be lost. This is illustrated by the following example.

Example. Two function sets
u1(x, t) = x(2− t)(x+ t2),
ξ1(t) = 2− t2,
p1(x, t, u) = u+2(t−2)+x(4t−3t2−x)

(t−2)(2x+t2)
,

u2(x, t) = x(2− t2)(x+ t),
ξ2(t) = 2− t,
p2(x, t, u) = u+2(t2−2)+x(2−3t2−2xt)

(t2−2)(2x+t)
,
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are solutions of the following coe�cient inverse Stefan problem in the domain
Q = {0 ≤ x ≤ ξ(t), 0 ≤ t ≤ 1}:

ut − uxx + p(x, t, u)ux + u = 0, (x, t) ∈ Q,

u|x=0 = 0, u|x=ξ(t) = 2(2− t2)(2− t), 0 < t ≤ 1,

u|t=0 = 2x2, 0 ≤ x ≤ 2, ξ|t=0 = 2,

ux + χ(x, t)|x=ξ(t) = ξt(t), 0 < t ≤ 1,

u|t=1 = x(x+ 1), 0 ≤ x ≤ 1, ξ|t=1 = 1,

where the function χ(x, t)|x=ξ(t) has the form

χ(x, t)|x=ξ(t) = (2t− 1)
ξ(t)− (2− t)
t(t− 1)

− 1− (ξ(t) + 2)(4− t2 − t− ξ(t)).

Therefore, the function sets

{u(x, t), ξ(t), p(u)} ∈ H2+λ,1+λ/2(Q)×H1+λ/2[0, T ]× C1[−M0,M0],

{u(x, t), ξ(t), p(x, u)} ∈ H2+λ,1+λ/2(Q)×H1+λ/2[0, T ]× C1+λ,1(Ω)

form natural sets of admissible solutions in the corresponding statements of coe�cient inverse
Stefan problems.

5 Conclusions

The statements of one-phase inverse Stefan problems on the identi�cation of nonlinear coe�cients
are investigated under the assumption that additional information is given in the form of �nal
overdetermination. The following results of this analysis can be formulated.

1. The choice of function spaces for the input data and the solution of such inverse problems
relies on unique solvability of the corresponding direct Stefan problems in H�older classes.

2. For these statements the conditions ensuring the uniqueness of a solution (if it exists
in the chosen spaces) are obtained. To this end on the basis of the duality principle, a
relationship is proved between the uniqueness property for the considered inverse problems
and the density properties for the corresponding adjoint problems. It is shown that such
density properties follow, in turn, from the so-called inverse uniqueness for linear parabolic
equations.

3. The sets of admissible solutions preserving the uniqueness property are indicated. It is
shown that this property may be lost if the desired nonlinear coe�cient also depends on
the variable t.

4. Investigation of the uniqueness property for coe�cient inverse Stefan problems is impor-
tant not only for theory but also for mathematical modeling and numerical solving of
complicated nonstationary processes.
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