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ERLAN DAUTBEKOVICH NURSULTANOV

(to the 60th birthday)
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series, the lower and upper bounds complementary to the Hardy-Littlewood inequalities for
various orthonormal systems were solved. The convergence of series and Fourier transforms
were studied with su�ciently general monotonicity conditions. The lower bounds for the norm
of the convolution operator are obtained, and its upper bounds are improved (a stronger result
than the O'Neil inequality). An exact cubature formula with explicit nodes and weights for
functions belonging to spaces with a dominated mixed derivative is constructed, and a number
of other problems in this area are solved.
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established by Springer Nature together with JSC "National Center for Scienti�c and Technical
Information".

The Editorial Board of the Eurasian Mathematical Journal congratulates Erlan Dautbekovich
Nursultanov on the occasion of his 60th birthday and wishes him good health and successful
work in mathematics and mathematical education.
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member of the Kazakhstan and American Mathematical Societies, member
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of Mathematics of the Academy of Sciences of Russia (Novosibirsk).
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putability, computable structures, abstract data types, ontology, formal semantics. He solved
the following problems of computable structures:

• the problems of S.S. Goncharov and M.S. Manasse: the problem of characterizing relative
categoricity in the hyperarithmetical hierarchy given levels of complexity of Scott fami-
lies, and the problem on the relationship between categoricity and relative categoricity of
computable structures in the arithmetical and hyperarithmetical hierarchies;

• the problem of Yu.L. Ershov: the problem of �nite algorithmic dimension in the arithmeti-
cal and hyperarithmetical hierarchies;

• the problem of C.J. Ash and A. Nerode: the problem of the interplay of relations of
bounded arithmetical and hyperarithmetical complexity in computable presentations and
the de�nability of relations by formulas of given complexity;
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Professor of 2012" (Kazakhstan). In 2015 Jamalbek Tussupov was also awarded for the contri-
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The Editorial Board of the Eurasian Mathematical Journal congratulates Dr. Professor
Jamalbek Tussupov on the occasion of his 60th aniversary and wishes him strong health, new
achievements in science, inspiration for new ideas and fruitfull results.
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FRACTIONAL OSCILLATORY INTEGRAL OPERATORS AND
THEIR COMMUTATORS ON GENERALIZED

ORLICZ-MORREY SPACES OF THE THIRD KIND

A. Eroglu

Communicated by V.S. Guliyev

Key words: generalized Orlicz-Morrey space, oscillatory integral, commutator, BMO spaces.

AMS Mathematics Subject Classi�cation: 42B20, 42B25, 42B35.

Abstract. We deal with the generalized Orlicz-Morrey spaceMΦ,ϕ of the third kind and consider
the boundedness of the oscillatory integral operators and fractional oscillatory integral operators
on MΦ,ϕ. Some integral estimates for generalized Orlicz-Morrey spaces of the third kind are also
obtained by using weighted Hardy operators. The corresponding commutators generated by
BMO-functions are also considered.

1 Introduction and main results

In the last decade, there is an evident increase of investigations related to both the theory of
the generalized Orlicz-Morrey spaces and the operator theory in these spaces. This is caused by
keen interest in this topic not only in real analysis, but also in partial di�erential equations and
in applied mathematics.

In this paper, we are focused on the boundedness of the oscillatory singular integrals with
standard and variable Calder�on-Zygmund kernels on generalized Orlicz-Morrey spaces of the
third kind.

Recall that a function Φ : [0,+∞) → [0,∞) is called a Young function if it is a convex
increasing function satisfying Φ(0) = 0, Φ(t) > 0 for all t ∈ (0,∞) and Φ(t)→∞ as t→∞.

For a Young function Φ, its inverse Φ−1 is de�ned by setting, for all t ∈ (0,∞)

Φ−1(t) := inf{s ∈ (0,∞) : Φ(s) > t}.

Denote by ∆2 the set of all convex bijections Φ : [0,∞) → [0,∞) such that the doubling
condition:

Φ(2t) ≤ CΦ(t) (t ≥ 0) (1.1)

holds for some constant C ≥ 2, which is called the doubling constant, and by ∇2 the set of all
convex functions Φ : [0,∞)→ [0,∞] such that the ∇2-condition:

C ′Φ(t) ≤ Φ(2t) (t ≥ 0) (1.2)

holds for some C ′ > 2. Note that C in (1.1) exceeds 2 if Φ ∈ ∆2 ∩ ∇2 due to (1.2). Recall also
that the conjugate function Ψ of Φ is de�ned by:

Ψ(t) ≡ sup{st− Φ(s) : s ≥ 0} (t ≥ 0).
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Let Φ be a Young function. Recall that the Orlicz norm ‖f‖LΦ(E) over a measurable set E
in Rn is de�ned by:

‖f‖LΦ(E) ≡ inf

{
λ > 0 :

∫
E

Φ
( |f(x)|

λ

)
dx ≤ 1

}
.

De�ne Lloc
Φ (Rn) as the set of all measurable functions f for which f ∈ LΦ(K) for all compact

sets K in Rn.
A natural step in the theory of functions spaces was to study Orlicz-Morrey spaces where the

"Morrey-type measuring"of regularity of functions is realized with respect to the Orlicz norm
over balls instead of the Lebesgue one. Such spaces were �rst introduced and studied by Nakai
[23]. Then another kind of generalized Orlicz-Morrey spaces were introduced by Sawano et al.
[28]. Our de�nition of generalized Orlicz-Morrey spaces introduced in [4] (see [12]) and used
here is di�erent from those of the papers [23] and [28].

We now de�ne generalized Orlicz-Morrey spaces of the third kind. Let ϕ(x, r) be a positive
measurable function on Rn × (0,∞) and Φ any Young function. The generalized Orlicz-Morrey
space (of the third kind) MΦ,ϕ(Rn) is the space of functions f ∈ Lloc

Φ (Rn) with �nite norm

‖f‖MΦ,ϕ
= sup

x∈Rn,r>0
ϕ(x, r)−1Φ−1(|B(x, r)|−1)‖f‖LΦ(B(x,r)).

Note that MΦ,ϕ(Rn) covers many classical function spaces.

Example 1. Let 1 ≤ q ≤ p < ∞ and Φ ∈ ∆2 ∩ ∇2. From the following special cases, we see
that our results will cover the Lebesgue space Lp(Rn), the classical Morrey space Mp

q (Rn), the
generalized Morrey space Mp,ϕ(Rn) and the Orlicz space LΦ(Rn) with norm coincidence:

1. If Φ(r) = rp and ϕ(x, r) = |B(x, r)|−
1
p , then MΦ,ϕ(Rn) = Lp(Rn) with norm equivalence.

2. If Φ(r) = rq and ϕ(x, r) = |B(x, r)|−
1
p , then MΦ,ϕ(Rn), which is denoted by Mp

q (Rn), is
the classical Morrey space (see [21]).

3. If Φ(r) = rp, then MΦ,ϕ(Rn) = Mp,ϕ(Rn) is the generalized Morrey space which were
discussed in [6, 7, 20, 22, 27, 29].

4. If ϕ(x, r) = Φ−1(|B(x, r)|−1), then MΦ,ϕ(Rn) = LΦ(Rn).

The theory of boundedness of classical operators of the real analysis, such as the maximal
operator, fractional maximal operator, Riesz potential and the singular integral operators etc,
from one generalized Orlicz-Morrey space to another one is well studied, see for example, [4, 11,
14, 15, 23, 24, 28].

Let f ∈ Lloc
1 (Rn). The Riesz potential Iα is de�ned by

Iαf(x) =

∫
Rn

f(y)dy

|x− y|n−α
, 0 < α < n.

Here and subsequently, C will denote a positive constant which may vary from line to line
but will remain independent of the relevant quantities.

The Calder�on-Zygmund singular integral operator is de�ned by

T̃ f(x) = p.v.

∫
Rn
K(x− y)f(y)dy, (1.3)

where K is a Calder�on-Zygmund kernel (CZK). We say a kernel K ∈ C1(Rn \ {0}) is a CZK if
it satis�es |K(x)| ≤ C

|x|n , |∇K(x)| ≤ C
|x|n+1 and

∫
a<|x|<bK(x)dx = 0, for all a, b with 0 < a < b.
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It is worth pointing out that the kernel in (1.3) is a convolution kernel. However, there were
many kinds of operators with non-convolution kernels, such as Fourier transform and Radon
transform [25] which both are versions of oscillatory integrals. The object we consider in this
paper is a class of oscillatory integrals due to Ricci and Stein [26]

Tf(x) = p.v.

∫
Rn
eiP (x,y)K(x− y)f(y)dy, (1.4)

where P (x, y) is a real valued polynomial de�ned on Rn × Rn, and K is a CZK.
It is well known that the oscillatory factor eiP (x,y) makes it impossible to establish the Lp norm

inequalities of (1.4) by the method as in the case of Calder�on-Zygmund operators or fractional
integrals. In [2], S. Chanillo and M. Christ established the weak (1, 1) type estimate of T .

A distribution kernel K is called a standard Calder�on-Zygmund kernel (SCZK) if it satis�es
the following hypotheses

|K(x, y)| ≤ C

|x− y|n
, x 6= y (1.5)

and

|∇xK(x, y)|+ |∇yK(x, y)| ≤ C

|x− y|n+1
, x 6= y. (1.6)

The corresponding Calder�on-Zygmund integral operator S̃ and oscillatory integral operator S
are de�ned by

S̃f(x) = p.v.

∫
Rn
K(x, y)f(y)dy

and

Sf(x) = p.v.

∫
Rn
eiP (x,y)K(x, y)f(y)dy,

where P (x, y) is a real valued polynomial de�ned on Rn × Rn. In [19], Lu and Zhang proved
that S is bounded on Lp with 1 < p <∞.

In [26], Ricci and Stein also introduced the standard fractional Calder�on-Zygmund kernel
(SFCZK) Kα with 0 < α < n, where conditions (1.5) and (1.6) were replaced by

|Kα(x, y)| ≤ C

|x− y|n−α
, x 6= y

and

|∇xKα(x, y)|+ |∇yKα(x, y)| ≤ C

|x− y|n+1−α , x 6= y.

The corresponding fractional oscillatory integral operator is de�ned by

Sαf(x) =

∫
Rn
eiP (x,y)Kα(x, y)f(y)dy,

where P (x, y) is also a real valued polynomial de�ned on Rn×Rn. Obviously, when α = 0, S0 = S
and K0 = K. Partly motivated by the idea from [4], [10] and the results of [11], we now give the
results of this paper in the following.

Theorem 1.1. Let Φ any Young function, ϕ1, ϕ2 and Φ satisfy the condition∫ ∞
r

(
ess sup
t<s<∞

ϕ1(x, s)

Φ−1
(
|B(x, s)|−1

))Φ−1
(
|B(x, t)|−1

)dt
t
≤ C ϕ2(x, r), (1.7)

where C does not depend on x and r. If K is a SCZK and the operator S̃ is of type(
L2(Rn), L2(Rn)

)
, then for Φ ∈ ∆2 ∩ ∇2 and any polynomial P (x, y) the operator S is bounded

from MΦ,ϕ1(Rn) to MΦ,ϕ2(Rn).
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Theorem 1.2. Let 0 < α < n and the functions (ϕ1, ϕ2) and (Φ,Ψ) satisfy the condition∫ ∞
r

ess sup
t<s<∞

ϕ1(x, s)

Φ−1
(
|B(x, s)|−1

)Ψ−1
(
|B(x, t)|−1

)dt
t
≤ C ϕ2(x, r), (1.8)

where C does not depend on x and r. Then for the conditions (2.1) and (2.2), Sα is bounded
from MΦ,ϕ1(Rn) to MΨ,ϕ2(Rn).

For a locally integrable function b, the commutator operator formed by S (or Sα) and b are
de�ned by

Sbf(x) = b(x)Sf(x)− S(bf)(x)

and
Sα,bf(x) = b(x)Sαf(x)− Sα(bf)(x).

Theorem 1.3. Let Φ any Young function, b ∈ BMO(Rn) and (ϕ1, ϕ2) satis�es the condition∫ ∞
r

(
1 + ln

t

r

) (
ess sup
t<s<∞

ϕ1(x, s)

Φ−1
(
|B(x, s)|−1

))Φ−1
(
|B(x, t)|−1

)dt
t
≤ C ϕ2(x, r), (1.9)

where C does not depend on x and r. If K is a SCZK and the operator S̃ is of type(
L2(Rn), L2(Rn)

)
, then for any polynomial P (x, y) the operator Sb is bounded from MΦ,ϕ1 to

MΦ,ϕ2.

Theorem 1.4. Let 0 < α < n and b ∈ BMO(Rn). Let Φ be a Young function and Ψ de�ned,
via its inverse, by setting, for all t ∈ (0,∞), Ψ−1(t) := Φ−1(t)t−α/n and Φ,Ψ ∈ ∆2 ∩ ∇2. Let
also (ϕ1, ϕ2) and (Φ,Ψ) satisfy the condition∫ ∞

r

(
1 + ln

t

r

)
ess sup
t<s<∞

ϕ1(x, s)

Φ−1
(
|B(x, s)|−1

)Ψ−1
(
|B(x, t)|−1

)dt
t
≤ C ϕ2(x, r),

where C does not depend on x and r. Then the operator Sb,α is bounded from MΦ,ϕ1(Rn) to
MΨ,ϕ2(Rn).

Remark 1. Note that, in the case Φ(t) = tp the Theorems 1.1 � 1.4 were proved in [6].

2 Some known results in generalized Orlicz-Morrey spaces MΦ,ϕ(Rn)

The following interpolation result is from [5].

Lemma 2.1. Let Φ any Young function and T be a sublinear operator of weak type (p, p) for
any p ∈ (1,∞). Then T is bounded on LΦ(Rn) for Φ ∈ ∆2 ∩∇2.

As a consequence of Lemma 2.1 and the Lp boundedness of the operator S [19], we get the
following result.

Corollary 2.1. If K is a SCZK and the operator S̃ is of type
(
L2(Rn), L2(Rn)

)
, then for

Φ ∈ ∆2 ∩∇2 and any polynomial P (x, y) the operator S is bounded on LΦ(Rn).

In [4] there were obtained su�cient conditions on weights ϕ1 and ϕ2 for the boundedness of
the singular operator T from MΦ,ϕ1(Rn) to MΦ,ϕ2(Rn), see also [15].

Theorem 2.1. Let Φ any Young function, ϕ1, ϕ2 and Φ satisfy the condition (1.7). Then the
operator T is bounded from MΦ,ϕ1(Rn) to MΦ,ϕ2(Rn) for Φ ∈ ∆2 ∩∇2.
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We recall that, for functions Φ and Ψ from [0,∞) into [0,∞], the function Ψ is said to
dominate Φ globally if there exists a positive constant c such that Φ(s) ≤ Ψ(cs) for all s ≥ 0.

In the theorems below we also use the notation

Ψ̃P (s) =

∫ s

0

rP
′−1(B−1

P (rP
′
))P

′
dr,

where 1 < P ≤ ∞ and Ψ̃P (s) is the Young conjugate funtion to ΨP (s), and

ΦP (s) =

∫ s

0

rP
′−1(A−1

P (rP
′
))P

′
dr,

where B−1
P (s) and A−1

P (s) are inverses to

BP (s) =

∫ s

0

Ψ(t)

t1+P ′
dt and AP (s) =

∫ s

0

Φ̃(t)

t1+P ′
dt,

respectively. These functions ΨP (s) and ΦP (s) are used below with P = n
α
.

The following statements were proved by Cianchi [1].

Theorem 2.2. Let Φ and Ψ Young functions and 0 < α < n. Then
The Riesz potential Iα is bounded from LΦ(Rn) to LΨ(Rn) if and only if∫ 1

0

Φ̃(t)/t1+n/(n−α)dt <∞,
∫ 1

0

Ψ(t)/t1+n/(n−α)dt <∞, (2.1)

and
Φ dominates Ψn/α globally and Φn/α dominates Ψ globally. (2.2)

The following statements were proved by Guliyev and Deringoz [10].

Theorem 2.3. Let 0 < α < n and the functions (ϕ1, ϕ2) and (Φ,Ψ) satisfy the condition (1.8).
Then for the conditions (2.1) and (2.2), Iα is bounded fromMΦ,ϕ1(Rn) toMΨ,ϕ2(Rn).

By A . B we mean that A ≤ CB with some positive constant C independent of appropriate
quantities. If A . B and B . A, we write A ≈ B and say that A and B are equivalent.

3 The fractional oscillatory integral operators in the spaces MΦ,ϕ(Rn)

In this section we are going to use the following statement on the boundedness of the weighted
Hardy operator

H∗wg(r) :=

∫ ∞
r

g(s)w(s)ds, r ∈ (0,∞),

where w is a weight.
The following theorem was proved in [9].

Theorem 3.1. Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded outside a neighborhood
of the origin. The inequality

sup
r>0

v2(r)H∗wg(r) ≤ C sup
r>0

v1(r)g(r) (3.1)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only if

B := sup
r>0

v2(r)

∫ ∞
r

w(t)dt

supt<s<∞ v1(s)
<∞. (3.2)

Moreover, the value C = B is the best constant for (3.1).
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Remark 2. In (3.1) and (3.2) it is assumed that 1
∞ = 0 and 0 · ∞ = 0.

Lemma 3.1. [4] For a Young function Φ, the following inequality is valid∫
B(x,r)

|f(y)|dy ≤ 2|B(x, r)|Φ−1
(
|B(x, r)|−1

)
‖f‖LΦ(B(x,r))

and ‖χ
B
‖LΦ

= 1

Φ−1
(
|B|−1

) .
Lemma 3.2. Let Φ any Young function, and K is a SCZK and the Calder�on-Zygmund singular
integral operator S̃ is of type

(
L2(Rn), L2(Rn)

)
. Then for Φ ∈ ∆2

⋂
∇2 and any polynomial

P (x, y) the inequality

‖Sf‖LΦ(B(x0,r)) .
1

Φ−1
(
|B(x0, r)|−1

) ∫ ∞
2r

‖f‖LΦ(B(x0,t))Φ
−1
(
|B(x0, t)|−1

)dt
t

holds for any ball B(x0, r) and for all f ∈ LlocΦ (Rn).

Proof. Let Φ ∈ ∆2

⋂
∇2. For arbitrary x0 ∈ Rn, set B = B(x0, r) for the ball centered at x0

and radius r, 2B = B(x0, 2r). We represent f as

f = f1 + f2, f1(y) = f(y)χ2B(y), f2(y) = f(y)χ(2B){(y)

and have

‖Sf‖LΦ(B) ≤ ‖Sf1‖LΦ(B) + ‖Sf2‖LΦ(B).

If K is a SCZK and the operator S̃ is of type
(
L2(Rn), L2(Rn)

)
, then from Corollary 2.1 for

Φ ∈ ∆2

⋂
∇2 and any polynomial P (x, y) the operator S is bounded on LΦ(Rn).

Since f1 ∈ LΦ(Rn), Sf1 ∈ LΦ(Rn) and boundedness of S in LΦ(Rn) (see [26]) it follows that

‖Sf1‖LΦ(B) ≤ ‖Sf1‖LΦ(Rn) ≤ C‖f1‖LΦ(Rn) = C‖f1‖LΦ(2B),

where constant C > 0 is independent of f .
It's clear that x ∈ B, y ∈ (2B){ implies 1

2
|x0 − y| ≤ |x− y| ≤ 3

2
|x0 − y|. We get

|Sf2(x)| ≤ c0

∫
(2B){

|f(y)|
|x0 − y|n

dy.

By Fubini's theorem we have∫
(2B){

|f(y)|
|x0 − y|n

dy ≈
∫

(2B){
|f(y)|

∫ ∞
|x0−y|

t−1−ndtdy .
∫ ∞

2r

‖f‖L1(B(x0,t))
dt

tn+1
. (3.3)

Applying the H�older's inequality (see, Lemma 3.1), we get∫
(2B){

|f(y)|
|x0 − y|n

dy .
∫ ∞

2r

‖f‖LΦ(B(x0,t))‖1‖LΦ̃
(B(x0,t))

dt

tn+1

=

∫ ∞
2r

‖f‖LΦ(B(x0,t))
1

Φ̃−1(|B(x0, t)|−1)

dt

tn+1

≈
∫ ∞

2r

‖f‖LΦ(B(x0,t))Φ
−1
(
|B(x0, t)|−1

)dt
t
.
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Moreover, for all Φ ∈ ∆2 the inequality

‖Sf2‖LΦ(B) .
1

Φ−1
(
|B(x0, r)|−1

) ∫ ∞
2r

‖f‖LΦ(B(x0,t))Φ
−1
(
|B(x0, t)|−1

)dt
t

is valid. Thus

‖Sf‖LΦ(B) . ‖f‖LΦ(2B) +
1

Φ−1
(
|B(x0, r)|−1

) ∫ ∞
2r

‖f‖LΦ(B(x0,t))Φ
−1
(
|B(x0, t)|−1

)dt
t
.

On the other hand, by
r ≤ Φ−1(r)Φ̃−1(r) ≤ 2r for r ≥ 0 (3.4)

we get

Φ−1
(
|B|−1

)
≈ Φ−1

(
|B|−1

)
rn
∫ ∞

2r

dt

tn+1
.
∫ ∞

2r

Φ−1
(
|B(x0, t)|−1

)dt
t

and then

‖f‖Lp(2B) .
1

Φ−1
(
|B(x0, r)|−1

) ∫ ∞
2r

‖f‖LΦ(B(x0,t))Φ
−1
(
|B(x0, t)|−1

)dt
t
. (3.5)

Hence

‖Sf‖Lp(B) .
1

Φ−1
(
|B(x0, r)|−1

) ∫ ∞
2r

‖f‖LΦ(B(x0,t))Φ
−1
(
|B(x0, t)|−1

)dt
t
.

Proof of Theorem 1.1.
By Lemma 3.2 and Theorem 3.1 we have

‖Sf‖MΦ,ϕ2
(Rn) . sup

x∈Rn,r>0
ϕ2(x, r)−1

∫ ∞
r

Φ−1
(
|B(x, t)|−1

)
‖f‖LΦ(B(x,t))

dt

t

. sup
x∈Rn,r>0

ϕ1(x, r)−1Φ−1
(
|B(x, r)|−1

)
‖f‖LΦ(B(x,r)) = ‖f‖MΦ,ϕ1

.

Proof of Theorem 1.2. The proof of Theorem 1.2 follows from the Theorem 2.3 and the following
observation

|Sαf(x)| ≤ Iα(|f |)(x).

4 Commutators of fractional oscillatory integral operators in the

spaces Mp,ϕ(Rn)

Let T be a Calder�on-Zygmund singular integral operator and b ∈ BMO(Rn). A well known result
of Coifman, Rochberg and Weiss [3] states that the commutator operator [b, T ]f = T (bf)− b Tf
is bounded on Lp(Rn) for 1 < p <∞.

First we recall the de�nition of the space BMO(Rn).

De�nition 1. Suppose that f ∈ L1
loc(Rn), let

‖f‖∗ = sup
x∈Rn,r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)− fB(x,r)|dy,

where fB(x,r) = |B(x, r)|−1
∫
B(x,r)

f(y)dy. De�ne

BMO(Rn) = {f ∈ L1
loc(Rn) : ‖f‖∗ <∞}.
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Before proving our theorems, we need the following lemmas.

Lemma 4.1. [13] Let b ∈ BMO(Rn). Then there is a constant C > 0 such that∣∣bB(x,r) − bB(x,t)

∣∣ ≤ C‖b‖∗ ln
t

r
for 0 < 2r < t, (4.1)

where C is independent of b, x, r and t.

Lemma 4.2. [10, 16] Let f ∈ BMO(Rn) and Φ be a Young function with Φ ∈ ∆2, then

‖f‖∗ ≈ sup
x∈Rn,r>0

Φ−1
(
|B(x, r)|−1

) ∥∥f(·)− fB(x,r)

∥∥
LΦ(B(x,r))

We will use the following statement on the boundedness of the weighted Hardy operator

H∗wg(t) :=

∫ ∞
t

(
1 + ln

s

t

)
g(s)w(s)ds, 0 < t <∞,

where w is a weight.
The following lemma was proved in [8].

Lemma 4.3. Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded outside a neighborhood
of the origin. The inequality

ess sup
t>0

v2(t)H∗wg(t) ≤ C ess sup
t>0

v1(t)g(t) (4.2)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and only if

B := ess sup
t>0

v2(t)

∫ ∞
t

(
1 + ln

s

t

) w(s)ds

ess sup
s<τ<∞

v1(τ)
<∞. (4.3)

Moreover, the value C = B is the best constant for (4.2).

Remark 3. In (4.2) and (4.3) it is assumed that 1
∞ = 0 and 0 · ∞ = 0.

Lemma 4.4. Let Let Φ be a Young function, b ∈ BMO(Rn), K is a SCZK and the Calder�on-

Zygmund singular integral operator S̃ is of type
(
L2(Rn), L2(Rn)

)
. Then for Φ ∈ ∆2

⋂
∇2 and

any polynomial P (x, y) the inequality

‖Sbf‖LΦ(B(x0,r)) .
‖b‖∗

Φ−1
(
|B(x0, r)|−1

) ∫ ∞
2r

(
1 + ln

t

r

)
‖f‖LΦ(B(x0,t))Φ

−1
(
|B(x0, t)|−1

)dt
t

holds for any ball B(x0, r) and for all f ∈ Lloc
Φ (Rn).

Proof. Let Φ ∈ ∆2

⋂
∇2. For arbitrary x0 ∈ Rn, set B = B(x0, r) for the ball centered at x0

and radius r, 2B = B(x0, 2r). We represent f as

f = f1 + f2, f1(y) = f(y)χ2B(y), f2(y) = f(y)χ(2B){(y)

and have
‖Sbf‖LΦ(B) ≤ ‖Sbf1‖LΦ(B) + ‖Sbf2‖LΦ(B).

It is known that (see [26], see also [17, 18, 19]), if K is a SCZK and the operator S̃ is of type(
L2(Rn), L2(Rn)

)
, then for 1 < p < ∞ and any polynomial P (x, y) the commutator operator

Sb is bounded on Lp(Rn). Hence, by Lemma 2.1 for Φ ∈ ∆2

⋂
∇2 and any polynomial P (x, y)
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the commutator operator Sb is bounded on LΦ(Rn). Since f1 ∈ LΦ(Rn), Sf1 ∈ LΦ(Rn) and
boundedness of Sb in LΦ(Rn) it follows that

‖Sbf1‖LΦ(B) ≤ ‖Sbf1‖LΦ(Rn) ≤ C‖b‖∗ ‖f1‖LΦ(Rn) = C‖b‖∗ ‖f1‖LΦ(2B),

where constant C > 0 is independent of f .
For x ∈ B we have

|Sbf2(x)| .
∫
Rn

|b(y)− b(x)|
|x− y|n

|f2(y)|dy ≈
∫

{(2B)

|b(y)− b(x)|
|x0 − y|n

|f(y)|dy.

Then

‖Sbf2‖LΦ(B) .
∥∥∥∫

{(2B)

|b(y)− b(x)|
|x0 − y|n

|f(y)|dy
∥∥∥
LΦ(B)

.
∥∥∥∫

{(2B)

|b(y)− bB|
|x0 − y|n

|f(y)|dy
∥∥∥
LΦ(B)

+
∥∥∥∫

{(2B)

|b(x)− bB|
|x0 − y|n

|f(y)|dy
∥∥∥
LΦ(B)

= I1 + I2.

Let us estimate I1. By Lemma 3.1 we have

I1 ≈
1

Φ−1
(
|B|−1

) ∫
{(2B)

|b(y)− bB|
|x0 − y|n

|f(y)|dy

≈
1

Φ−1
(
|B|−1

) ∫
{(2B)

|b(y)− bB||f(y)|
∫ ∞
|x0−y|

dt

tn+1
dy

.
1

Φ−1
(
|B|−1

) ∫ ∞
2r

∫
B(x0,t)

|b(y)− bB||f(y)|dy dt

tn+1
.

Applying H�older's inequality, by (3.4), (4.1) and Lemmas 3.1 and 4.2 we get

I1 .
1

Φ−1
(
|B|−1

) ∫ ∞
2r

∥∥b(·)− bB(x0,t)

∥∥
LΦ̃(B(x0,t))

‖f‖LΦ(B(x0,t))

dt

tn+1

+
1

Φ−1
(
|B|−1

) ∫ ∞
2r

|bB(x0,r) − bB(x0,t)|‖f‖LΦ(B(x0,t))Φ
−1
(
|B(x0, t)|−1

)dt
t

.
‖b‖∗

Φ−1
(
|B|−1

) ∫ ∞
2r

(
1 + ln

t

r

)
‖f‖LΦ(B(x0,t))Φ

−1
(
|B(x0, t)|−1

)dt
t
.

In order to estimate I2 note that

I2 ≈ ‖b(·)− bB‖LΦ(B)

∫
{(2B)

|f(y)|
|x0 − y|n

dy.

By Lemma 4.2, we get

I2 .
‖b‖∗

Φ−1
(
|B|−1

) ∫
{(2B)

|f(y)|
|x0 − y|n

dy. (4.4)

Thus, by (3.3)

I2 .
‖b‖∗

Φ−1
(
|B(x0, r)|−1

) ∫ ∞
2r

‖f‖LΦ(B(x0,t))Φ
−1
(
|B(x0, t)|−1

)dt
t
.

Summing up I1 and I2 we get

‖Sbf2‖Lp(B) .
‖b‖∗

Φ−1
(
|B(x0, r)|−1

) ∫ ∞
2r

(
1 + ln

t

r

)
‖f‖LΦ(B(x0,t))Φ

−1
(
|B(x0, t)|−1

)dt
t
. (4.5)
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Finally,

‖Sbf‖Lp(B) . ‖b‖∗ ‖f‖Lp(2B)

+
‖b‖∗

Φ−1
(
|B(x0, r)|−1

) ∫ ∞
2r

(
1 + ln

t

r

)
‖f‖LΦ(B(x0,t))Φ

−1
(
|B(x0, t)|−1

)dt
t
,

and statement of Lemma 4.4 follows by (3.5).

Proof of Theorem 1.3. The statement of Theorem 1.3 follows by Lemma 4.4 and Theorem 3.1
in the same manner as in the proof of Lemma 4.3.

Proof of Theorem 1.4. The proof of Theorem 1.4 follows from the Theorem 34 in [10] and the
following observation

|Sα,bf(x)| ≤ Iα,b(|f |)(x).
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