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ERLAN DAUTBEKOVICH NURSULTANOV
(to the 60th birthday)

On May 25, 2017 was the 60th birthday of Yerlan Dautbekovich Nur-
sultanov, Doctor of Physical and Mathematical Sciences (1999), Profes-
sor (2001), Head of the Department of Mathematics and Informatics of
the Kazakhstan branch of the M.V. Lomonosov Moscow State University
(since 2001), member of the Editorial Board of the Eurasian Mathematical
Journal.

E.D. Nursultanov was born in the city of Karaganda. He graduated
from the Karaganda State University (1979) and then completed his post-
graduate studies at the M.V. Lomonosov Moscow State University.

Professor Nursultanov’s scientific interests are related to various areas of the theory of func-
tions and functional analysis.

He introduced the concept of multi-parameter Lorentz spaces, network spaces and anisotropic
Lorentz spaces, for which appropriate interpolation methods were developed. On the basis
of the apparatus introduced by him, the questions of reiteration in the off-diagonal case for
the real Lyons-Petre interpolation method, the multiplier problem for trigonometric Fourier
series, the lower and upper bounds complementary to the Hardy-Littlewood inequalities for
various orthonormal systems were solved. The convergence of series and Fourier transforms
were studied with sufficiently general monotonicity conditions. The lower bounds for the norm
of the convolution operator are obtained, and its upper bounds are improved (a stronger result
than the O’Neil inequality). An exact cubature formula with explicit nodes and weights for
functions belonging to spaces with a dominated mixed derivative is constructed, and a number
of other problems in this area are solved.

He has published more than 50 scientific papers in high rating international journals included
in the lists of Thomson Reuters and Scopus. 2 doctor of sciences, 9 candidate of sciences and 4
PhD dissertations have been defended under his supervision.

His merits and achievements are marked with badges of the Ministry of Education and
Science of the Republic of Kazakhstan "For Contribution to the Development of Science" (2007),
"Honored Worker of Education" (2011), "Y. Altynsarin" (2017). He is a laureate of the award
named after K. Satpaev in the field of natural sciences for 2005, the grant holder "The best
teacher of the university" for 2006 and 2011, the grant holder of the state scientific scholarship
for outstanding contribution to the development of science and technology of the Republic of
Kazakhstan for years 2007-2008, 2008 -2009. In 2017 he got the Top Springer Author award,
established by Springer Nature together with JSC "National Center for Scientific and Technical
Information".

The Editorial Board of the Eurasian Mathematical Journal congratulates Erlan Dautbekovich
Nursultanov on the occasion of his 60th birthday and wishes him good health and successful
work in mathematics and mathematical education.




JAMALBEK TUSSUPOV
(to the 60th birthday)

On April 10, 2017 was the 60th birthday of Jamalbek Tussupov, Doctor
of Physical and Mathematical Sciences, Professor, Head of the Information
Systems Department of the L.N. Gumilyov Eurasian National University,
member of the Kazakhstan and American Mathematical Societies, member
of the Association of Symbolic Logic, member of the Editorial Board of the
Eurasian Mathematical Journal.

J. Tussupov was born in Taraz (Jambyl region of the Kazakh SSR).
He graduated from the Karaganda State University (Kazakhstan) in 1979
and later on completed his postgraduate studies at S.L. Sobolev Institute
of Mathematics of the Academy of Sciences of Russia (Novosibirsk).

Professor Tussupov’s research interests are in mathematical logic, com-
putability, computable structures, abstract data types, ontology, formal semantics. He solved
the following problems of computable structures:

e the problems of S.S. Goncharov and M.S. Manasse: the problem of characterizing relative
categoricity in the hyperarithmetical hierarchy given levels of complexity of Scott fami-
lies, and the problem on the relationship between categoricity and relative categoricity of
computable structures in the arithmetical and hyperarithmetical hierarchies;

e the problem of Yu.L. Ershov: the problem of finite algorithmic dimension in the arithmeti-
cal and hyperarithmetical hierarchies;

e the problem of C.J. Ash and A. Nerode: the problem of the interplay of relations of
bounded arithmetical and hyperarithmetical complexity in computable presentations and
the definability of relations by formulas of given complexity;

e the problem of S. Lempp: the problem of structures having presentations in just the degrees
of all sets X such that for algebraic classes as symmetric irreflexive graphs, nilpotent groups,
rings, integral domains, commutative semigroups, lattices, structure with two equivalences,
bipartite graphs.

Professor Tussupov has published about 100 scientific papers, five textbooks for students and
one monograph. Three PhD dissertations have been defended under his supervision.

Professor Tussupov is a fellow of "Bolashak" Scholarship, 2011 (Notre Dame University,
USA), "Erasmus+", 2016 (Poitiers University, France). He was awarded the title "The Best
Professor of 2012" (Kazakhstan). In 2015 Jamalbek Tussupov was also awarded for the contri-
bution to science in the Republic of Kazakhstan.

The Editorial Board of the Eurasian Mathematical Journal congratulates Dr. Professor
Jamalbek Tussupov on the occasion of his 60th aniversary and wishes him strong health, new
achievements in science, inspiration for new ideas and fruitfull results.
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Abstract. The paper is devoted to the solvability of equations in finite-dimensional power-
associative algebras over R. Necessary and sufficient conditions for the existence of the n-th root
in a power-associative R-algebra are obtained. Sufficient solvability conditions for a specific class
of polynomial equations in a power-associative R-algebra are derived.

1 Introduction

The paper is devoted to the solvability of equations in finite-dimensional power-associative al-
gebras over R. In order to describe the considered problem in detail, recall some definitions.

An algebra over R (or simply R-algebra) is a vector space V over R equipped with a “product
mapping” (or multiplication) V- x V' — V. (a,b) — ab such that

(aa + pb)c = a(ac) + (be), alab+ fc) = a(ab) + f(ac) Ya,b,ceV, Va,f €R.

An R-algebra is called finite-dimensional if the linear space V' is finite-dimensional. Below we
consider finite-dimensional R-algebras only and denote them by (R¢,.), d € N.
Given an algebra (R?,-), denote

at:=a, a""tV:=a-a" VYaeR? VYneNl.

If a"*™ = a"a™ for each a € R, for every n,m € N, then the algebra (R?,-) is called power-
assoctative. In this paper, we consider the equation

"=y (1.1)

with the unknown z in a power-associative algebra (R?, ) and find necessary and sufficient con-
ditions for this equation to have a solution z € RY for every right-hand side y € R?, for every
n € N. This problem can be considered as the problem of the existence of the n-th root in a
power-associative R-algebra. Moreover, we consider polynomial equations in power-associative
R-algebras and derive sufficient solvability conditions for such equations.

2 Main results

Let us start with solvability conditions for equation (1.1).
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Theorem 2.1. Let an R-algebra (R?,-) be power-associative. If for any y € R? there exists a
solution x € R? to the equation
=y (2.1)

then equation (1.1) has a solution x € R? for every right-hand side y € R?, for every n € N.

Remark 1. Note that in this theorem we do not assume that the considered algebra is unitary.
Recall that an R-algebra (R?,.) is called unitary, if it has an identity element, i.e. an element
e € R? such that

ex=xe=1x VYzeR

Proof of Theorem 2.1. 1. Let us prove that if o/ # 0, j = 1,m, and a™*' = 0 for some a € R,

m > 1, then vectors o, j = 1,m are linearly independent. Assume that > \;a’ = 0 for some
j=1

1

reals A\;, j = 1, m. Multiplying this equality by a™™" we obtain A\ja™ = 0. Hence, \; = 0.

Therefore, Y \;ja’ = 0. Repeating the described procedure m times we obtain A\; = Ay = ... =
j=2
A = 0. So, vectors a’, j = 1, m, are linearly independent.

I1. Let us prove that = 0 is the only solution to the equation x> = 0. Assume the contrary,
i.e. there exists a nonzero h € R? such that h? = 0. Since equation (2.1) is solvable for each
y € RY, there exist N € N and a vector a € R? such that a?” = h and 2V > d. Since h% = 0,
we have a/ #£ 0 for j = 1,2V and a®' " = 0. So, it follows from I that vectors o/, j = 1,2V are
linearly independent. The amount of these vectors is greater than the dimension of R?. This
contradiction proves that = 0 is the only solution to the equation z? = 0.

ITI. Let us prove that x = 0 is the only solution to the equation ™ = 0 for each n € N.
Assume the contrary. Take the minimal n such that the equation ™ = 0 has a nonzero solution.
Denote this solution by h. It follows from IT that n > 2. Consider two cases. If n = 2m for some
m € N then we have (h™)? = h" = 0 and h™ # 0 since m < n. If n = 2m + 1 for some m € N
then we have (h™*1)? = h - h™ = 0 and ™! % 0 since m + 1 < n. In both cases we obtain a
contradiction with II. So, x = 0 is the only solution to the equation 2™ = 0 for each n € N.

IV. Let us prove that equation (1.1) has a solution x € R? for every right-hand side y € R,
for every odd n € N. Let || - || be a Euclidean norm! at R?, S?~! C R? be a unit sphere centered
at zero. Consider the mapping

n

F .87 5 5l p(a) Ve St

"]
This mapping is well defined, since ||z"|| # 0 for every z € S in virtue of III. Moreover, it is
continuously differentiable, since the mapping x — x™ is polynomial, i.e. each coordinate of the
vector " is a homogeneous polynomial of degree n of d real variables © = (1, ..., 24). Finally,
F is odd, ie. F(—z) = —F(z), since n is odd. Thus, the Lyusternik-Schnirelmann-Borsuk
theorem (see, for example, |2, Chapter II, Theorem 2.4]) implies that the topological degree of
F' is odd. Therefore, the topological degree of F' is nonzero. Hence, F' is surjective. So, for
arbitrary y € R%\ {0} there exists z € R? such that F(z) = y/||y||. Set

A=y Iyl , T = Az,
127

. vl
2

Then

2" =yl F(2) = y.

IEverywhere in this paper we do not assume that the considered Euclidean norm is related with the multipli-
cation by the equality ||ab|| = ||al| ||b]|-
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V. Let us prove that equation (1.1) has a solution x € R? for every right-hand side y € R,
for every even n € N. Obviously there exist positive integers m and N such that n = m2" and
m is odd. Since equation (2.1) is solvable for each right-hand side, there exist vectors x; € R¢,
j = 1,N such that 22 = gy, 22 = zy, ..., 2% = zxy_1. In virtue of IV there exists z € R? such
that 2 = x . Thus,

N-1 N-1
) =2y, =..=1]

U

Let us discuss the question on solvability of polynomial equations in power-associative R-
algebras.

In order to give a definition of polynomial function it is usually assumed that the multipli-
cation is associative (i.e. a(bc) = (ab)c), commutative and R? contains a unit element. Given
a € R? and a nonnegative integer n, a monomial of degree n is a mapping RY — R? defined
by formula x +— az”, and a polynomial function is a finite sum of monomials. For this type
of polynomial functions the classical example of solvability theorem provides the fundamental
theorem of algebra (FTA), that states that every non-constant polynomial function with complex
coefficients has at least one complex root.

If the multiplication is associative but not commutative, the definition of polynomial can be
stated as follows. Given nonnegative integer n and vectors ay, ..., a, € R?, a monomial of degree
n is a mapping r — agrax...a,_1xa,. Polynomial functions can be defined standardly as a finite
sum of monomials. In [1, Theorem 1|, the following analogue of FTA was obtained for this type
of polynomial functions in the algebra of real quaternions® H. Let n > 1, a; be nonzero elements
of H, j =0,n, f:H — H be a polynomial function,

f(z) = aprarz...an_12a, + g(z),

where g is a finite sum of monomials, whose degree is less or equal than n — 1. Then there exists
x € H such that f(z) = 0.

Comparing this result with FTA we observe the following. FTA provides necessary and
sufficient conditions for a polynomial equation to have a solution, whereas the result from [1] is
a sufficient but not necessary condition. Indeed, set f(z) := iz+zi+g, where g is a constant. This
function does not satisfy the assumptions of theorem from [1]. However, it is a straightforward
task to ensure that the equation f(z) = 0 has a solution if ¢ = 1, and has no solutions if g = j.

Let us consider now the most general case, when the multiplication can be neither commu-
tative nor associative, and the algebra (R?, ) contains no identity element. A definition of a
polynomial function can be stated as follows. A monomial of degree 0 is a constant mapping
R? — R? defined by formula = — a; a monomial of degree 1 is a mapping R? — R? defined by
formula = — x; a monomial of degree n > 1 is a product of two monomials of degrees ny; > 0
and ny > 0 such that ny + ny = n; a polynomial function is a finite sum of monomials.

The question of polynomial equation solvability for the case when multiplication is not com-
mutative was also considered in [1]. It was stated that an analog of Theorem 1 from [1] is valid
in the Cayley algebra Q.

Below we consider a more general case that the one in [1]. We investigate an arbitrary power-
associative algebra (R?,-) Note that the situation is complicated by the fact that the algebra
may contain zero devisors, i.e. nonzero vectors a, b such that ab = 0. It is a straightforward task
to ensure that if ab = 0 for some nonzero vectors a and b, then there exists a vector y such that
the equation

ar =1y

2Recall that the algebra of real quaternions H is a 4-dimensional vector space with a fixed basis 1,1,j,k € H
and an associative multiplication such that 1 is an identity element and i2 = j2 = k? = ijk = —1.
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has no solutions. The above mentioned algebras R, C, H, and O contain no zero devisor. The
examples of a power-associative R-algebras that contain zero devisors are the ring of sedenions
S and the ring of real square k x k matrices, k£ > 2. Note that it is natural for R-algebras to have
zero devisors. In [3], it was shown that if d & {1,2,4,8} then every R-algebra (R?, ) contains
zero devisors.

Theorem 2.2. Assume that an R-algebra (R?, ) is power-associative, equation (2.1) is solvable
for every y € R%. Let n be a positive integer, g : R* — R? be a sum of a finite number of
monomials, whose degrees are less than n, a € R, a polynomial f : RY — R? be defined as
follows:

f(z) = az" +g(z) VzeR%

If n is odd and a is not a zero devisor then there exists a solution x € R? to the equation

f(a) =0. (2.2)

Proof. Consider the contrary: equation (2.2) has no solutions. Let || - || be a Euclidean norm in
R4, S9=1 R be a unit sphere centered at zero. Since a is not a zero devisor, it follows from
III that ax™ # 0 for each nonzero vector z € R%. Thus, there exists a number ¢; > 0 such that
laz™|] > ci||z||" for every # € R%. Since the degree of each monomial of g is less than n, there
exist numbers ¢y > 0, c3 > 0 such that ||g(z)]| < cofz||*"! + ¢3 for every x € R% Fix arbitrary
R > 0 such that ¢; R" > coR"! + ¢3. The inequalities above imply that ||a(Rz)"|| > ||g(Rz)||
for each z € 971,
Consider mappings F, H : STt x [0, R] — S9! defined as follows:

ot — f(tx) T d—1
F(z,t) = )] Vee S, Vtelo,R],
H(z,t) = a(fa)" + BTHR —t)g(Ro) S41 Ve |0,R].

~ la(Rz)" + R=Y(R — t)g(Ra)|
The mappings F' and H are well-defined, since the denominators in the above formulae do not

vanish. Indeed, ||f(tz)|| # 0 for every x and ¢, since equation (2.2) has no solutions. Moreover,
|la(Rz)™ + (R — t)g(Rx)|| # 0 for every z and ¢, since

la(Rz)" + R7HR — t)g(Rz)|| = [la(Rx)"|| - |R7(R — t)g(Rx)|| >

> [la(Rz)"|| = llg(Rz)|| > 0

in virtue of the choice of R. Obviously, the mappings F' and H are continuously differentiable.
Since F(xz, R) = H(x,0), the mappings F(-,0) and H(-, R) are smoothly homotopic. Thus, the
topological degrees of F(-,0) and H(-, R) coincide. However, the topological degree of F(-,0)
is zero, since F(z,0) = f(0)/[/f(0)]]. At the same time the mapping H (-, R) is odd since n is
odd and H(z, R) = az"/|lax™||. Thus, the Lyusternik-Schnirelmann-Borsuk theorem (see, for
example, [2, Chapter II, Theorem 2.4]) implies that the topological degree of H(-, R) is odd.
This contradiction proves the theorem. O

3 Discussions and examples

Let us discuss Theorems 2.1 and 2.2. In order to apply these results to an R-algebra (R?,-) we
have to verify two properties: power-associativity of multiplication and solvability of equation
(2.1) for every right-hand side y € R%. A proposition below allows to verify the second property
for some types of R-algebras.
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Proposition 3.1. Let an R-algebra (R%,-) be unitary, e € RY be an identity element, d > 2.
Assume that the equation

?=e (3.1)
has only two solutions x = e and x = —e, the equation
2 _
r* =0 (3.2)

has the only solution x = 0. Then equation (2.1) has a solution for every right-hand side y € RY.

Remark 2. Note that in this proposition we do not assume that the considered algebra is power-
associative.

Proof of Proposition 3.1. Let RP?! be the (d — 1)-dimensional projective space over R, || - ||

be a Euclidean norm in R? such that ||| = 1, S¢°! C R? be a unit sphere centered at zero.
Consider the mappings Q : R? — R, F : RP4! — S9! defined as follows:
Q) =2 VxeRY F(y) = % Vy e RP™! Vacy
x

(here an element Y of the projective space RP ! is an equivalence class, x is its representative).
The mapping F is well-defined, since Q(x) # 0 for every nonzero vector x € R? and Q is
positively homogeneous (i.e. Q(\z) = A\2Q(z) for every real \, for every x € R%).

The constructed mapping F' is obviously continuously differentiable. Let us prove that its
topological degree modulo two equals one. Since equation (3.1) has only two solutions x = e and
x = —e, equality F(x) = e holds only for the equivalence class x = x. € RP?! of the element
e. Let us prove that e is a regular value of mapping F. Obviously it is enough to prove that e is
a regular value of the mapping ). Since

Qle+6)=(e+0)*=Q(e) +2e6 +0% VR

we have Q'(e) = 2I, where I : R? — R? is the identity linear (over R) mapping. Analogously,
Q'(—e) = —21. By assumption, the value e of the mapping ) has only two preimages e and —e.
The corresponding derivatives Q’(e) and Q'(—e) do not degenerate. So, e is a regular value of
@ and, therefore, y. is a regular value of F. Since the regular value e of the mapping F' has the
only preimage Y., the topological degree modulo two of the mapping I’ equals one.

The mapping F' is surjective, since its topological degree modulo two is not zero. Thus, @) is
surjective, since () is positively homogeneous. Therefore, equation (2.1) has a solution for every
right-hand side y € R¢. O

Let us now present a class of R-algebras that satisfy assumptions of Theorems 2.1 and 2.2.
For this purpose we recall the Cayley-Dickson construction (for more references see, for example,

* ET:]it‘A = (R%, ) be a unitary algebra with an identity element e. Denote
R'={Xe: NeR}, RL={xe: >0}
Recall that an involution is a linear (over R) mapping R? — RY, z + T such that
ab=ba, a=a VYa,beR

Let in (RY,-) be defined an involution such that

r+7T e R, xTER}r VeeRY 27=0«< z=0.
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In the linear space R?? define a multiplication by formula
(a,b) - (¢,d) = (ac — db,da +bc) Ya,b,c,dc R

It is a straightforward task to ensure that the linear space R?? equipped with this multiplication
is a unitary R-algebra, the vector (e, 0) is the identity element, the mapping

(a,b) ~ (a,b) := (a,—b) VY (a,b) € R*
is an involution, this involution satisfies the relations

(a,b) + (a,b) € R, (a,b)-(a,b) € RL V(a,b) € R*

(a,0) - (@,0) = 0 < (a,b) = (0,0)

(here R = {(Xe,0) : X € R}, RL = {(Xe,0) : A > 0}). Denote the obtained R-algebra by
CD(A).

The described procedure that allows to obtain a 2d-dimensional unitary R-algebra with
involution from a d-dimensional unitary R-algebra with involution is called the Cayley-Dickson
construction. The Cayley-Dickson construction can be carried on ad infinitum. Denote

A =R, A,.1=CD(A,) Vn>1.
In this notation, the above mentioned algebras R, C, H, @, and S can be written as follows
R:Ala CZAQ) H:A?n ©:A47 S:A5

It turns out that all of the algebras A, (except for A;) satisfy the assumptions of Theorems 2.1
and 2.2. Namely, the following assertion takes place.

Proposition 3.2. For the above constructed R-algebras, the following assertions take place.
(1) For every m > 1, the algebra A,, is power-associative (see [4]).
(ii) For every m > 2, for every y € A,,, equation (2.1) has a solution x € A,,.

Proof. Assertion (i) was proved in [4]. Let us prove assertion (ii).

Let us prove by induction that for every m > 2 equation (3.2) in A, has the zero solution
only. For m = 2 it is obvious. Assume that this fact is valid for some m > 2. Consider equation
(3.2) in the algebra A,,,1. This equation can be introduced as a system of equations

[K% — EQ:UQ = O,
ToX1 + Lok = 0.

with unknown z;, 7z, € A,,. Since (z; + T;) € R, for every solution (x,xs) to this equation
either o = 0 or 1 + 71 = 0. In the first case, the assumption of the induction implies x; = 0.
In the second case, we obtain :L‘% = —T121, SO xf — Toxy = 0 iff x1 = 25 = 0. Hence, equation
(3.2) in the algebra A,,,1 has the trivial solution only.
Let us prove by induction that for every m > 2 equation (3.1) in A, has only two solutions
z =eand x = —e. For m = 2 it is obvious. Assume that this fact is valid for some m > 2.
Consider equation (3.1) in the algebra A,, 1. This equation can be introduced as a system of
equations
T2 — Toxy = €,
{ ToX1 + Lo = 0.
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with unknown xy, x5 € A, (here e is an identity element of A,,). Since (z; +7;) € R!, for every
solution (x1,x5) to this equation either 25 = 0 or x; + Z; = 0. In the first case, the assumption
of the induction implies ;1 = e or x1 = —e. In the second case, we obtain xf = —7T1x1, SO
1? — Towy = e which has no solutions in A,,. Hence, equation (3.1) in the algebra A,,,1 has only
two solutions x = e and z = —e.

It follows from Proposition 3.1 that equation (2.1) in each algebra A,,, m > 2, has a solution

for every right-hand side y € A,,. O
Proposition 3.1 directly imply the following assertion.
Theorem 3.1. Let A,, be the above defined Cayley-Dickson algebra. If m > 2 then
(1) equation (1.1) has a solution for everyn > 1,y € A,;
(ii) equation (2.2) has a solution for polynomial mappings f : A, — A, such that
f(x)=ax"+g(x) VzeA,,

n is odd, a € A, is not a zero devisor, g : R — R is the sum of a finite number of
monomials, whose degrees are less than n.

This result provides an example of application of Theorems 2.1 and 2.2 to a class of R-
algebras.
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