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ERLAN DAUTBEKOVICH NURSULTANOV

(to the 60th birthday)

On May 25, 2017 was the 60th birthday of Yerlan Dautbekovich Nur-
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sor (2001), Head of the Department of Mathematics and Informatics of
the Kazakhstan branch of the M.V. Lomonosov Moscow State University
(since 2001), member of the Editorial Board of the Eurasian Mathematical
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graduate studies at the M.V. Lomonosov Moscow State University.
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tions and functional analysis.

He introduced the concept of multi-parameter Lorentz spaces, network spaces and anisotropic
Lorentz spaces, for which appropriate interpolation methods were developed. On the basis
of the apparatus introduced by him, the questions of reiteration in the o�-diagonal case for
the real Lyons-Petre interpolation method, the multiplier problem for trigonometric Fourier
series, the lower and upper bounds complementary to the Hardy-Littlewood inequalities for
various orthonormal systems were solved. The convergence of series and Fourier transforms
were studied with su�ciently general monotonicity conditions. The lower bounds for the norm
of the convolution operator are obtained, and its upper bounds are improved (a stronger result
than the O'Neil inequality). An exact cubature formula with explicit nodes and weights for
functions belonging to spaces with a dominated mixed derivative is constructed, and a number
of other problems in this area are solved.

He has published more than 50 scienti�c papers in high rating international journals included
in the lists of Thomson Reuters and Scopus. 2 doctor of sciences, 9 candidate of sciences and 4
PhD dissertations have been defended under his supervision.

His merits and achievements are marked with badges of the Ministry of Education and
Science of the Republic of Kazakhstan "For Contribution to the Development of Science" (2007),
"Honored Worker of Education" (2011), "Y. Altynsarin" (2017). He is a laureate of the award
named after K. Satpaev in the �eld of natural sciences for 2005, the grant holder "The best
teacher of the university" for 2006 and 2011, the grant holder of the state scienti�c scholarship
for outstanding contribution to the development of science and technology of the Republic of
Kazakhstan for years 2007-2008, 2008 -2009. In 2017 he got the Top Springer Author award,
established by Springer Nature together with JSC "National Center for Scienti�c and Technical
Information".

The Editorial Board of the Eurasian Mathematical Journal congratulates Erlan Dautbekovich
Nursultanov on the occasion of his 60th birthday and wishes him good health and successful
work in mathematics and mathematical education.



JAMALBEK TUSSUPOV

(to the 60th birthday)

On April 10, 2017 was the 60th birthday of Jamalbek Tussupov, Doctor
of Physical and Mathematical Sciences, Professor, Head of the Information
Systems Department of the L.N. Gumilyov Eurasian National University,
member of the Kazakhstan and American Mathematical Societies, member
of the Association of Symbolic Logic, member of the Editorial Board of the
Eurasian Mathematical Journal.

J. Tussupov was born in Taraz (Jambyl region of the Kazakh SSR).
He graduated from the Karaganda State University (Kazakhstan) in 1979
and later on completed his postgraduate studies at S.L. Sobolev Institute
of Mathematics of the Academy of Sciences of Russia (Novosibirsk).

Professor Tussupov's research interests are in mathematical logic, com-
putability, computable structures, abstract data types, ontology, formal semantics. He solved
the following problems of computable structures:

• the problems of S.S. Goncharov and M.S. Manasse: the problem of characterizing relative
categoricity in the hyperarithmetical hierarchy given levels of complexity of Scott fami-
lies, and the problem on the relationship between categoricity and relative categoricity of
computable structures in the arithmetical and hyperarithmetical hierarchies;

• the problem of Yu.L. Ershov: the problem of �nite algorithmic dimension in the arithmeti-
cal and hyperarithmetical hierarchies;

• the problem of C.J. Ash and A. Nerode: the problem of the interplay of relations of
bounded arithmetical and hyperarithmetical complexity in computable presentations and
the de�nability of relations by formulas of given complexity;

• the problem of S. Lempp: the problem of structures having presentations in just the degrees
of all sets X such that for algebraic classes as symmetric irre�exive graphs, nilpotent groups,
rings, integral domains, commutative semigroups, lattices, structure with two equivalences,
bipartite graphs.

Professor Tussupov has published about 100 scienti�c papers, �ve textbooks for students and
one monograph. Three PhD dissertations have been defended under his supervision.

Professor Tussupov is a fellow of "Bolashak" Scholarship, 2011 (Notre Dame University,
USA), "Erasmus+", 2016 (Poitiers University, France). He was awarded the title "The Best
Professor of 2012" (Kazakhstan). In 2015 Jamalbek Tussupov was also awarded for the contri-
bution to science in the Republic of Kazakhstan.

The Editorial Board of the Eurasian Mathematical Journal congratulates Dr. Professor
Jamalbek Tussupov on the occasion of his 60th aniversary and wishes him strong health, new
achievements in science, inspiration for new ideas and fruitfull results.
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NET SPACES ON LATTICES, HARDY-LITTLEWOOD
TYPE INEQUALITIES, AND THEIR CONVERSES

R. Akylzhanov, M. Ruzhansky

Communicated by E.D. Nursultanov

Key words: net spaces, Lie groups, homogeneous manifolds, Hardy-Littlewood inequality.
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Abstract. We introduce abstract net spaces on directed sets and prove their embedding and
interpolation properties. Typical examples of interest are lattices of irreducible unitary repre-
sentations of compact Lie groups and of class I representations with respect to a subgroup. As
an application, we prove Hardy-Littlewood type inequalities and their converses on compact Lie
groups and on compact homogeneous manifolds.

1 Introduction

In [8], Hardy and Littlewood proved the following estimate on the circle T, relating Lp-norms of
a function and its Fourier coe�cients:∑

m∈Z

(1 + |m|)p−2|f̂(m)|p ≤ C‖f‖pLp(T), 1 < p ≤ 2. (1.1)

They also argued this to be a suitable extension of the Plancherel's identity to the setting of
Lp-spaces. In fact, they also proved that the inequality becomes an equivalence provided that
the Fourier coe�cients f̂(m) are monotone.

By duality, we readily obtain the corresponding inequality also in the range 2 ≤ p < ∞,
namely, we also have the estimate

‖f‖pLp(T) ≤ C ′p
∑
m∈Z

(1 + |m|)p−2|f̂(m)|p, 2 ≤ p <∞. (1.2)

In this paper we are interested in inequalities of Hardy-Littlewood type. For example, let
1 < p <∞ and f ∈ Lp(T), and suppose that

f ∼
∑
m∈Z

f̂(m)e2πimx.

Then it was shown in [13] that

∞∑
k=1

kp−2

 sup
e∈M0
|e|≥k

1

|e|

∣∣∣∣∣∑
m∈e

f̂(m)

∣∣∣∣∣

p

≤ C‖f‖pLp(T), 1 < p <∞, (1.3)

where M0 is the set of all �nite arithmetic progressions in Z. Especially in the range 2 ≤ p <∞
this gives a converse estimate to the Hardy-Littlewood estimate (1.2).
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Net function spaces Np,q on Zn and Rn were introduced in [14] as a machinery to prove the
inequalities of type (1.3) for Fourier coe�cients of functions on Tn and Rn. Since then, they
found other applications as well: we can refer to [13, 14, 12] for some applications of these spaces
to problems of harmonic analysis and approximation theory.

Since the unitary dual T̂n of a compact abelian Lie group Tn is isomorphic to Zn, i.e.

T̂n = {e2πik·x}k∈Zn 3 e2πik·x ←→ k ∈ Zn,

we can consider Np,q(Zn) as a net space Np,q(T̂n) on the lattice Zn. It turns out that the theory
of net spaces Np,q can be extended to arbitrary lattices provided we make certain rather natural
assumptions. In this paper we develop this abstract setting to be able to use the notion of a net
space on the unitary dual of a compact Lie group and on the lattice of its class I representations.
In addition to a suitable de�nition, for our purposes we need to prove their embedding and
interpolation properties. As it is common, such technique allows one to derive `strong' estimates
from `weak' ones by interpolation.

As an application of these results, we obtain Hardy-Littlewood type inequalities on compact
Lie groups and compact homogeneous manifolds, also providing the inverses to the Hardy-
Littlewood inequalities that were recently obtained in [1]. In Corollary 3.1 we calculate an
explicit example of such an inverse (to the Hardy-Littlewood inequality) in the case of the group
SU(2). For the Hardy-Littlewood inequalities and Fourier multipliers on SU(2) and on more
general compact Lie groups we refer to [2] and [3], respectively.

The obtained results also yield a noncommutative version to known estimates of the type
(1.3) on a circle T.

In Section 2 we develop the notion of net spaces on rather general lattices and prove their
main properties (interpolation and embedding). In Section 3 we apply these results to obtain
inverses to known Hardy-Littlewood inequalities in the settings of compact Lie groups and
compact homogeneous spaces.

2 Net spaces on lattices

Let Γ be a discrete set. We assume that there exists such partial order ≺ on Γ that every two
elements in Γ are comparable under ≺ in Γ. In addition, we suppose that Γ is bounded from
below. In other words, there exists an element 1 ∈ Γ such that 1 ≺ π for all π ∈ Γ. The partial
order ≺ on Γ makes it possible to de�ne the notion of a net which was �rst introduced by Moore
and Smith in [9]. This `net' is di�erent from `net' in net spaces Np,q. Let T be a topological
space. A net a in T is a function from Γ to T , i.e.

a = {aπ}π∈Γ : Γ 3 π 7→ aπ ∈ T.

We consider two nets δ = {δπ}π∈Γ and κ = {κπ}π∈Γ in T = N, i.e.

Γ 3 π 7→ δπ ∈ N,
Γ 3 π 7→ κπ ∈ N.

We turn Γ into a σ-�nite measure space by introducing a measure

νΓ(Q) :=
∑
θ∈Q

δθκθ, (2.1)

where Q is an arbitrary subset of Γ. We denote this measure space by (Γ, νΓ). We denote by Σ
the space of matrix-valued sequences on Γ that will be realised via

Σ :=
{
h = {h(π)}π∈Γ, h(π) ∈ Cκπ×δπ

}
.
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The `p spaces on Σ can be de�ned, for example, motivated by the Fourier analysis on compact
homogeneous spaces (see [15]), in the form

‖h‖`p(Γ,νΓ,Σ) :=

(∑
π∈Γ

δπκ
p( 1
p
− 1

2
)

π ‖h(π)‖pHS

) 1
p

, h ∈ Σ.

Sometimes, we can abbreviate this by writing `p(Γ, νΓ), `p(Γ) or `p.

If we put Γ = Ĝ, where Ĝ is the unitary dual of a compact Lie groupG, then Fourier transform
can be regarded as an operator mapping a function f ∈ Lp(G) to the matrix-valued sequence

f̂ = {f̂(π)}π∈Ĝ of the Fourier coe�cients f̂(π) ∈ Cdπ×dπ given by f̂(π) =
∫
G

f(u)π(u)∗ du. Let us

denote by Ĝ0 the subset of Ĝ of representations that are class I with respect to some subgroup
of G. For Γ = Ĝ0 we put δπ = dπ and κπ = kπ, these spaces thus coincide with the `p(Ĝ0)
spaces introduced in [15]. See [11] for the de�nition of dπ and kπ but these notations will also
be explained in detail in Section 3. See also [10] for the group setting.

It can be easily veri�ed that the following formula holds true.

Remark 1. Let 1 < p <∞. For `p(Γ, νΓ,Σ), we have

‖h‖`p(Γ,νΓ) = sup
g∈`p′ (Γ,νΓ)

g 6=0

∣∣∣∣∑
π∈Γ

δπ Tr[h(π)g(π)∗]

∣∣∣∣
‖g‖`p′ (Γ,νΓ)

, (2.2)

where 1
p′

+ 1
p

= 1, and h, g ∈ Σ. The matrix g(π)∗ is the Hermitian conjugate of g(π) and Tr is
the matrix trace.

We now give a de�nition of net spaces.

De�nition 1. Let λ = {λπ}π∈Γ be an arbitrary positive sequence over Γ. Denote byM a �xed
arbitrary collection of �nite subsets of Γ. Given a family of complex matrices F = {F (π)}π∈Γ,
F (π) ∈ Cκπ×δπ and 1 ≤ p <∞, 1 ≤ q ≤ ∞, de�ne

‖F‖Np,q(Γ,M) :=


(∑
π∈Γ

(
λ

1
p
πF [λπ,M]

)q
δπκπ
λπ

) 1
q

, if q <∞,

sup
π∈Γ

λ
1
p
πF [λπ,M], if q =∞,

where

F [λπ,M] := sup
Q∈M

νΓ(Q)≥λπ

1

νΓ(Q)

∣∣∣∣∣∑
θ∈Q

dθ TrF (θ)

∣∣∣∣∣ , (2.3)

and TrF (θ) =
min(κθ,δθ)∑

j=1

F (θ)jj.

We call F [λ,M] = {F [λπ,M]}π∈Γ de�ned by (2.3) the averaging of F = {F (π)}π∈Γ with
respect to M. Sometimes we may drop writing M to simplify the notation. In comparison to
the well-known maximal function, the averaging function allows one to capture the oscillation
properties of sequences/functions/nets.

In general, di�erent partial orders ≺1 and ≺2 on Γ will give di�erent Np,q spaces on Γ.
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3 Hardy-Littlewood type inequalities

In this section we apply net spaces Np,q(Γ) on an ordered lattice Γ to establish new inequal-
ities relating functions on G and their Fourier coe�cients. In [13] the following theorem was
established. In the sequel Lp,q denotes the Lorenz space.

Theorem 3.1 ([13]). Let 1 ≤ p <∞, 1 ≤ q ≤ ∞ and f ∈ Lp,q(T). Suppose that

f ∼
∑
m∈Z

f̂(m)e2πimx.

Then we have ∑
k∈N

k 1
p′ sup
e∈M0
|e|≥k

1

|e|

∣∣∣∣∣∑
m∈e

f̂(m)

∣∣∣∣∣

q

1

k
≤ C‖f‖pLp,q(T), (3.1)

or equivalently in terms of net spaces Np,q(Z,M0)

‖f̂‖Np′,q(Z,M0) . ‖f‖Lp,q(T), (3.2)

where M0 is the set of all �nite arithmetic progressions in Z, with the constant in (3.2) inde-
pendent of f .

Remark 2. Since Np,q(Z,M0) are interpolation spaces ([13, Theorem 1, p.88]), in order to
establish (3.2) it is su�cient to establish a `weak' inequality

‖f̂‖Np′,∞(Z,M0) . ‖f‖Lp(T). (3.3)

In [13, Proposition 1] it has been established that if the classM contains all �nite subsets
then Np,q coincides, up to constant, with the Lorenz space Lp,q :

Theorem 3.2 ([13]). Let 1 < p < +∞, 1 ≤ q ≤ ∞, and letM1 be the set of all �nite subsets of
Z. Then we have

Np,q(Z,M1) ∼= Lp,q(Z). (3.4)

For 1 < p < 2, inequality (3.2) can be re�ned:

Remark 3. Let 1 < p < 2. We have by Theorem 4.1 below and Theorem 3.2, that

‖f̂‖Np′,p(Z,M0) . ‖f̂‖Np′,p(Z,M1)
∼= ‖f̂‖Lp′,p(Z) . ‖f‖Lp(T). (3.5)

The last inequality in (3.5) is essentially the Hardy-Littlewood inequality for Fourier coe�-

cients, see [13] for the details. The application of Np,q(Γ) with Γ = Ĝ0 yields the extension of
Theorem 3.2 to the setting of compact homogeneous manifolds G/K. In addition, in Theorem
3.3 we characterise those classesM for which inequality

‖f̂‖Np′,∞(Ĝ0,M) ≤ C‖f‖Lp(G/K), f ∈ Lp(G/K) (3.6)

holds. The characterisation is given in terms of of the behaviour of Dirichlet kernel's norms
‖DQ‖Lp(G/K), Q ∈M.

To motivate the formulation, we start with a compact Lie group G. Identifying a representa-
tion π with its equivalence class and choosing some bases in the representation spaces of degree
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dπ, we can think of π ∈ Ĝ as a mapping π : G → Cdπ×dπ . For f ∈ L1(G), we de�ne its Fourier

transform at π ∈ Ĝ by

(FGf)(π) ≡ f̂(π) :=

∫
G

f(u)π(u)∗du,

where du is the normalised Haar measure on G. This de�nition can be extended to distributions
f ∈ D′(G), and the Fourier series takes the form

f(u) =
∑
π∈Ĝ

dπ Tr
(
π(u)f̂(π)

)
. (3.7)

The Plancherel identity on G is given by

‖f‖2
L2(G) =

∑
π∈Ĝ

dπ‖f̂(π)‖2
HS =: ‖f̂‖2

`2(Ĝ)
, (3.8)

yielding the Hilbert space `2(Ĝ). The Fourier coe�cients of functions and distributions on G
take values in the space

Σ =
{
σ = (σ(π))π∈Ĝ : σ(π) ∈ Cdπ×dπ

}
. (3.9)

The `p-spaces on the unitary dual Ĝ have been developed in [15] based on �xing the Hilbert-

Schmidt norms. Namely, for 1 ≤ p <∞, we de�ne the space `p(Ĝ) by the norm

‖σ‖`p(Ĝ) :=

∑
π∈Ĝ

d
p( 2

p
− 1

2)
π ‖σ(π)‖pHS

1/p

, σ ∈ Σ, 1 ≤ p <∞, (3.10)

where ‖ · ‖HS denotes the Hilbert-Schmidt matrix norm i.e.

‖σ(π)‖HS := (Tr(σ(π)σ(π)∗))
1
2 .

It was shown in [15, Section 10.3] that, among other things, these are interpolation spaces, and
that the Fourier transform FG and its inverse F−1

G satisfy the Hausdor�-Young inequalities in
these spaces. We can also refer to [16] for pseudo-di�erential extensions of the Fourier analysis
on both compact Lie groups and homogeneous manifolds.

We now describe the setting of Fourier coe�cients on a compact homogeneous manifold M
following [6] or [11], and referring for further details with proofs to Vilenkin [18] or to Vilenkin
and Klimyk [19].

Let G be a compact motion group of M and let K be the stationary subgroup of some point.
Alternatively, we can start with a compact Lie group G with a closed subgroup K, and identify
M = G/K as an analytic manifold in a canonical way. We normalise measures so that the
measure on K is a probability one. Typical examples are the spheres Sn = SO(n+ 1)/SO(n) or
complex spheres CSn = SU(n+ 1)/SU(n).

Let us denote by Ĝ0 the subset of Ĝ of representations that are class I with respect to the
subgroup K. This means that π ∈ Ĝ0 if π has at least one non-zero invariant vector a with
respect to K, i.e. that

π(h)a = a for all h ∈ K.

Let Bπ denote the space of these invariant vectors and let

kπ := dimBπ.
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Let us �x an orthonormal basis in the representation space of π so that its �rst kπ vectors are
the basis of Bπ. The matrix elements π(x)ij, 1 ≤ j ≤ kπ, are invariant under the right shifts by
K.

We note that if K = {e} so that M = G/K = G is the Lie group, we have Ĝ = Ĝ0 and
kπ = dπ for all π. As the other extreme, if K is a massive subgroup of G, i.e., if for every π
there is precisely one invariant vector with respect to K, we have kπ = 1 for all π ∈ Ĝ0. This is,
for example, the case for the spheres M = Sn. Other examples can be found in Vilenkin [18].

We can now identify functions on M = G/K with functions on G which are constant on left
cosets with respect to K. Then, for a function f ∈ C∞(M) we can recover it by the Fourier

series of its canonical lifting f̃(g) := f(gK) to G, f̃ ∈ C∞(G), and the Fourier coe�cients satisfŷ̃
f(π) = 0 for all representations with π 6∈ Ĝ0. Also, for class I representations π ∈ Ĝ0 we havễ
f(π)ij = 0 for i > kπ.

With this, we can write the Fourier series of f (or of f̃ , but we identify these) in terms of the

spherical functions πij of the representations π ∈ Ĝ0, with respect to the subgroup K. Namely,
the Fourier series (3.7) becomes

f(x) =
∑
π∈Ĝ0

dπ

dπ∑
i=1

kπ∑
j=1

f̂(π)jiπ(x)ij =
∑
π∈Ĝ0

dπ Tr(f̂(π)π(x)), (3.11)

where, in order to have the last equality, we adopt the convention of setting π(x)ij := 0 for all

j > kπ, for all π ∈ Ĝ0. With this convention the matrix π(x)π(x)∗ is diagonal with the �rst kπ
diagonal entries equal to one and others equal to zero, so that we have

‖π(x)‖HS =
√
kπ for all π ∈ Ĝ0, x ∈ G/K. (3.12)

Following [6], we will say that the collection of Fourier coe�cients {f̂(π)ij : π ∈ Ĝ, 1 ≤ i, j ≤ dπ}
is of class I with respect to K if f̂(π)ij = 0 whenever π 6∈ Ĝ0 or i > kπ. By the above discussion,
if the collection of Fourier coe�cients is of class I with respect to K, then the expressions (3.7)
and (3.11) coincide and yield a function f such that f(xh) = f(h) for all h ∈ K, so that this
function becomes a function on the homogeneous space G/K.

For the space of Fourier coe�cients of class I we de�ne the analogue of the set Σ in (3.9) by

Σ(G/K) := {σ : π 7→ σ(π) : π ∈ Ĝ0, σ(π) ∈ Cdπ×dπ , σ(π)ij = 0 for i > kπ}. (3.13)

In analogy to (3.10), we can de�ne the Lebesgue spaces `p(Ĝ0) by the following norms which we

will apply to Fourier coe�cients f̂ ∈ Σ(G/K) of f ∈ D′(G/K). Thus, for σ ∈ Σ(G/K) we set

‖σ‖`p(Ĝ0) :=

∑
π∈Ĝ0

dπk
p( 1
p
− 1

2
)

π ‖σ(π)‖pHS

1/p

, 1 ≤ p <∞. (3.14)

In the case K = {e}, so that G/K = G, these spaces coincide with those de�ned by (3.10) since
kπ = dπ in this case. Again, by the same argument as that in [15], these spaces are interpolation
spaces and the Hausdor�-Young inequality holds for them. We refer to [11] for some more details
on these spaces.

LetM be an arbitrary collection of �nite subsets of Ĝ0. Denote byM1 the collection of all
�nite subsets of Ĝ0. For Q ⊂M1, the measure νΓ with Γ = Ĝ0 in (2.1) is �nite and is given by

νΓ(Q) =
∑
θ∈Q

dθkθ, Q ∈M1 ⊂ Ĝ0. (3.15)
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Let Q ∈M and write

DQ(x) :=
∑
π∈Q

dπ Tr[π(x)].

Denote by D(M) the set of all Dirichlet kernels with their spectrum embedded in some Q ∈M,
i.e.

D(M) := {DQ(x), Q ∈M}.

Now, we can characterise thoseM for which

‖f̂‖Np′,∞(Ĝ0,M) ≤ C‖f‖Lp(G/K), f ∈ Lp(G/K),

via a certain condition on the size of the ‖DQ‖Lp′ (G/K) norm. In the theorem below we have

Γ = Ĝ0 and the measure νΓ = νĜ0
is given by (3.15). In the sequel we can use both notations in

the case of homogeneous manifolds G/K.

Theorem 3.3. Let 1 < p ≤ ∞ and let M be an arbitrary collection of �nite subsets of Ĝ0.
Then

‖f̂‖Np′,∞(Ĝ0,M) ≤ C‖f‖Lp(G/K), for all f ∈ Lp(G/K), (3.16)

if and only if

CpM := sup
π∈Ĝ0

λ
1
p′
π sup

Q∈M
νΓ(Q)≥λπ

1

νΓ(Q)
‖DQ‖Lp′ (G/K) < +∞, (3.17)

with νΓ = νĜ0
, and λπ is the sequence used in the De�ntion 1.

In Proposition 3.1 we will check in the sequel that condition (3.17) for all indices 1 < p <∞
is satis�ed in the example of the tori Tn if we take λπ to be the sequence of the eigenvalues of the
Laplacian counted with multiplicities. In Theorem 3.4, verifying condition (3.17), we will give
an unconditional version of Theorem 3.3 for the range of indices 1 < p ≤ 2 on general compact
homogeneous manifolds based on the interpolation properties of net spaces to be established in
the next section. In Corollary 3.1 we give an example on the group SU(2), again if we take λπ
to be the sequence of the eigenvalues of the Laplacian counted with multiplicities, yielding an
inverse to the Hardy-Littlewood inequality there.

Remark 4. It follows from the proof that CpM ≤ C and inequality (3.16) holds true for C =
CpM.

The interpolation properties of Np,q spaces allow us to formulate and prove a version of the
Hardy-Littlewood inequality in terms of Np,q spaces.

Theorem 3.4. Let 1 < p ≤ 2, 1 ≤ q ≤ ∞, and let M1 be the collection of all �nite subsets of
Ĝ0. Then we have

‖f̂‖Np′,q(Ĝ0,M1) ≤ Cp,q‖f‖Lp,q(G/K). (3.18)

We give a corollary of Theorem 3.4 on SU(2). In this case, we simplify general notation. It

can be shown that the unitary dual ŜU(2) can be `labelled' by the set of half-integers 1
2
N0. Thus,

we write f̂(l) for the Fourier coe�cient with respect to the element tl ∈ ŜU(2) associated with

l ∈ 1
2
N0. Here dtl = 2l + 1 so that f̂(l) ∈ C(2l+1)×(2l+1), l ∈ 1

2
N0.
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Corollary 3.1. Let 1 < p ≤ 2. Then we have

∑
ξ∈ 1

2
N0

(2ξ + 1)
5p
2
−4

 sup
k∈ 1

2
N0

(2k+1)≥(2ξ+1)

1

(2k + 1)3

∣∣∣∣∣∣∣∣
∑
l∈ 1

2
N0

2l+1≤2k+1

(2l + 1) Tr f̂(l)

∣∣∣∣∣∣∣∣

p

≤ Cp‖f‖pLp(SU(2)). (3.19)

We will prove Corollary 3.1 in Section 4 after Remark 5.

Proof of Theorem 3.4. For 1 < p ≤ 2 the condition (3.17) is satis�ed with M = M1. Indeed,

by Hausdor�-Young inequality, with Γ = Ĝ0 and νΓ(Q) =
∑

π∈Q dπkπ, Q ⊂ Ĝ0, we have

‖DQ‖Lp′ (G/K) ≤ νΓ(Q)
1
p , Q ∈M1, 1 < p ≤ 2. (3.20)

Then, we get

CpM1 = sup
π∈Ĝ0

λ
1
p′
π sup

Q∈M1

νΓ(Q)≥λπ

1

νΓ(Q)
‖DQ‖Lp′ (G/K) ≤ sup

π∈Ĝ0

λ
1
p′
π sup

Q∈M1

νΓ(Q)≥λπ

1

νΓ(Q)
1
p′

= 1. (3.21)

This proves that the condition (3.17) is satis�ed. Thus, the application of Theorem 3.3 yields

‖f̂‖Np′,∞(Ĝ0,M1) ≤ CpM1‖f‖Lp(G/K), 1 < p ≤ 2.

Let 1 < p1 < p < p2 ≤ 2. Then interpolating between two inequalities

‖f̂‖Np′1,∞(Ĝ0,M1) ≤ Cp1M1‖f‖Lp1 (G/K),

‖f̂‖Np′2,∞(Ĝ0,M1) ≤ CpM1‖f‖Lp2 (G/K).

(see Theorem 4.2 below), we obtain

‖f̂‖Np′,q(Ĝ0,M1) ≤ ‖f̂ : (Np1,∞(Ĝ0,M1), Np1,∞(Ĝ0,M1))θ,q‖

≤ Cp,q‖f : (Lp1(G/K), Lp2(G/K))θ,q‖ = Cp,q‖f‖Lp,q(G/K),

where in the last equality we used the fact that Lp,q(G/K) are interpolation spaces. This
completes the proof.

Now, we show that Theorem 3.3 includes as a particular case Theorem 3.1.

Proposition 3.1. Let 1 < p <∞, let Ma be the set of all �nite arithmetic progressions in Zn,
G = Tn, λe2πim·x = m, de2πim·x = ke2πim·x = 1 for m ∈ Zn, and hence νZn(Q) = |Q|, Q ∈ Ma.
Then Theorem 3.3 implies Theorem 3.1.

Here | · | is the counting measure.

Proof of Proposition 3.1. We show that condition (3.17) holds true for this case. Indeed, using
the Lp-space duality, we have

‖DQ‖Lp′ (Tn) = sup
f∈Lp(Tn)
f 6=0

∣∣(DQ, f)L2(Tn)

∣∣
‖f‖Lp(Tn)

. (3.22)
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By the Hardy-Littlewood rearrangement inequality (see [5, p.44 Theorem 2.2]), we obtain

∣∣∣(DQ, f)L2(Tn)

∣∣∣ ≤ ∫
Tn

|DQ(x)f(x)| dx ≤
1∫

0

D∗Q(t)f ∗(t) dt. (3.23)

In [13, p. 98 Lemma 5] it has been shown that

D∗Q(t) .
|Q|

1
p

t
1
p′
, (3.24)

where DQ(x) =
∑
k∈Q

e2πik·x, Q ⊂Ma. Hence, we get

∣∣∣(DQ, f)L2(Tn)

∣∣∣ ≤ |Q| 1p 1∫
0

t
1
pf ∗(t)

dt

t
= |Q|

1
p‖f‖Lp,1(Tn). (3.25)

In [7, p. 220 Theorem 4.7] it has been shown that the following equality holds true

‖f‖Lp,q(X,µ) = sup
g 6=0

∫
X

|fg|dµ

‖g‖Lp′,q′ (X,µ)

. (3.26)

Using the Lp,q-space duality (3.26) and (3.25), we get

‖D‖Lp′,1(Tn) ≤ |Q|
1
p .

The application of this and of the embedding propeties of the Lorenz spaces (see [7, p.217
Proposition 4.2]) yield

‖DQ‖Lp′ (Tn) ≤ ‖DQ‖Lp′,q(Tn) ≤ |Q|
1
p , Q ∈Ma. (3.27)

Finally, using this, we obtain

sup
k∈Zn

k
1
p′ sup
Q∈Ma

|Q|≥k

1

|Q|
‖DQ‖Lp′ (Tn) ≤ sup

k∈Zn
k

1
p′ sup
Q∈Ma

|Q|≥k

1

|Q|
1
p′

= 1. (3.28)

This completes the proof.

Proof of Theorem 3.3. We shall show that either of inequalities (3.17) and (3.16) implies each
other. Let us �rst claim that we have

(f,DQ)L2(G/K) =
∑
π∈Q

dπ Tr f̂(π). (3.29)

If we assume this claim for the moment, the proof proceeds as follows.
⇒. By H�older inequality, we have

|f ∗DQ(0)| =
∣∣(f,DQ)L2(G/K)

∣∣ ≤ ‖f‖Lp(G/K)‖DQ‖Lp′ (G/K). (3.30)

We multiply the left-hand side in (3.30) by λ
1
p′
π /νĜ0

(Q) to get

λ
1
p′
π

νĜ0
(Q)
|(f ∗DQ)(0)| ≤ λ

1
p′
π

νĜ0
(Q)
‖DQ‖Lp′ (G/K)‖f‖Lp(G/K). (3.31)
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Fixing π ∈ Ĝ0 and then taking supremum over all Q ∈ M such that νĜ0
(Q) ≥ λπ in the

right-hand side in (3.31), we get

λ
1
p′
π

νĜ0
(Q)
|(f ∗DQ)(0)| ≤

λ 1
p′
π sup

Q∈M
ν
Ĝ0

(Q)≥λπ

‖DQ‖Lp′ (G/K)

νĜ0
(Q)

 ‖f‖Lp(G/K). (3.32)

Again taking supremum over all π ∈ Ĝ0 in the right-hand side in (3.32), we �nally obtain

λ
1
p′
π

νĜ0
(Q)
|(f ∗DQ)(0)| ≤

 sup
π∈Ĝ0

λ
1
p′
π sup

Q∈M
ν
Ĝ0

(Q)≥λπ

‖DQ‖Lp′ (G/K)

νĜ0
(Q)

 ‖f‖Lp(G/K). (3.33)

Applying the preceding procedure of taking the supremum on the left-hand side in (3.33), we
show

‖f̂‖Np′,∞(Ĝ0,M) = sup
π∈Ĝ0

sup
Q∈M

ν
Ĝ0

(Q)≥λπ

λ
1
p′
π

νĜ0
(Q)
|(f ∗DQ)(0)| ‖f‖Lp(G/K)

≤ CpM‖f‖Lp(G/K), (3.34)

where Cp
DM is the constant de�ned in the hypothesis of Theorem 3.3.

⇐.
By the de�nition of the ‖ · ‖Np′,∞(Ĝ0,M)-norm, it follows from (3.16) that

sup
π∈Ĝ0

sup
Q∈M

ν
Ĝ0

(Q)≥λπ

λ
1
p′
π

νĜ0
(Q)
|(f ∗DQ)(0)| . ‖f‖Lp(G/K), f ∈ Lp(G/K). (3.35)

Then for any pair (π,Q) ∈ Ĝ0 ×M such that νĜ0
(Q) ≥ λπ and f ∈ Lp(G/K) we have

λ
1
p′
π

νĜ0
(Q)

∣∣(f,DQ)L2(G/K)

∣∣ ≤ C‖f‖Lp(G/K), (3.36)

and we used the fact that f ∗DQ(0) = (f,DQ)L2(G/K). Multiplying both sides of (3.36), we get

∣∣(f,DQ)L2(G/K)

∣∣ ≤ C
νĜ0

(Q)

λ
1
p′
π

‖f‖Lp(G/K). (3.37)

The inverse H�older inequality then implies that

‖DQ‖Lp′ (G/K) ≤ C
νĜ0

(Q)

λ
1
p′
π

. (3.38)

Equivalently, we have

λ
1
p′
π

νĜ0
(Q)
‖DQ‖Lp′ (G/K) ≤ C. (3.39)
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Taking supremum in the left-hand side in (3.39), we obtain

CpM = sup
π∈Ĝ0

λ
1
p′
π sup

Q∈M
ν
Ĝ0

(Q)≥λπ

‖DQ‖Lp′ (G/K)

νĜ0
(Q)

≤ C < +∞, (3.40)

in view of the fact that (π,Q) is any pair satisfying µ(Q) ≥ λπ and C is �xed and does not
depend on Q nor on π.

Now, it remains to establish (3.29). Since the trace Tr is invariant under taking Hermitian
conjugate π 7→ π∗, up to complex conjugation i.e.

Tr π∗ = Tr π,

we have

(g,DQ)L2(G/K) =

∫
G/K

g(x)DQ(x) dx =

∫
G/K

g(x)
∑
π∈Q

dπ Tr π(x) dx

=

∫
G/K

g(x)
∑
π∈Q

dπTr π(x) dx =

∫
G/K

g(x)
∑
π∈Q

dπ Tr π∗(x) dx

=
∑
π∈Q

∫
G/K

g(x) dπ Tr π∗(x) dx, (3.41)

where DQ(x) =
∑
π∈Q

dπ Tr π(x). Interchanging
∫

G/K

and Tr in the last line in (3.41), we get

(g,DQ)L2(G/K) =
∑
π∈Q

dπ Tr

∫
G/K

g(x)π∗(x) dx =
∑
π∈Q

dπ Tr ĝ(π), (3.42)

where we used that the Fourier coe�cients ĝ(π) are, by de�nition, equal to

ĝ(π) =

∫
G/K

g(x)π∗(x) dx. (3.43)

This proves (3.29). This completes the proof.

4 On some properties of net spaces

We now formulate some assumptions which will allow us to establish interpolation theory of Np,q

spaces which was needed in the proof of Theorem 3.4. In the case Γ = Ĝ or Γ = Ĝ0, these
assumptions will be satis�ed.

Assumption 4.1. Suppose that a positive net {λπ}π∈Γ is monotone increasing, i.e.

ξ ≺ π if and only if λξ ≤ λπ. (4.1)

Assumption 4.2. Let β ∈ R with β 6= −1. Suppose that the following formulae are true∑
θ∈Γ
λθ≤λπ

λβθκθδθ = Cβλ
β+1
π for β > −1, (4.2)

∑
θ∈Γ
λθ≥λπ

λβθκθδθ = Cβλ
β+1
π for β < −1. (4.3)

where Cβ is a constant depending on β.
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Remark 5. Assumption 4.2 is satis�ed for Γ = Ĝ0, λθ = 〈θ〉n, δθ = dθ, κθ = kθ, θ ∈ Ĝ0, where

〈θ〉 are the eigenvalues of the �rst-order elliptic pseudo-di�erential operator (I −∆G/K)
1
2 on the

compact manifold G/K of dimension n, namely, we have∑
θ∈Ĝ0
〈θ〉≤〈π〉

〈θ〉βnkθdθ ' 〈π〉(β+1)n for β > −1, (4.4)

∑
θ∈Ĝ0
〈θ〉≥〈π〉

〈θ〉βnkθdθ ' 〈π〉(β+1)n for β < −1. (4.5)

This will be proved in Section 5. We can also recall that if K = {e} and hence

G/K = G is a compact Lie group, then Ĝ0 = Ĝ and kθ = dθ is the dimension of

the representation [θ] ∈ Ĝ.

Now we can give a proof of Corollary 3.1.

Proof of Corollary 3.1. For G = SU(2) and λl = (2l + 1)3, it is straightforward to check that
Assumption 4.2 holds true. Then by Theorem 3.4, we get

‖f̂‖Np′,p( 1
2
N0,M1) ≤ Cp‖f‖Lp(SU(2)), 1 < p ≤ 2. (4.6)

By De�nition 1 with Γ = ŜU(2), δl = κl = (2l + 1), the left-hand side in (4.6) is equal to

∑
ξ∈ 1

2
N0

(2ξ + 1)
5p
2
−4

 sup
k∈ 1

2
N0

(2k+1)≥(2ξ+1)

1

(2k + 1)3

∣∣∣∣∣∣∣∣
∑
l∈ 1

2
N0

2l+1≤2k+1

(2l + 1) Tr f̂(l)

∣∣∣∣∣∣∣∣

p

. (4.7)

Thus, we have established inequality (3.19). This completes the proof.

Lemma 4.1. Suppose that Assumption 4.1 holds true. Then the averaging F (λπ) of F is a
monotone decreasing net.

Proof. Let π, ξ, θ ∈ Γ and π � ξ. We will show that F (λπ) ≤ F (λξ). Since λ = {λπ}π∈Γ is a
monotone increasing net, we have

{Q ∈M : νΓ(Q) ≥ λπ} ⊂ {Q ∈M : νΓ(Q) ≥ λξ}.

Therefore, we get

F (λπ) = sup
Q∈M

νΓ(Q)≥λπ

1

νΓ(Q)

∣∣∣∣∣∑
θ∈Q

dθ TrF (θ)

∣∣∣∣∣ ≤ sup
Q∈M

νΓ(Q)≥λξ

1

νΓ(Q)

∣∣∣∣∣∑
θ∈Q

dθ TrF (θ)

∣∣∣∣∣ = F (λξ).

This completes the proof.

Theorem 4.1. 1. Let 1 ≤ p < ∞, 1 < q ≤ ∞ and let M1 ⊂ M2 be two arbitrary �xed
collections of �nite subsets of Γ, then we have

Np,q(M2) ↪→ Np,q(M1). (4.8)
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2. Let 1 ≤ p < ∞ and 1 ≤ q1 ≤ q2 ≤ ∞. Suppose that Assumptions 4.1 and 4.2 hold true
and M is a �xed arbitrary collection of �nite subsets of Γ. Then we have the following
embedding

Np,q1(Γ,M) ↪→ Np,q2(Γ,M). (4.9)

Proof of Theorem 4.1. First, we notice that (4.8) follows directly from the de�nition. Therefore,
we concentrate on proving the second part of the Theorem.

Let �rst 1 ≤ q1 ≤ q2 <∞. By de�nition, we have

‖F‖Np,q2 (Γ,M) =

(∑
π∈Γ

(
λ

1
p
πF [λπ]

)q2 δπκπ
λπ

) 1
q2

. (4.10)

Using formula (4.2) from Assumption 4.2 with β = q1(1
p

+ ε)−1, we get, with a su�ciently large
ε > 0,

λ
q2
p
π = λ−εq2π λ

q2( 1
p

+ε)
π = C

q2
q1
β λ−εq2π

 ∑
θ∈Γ
λθ≤λπ

λ
q1( 1

p
+ε)−1

θ δθκθ


q2
q1

.

Thus, up to a constant, the expression in (4.10) equals to∑
π∈Γ

λ−εq2π

(
F [λπ]

)q2  ∑
θ∈Γ
λθ≤λπ

λ
q1( 1

p
+ε)

θ

δθκθ
λθ


q2
q1

δπκπ
λπ


1
q2

. (4.11)

In view of Lemma 4.1 the averaging function F (λπ) is a monotone decreasing net. Therefore,
(4.11) does not exceed

∑
π∈Γ

λ−εq2π

 ∑
θ∈Γ
λθ≤λπ

λ
q1( 1

p
+ε)

θ F [λθ]
q1
δθκθ
λθ


α

δπκπ
λπ


1
α


1
q1

,

where α = q2
q1
. We have thus proved that

‖F‖Np,q2 (Γ,M) ≤ C
1
q1
β


∑
π∈Γ

λ−εq2π

 ∑
θ∈Γ
λθ≤λπ

λ
q1( 1

p
+ε)

θ F [λθ]
q1
δθκθ
λθ


α

δπκπ
λπ


1
α


1
q1

. (4.12)

Now, we consider an `α(Γ, ω) space with the measure ω de�ned as follows

ωΓ(π) = λ−εq2−1
π δπκπ.

Denote by I the right-hand side in (4.12). Then using the `α(Γ, ωΓ)-space duality, we have

Iq1 = sup
b∈`α′ (Γ,ωΓ)
‖b‖

`α
′=1

∣∣∣∣∣∣∣
∑
π∈Γ

∑
θ∈Γ
λθ≤λθ

F [λθ]
q1λ

q1( 1
p

+ε)−1

θ δθκθ

 bπωΓ(π)

∣∣∣∣∣∣∣ ,
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where α′ denotes the exponent conjugate to α so that 1
α

+ 1
α′

= 1. Then using Fubini theorem
and H�older inequality, we have

∣∣∣∣∣∣∣
∑
π∈Γ

 ∑
θ∈Γ
λθ≤λπ

F [λθ]
q1λ

q1( 1
p

+ε)−1

θ δθκθ

 bπωΓ(π)

∣∣∣∣∣∣∣
≤
∑
π∈Γ

 ∑
θ∈Γ
λθ≤λπ

F [λθ]
q1λ

q1( 1
p

+ε)−1

θ δθκθ

 |bπ|ωΓ(π)

=
∑
θ∈Γ

F [λθ]
q1λ

q1( 1
p

+ε)−1

θ δθκθ
∑
π∈Γ
λπ≥λθ

|bπ|ωΓ(π)

≤
∑
θ∈Γ

F [λθ]
q1λ

q1( 1
p

+ε)−1

θ δθκθ

 ∑
π∈Γ
λπ≥λθ

ωΓ(π)


1
α
 ∑

π∈Γ
λπ≥λθ

|bπ|α
′
ωΓ(π)


1
α′

≤

∑
θ∈Γ

F [λθ]
q1

 ∑
π∈Γ
λπ≥λθ

ωΓ(π)


1
α

λ
q1( 1

p
+ε)−1

θ δθκθ

 · ‖b‖`α′ (Γ,ωΓ).

Thus, using this and taking supremum over all b ∈ `α′(Γ, ωΓ), we get from (4.12)

‖F‖Np,q2(Γ,M)
≤ C

1
q1
β (Iq1)

1
q1 ≤ C

1
q1
β

∑
θ∈Γ

F [λθ]
q1

 ∑
π∈Γ
λπ≥λθ

ωΓ(π)


1
α

λ
q1( 1

p
+ε)−1

θ δθκθ


1
q1

.

Again, using formula (4.5) with β = −εq2 − 1 from Assumption 4.2 and recalling that α = q2
q1
,

we get  ∑
π∈Γ
λπ≥λθ

ωΓ(π)


1
α

=

 ∑
π∈Γ
λπ≥λθ

λ−εq2−1
π δπκπ


q1
q2

= C
q1
q2
β λ−εq1θ ,

for su�ciently large ε. Finally, we have

‖F‖Np,q2 (Γ,M) ≤ C
2
q1
β

[∑
θ∈Γ

F [λθ]
q1λ−εq1θ λq1( 1

p
+ε)−1δθκθ

] 1
q1

= C
2
q1
β

[∑
θ∈Γ

(
λ

1
p
πF [λθ]

)q1 δθκθ
λθ

] 1
q1

= C
2
q1
β ‖F‖Np,q1 (Γ,M).
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For q2 =∞ and q1 < q2 =∞, using Assumption 4.2, we have

‖F‖Np,∞(Γ,M) = sup
π∈Γ

λ
1
p
πF [λπ] = C

1
q1
q1
p
−1

sup
π∈Γ

 ∑
θ∈Γ
λθ≤λπ

λ
q1
p

θ F [λπ]q1
κθδθ
λθ


1
q1

. sup
π∈Γ

 ∑
θ∈Γ
λθ≤λπ

λ
q1
p

θ F [λθ]
q1
κθδθ
λθ


1
q1

≤

(∑
θ∈Γ

λ
q1
p

θ F [λθ]
q1
κθδθ
λθ

) 1
q1

= ‖F‖Np,q1(Γ,M)
,

where in the �rst inequality we used the monotonicity of the averaging function F established
in Lemma 4.1. This completes the proof.

We now establish interpolation properties of net spaces. Let (A0, A1) be a compatible pair
of Banach spaces (cf. [4]) and let

K(t, F ;A0, A1) := inf
F=F0+F1

(‖F0‖A0 + t‖F1‖A1) , F ∈ A0 + A1,

be the Peetre functional.

Theorem 4.2. Let 1 ≤ p1 < p2 < ∞, 1 ≤ q1, q2, q ≤ ∞, 0 < θ < 1. Suppose that Assumptions
4.1 and 4.2 hold true. Then we have

(Np1,q1(Γ,M), Np2,q2(Γ,M))θ,q ↪→ Np,q(Γ,M), (4.13)

where 1
p

= 1−θ
p1

+ θ
p2
.

Proof of Theorem 4.2. Since by Theorem 4.1 we have Npi,qi ↪→ Npi,∞, i = 1, 2, it is su�cient to
prove

(Np1,∞, Np2,∞)θ,q ↪→ Np,q.

Assume �rst that q < +∞. Let π ∈ Γ, F = F1 + F2, F1 ∈ Np1,∞ and F2 ∈ Np2,∞. It is clear that

F [λπ] ≤ F1[λπ] + F2[λπ].

Denote v(t) := t
1

1
p1
− 1
p2 , t > 0. It is obvious that

sup
ξ∈Γ

λξ≤v(t)

λ
1
p1
ξ F [λξ] ≤ sup

ξ∈Γ
λ

1
p1
ξ F1[λξ] + sup

ξ∈Γ
λξ≤v(t)

λ
1
p1
− 1
p2

+ 1
p2

ξ F2[λξ]

≤ sup
ξ∈Γ

λ
1
p1
ξ F1[λξ] + t sup

ξ∈Γ
λ

1
p2
ξ F2[λξ].

Taking the in�mum over all possible reprsentations F = F1 + F2, we obtain

sup
ξ∈Γ

λξ≤v(t)

λ
1
p1
ξ F [λξ] . K(t, F ;Np1,∞, Np2,∞). (4.14)

Thus, making a substitution t→ t
1
p1
− 1
p2 , we have

+∞∫
0

(
t−θK(t, F )

)q dt
t
≥

+∞∫
0

t−θ sup
π∈Γ

λπ≤v(t)

λ
1
p1
π F [λπ]

q

dt

t

∼=
+∞∫
0

t−θ( 1
p1
− 1
p2

)
sup
π∈Γ
λπ≤t

λ
1
p1
π F [λπ]

q

dt

t
. (4.15)
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Decomposing

(0,+∞) =
⊔
s∈Z

[2s, 2s+1),

we have

+∞∫
0

t−θ( 1
p1
− 1
p2

)
sup
π∈Γ
λπ≤t

λ
1
p1
π F [λπ]

q

dt

t
=
∑
s∈Z

2s+1∫
2s

t−θ( 1
p1
− 1
p2

)
sup
π∈Γ
λπ≤t

λ
1
p1
π F [λπ]

q

dt

t

∼=
∑
s∈Z

2
−sθ( 1

p1
− 1
p2

)
sup
π∈Γ
λπ≤2s

λ
1
p1
π F [λπ]

q 2s+1∫
2s

dt

t
∼=
∑
s∈Z

2
−sθ( 1

p1
− 1
p2

)
sup
π∈Γ
λπ≤2s

λ
1
p1
π F [λπ]

q

≥
∑
s∈Z

2
−sθ( 1

p1
− 1
p2

)
sup
π∈Γ

2s−1≤λπ≤2s

λ
1
p1
π F [λπ]

q

≥
∑
s∈Z

(
2
−sθ( 1

p1
− 1
p2

)
2

(s−1) 1
p1F [2s−1]

)q
. (4.16)

Using formulae (4.2) with β = 0 from Assumption 4.2, we get

∑
θ∈Γ

2s≤λθ≤2s+1

δθκθ
λθ
∼=

1

2s

 ∑
θ∈Γ

λθ≤2s+1

δθκθ −
∑
θ∈Γ
λθ≤2s

δθκθ

 ∼= 2s+1 − 2s

2s
= 1. (4.17)

Therefore recalling that 1
p

= 1−θ
p1

+ θ
p2
and combining formulae (4.15), (4.16), (4.17), we have

+∞∫
0

(
t−θK(t, F )

)q dt
t
≥
∑
s∈Z

(
2
s
pF [2s]

)q ∑
θ∈Γ

2s≤λθ≤2s+1

δθκθ
λθ

∼=
∑
s∈Z

(
2
s+1
p F [2s]

)q ∑
θ∈Γ

2s≤λθ≤2s+1

δθκθ
λθ
≥
∑
s∈Z

∑
θ∈Γ

2s≤λθ≤2s+1

(
λ

1
p

θ F [λθ]

)q
δθκθ
λθ

=
∑
θ∈Γ

(
λ

1
p

θ F [λθ]

)q
δθκθ
λθ

= ‖F‖Np,q(Γ,M). (4.18)

where in the last inequality we used that F (t) is a decreasing function of t. This proves (4.13)

for q < +∞. For q =∞, making again substitution t 7→ t
1
p1
− 1
p2 , we have

sup
t>0

t−θK(t, F ) = sup
t>0

t
−θ( 1

p1
− 1
p2

)
K(t

1
p1
− 1
p2 , F ). (4.19)

Then using formula (4.14), we continue inequality (4.19) as

≥ sup
t>0

t
−θ( 1

p1
− 1
p2

)
sup
π∈Γ
λπ≤t

λ
1
p1
π F [λπ] & λ

−θ( 1
p1
− 1
p2

)

ξ sup
π∈Γ
λπ≤λξ

λ
1
p1
π F [λπ]

≥ λ
−θ( 1

p1
− 1
p2

)

ξ λ
1
p1
ξ F [λξ] = λ

1
p

ξ F [λξ], (4.20)

here λξ is an arbitrary element of the net λ = {λξ}ξ∈Γ. Taking thus supremum over all ξ ∈ Γ,
we �nally obtain

sup
t>0

t−θK(t, F ) & sup
ξ∈Γ

λ
1
p

ξ F [λξ] = ‖F‖Np,∞(Γ,M). (4.21)

We have established embedding (4.13) also for q =∞. This completes the proof.
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5 Proof of Remark 5

Here we prove Remark 5.

We denote by sk and mk the enumerated eigenvalues of (1 − ∆G/K)
1
2 and (1 − ∆G/K)

n
2

respectively. We assume that they are ordered, i.e.

s1 ≤ s2 ≤ . . . ≤ sk ≤ sk+1 ≤ . . . ,

m1 ≤ m2 ≤ . . . ≤ mk ≤ mk+1 ≤ . . . , (5.1)

multiplicities taken into account. Let us also denote by Nk(L) the eigenvalue counting function

for the eigenvalues λk = {λki }i∈N of the k-th order operator (I −∆G/K)
k
2 , i.e.

Nk(L) =
∑
i∈N
λki≤L

1.

First, we show that
mk
∼= k. (5.2)

We use the Weyl counting function asymptotics for the �rst order elliptic pseudo-di�erential
operator (1 −∆G/K)

1
2 on the compact homogeneous manifold G/K, to get that the eigenvalue

counting function N1(L) of eigenvalues of (1−∆G/K)
1
2 counted with multiplicities (see e.g. [17]),

as
N1(L) =

∑
i : si≤L

1 ∼= Ln.

Then we get the following asymptotic for the n-th order elliptic pseudo-di�erential operator
A = (I −∆G/K)

n
2

Nn(L) =
∑

i : mi≤L

1 ∼= L. (5.3)

Now, we �x an arbitrary eigenvalue mk and set L = mk in (5.3) to get

Nn(mk) ∼= mk. (5.4)

Since (5.1), we have
Nn(mk) = k. (5.5)

Combining (5.4) and (5.5), we get (5.2). Further, we �x an arbitrary π ∈ Ĝ0 coresponding to a
µk0 such that 〈π〉n = µk0 . Then using (5.2), we get

∑
ξ∈Ĝ0

〈ξ〉≤〈π〉

〈ξ〉nβ =
∑

k : µk≤µk0

µβk
∼=

k0∑
k=1

kβ ∼= kβ+1
0
∼= µβ+1

k0
= 〈π〉n(β+1).

This proves (4.2) with Γ = Ĝ0, λθ = 〈θ〉n, δθ = dθ, κθ = kθ, θ ∈ Ĝ0.
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