Eurasian Mathematical Journal

2017, Volume 8, Number 2

Founded in 2010 by
the L.N. Gumilyov Eurasian National University
in cooperation with
the M.V. Lomonosov Moscow State University
the Peoples' Friendship University of Russia
the University of Padua

Supported by the ISAAC (International Society for Analysis, its Applications and Computation) and by the Kazakhstan Mathematical Society

Published by the L.N. Gumilyov Eurasian National University Astana, Kazakhstan

EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors-in-Chief

V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (China), O.V. Besov (Russia), N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud (France), A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov (Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia), M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany), A. Hasanoglu (Turkey), M. Huxley (Great Britain), M. Imanaliev (Kyrgyzstan), P. Jain (India), T.Sh. Kalmenov (Kazakhstan), B.E. Kangyzhin (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin (Great Britain), V. Kokilashvili (Georgia), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic), L.K. Kussainova (Kazakhstan), P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), V.G. Maz'ya (Sweden), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan), K.N. Ospanov (Kazakhstan), I.N. Parasidis (Greece), J. Pečarić (Croatia), S.A. Plaksa (Ukraine), L.-E. Persson (Sweden), E.L. Presman (Russia), M.A. Ragusa (Italy), M.D. Ramazanov (Russia), M. Reissig (Germany), M. Ruzhansky (Great Britain), S. Sagitov (Sweden), T.O. Shaposhnikova (Sweden), A.A. Shkalikov (Russia), V.A. Skvortsov (Poland), G. Sinnamon (Canada), E.S. Smailov (Kazakhstan), V.D. Stepanov (Russia), Ya.T. Sultanaev (Russia), I.A. Taimanov (Russia), T.V. Tararykova (Great Britain), J.A. Tussupov (Kazakhstan), U.U. Umirbaev (Kazakhstan), Z.D. Usmanov (Tajikistan), N. Vasilevski (Mexico), Dachun Yang (China), B.T. Zhumagulov (Kazakhstan)

Managing Editor

A.M. Temirkhanova

Aims and Scope

The Eurasian Mathematical Journal (EMJ) publishes carefully selected original research papers in all areas of mathematics written by mathematicians, principally from Europe and Asia. However papers by mathematicians from other continents are also welcome.

From time to time the EMJ publishes survey papers.

The EMJ publishes 4 issues in a year.

The language of the paper must be English only.

The contents of EMJ are indexed in Scopus, Web of Science (ESCI), Mathematical Reviews, MathSciNet, Zentralblatt Math (ZMATH), Referativnyi Zhurnal – Matematika, Math-Net.Ru.

The EMJ is included in the list of journals recommended by the Committee for Control of Education and Science (Ministry of Education and Science of the Republic of Kazakhstan) and in the list of journals recommended by the Higher Attestation Commission (Ministry of Education and Science of the Russian Federation).

Information for the Authors

<u>Submission.</u> Manuscripts should be written in LaTeX and should be submitted electronically in DVI, PostScript or PDF format to the EMJ Editorial Office via e-mail (eurasianmj@yandex.kz).

When the paper is accepted, the authors will be asked to send the tex-file of the paper to the Editorial Office.

The author who submitted an article for publication will be considered as a corresponding author. Authors may nominate a member of the Editorial Board whom they consider appropriate for the article. However, assignment to that particular editor is not guaranteed.

Copyright. When the paper is accepted, the copyright is automatically transferred to the EMJ. Manuscripts are accepted for review on the understanding that the same work has not been already published (except in the form of an abstract), that it is not under consideration for publication elsewhere, and that it has been approved by all authors.

<u>Title page</u>. The title page should start with the title of the paper and authors' names (no degrees). It should contain the <u>Keywords</u> (no more than 10), the <u>Subject Classification</u> (AMS Mathematics Subject Classification (2010) with primary (and secondary) subject classification codes), and the Abstract (no more than 150 words with minimal use of mathematical symbols).

<u>Figures.</u> Figures should be prepared in a digital form which is suitable for direct reproduction.

<u>References</u>. Bibliographical references should be listed alphabetically at the end of the article. The authors should consult the Mathematical Reviews for the standard abbreviations of journals' names.

<u>Authors' data.</u> The authors' affiliations, addresses and e-mail addresses should be placed after the References.

<u>Proofs.</u> The authors will receive proofs only once. The late return of proofs may result in the paper being published in a later issue.

Offprints. The authors will receive offprints in electronic form.

Publication Ethics and Publication Malpractice

For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the EMJ implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The EMJ follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/New_Code.pdf). To verify originality, your article may be checked by the originality detection service CrossCheck http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the EMJ.

The Editorial Board of the EMJ will monitor and safeguard publishing ethics.

The procedure of reviewing a manuscript, established by the Editorial Board of the Eurasian Mathematical Journal

1. Reviewing procedure

- 1.1. All research papers received by the Eurasian Mathematical Journal (EMJ) are subject to mandatory reviewing.
- 1.2. The Managing Editor of the journal determines whether a paper fits to the scope of the EMJ and satisfies the rules of writing papers for the EMJ, and directs it for a preliminary review to one of the Editors-in-chief who checks the scientific content of the manuscript and assigns a specialist for reviewing the manuscript.
- 1.3. Reviewers of manuscripts are selected from highly qualified scientists and specialists of the L.N. Gumilyov Eurasian National University (doctors of sciences, professors), other universities of the Republic of Kazakhstan and foreign countries. An author of a paper cannot be its reviewer.
- 1.4. Duration of reviewing in each case is determined by the Managing Editor aiming at creating conditions for the most rapid publication of the paper.
- 1.5. Reviewing is confidential. Information about a reviewer is anonymous to the authors and is available only for the Editorial Board and the Control Committee in the Field of Education and Science of the Ministry of Education and Science of the Republic of Kazakhstan (CCFES). The author has the right to read the text of the review.
 - 1.6. If required, the review is sent to the author by e-mail.
 - 1.7. A positive review is not a sufficient basis for publication of the paper.
- 1.8. If a reviewer overall approves the paper, but has observations, the review is confidentially sent to the author. A revised version of the paper in which the comments of the reviewer are taken into account is sent to the same reviewer for additional reviewing.
- 1.9. In the case of a negative review the text of the review is confidentially sent to the author.
- 1.10. If the author sends a well reasoned response to the comments of the reviewer, the paper should be considered by a commission, consisting of three members of the Editorial Board.
- 1.11. The final decision on publication of the paper is made by the Editorial Board and is recorded in the minutes of the meeting of the Editorial Board.
- 1.12. After the paper is accepted for publication by the Editorial Board the Managing Editor informs the author about this and about the date of publication.
- 1.13. Originals reviews are stored in the Editorial Office for three years from the date of publication and are provided on request of the CCFES.
 - 1.14. No fee for reviewing papers will be charged.

2. Requirements for the content of a review

- 2.1. In the title of a review there should be indicated the author(s) and the title of a paper.
- 2.2. A review should include a qualified analysis of the material of a paper, objective assessment and reasoned recommendations.
 - 2.3. A review should cover the following topics:
 - compliance of the paper with the scope of the EMJ;
 - compliance of the title of the paper to its content;
- compliance of the paper to the rules of writing papers for the EMJ (abstract, key words and phrases, bibliography etc.);
- a general description and assessment of the content of the paper (subject, focus, actuality of the topic, importance and actuality of the obtained results, possible applications);

- content of the paper (the originality of the material, survey of previously published studies on the topic of the paper, erroneous statements (if any), controversial issues (if any), and so on);
- exposition of the paper (clarity, conciseness, completeness of proofs, completeness of bibliographic references, typographical quality of the text);
- possibility of reducing the volume of the paper, without harming the content and understanding of the presented scientific results;
- description of positive aspects of the paper, as well as of drawbacks, recommendations for corrections and complements to the text.
- 2.4. The final part of the review should contain an overall opinion of a reviewer on the paper and a clear recommendation on whether the paper can be published in the Eurasian Mathematical Journal, should be sent back to the author for revision or cannot be published.

Web-page

The web-page of EMJ is www.emj.enu.kz. One can enter the web-page by typing Eurasian Mathematical Journal in any search engine (Google, Yandex, etc.). The archive of the web-page contains all papers published in EMJ (free access).

Subscription

For Institutions

- US\$ 200 (or equivalent) for one volume (4 issues)
- US\$ 60 (or equivalent) for one issue

For Individuals

- US\$ 160 (or equivalent) for one volume (4 issues)
- US\$ 50 (or equivalent) for one issue.

The price includes handling and postage.

The Subscription Form for subscribers can be obtained by e-mail:

eurasian mj@yandex.kz

The Eurasian Mathematical Journal (EMJ)
The Editorial Office

The L.N. Gumilyov Eurasian National University

Building no. 3 Room 306a

Tel.: +7-7172-709500 extension 33312

13 Kazhymukan St 010008 Astana Kazakhstan This issue contains the first part of the collection of papers sent to the Eurasian Mathematical Journal dedicated to the 70th birthday of Professor R. Oinarov.

The first part of the collection was published in Volume 8, Number 1.

EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879

Volume 8, Number 2 (2017), 105 – 110

THE HARDY INEQUALITY WITH BOUNDARY OR INTERMEDIATE CONDITIONS

A. Kufner

Communicated by L.-E. Persson

Dedicated to the 70th birthday of Professor Ryskul Oinarov

Key words: Hardy's inequality, boundary conditions.

AMS Mathematics Subject Classification: 26A99, 26D10, 26D15.

Abstract. In the paper a survey is given of the necessary and sufficient conditions which guarantee the validity of Hardy inequality (1.1) for various classes of functions.

1 Introduction

We will deal with the Hardy inequality

$$\left(\int_{a}^{b} |f(x)|^{q} u(x) dx\right)^{1/q} \le C \left(\int_{a}^{b} |f'(x)|^{p} v(x) dx\right)^{1/p}. \tag{1.1}$$

Here, $-\infty \le a < b \le \infty$, 1 , <math>u and v are weight functions, i.e. functions measurable and positive almost everywhere in (a, b).

We denote by

$$V^{1,p} = V^{1,p}(a,b)$$

the set of all functions f on (a, b) for which the right-hand side of (1.1) is finite.

We are interested in conditions on the weights u and v under which (1.1) holds for all $f \in V^{1,p}$. Obviously, for a constant non-zero function, which belongs to $V^{1,p}$, inequality (1.1) becomes meaningless. Therefore, we have to put on functions $f \in V^{1,p}$ some additional restrictive conditions, to exclude functions $f(x) \equiv \text{const.} \neq 0$. Hence, let us introduce the following subsets of $V^{1,p}$:

$$\begin{split} V_A^{1,p} &= \{ f \in V^{1,p}; \ f(a) := \lim_{x \to a+} f(x) = 0 \}, \\ V_B^{1,p} &= \{ f \in V^{1,p}; \ f(b) := \lim_{x \to b-} f(x) = 0 \}, \\ V_C^{1,p} &= \{ f \in V^{1,p}; \ f(c) = 0 \ \text{where} \ c \ \text{is a fixed point of} \ (a,b) \}, \\ V_D^{1,p} &= \{ f \in V^{1,p}; \ f(a) = f(b) = 0 \}. \end{split}$$

Furthermore, let us denote for $a \leq \alpha < \beta \leq b$

$$U(\alpha, \beta) = \int_{0}^{\beta} u(t)dt; \ V(\alpha, \beta) = \int_{0}^{\beta} v^{1-p'}(t)dt, \ p' = \frac{p}{p-1}.$$
 (1.2)

We assume that the numbers $U(\alpha, \beta)$ and $V(\alpha, \beta)$ which appear in the sequel for appropriate choices of α, β are finite.

2 The case with conditions

Now, we have the following results:

(i) Hardy inequality (1.1) holds for all $f \in V_A^{1,p}$ if and only if

$$C_A := \sup_{x \in (a,b)} U^{1/q}(x,b) V^{1/p'}(a,x) < \infty.$$
 (2.1)

(ii) Hardy inequality (1.1) holds for all $f \in V_B^{1,p}$ if and only if

$$C_B := \sup_{x \in (a,b)} U^{1/q}(a,x) V^{1/p'}(x,b) < \infty.$$
 (2.2)

(iii) Hardy inequality (1.1) holds for all $f \in V_C^{1,p}$ if and only if

$$C_c := \max \left[\sup_{x \in (a,c)} U^{1/q}(a,x) V^{1/p'}(x,c); \sup_{x \in (c,b)} U^{1/q}(x,b) V^{1/p'}(c,x) \right]$$

$$< \infty$$
(2.3)

(iv) Hardy inequality (1.1) holds for all $f \in V_D^{1,p}$ if and only if

$$C_D := \sup_{\substack{c,d \\ a < c < d < b}} \left[U^{1/q}(c,d) \cdot \min(V^{1/p'}(a,c), V^{1/p'}(d,b)) \right] < \infty.$$
 (2.4)

Remark 1 All foregoing results can be found in the book [4]. The constants C_A and C_B are the well-known Muckenhoupt constants. The constants C_A, \ldots, C_D provide an estimate for the best possible constant C in (1.1) for functions from the corresponding subspace of $V^{1,p}$, i.e. for f from $V_A^{1,p}, \ldots, V_D^{1,p}$, respectively.

Remark 2 In the paper [3], the discrete analogue of (1.1) is investigated, namely the inequality

$$\left(\sum_{n=1}^{\infty} |f_n|^q u_n\right)^{1/q} \le C \left(\sum_{n=1}^{\infty} |f_{n+1} - f_n|^p v_n\right)^{1/p}.$$
(2.5)

For the case which corresponds to the case (iv) above, the author gives a necessary and sufficient condition, whose "continuous" analogue reads:

$$C_{D,1} := \sup_{\substack{c,d\\a \leqslant c \leqslant d \leqslant b}} U^{1/q}(c,d) [V^{1-p}(a,c) + V^{1-p}(d,b)]^{-1/p} < \infty.$$
(2.6)

It is easy to show that the expressions for C_D and for $C_{D,1}$ are equivalent.

Another equivalent condition reads

$$C_{D,2} := \sup_{\substack{c,d\\a < c < d < b}} U^{1/q}(c,d) [V^{-q/p'}(a,c) + V^{-q/p'}(d,b)]^{-1/q}.$$
(2.7)

3 The case without conditions

Now, we assume that the weight function u belongs to $L^1(a,b)$, i.e., that

$$U(a,b) = \int_{a}^{b} u(t)dt < \infty \tag{3.1}$$

If we wish to consider a variant of inequality (1.1) which holds for all $f \in V^{1,p}$ (without any additional condition), then we can – instead of (1.1) – investigate on the space $V^{1,p}$ the inequality

$$\inf_{c \in \mathbb{R}} \left(\int_{a}^{b} |f(x) - c|^{q} u(x) dx \right)^{1/q} \le C \left(\int_{a}^{b} |f'(x)|^{p} v(x) dx \right)^{1/p}. \tag{3.2}$$

If we denote

$$M_f := \frac{\int_a^b f(t)u(t)dt}{\int_a^b u(t)dt} \tag{3.3}$$

then we have that

$$\frac{1}{2} \int_{a}^{b} |f(t) - M_{f}|^{q} u(t) dt \leq \inf_{c \in \mathbb{R}} \int_{a}^{b} |f(t) - c|^{q} u(t) dt
\leq \int_{a}^{b} |f(t) - M_{f}|^{q} u(t) dt.$$
(3.4)

Indeed, the first inequality follows by the Hölder inequality, using definition (3.3) of M_f , the second one follows by the definition of infimum.

Hence, instead of Hardy inequality (1.1) without any additional condition on f, but with condition (3.1) for u, we can investigate on $V^{1,p}$ the inequality

$$\left(\int_{a}^{b} |f(x) - M_{f}|^{q} u(x) dx\right)^{1/q} \le C \left(\int_{a}^{b} |f'(x)|^{p} v(x) dx\right)^{1/p}.$$
(3.5)

The discrete analogue of (3.5) is again investigated in [3]. Two equivalent estimates for the best constant C in (2.5) are derived, whose "continuous" analogues for (3.5) read:

$$C_{E,1} := \sup_{\substack{c,d\\a < c \le d \le b}} V^{1/p'}(c,d) [U^{1-q'}(a,c) + U^{1-q'}(d,b)]^{-1/q'} < \infty$$
(3.6)

and

$$C_{E,2} := \sup_{\substack{c,d\\a < c < d < b}} V^{1/p'}(c,d) [U^{-p'/q}(a,c) + U^{-p'/1}(d,b)]^{-1/p'} < \infty.$$
(3.7)

Consequently, we have the following result.

(v) Inequality (3.5) [and consequently, Hardy inequality (3.2)] holds for all $f \in V^{1,p}$ if and only if

$$C_E := \sup_{\substack{c,d\\a \le c,d \le b}} \left[V^{1/p'}(c,d) \cdot \min(U^{1/q}(a,c), U^{1/q}(d,b)) \right] < \infty.$$
 (3.8)

The equivalence relations $C_E \approx C_{E,1} \approx C_{E,2}$ hold similarly to the relations $C_D \approx C_{D,1} \approx C_{D,2}$ in Remark 2.

Remark 3 If we consider inequality (1.1) as a one-dimensional "weighted" analogue of the Friedrichs inequality (for p=q=2 and $u(x)=v(x)\equiv 1$) or of the Sobolev inequality (for $1 and <math>u(x)=v(x)\equiv 1$), then inequality (3.5) is the corresponding analogue of the Poincaré inequality.

4 Concluding remarks

Remark 4 Some complementary information can be found in the book [1] and in its new edition which will appear, with a new co-author N. Samko, in 2017. For example, in Chapter 4 of this book higher order Hardy inequalities, i.e. inequalities of type (1.1) where f' is replaced by $f^{(n)}$, n = 2, 3, 4 etc. with relevant boundary conditions, are investigated. Many interesting problems remain to be solved including the case with intermediate boundary conditions as described here for n = 1.

Remark 5 It is well known that the Muckenhoupt conditions $C_A < \infty$ and $C_B < \infty$ in Remark 1 can be replaced by other (equivalent) conditions, even by scales of conditions (see, e.g., the review paper [2] and the references therein, both for historical development and the most recent results). In particular, this means that the characterizations given in this paper can be formulated in many alternative but equivalent ways. This can be an advantage for applications because in a concrete situation, one condition may be easier to verify then another one.

Remark 6 By using [1] and the new 2017 edition, the results of this paper can be used for further developents of this type of inequalities (of Hardy, Friedrichs, Sobolev, Poincaré type), interesting for applications e.g. in the theory of partial differential equations.

References

- [1] A. Kufner, L.-E. Persson, Weighted inequalities of Hardy type, World Scientific, New Jersey-London-Singapore-Hong Kong, 2003.
- [2] A. Kufner, L.-E. Persson, N. Samko, Some non scales of weighted Hardy type inequalities, Oper. Theory Adv. Appl. 228, Birkhäuser, Basel AG, 2013, 261–274.
- [3] Z.W. Liao, Discrete weighted Hardy inequalities with different kinds of boundary conditions, arXiv:1508.04601v1 [math.FA] 19 Aug 2015, 24 pages.
- [4] B. Opic, A. Kufner, *Hardy-type inequalities*, Longman, Harlow, 1990.

Alois Kufner Mathematical Institute, Academy of Sciences Zitná 25, 115 67 Praha 1, Czech Republic E-mail: kufner@math.cas.cz

Received: 26.10.2016