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From time to time the EMJ publishes survey papers.
The EMJ publishes 4 issues in a year.
The language of the paper must be English only.
The contents of EMJ are indexed in Scopus, Web of Science (ESCI), Mathematical Reviews,

MathSciNet, Zentralblatt Math (ZMATH), Referativnyi Zhurnal � Matematika, Math-Net.Ru.
The EMJ is included in the list of journals recommended by the Committee for Control

of Education and Science (Ministry of Education and Science of the Republic of Kazakhstan)
and in the list of journals recommended by the Higher Attestation Commission (Ministry of
Education and Science of the Russian Federation).

Information for the Authors

Submission. Manuscripts should be written in LaTeX and should be submitted elec-
tronically in DVI, PostScript or PDF format to the EMJ Editorial O�ce via e-mail
(eurasianmj@yandex.kz).

When the paper is accepted, the authors will be asked to send the tex-�le of the paper to
the Editorial O�ce.

The author who submitted an article for publication will be considered as a correspond-
ing author. Authors may nominate a member of the Editorial Board whom they consider
appropriate for the article. However, assignment to that particular editor is not guaranteed.

Copyright. When the paper is accepted, the copyright is automatically transferred to the
EMJ. Manuscripts are accepted for review on the understanding that the same work has not
been already published (except in the form of an abstract), that it is not under consideration
for publication elsewhere, and that it has been approved by all authors.

Title page. The title page should start with the title of the paper and authors' names (no
degrees). It should contain the Keywords (no more than 10), the Subject Classi�cation (AMS
Mathematics Subject Classi�cation (2010) with primary (and secondary) subject classi�cation
codes), and the Abstract (no more than 150 words with minimal use of mathematical symbols).

Figures. Figures should be prepared in a digital form which is suitable for direct reproduc-
tion.

References. Bibliographical references should be listed alphabetically at the end of the ar-
ticle. The authors should consult the Mathematical Reviews for the standard abbreviations of
journals' names.

Authors' data. The authors' a�liations, addresses and e-mail addresses should be placed
after the References.

Proofs. The authors will receive proofs only once. The late return of proofs may result in
the paper being published in a later issue.

O�prints. The authors will receive o�prints in electronic form.



4
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previously (except in the form of an abstract or as part of a published lecture or academic
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other language, including electronically without the written consent of the copyright-holder. In
particular, translations into English of papers already published in another language are not
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The procedure of reviewing a manuscript, established
by the Editorial Board of the Eurasian Mathematical Journal

1. Reviewing procedure
1.1. All research papers received by the Eurasian Mathematical Journal (EMJ) are subject

to mandatory reviewing.
1.2. The Managing Editor of the journal determines whether a paper �ts to the scope of

the EMJ and satis�es the rules of writing papers for the EMJ, and directs it for a preliminary
review to one of the Editors-in-chief who checks the scienti�c content of the manuscript and
assigns a specialist for reviewing the manuscript.

1.3. Reviewers of manuscripts are selected from highly quali�ed scientists and specialists
of the L.N. Gumilyov Eurasian National University (doctors of sciences, professors), other
universities of the Republic of Kazakhstan and foreign countries. An author of a paper cannot
be its reviewer.

1.4. Duration of reviewing in each case is determined by the Managing Editor aiming at
creating conditions for the most rapid publication of the paper.

1.5. Reviewing is con�dential. Information about a reviewer is anonymous to the authors
and is available only for the Editorial Board and the Control Committee in the Field of Ed-
ucation and Science of the Ministry of Education and Science of the Republic of Kazakhstan
(CCFES). The author has the right to read the text of the review.

1.6. If required, the review is sent to the author by e-mail.
1.7. A positive review is not a su�cient basis for publication of the paper.
1.8. If a reviewer overall approves the paper, but has observations, the review is con�den-

tially sent to the author. A revised version of the paper in which the comments of the reviewer
are taken into account is sent to the same reviewer for additional reviewing.

1.9. In the case of a negative review the text of the review is con�dentially sent to the
author.

1.10. If the author sends a well reasoned response to the comments of the reviewer, the paper
should be considered by a commission, consisting of three members of the Editorial Board.

1.11. The �nal decision on publication of the paper is made by the Editorial Board and is
recorded in the minutes of the meeting of the Editorial Board.

1.12. After the paper is accepted for publication by the Editorial Board the Managing
Editor informs the author about this and about the date of publication.

1.13. Originals reviews are stored in the Editorial O�ce for three years from the date of
publication and are provided on request of the CCFES.

1.14. No fee for reviewing papers will be charged.

2. Requirements for the content of a review
2.1. In the title of a review there should be indicated the author(s) and the title of a paper.
2.2. A review should include a quali�ed analysis of the material of a paper, objective

assessment and reasoned recommendations.
2.3. A review should cover the following topics:
- compliance of the paper with the scope of the EMJ;
- compliance of the title of the paper to its content;
- compliance of the paper to the rules of writing papers for the EMJ (abstract, key words

and phrases, bibliography etc.);
- a general description and assessment of the content of the paper (subject, focus, actuality

of the topic, importance and actuality of the obtained results, possible applications);
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- content of the paper (the originality of the material, survey of previously published studies
on the topic of the paper, erroneous statements (if any), controversial issues (if any), and so
on);

- exposition of the paper (clarity, conciseness, completeness of proofs, completeness of bib-
liographic references, typographical quality of the text);

- possibility of reducing the volume of the paper, without harming the content and under-
standing of the presented scienti�c results;

- description of positive aspects of the paper, as well as of drawbacks, recommendations for
corrections and complements to the text.

2.4. The �nal part of the review should contain an overall opinion of a reviewer on the
paper and a clear recommendation on whether the paper can be published in the Eurasian
Mathematical Journal, should be sent back to the author for revision or cannot be published.
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ALTERNATIVE BOUNDEDNESS CHARACTERISTICS
FOR THE HARDY�STEKLOV OPERATOR

E.P. Ushakova
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Dedicated to the 70th birthday of Professor Ryskul Oinarov

Key words: Hardy�Steklov operator, weighted Lebesgue space, boundedness.
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Abstract. Using the notions of fairway functions we give the Tomaselli and Persson�Stepanov
type forms of boundedness characterizations for the Hardy�Steklov operators in Lebesgue
spaces. The results are alternatives to the Muckenhoupt and Mazya�Rosin type boundedness
criteria.

1 Introduction

For s ∈ (0,∞) let Ls := Ls(0,∞) denote the usual Lebesgue space with the (quasi�)norm

‖f‖s :=
(∫∞

0
|f(x)|s dx

)1/s
. Let v and w be non�negative weight functions (weights) on (0,∞).

For some �xed real parameters p > 1 and q > 0 we consider the Hardy�Steklov operator

Hf(x) := w(x)

∫ b(x)

a(x)

f(y)v(y)dy, x ∈ (0,∞) (1.1)

with boundary functions a and b satisfying the following conditions:

(i) a, b are di�erentiable and strictly increasing on (0,∞);
(ii) a(0) = b(0) = 0, a(x) < b(x) for 0 < x <∞, a(∞) = b(∞) =∞. (1.2)

The family H of integral transformations with both variable boundaries is applicable to many
areas (e.g. di�erential equations, embeddings of function spaces [2, 10, 11]). The two limiting
cases of H (a(x) ≡ 0 and b(x) ≡ ∞) are rather well�studied. In particular, the weighted Hardy
integral operator

Hf(x) := w(x)

∫ x

0

f(y)v(y) dy (1.3)

has collected a number of results related to its boundedness properties from Lp to Lq (see e.g.
[8, 7]). Systematization most of them (see e.g. [3] and [13]) led to forming two basic types of
boundedness characteristics for H : Lp → Lq. These are functionals (we say constants also),
which depend on �xed parameters only (e.g. weights, boundaries, summation parameters p and
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q, etc.) and are equivalent to ‖H‖Lp→Lq . The Muckenhoupt AM and the Mazya�Rozin BMR

functionals

AM = sup
t>0

(∫ ∞
t

wq
)1/q (∫ t

0

vp
′
)1/p′

(1 < p ≤ q <∞),

BMR =

(∫ ∞
0

[∫ ∞
t

wq
]r/p [∫ t

0

vp
′
]r/p′

wq(t) dt

)1/r

(0 < q < p <∞, p > 1),

where p′ = p/(p− 1) and 1/r = 1/q − 1/p, and also their duals (AM)∗ = AM and

(BMR)∗ =

(∫ ∞
0

[∫ ∞
t

wq
]r/q [∫ t

0

vp
′
]r/q′

vp
′
(t) dt

)1/r

,

constitute the bases of the �rst type boundedness characteristics for H : Lp → Lq. The second
type is formed by alternative to AM and BMR the Tomaselli AT and the Persson�Stepanov BPS

functionals

AT = sup
t>0

(∫ t

0

[∫ x

0

vp
′
]q
wq(x) dx

)1/q (∫ t

0

vp
′
)−1/p

(1 < p ≤ q <∞),

BPS =

(∫ ∞
0

[∫ t

0

{∫ x

0

vp
′
}q

wq(x)dx

]r/p [∫ t

0

vp
′
]q−r/p

wq(t)dt

)1/r

(0 < q < p <∞, p > 1),

and also by their duals (see [13]). The functionals AM and BMR are classical boundedness
characteristics for H from Lp to Lq. They are typically used to further investigations and
applications of H. The alternative to them boundedness constants AT and BPS appeared to be
useful in the study of the non�linear geometric mean operator Gf(x) = exp

(
1
x

∫ x
0

ln f(y) dy
)

[12] and in some other problems too.
Scale of the boundedness characteristics for the Hardy�Steklov operator, analogous to that

for H, started to be formed in the articles [1, 4, 6]. The most productive development, related
to the characterization of (1.1) with a and b satisfying (1.2), was undertaken in [19] basing on
the conception of fairway.

De�nition 1 ([17, 19]). Given boundary functions a and b, satisfying the conditions (1.2), a
number p ∈ (1,∞) and a weight function v such that 0 < v(y) <∞ for almost all y ∈ (0,∞) and
vp
′
is locally integrable on (0,∞), we de�ne the fairway�function σ such that a(x) < σ(x) < b(x)

and ∫ σ(x)

a(x)

vp
′
(y) dy =

∫ b(x)

σ(x)

vp
′
(y) dy for all x > 0. (1.4)

The dual fairway-function ρ appeared in [20] for deriving new forms of Lp−Lq�boundedness
criteria for H.
De�nition 2 ([20, 21, 9]). Given boundary functions a and b on (0,∞), satisfying (1.2), a
parameter q > 0 and a weight w such that 0 < w(x) <∞ for almost all x ∈ (0,∞) and wq(x)
is locally integrable on (0,∞), the dual fairway�function ρ is de�ned so that b−1(y) < ρ(y) <
a−1(y) on (0,∞) and∫ ρ(y)

b−1(y)

wq(x) dx =

∫ a−1(y)

ρ(y)

wq(x) dx for all y > 0. (1.5)

Here a−1 and b−1 are the inverses to the boundary functions a and b, respectively.
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The fairways σ and ρ are strictly increasing and di�erentiable functions on (0,∞) (see [16,
� 2.2.1]).

The Muckenhoupt AM and Mazya�Rozin BMR type boundedness characteristics for H :
Lp → Lq for all 1 < p < ∞ and 0 < q < ∞ in terms of the fairway�function σ were �rst
obtained in [17]:

AM =: Aσ = sup
t>0

(∫ a−1(σ(t))

b−1(σ(t))

wq

)1/q(∫ b(t)

a(t)

vp
′

)1/p′

(1 < p ≤ q <∞),

BMR =: Bσ =

∫ ∞
0

[∫ a−1(σ(t))

b−1(σ(t))

wq

]r/p [∫ b(t)

a(t)

vp
′

]r/p′
wq(t)dt

1/r

(0 < q < p <∞, p > 1). (1.6)

In [20, 19], the dual toAM and BMR constants (Aρ)∗ and (Bρ)∗ were found for the parameters
p > 1 and q > 1 only. Their expressions involve the notion of the dual fairway�function ρ:

(Aρ)∗ = sup
t>0

(∫ a−1(t)

b−1(t)

wq

)1/q(∫ b(ρ(t))

a(ρ(t))

vp
′

)1/p′

(1 < p ≤ q <∞),

(Bρ)∗ =

∫ ∞
0

[∫ a−1(t)

b−1(t)

wq

]r/q [∫ b(ρ(t))

a(ρ(t))

vp
′

]r/q′
vp
′
(t) dt

1/r

(1 < q < p <∞).

The whole scale of Muckenhoupt and Mazya�Rosin type boundedness characteristics for H :
Lp → Lq was established in [9] (see also [21]) for p > 1 and q > 0, both in terms of the fairway
σ and its dual function ρ. Namely, the work [9] extends (Bρ)∗ to all 0 < q < p <∞, p > 1 and
introduces two additional couples of functionals (Aσ)∗, (Bσ)∗ and Aρ, Bρ, which are, similarly
to Aσ, Bσ and (Aρ)∗ and (Bρ)∗, dual to each other if p, q > 1 (see [9] or [21] for detail). This,
�nally, formed the basic scale of the �rst type boundedness constants for the Hardy�Steklov
operators (1.1) from Lp to Lq. The result was applied in [9] to characterization of embeddings
of a class of AC�functions in the fractional Sobolev space, and in [14, 15, 2] to descriptions of
function spaces associated with a weighted Sobolev space.

First alternative characteristics of the type AT and BPS for the Hardy�Steklov operators H
were established in [18]. Namely, it was proven that the norm ‖H‖Lp→Lq is equivalent to the
functional

AT =: Aσ = sup
t>0

(∫ σ−1(b(t))

σ−1(a(t))

[∫ b(x)

a(x)

vp
′

]q
wq(x) dx

)1/q(∫ b(t)

a(t)

vp
′

)−1/p

(1.7)

in the case 1 < p ≤ q <∞, and if 0 < q < p <∞, p > 1 then ‖H‖Lp→Lq ≈ BPS =: Bσ with

BPS =: Bσ =

∫ ∞
0

[∫ σ−1(b(t))

σ−1(a(t))

{∫ b(x)

a(x)

vp
′

}q

wq(x) dx

]r/p [∫ b(t)

a(t)

vp
′

]q−r/p
wq(t) dt

1/r

(1.8)

(see also [19, Theorem 4.2]). Aσ and Bσ were successively applied to characterization of the

geometric Steklov operator Gf(x) = exp
(

1
b(x)−a(x)

∫ b(x)

a(x)
ln f
)
in [18]. By duality, the two fol-

lowing boundedness constants for H : Lp → Lq yield the equivalences ‖H‖Lp→Lq ≈ Aσ and
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‖H‖Lp→Lq ≈ Bσ in the case p, q > 1:

(Aρ)
∗ = sup

t>0

∫ ρ−1(a−1(t))

ρ−1(b−1(t))

[∫ a−1(y)

b−1(y)

wq

]p′
vp
′
(y) dy

1/p′ (∫ a−1(t)

b−1(t)

wq

)−1/q′

, (1.9)

(BPS)∗ =

∫ ∞
0

∫ ρ−1(a−1(t))

ρ−1(b−1(t))

{∫ a−1(y)

b−1(y)

wq

}p′

vp
′
(y) dy

r/q′ [∫ a−1(t)

b−1(t)

wq

]p′−r/q′
vp
′
(t) dt


1/r

. (1.10)

Together with Aσ and Bσ, the (Aρ)
∗ and (BPS)∗ partially form the related scale of alternative

boundedness characteristics for H from Lp to Lq, but it is not complete. The purpose of
this work is formation the whole basic scale of alternative boundedness characteristics for the
operator H : Lp → Lq for all p > 1 and q > 0. Following this goal, we supplement Tomaselli
and Persson�Stepanov type constants (1.7) and (1.8) by their dual analogies in terms of σ.
Moreover, by using the notion of ρ, we �nd ρ�analogies of Aσ and Bσ, and set up boundedness
characteristics of types (1.9) and (1.10) for the case 0 < q < 1 < p. Except Aσ, Bσ, (Aρ)

∗ and
(BPS)∗, the complete set of related functionals includes the following quantities:

(Aσ)∗ = sup
t>0

(∫ σ−1(b(σ−1(t)))

σ−1(a(σ−1(t)))

V qwq
)1/q(∫ b(σ−1(t))

a(σ−1(t))

vp
′
)−1/p

,

(Bσ)∗ =

(∫ ∞
0

[∫ σ−1(b(σ−1(t)))

σ−1(a(σ−1(t)))

V qwq
]r/q[∫ b(σ−1(t))

a(σ−1(t))

vp
′
]−r/q

vp
′
(t) dt

)1/r

,

Aρ = sup
t>0

(∫ ρ−1(a−1(ρ−1(t)))

ρ−1(b−1(ρ−1(t)))

W p′vp
′
)1/p′(∫ a−1(ρ−1(t))

b−1(ρ−1(t))

wq
)−1/q′

,

Bρ =

{
Bq>1 � Bq<1, q > 1

Bq<1 � Bq>1, q < 1
,

Bq>1 =

(∫ ∞
0

[∫ ρ−1(a−1(ρ−1(t)))

ρ−1(b−1(ρ−1(t)))

W p′vp
′
]r/p′[∫ a−1(ρ−1(t))

b−1(ρ−1(t))

wq
]−r/p′

wq(t) dt

)1/r

,

Bq<1 =

(∫ ∞
0

[∫ b(t)

a(t)

W p′vp
′
]r/p′[∫ a−1(ρ−1(t))

b−1(ρ−1(t))

wq
]−r/p′

wq(t) dt

)1/r

,

where V (x) :=
∫ b(x)

a(x)
vp
′
and W (y) :=

∫ a−1(y)

b−1(y)
wq, and

(Bρ)∗ =

{
(B−q>1)∗ + (B+

q>1)∗, q > 1

(B−q>1)∗ + (B+
q>1)∗ + (B−q<1)∗ + (B+

q<1)∗, q < 1
,

(B−q>1)∗ =

(∫ ∞
0

[∫ t

ρ−1(b−1(t))

W p′vp
′
]r/q′[

W (t)
]p′−r/q′

vp
′
(t) dt

)1/r

,

(B+
q>1)∗ =

(∫ ∞
0

[∫ ρ−1(a−1(t))

t

W p′vp
′
]r/q′[

W (t)
]p′−r/q′

vp
′
(t) dt

)1/r

,
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(B−q<1)∗ =

(∫ ∞
0

[∫ t

a(ρ(t))

W p′vp
′
]r/q′[

W (t)
]p′−r/q′

vp
′
(t) dt

)1/r

,

(B+
q<1)∗ =

(∫ ∞
0

[∫ b(ρ(t))

t

W p′vp
′
]r/q′[

W (t)
]p′−r/q′

vp
′
(t) dt

)1/r

,

where (Bρ)∗ ≈ (BPS)∗ if q > 1.
The cumulative outcome of this work, together with the results from [18] (see also [19,

Theorem 4.2]), comprises all basic boundedness characteristics (of the second type) for the
Hardy�Steklov operator H from Lp to Lq expressed in terms of the fairway σ and its dual
function ρ too. These results can be used in the study of other properties (e.g. characteristic
numbers etc.) of the operators H and their related transforms, as well as in many applications
of the Hardy�Steklov operators (e.g. Sobolev spaces etc.).

Throughout the paper the products of the form 0 ·∞ are taken to be equal to 0. Relations of
the type A� B mean that A ≤ cB with some constant c depending, possibly, on parameters p
and q only. We write A ≈ B instead of A� B � A or A = cB. We use Z and N for integers and
natural numbers, respectively. χE stands for the characteristic function (indicator) of a subset
E ⊂ (0,∞). We make use of the attribution signs := and =: for introducing new quantities
and denote p′ := p/(p− 1) for a parameter 0 < p <∞ and r := p q/(p− q) if 0 < q < p <∞.
We assume weight functions to be non�negative and locally integrable to appropriate powers.
In order to shorten big formulae, we use

∫
h instead of

∫
h(t) dt for a one�variable integrand

h(t), where it makes sence.

2 The result

Theorem 2.1. Let p > 1, q > 0, q 6= 1 and the operator H be de�ned by (1.1) with a, b
satisfying conditions (1.2). Suppose that σ is the fairway�function on (0,∞) satisfying (1.4)
and ρ is the dual fairway�function on (0,∞) satisfying (1.5). Then

‖H‖Lp→Lq ≈ Aσ ≈ (Aσ)∗ ≈ Aρ ≈ (Aρ)
∗ (2.1)

if 1 < p ≤ q <∞. For the case 0 < q < p <∞, p > 1 we have:

‖H‖Lp→Lq ≈ Bσ ≈ (Bσ)∗ ≈ Bρ ≈ (Bρ)∗, (2.2)

where (Bρ)∗ ≈ (BPS)∗ if q > 1.

Proof. Let 1 < p ≤ q <∞. The estimate ‖H‖Lp→Lq ≈ Aσ was proven in [19, Theorem 4.2]. If
we apply this result to the dual to H operator H∗ of the form

H∗g(y) := v(y)

∫ a−1(y)

b−1(y)

g(x)w(x) dx (y > 0) (2.3)

from Lq
′
to Lp

′
, then we obtain the equivalence ‖H‖Lp→Lq ≈ (Aρ)

∗. The rest statements of the
theorem in the case 1 < p ≤ q < ∞ � those are ‖H‖Lp→Lq ≈ (Aσ)∗ and ‖H‖Lp→Lq ≈ Aρ �
follow from the two previous estimates by changing variable t = ς−1(s) with ς = σ in Aσ and
ς = ρ−1 in (Aρ)

∗, recpectively.
Consider the case 0 < q < p <∞, p > 1. The estimate ‖H‖Lp→Lq ≈ Bσ was established in

[19, Theorem 4.2]. To prove ‖H‖Lp→Lq � (Bσ)∗ we de�ne a sequence {ξk}k∈Z ⊂ (0,∞) so that

ξ0 = 1, ξk = (a−1 ◦ b)k(1), k ∈ Z. (2.4)
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Denote ξ−k := σ−1(a(ξk)), ξ
+
k := σ−1(b(ξk)), ∆k := [ξ−k , ξ

+
k ] = ∆−k ∪ ∆+

k , ∆−k := [ξ−k , ξk],
∆+
k := [ξk, ξ

+
k ] and form intervals κk

j , j = 1, . . . , Nk, Nk = j−k + j+
k , on ∆k, k ∈ Z, similar to

those in [19, Lemmas 2.7, 2.8]:

(1±∆) (1
−
∆) if σ(ξk) ≤ b(ξ−k ) then j−k = 1 and ∆−k = κk

1 ;

(1+
∆) if σ(ξk) ≥ a(ξ+

k ) then j+
k = 1 and ∆+

k = κk
j−k +1

;

(2±∆) (2
−
∆) if b(ξ−k ) < σ(ξk) ≤ b(σ−1(b(ξ−k ))) then j−k = 2 and ∆−k = ∪2

j=1κk
j , where κk

1 =
[ξ−k , σ

−1(b(ξ−k ))] and κk
2 = [b−1(σ(ξk)), ξk];

(2+
∆) if a(σ−1(a(ξ+

k ))) ≤ σ(ξk) < a(ξ+
k ) then j+

k = 2 and ∆+
k = ∪2

j=1κk
j−k +j

, where κk
j−k +1

=

[ξk, a
−1(σ(ξk))] and κk

j−k +2
= [σ−1(a(ξ+

k )), ξ+
k ];

(3±∆) (3
−
∆) if b(σ−1(b(ξ−k ))) < σ(ξk) ≤ b(σ−1(b(σ−1(b(ξ−k ))))) then j−k = 3 and ∆−k = ∪3

j=1κk
j ,

where κk
1 = [ξ−k , σ

−1(b(ξ−k ))], κk
2 = [σ−1(b(ξ−k )), σ−1(b(σ−1(b(ξ−k ))))] and κk

3 =
[b−1(σ(ξk)), ξk];

(3+
∆) if a(σ−1(a(σ−1(a(ξ+

k ))))) ≤ σ(ξk) < a(σ−1(a(ξ+
k ))) then j+

k = 3 and ∆+
k =

∪3
j=1κk

j−k +j
, where κk

j−k +1
= [ξk, a

−1(σ(ξk))], κk
j−k +2

= [a−1(σ(ξk)), a
−1(σ(a−1(σ(ξk))))]

and κk
j−k +3

= [σ−1(a(ξ+
k )), ξ+

k ];

. . . . . . . . .

Finally, we obtain that ∆−k = ∪j
−
k
j=1κk

j and ∆+
k = ∪j

+
k
j=1κk

j−k +j
, where for κk

j ⊆ ∆−k

κk
j =

{[
(σ−1 ◦ b)(j−1)(ξ−k ), (σ−1 ◦ b)(j)(ξ−k )

]
, for j = 1, . . . , j−k − 1 if j−k > 1,[

max{ξ−k , b−1(σ(ξk))}, ξk
]
, for j = j−k ;

and if κk
j ⊆ ∆+

k then

κk
j =

{[
(a−1 ◦ σ)(j−1)(ξk), (a

−1 ◦ σ)(j)(ξk)
]
, for j = j−k + 1, . . . , N−k − 1 if j+

k > 1,[
max{ξk, σ−1(a(ξ+

k ))}, ξ+
k

]
, for j = Nk.

Denote by lkj the left end-points of the κk
j and by rkj the right end-points of the intervals κk

j .
Without loss of generality we assume that f ≥ 0 a.e. on (0,∞). Breaking the semiaxis

(0,∞) by the points ξk we represent the operator H as the sum of two sequences of operators

Hf(x) =
∑
k

(
χ∆−k

(x)H(fχδ−σ (ξ−k ))(x) + χ∆−k
(x)H(fχδσ(ξk))(x)

+χ∆+
k

(x)H(fχδσ(ξk))(x) + χ∆+
k

(x)H(fχδ+
σ (ξ+

k ))(x)
)

≤
∑
k

(Sσk f(x) + T σk f(x)) , (2.5)

where δσ(t) := [a(t), b(t)] = δ−σ (t) ∪ δ+
σ (t), δ−σ (t) := [a(t), σ(t)], δ+

σ (t) := [σ(t), b(t)] and

Sσk f(x) := w(x)

∫ b(x)

a(ξ−k )

f(y)v(y) dy (x ∈ ∆−k ), (2.6)

T σk f(x) := w(x)

∫ b(ξ+
k )

a(x)

f(y)v(y) dy (x ∈ ∆+
k ). (2.7)
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By virtue of [19, (2.44) from Lemma 2.3 and (2.52) from Lemma 2.4] we obtain

‖Sσk ‖r ≈
∫

∆−k

(∫ t

ξ−k

[∫ b(x)

a(ξ−k )

vp
′
]q
wq(x) dx

)r/p[∫ b(t)

a(ξ−k )

vp
′
]q−r/p

wq(t) dt (2.8)

and

‖T σk ‖r ≈
∫

∆+
k

(∫ ξ+
k

t

[∫ b(ξ+
k )

a(x)

vp
′
]q
wq(x) dx

)r/p[∫ b(ξ+
k )

a(t)

vp
′
]q−r/p

wq(t) dt. (2.9)

By covering ∆−k by the intervals κk
j , j = 1, . . . , j−k , we write, taking into account that r/p+1 =

r/q:

‖Sσk ‖r �
j−k∑
j=1

∫
κkj

(∫ t

ξ−k

[∫ b(x)

a(ξ−k )

vp
′
]q
wq(x) dx

)r/p[∫ b(t)

a(ξ−k )

vp
′
]q−r/p

wq(t) dt

≤
j−k∑
j=1

(∫ rkj

ξ−k

[∫ b(x)

a(ξ−k )

vp
′
]q
wq(x) dx

)r/p[∫ b(lkj )

a(ξ−k )

vp
′
]−r/p ∫

κkj

[∫ b(t)

a(ξ−k )

vp
′
]q
wq(t) dt

≤
j−k∑
j=1

(∫ rkj

ξ−k

[∫ b(x)

a(ξ−k )

vp
′
]q
wq(x) dx

)r/q[∫ b(lkj )

a(ξ−k )

vp
′
]−r/p

=: Σ−k . (2.10)

If j−k = 1, we have, by (1.4),

Σ−k =

(∫ ξk

ξ−k

[∫ b(x)

a(ξ−k )

vp
′
]q
wq(x) dx

)r/q[∫ b(ξ−k )

a(ξ−k )

vp
′
]−r/p

≤2

(∫ ξk

ξ−k

[∫ b(x)

a(ξ−k )

vp
′
]q
wq(x) dx

)r/q[∫ b(ξ−k )

a(ξ−k )

vp
′
]−r/q ∫ b(ξk)

σ(ξ−k )

vp
′

≤4

(∫ ξk

ξ−k

[∫ b(x)

a(ξ−k )

vp
′
]q
wq(x) dx

)r/q[∫ σ(ξk)

a(ξ−k )

vp
′
]−r/q ∫ σ(ξk)

σ(ξ−k )

vp
′
(t) dt

≤4

(∫ ξk

ξ−k

[∫ b(x)

a(ξ−k )

vp
′
]q
wq(x) dx

)r/q ∫ σ(ξk)

σ(ξ−k )

[∫ t

a(σ−1(t))

vp
′
]−r/q

vp
′
(t) dt

since a(ξk) = σ(ξ−k ), and b(ξ−k ) ≥ σ(ξk), by the construction of the κk
j−k

= [ξ−k , ξk] in the case

j−k = 1. Notice that, by (1.4),∫ t

a(σ−1(t))

vp
′
=

∫ σ(σ−1(t))

a(σ−1(t))

vp
′
=

∫ b(σ−1(t))

σ(σ−1(t))

vp
′
=

1

2

∫ b(σ−1(t))

a(σ−1(t))

vp
′
. (2.11)

Moreover, since a(ξ−k ) ≤ a(x) ≤ a(ξk) for x ∈ ∆−k , then∫ b(x)

a(ξ−k )

vp
′
= 2

∫ b(ξ−k )

a(ξk)

vp
′
+

∫ b(x)

b(ξ−k )

vp
′ ≤ 2

∫ b(x)

a(ξk)

vp
′ ≤ 2

∫ b(x)

a(x)

vp
′ ≤ 2

∫ b(x)

a(ξ−k )

vp
′
. (2.12)
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Therefore, we obtain for the case j−k = 1:

Σ−k ≤2r/q+2+r

(∫ ξk

ξ−k

[∫ b(x)

a(x)

vp
′
]q
wq(x) dx

)r/q ∫ σ(ξk)

σ(ξ−k )

[∫ b(σ−1(t))

a(σ−1(t))

vp
′
]−r/q

vp
′
(t) dt

≤2r/q+2+r

(∫ σ−1(b(ξ−k ))

σ−1(a(ξk))

V qwq
)r/q ∫ σ(ξk)

σ(ξ−k )

[∫ b(σ−1(t))

a(σ−1(t))

vp
′
]−r/q

vp
′
(t) dt

≤2r/q+2+r

∫ σ(ξk)

a(ξk)

(∫ σ−1(b(σ−1(t)))

σ−1(a(σ−1(t)))

V qwq
)r/q[∫ b(σ−1(t))

a(σ−1(t))

vp
′
]−r/q

vp
′
(t) dt. (2.13)

If j−k > 1, then, by virtue of (2.12) and in view of (1.4),

Σ−k =

j−k∑
j=1

(∫ rkj

ξ−k

[∫ b(x)

a(ξ−k )

vp
′
]q
wq(x) dx

)r/q[∫ b(lkj )

a(ξ−k )

vp
′
]−r/p

≤2r
j−k∑
j=1

(∫ rkj

ξ−k

[∫ b(x)

a(x)

vp
′
]q
wq(x) dx

)r/q[∫ b(lkj )

a(lkj )

vp
′
]−r/q ∫ b(lkj )

a(lkj )

vp
′

=2r+1

j−k∑
j=1

(∫ rkj

ξ−k

V qwq
)r/q[∫ b(lkj )

a(lkj )

vp
′
]−r/q ∫ b(lkj )

σ(lkj )

vp
′
(t) dt

≤2r+1

j−k∑
j=1

(∫ rkj

ξ−k

V qwq
)r/q ∫ b(lkj )

σ(lkj )

[∫ t

a(σ−1(t))

vp
′
]−r/q

vp
′
(t) dt.

Further, we obtain by (2.11), taking into account ξ−k ≥ σ−1(a(rkj )) and b(lkj ) = σ(rkj ), and
following the construction of the κk

j , j = 1, . . . , j−k in the case j−k > 1, that

Σ−k ≤2r/q+1+r

j−k∑
j=1

(∫ rkj

ξ−k

V qwq
)r/q ∫ b(lkj )

σ(lkj )

[∫ b(σ−1(t))

a(σ−1(t))

vp
′
]−r/q

vp
′
(t) dt

≤2r/q+1+r

j−k∑
j=1

(∫ σ−1(b(lkj ))

σ−1(a(rkj ))

V qwq
)r/q ∫ σ(rkj )

σ(lkj )

[∫ b(σ−1(t))

a(σ−1(t))

vp
′
]−r/q

vp
′
(t) dt

≤2r/q+1+r

j−k∑
j=1

∫ b(lkj )

σ(lkj )

(∫ σ−1(b(σ−1(t)))

σ−1(a(σ−1(t)))

V qwq
)r/q[∫ b(σ−1(t))

a(σ−1(t))

vp
′
]−r/q

vp
′
(t) dt

≤2r/q+2+r

∫ σ(ξk)

a(ξk)

(∫ σ−1(b(σ−1(t)))

σ−1(a(σ−1(t)))

V qwq
)r/q[∫ b(σ−1(t))

a(σ−1(t))

vp
′
]−r/q

vp
′
(t) dt (2.14)

because no point of [a(ξk), σ(ξk)] lies in more than two of the [σ(lkj ), b(l
k
j )]. Combining (2.8),

(2.10) with (2.13) and (2.14) leads to

‖Sσk ‖r �
∫ σ(ξk)

a(ξk)

(∫ σ−1(b(σ−1(t)))

σ−1(a(σ−1(t)))

V qwq
)r/q[∫ b(σ−1(t))

a(σ−1(t))

vp
′
]−r/q

vp
′
(t) dt. (2.15)
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Analogously, by covering ∆+
k by the intervals κk

j , where j = j−k + 1, . . . , Nk, we obtain from
(2.9) that

‖T σk ‖r �
∫ b(ξk)

σ(ξk)

(∫ σ−1(b(σ−1(t)))

σ−1(a(σ−1(t)))

V qwq
)r/q[∫ b(σ−1(t))

a(σ−1(t))

vp
′
]−r/q

vp
′
(t) dt. (2.16)

Now, from (2.5), (2.15) and(2.16), we have by virtue of [19, Lemma 3.1] and by H�older's
inequality with the powers r/q and p/q,

‖Hf‖qq ≤
∑
k∈Z

{
‖Sσk f‖qq + ‖T σk f‖qq

}
�
∑
k∈Z

{(∫ σ(ξk)

a(ξk)

[∫ σ−1(b(σ−1(t)))

σ−1(a(σ−1(t)))

V qwq
]r/q[∫ b(σ−1(t))

a(σ−1(t))

vp
′
]−r/q

vp
′
(t) dt

)q/r∥∥fχ[a(ξ−k ),b(ξk)]

∥∥q
p

+

(∫ b(ξk)

σ(ξk)

[∫ σ−1(b(σ−1(t)))

σ−1(a(σ−1(t)))

V qwq
]r/q[∫ b(σ−1(t))

a(σ−1(t))

vp
′
]−r/q

vp
′
(t) dt

)q/r∥∥fχ[a(ξk),b(ξ+
k )]

∥∥q
p

}
�
∑
k∈Z

(∫ b(ξk)

a(ξk)

[∫ σ−1(b(σ−1(t)))

σ−1(a(σ−1(t)))

V qwq
]r/q[∫ b(σ−1(t))

a(σ−1(t))

vp
′
]−r/q

vp
′
(t) dt

)q/r∥∥fχ[a(ξ−k ),b(ξ+
k )]

∥∥q
p

≤

(∑
k∈Z

∫ b(ξk)

a(ξk)

∫ σ−1(b(σ−1(t)))

σ−1(a(σ−1(t)))

V qwq
]r/q[∫ b(σ−1(t))

a(σ−1(t))

vp
′
]−r/q

vp
′
(t) dt

)q/r

×
(∑
k∈Z

∥∥fχ[a(ξ−k ),b(ξ+
k )]

∥∥p
p

)q/p
�
[
(Bσ)∗

]q‖f‖qp,
since no point of (0,∞) lies in more than two of the [a(ξk), b(ξk)] and in more than three of the
[a(ξ−k ), b(ξ+

k )]. From here the estimate ‖H‖ � (Bσ)∗ follows immediately.
The inequality ‖H‖ � (Bσ)∗ can be obtained analogously to the estimate ‖H‖ � Bσ in [19,

�4.1], where Bσ is the Mazya�Rozin type boundedness constant (1.6) for the operator H from
Lp to Lq. Namely, changing variables in the initial inequality∥∥Hf∥∥

q
≤ C‖f‖p,

that re�ects the boundedness of the operator H : Lp → Lq, we pass to the inequality(∫ ∞
0

∣∣∣∣∫ b̃(x)

ã(x)

fv

∣∣∣∣qw̃q(x) dx

)1/q

≤ C

(∫ ∞
0

|f |p
)1/p

(2.17)

with ã(x) = a(σ−1(x)), b̃(x) = b(σ−1(x)) and w̃(x) = w(σ−1(x))[(σ−1)′(x)]1/q. Notice, that, by
(2.11), the function σ̃(x) = x is the fairway for the boundaries ã and b̃ with respect to vp

′
in

this case. To establish the relation ‖H‖ � (B̃−σ )∗ for the case σ̃(x) = x with

(B̃−σ )∗ =

(∫ ∞
0

[∫ t

ã(t)

V qw̃q
]r/q[∫ b̃(t)

ã(t)

vp
′
]−r/q

vp
′
(t) dt

)1/r

we employ the method for the proof of the estimate ‖H‖ � Bσ in [19, �4.1, pp. 477�481],
extracting the inequality

‖H‖ � lim
N→∞

(∑
|k|≤N

λk

)1/r

(2.18)
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with

λk =

∫ ηk+2

ηk−1

(∫ ηk+2

t

w̃q(x) dx

) r
q
(∫ t

ηk−1

vp
′
(y) dy

) r
q′

vp
′
(t) dt,

where
η0 = 1, ηk+1 = ã−1(ηk), ηk−1 = ã(ηk), k ∈ Z. (2.19)

It is possible to establish that

λk �
∫ ηk+2

ηk−1

(∫ t

ηk−1

[∫ x

ηk−1

vp
′
(y) dy

]q
w̃q(x) dx

)r/q(∫ t

ηk−1

vp
′
(y) dy

)−r/q
vp
′
(t) dt (2.20)

(see [19, �4.2, pp. 491�492] or [16, �2.2.3, p. 90] for details). We also have, by (1.4) and (2.19),
for t ∈ [ηk+1, ηk+2] that∫ t

ηk−1

vp
′
(y) dy =

∫ ηk

ηk−1

vp
′
(y) dy +

∫ ηk+1

ηk

vp
′
(y) dy +

∫ t

ηk+1

vp
′
(y) dy

=

∫ b̃(ηk)

ηk

vp
′
(y) dy +

∫ b̃(ηk+1)

ηk+1

vp
′
(y) dy +

∫ t

ηk+1

vp
′
(y) dy

≤
∫ b̃(ηk+1)

ηk

vp
′
(y) dy +

∫ b̃(t)

ηk+1

vp
′
(y) dy +

∫ t

ηk+1

vp
′
(y) dy

≤ 2

∫ b̃(ηk+1)

ηk+1

vp
′
(y) dy + 2

∫ b̃(t)

ηk+1

vp
′
(y) dy ≤ 4

∫ b̃(t)

ã(t)

vp
′
(y) dy.

Combining this with (2.20) we obtain, by (1.4), (2.19) and (2.11), that

λk �
∫ ηk+2

ηk+1

(∫ t

ηk

[∫ x

ηk−1

vp
′
(y) dy

]q
w̃q(x) dx

)r/q(∫ t

ηk−1

vp
′
(y) dy

)−r/q
vp
′
(t) dt

�
∫ ηk+2

ηk+1

(∫ t

ηk

[∫ x

ã(x)

vp
′
(y) dy

]q
w̃q(x) dx

)r/q(∫ b̃(t)

ã(t)

vp
′
(y) dy

)−r/q
vp
′
(t) dt

�
∫ ηk+2

ηk+1

(∫ t

ã(t)

[∫ b̃(x)

ã(x)

vp
′
(y) dy

]q
w̃q(x) dx

)r/q(∫ b̃(t)

ã(t)

vp
′
(y) dy

)−r/q
vp
′
(t) dt,

and, therefore, by (2.18),

‖H‖ � lim
N→∞

(∑
|k|≤N

∫ ηk+2

ηk+1

(∫ t

ã(t)

[∫ b̃(x)

ã(x)

vp
′
(y)dy

]q
w̃q(x)dx

)r/q(∫ b̃(t)

ã(t)

vp
′
(y)dy

)−r/q
vp
′
(t)dt

)1/r

=

∫ ∞
0

(∫ t

ã(t)

[∫ b̃(x)

ã(x)

vp
′
]q
w̃q(x) dx

)r/q(∫ b̃(t)

ã(t)

vp
′
)−r/q

vp
′
(t) dt

)1/r

= (B̃−σ )∗. (2.21)

The estimate ‖H‖ � (B̃+
σ )∗ with

(B̃+
σ )∗ =

(∫ ∞
0

[∫ b̃(t)

t

V qw̃q
]r/q[∫ b̃(t)

ã(t)

vp
′
]−r/q

vp
′
(t) dt

)1/r
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can be proven similarly, using the intervals [ζk, ζk+1) formed by the boundary b(x):

ζ0 = 1, ζk+1 = b̃(ζk), ζk−1 = b̃−1(ζk), k ∈ Z. (2.22)

By using and (2.21), we obtain that

‖H‖ �
∫ ∞

0

(∫ b̃(t)

ã(t)

[∫ b̃(t)

ã(x)

vp
′
(y) dy

]q
w̃q(x) dx

)r/q
×
(∫ b̃(t)

ã(t)

vp
′
(y) dy

)−r/q
vp
′
(t) dt

)1/r

= (Bσ)∗, (2.23)

since ã(x) = a(σ−1(x)), b̃(x) = b(σ−1(x)) and w̃(x) = w(σ−1(x))[(σ−1)′(x)]1/q.
If q > 1 then the estimates ‖H‖ ≈ Bρ ≈ (Bρ)∗ follow, by duality, from the equivalences

‖H‖ ≈ (Bσ)∗ ≈ Bσ applied to operator (2.3) from Lq
′
to Lp

′
(see [20, Theorem 2.2] for details).

To show that ‖H‖ � Bρ for 0 < q < 1 we introduce sequence (2.4) and cover H as follows:

Hf(x) =
∑
k∈Z

χ[ξk−1,ξk](x)H
(
fχδ−ρ (ξk)

)
(x) + χ[ξk,a−1(ρ−1(ξk))](x)H

(
fχδ−ρ (ξk)

)
(x)

+
∑
k∈Z

χ[b−1(ρ−1(ξk)),ξk](x)H
(
fχδ+

ρ (ξk)

)
(x) + χ[ξk,ξk+1](x)H

(
fχδ+

ρ (ξk)

)
(x)

≤
∑
k∈Z

Sρkf(x) + T ρk f(x), (2.24)

where δρ(t) := [a(t), b(t)] = δ−ρ (t) ∪ δ+
ρ (t), δ−ρ (t) := [a(t), ρ−1(t)], δ+

ρ (t) := [ρ−1(t), b(t)] and

Sρkf(x) := w(x)

∫ min{b(x),ρ−1(ξk)}

a(ξk)

f(y)v(y) dy (x ∈ [ξk−1, a
−1(ρ−1(ξk))]), (2.25)

T ρk f(x) := w(x)

∫ b(ξk)

max{ρ−1(ξk),a(x)}
f(y)v(y) dy (x ∈ [b−1(ρ−1(ξk)), ξk+1]). (2.26)

Similarly to κk
j , j = 1, . . . , Nk, on ∆k (see the �rst part of the proof), we form intervals %ki ,

i = 1, . . . ,Mk, Mk = i−k + i+k , on δk := δρ(ξk) = δ−k ∪ δ
+
k , k ∈ Z, where δ±k := δ±ρ (ξk):

(1±δ ) (1
−
δ ) if b−1(ρ−1(ξk)) ≤ ρ(a(ξk)) then i

−
k = 1 and δ−k = %k1;

(1+
δ ) if a−1(ρ−1(ξk)) ≥ ρ(b(ξk)) then i

+
k = 1 and δ+

k = %k
i−k +1

;

(2±δ ) (2
−
δ ) if b−1(ρ−1(ξk)) > ρ(a(ξk)) ≥ b−1(ρ−1(b−1(ρ−1(ξk)))) then i

−
k = 2 and δ−k = ∪2

i=1%
k
i ,

where %k1 = [b(ξk−1), b(ρ(b(ξk−1)))] and %k2 = [ρ−1(b−1(ρ−1(ξk))), ρ
−1(ξk)];

(2+
δ ) if a−1(ρ−1(ξk)) < ρ(b(ξk)) ≤ a−1(ρ−1(a−1(ρ−1(ξk)))) then i

+
k = 2 and δ+

k = ∪2
i=1%

k
i−k +i

,

where %k
i−k +1

= [ρ−1(ξk), ρ
−1(a−1(ρ−1(ξk)))] and %

k
i−k +2

= [a(ρ(a(ξk+1))), a(ξk+1)];

(3±δ ) (3
−
δ ) if (b−1◦ρ−1)(2)(ξk) > ρ(a(ξk)) ≥ (b−1◦ρ−1)(3)(ξk) then i

+
k = 3 and δ−k = ∪3

i=1%
k
i , where

%k1 = [b(ξk−1), b(ρ(b(ξk−1)))], %k2 = [(ρ−1 ◦ b−1)(2)(ρ−1(ξk)), (ρ
−1 ◦ b−1)(1)(ρ−1(ξk))] and

%k3 = [ρ−1(b−1(ρ−1(ξk))), ρ
−1(ξk)];

(3+
δ ) if (a−1 ◦ ρ−1)(2)(ξk) < ρ(b(ξk)) ≤ (a−1 ◦ ρ−1)(3)(ξk) then i

+
k = 3 and δ+

k = ∪3
i=1%

k
i−k +i

,

where %k
i−k +1

= [ρ−1(ξk), ρ
−1(a−1(ρ−1(ξk)))], %

k
i−k +2

= [(ρ−1 ◦ a−1)(1)(ρ−1(ξk)), (ρ
−1 ◦

a−1)(2)(ρ−1(ξk))] and %
k
i−k +3

= [a(ρ(a(ξk+1))), a(ξk+1)];
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. . . . . . . . .

We, �nally, obtain that δ−k = ∪i
−
k
i=1%

k
i and δ

+
k = ∪i

+
k
i=1%

k
i−k +i

, where for %ki ⊆ δ−k

%ki =


[
b(ξk−1),min{b(ρ(b(ξk−1))), ρ−1(ξk)}], for i = 1,[
(ρ−1 ◦ b−1)(i−k −i+1)(ρ−1(ξk)), (ρ

−1 ◦ b−1)(i−k −i)(ρ−1(ξk))
]
, for i = 2, . . . , i−k

and if i−k > 1;

and if %ki ⊆ δ+
k then

%ki =


[
(ρ−1 ◦ a−1)(i−i−k −1)(ρ−1(ξk)), (ρ

−1 ◦ b−1)(i−i−k )(ρ−1(ξk))
]
, for i = i−k + 1, . . .

. . . ,M−
k − 1

and if i+k > 1,[
max{ρ−1(ξk), a(ρ(a(ξk+1)))}, a(ξk+1)

]
, for i = Nk.

Denote by ski the lower end-points of the %
k
i and by tki the upper end-points of the intervals %

k
i .

Now, �xed k ∈ Z, we cover Sρk and T
ρ
k by operators Sρk,if(x) := Sρk(fχ[ski ,t

k
i ])(x), 1 ≤ i ≤ i−k ,

and T ρk,if(x) := T ρk (fχ[ski ,t
k
i ])(x), i−k + 1 ≤ i ≤ Mk. By [19, (2.50) in Lemma 2.4 and (2.42) in

Lemma 2.3],

‖Sρk,i‖
r ≈

∫ a−1(ρ−1(ξk))

b−1(ski )

(∫ a−1(ρ−1(ξk))

z

wq
)r/p(∫ min{tki ,b(z)}

ski

vp
′
)r/p′

wq(z) dz,

≤
∫ a−1(ρ−1(ξk))

b−1(ski )

(∫ a−1(ρ−1(ξk))

z

wq
)−r/p′

×
(∫ min{tki ,b(z)}

ski

[∫ a−1(ρ−1(ξk))

b−1(y)

wq
]p′
vp
′
(y) dy

)r/p′
wq(z) dz,

‖T ρk,i‖
r ≈

∫ a−1(tki )

b−1(ρ−1(ξk))

(∫ z

b−1(ρ−1(ξk))

wq
)r/p(∫ tki

max{ski ,a(z)}
vp
′
)r/p′

wq(z) dz

≤
∫ a−1(tki )

b−1(ρ−1(ξk))

(∫ z

b−1(ρ−1(ξk))

wq
)−r/p′

×
(∫ tki

max{ski ,a(z)}

[∫ a−1(y)

b−1(ρ−1(ξk))

wq
]p′
vp
′
(y) dy

)r/p′
wq(z) dz.

Notice that for b(ξk−1) ≤ y ≤ ρ−1(ξk), by (1.5),∫ a−1(ρ−1(ξk))

b−1(y)

wq =

∫ ξk

b−1(y)

wq +

∫ a−1(ρ−1(ξk))

ξk

wq =

∫ ξk

b−1(y)

wq +

∫ ξk

b−1(ρ−1(ξk))

wq ≤ 2

∫ ξk

b−1(y)

wq;

analogously, for ρ−1(ξk) ≤ y ≤ a(ξk+1)∫ a−1(y)

b−1(ρ−1(ξk))

wq =

∫ ξk

b−1(ρ−1(ξk))

wq +

∫ a−1(y)

ξk

wq =

∫ a−1(ρ−1(ξk))

ξk

wq +

∫ a−1(y)

ξk

wq ≤ 2

∫ a−1(y)

ξk

wq.
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Therefore, since −r/p′ + 1 = −r/q′, where r/q′ < 0 for 0 < q < 1, and in view of (1.5),

‖Sρk,i‖
r �

∫ a−1(ρ−1(ξk))

b−1(ski )

(∫ a−1(ρ−1(ξk))

z

wq
)−r/p′(∫ min{tki ,b(z)}

ski

[∫ ξk

b−1(y)

wq
]p′
vp
′
(y)dy

)r/p′
wq(z)dz

≤
∫ a−1(ρ−1(ξk))

b−1(ski )

(∫ a−1(ρ−1(ξk))

z

wq
)−r/p′(∫ min{tki ,b(z)}

ski

[W (y)]p
′
vp
′
(y) dy

)r/p′
wq(z) dz

�
(∫ tki

ski

W p′vp
′
)r/p′(∫ ξk

b−1(ski )

wq
)−r/q′

and

‖T ρk,i‖
r �

∫ a−1(tki )

b−1(ρ−1(ξk))

(∫ z

b−1(ρ−1(ξk))

wq
)−r/p′(∫ tki

max{ski ,a(z)}

[∫ a−1(y)

ξk

wq
]p′
vp
′
(y) dy

)r/p′
wq(z) dz

�
∫ a−1(tki )

b−1(ρ−1(ξk))

(∫ z

b−1(ρ−1(ξk))

wq
)−r/p′(∫ tki

max{ski ,a(z)}
[W (y)]p

′
vp
′
(y) dy

)r/p′
wq(z) dz

�
(∫ tki

ski

W p′vp
′
)r/p′(∫ a−1(tki )

ξk

wq
)−r/q′

.

Thus, since 0 < q < 1,

‖Sρkf‖
q
q ≤

i−k∑
i=1

‖Sρk,if‖
q
q �

i−k∑
i=1

[(∫ tki

ski

W p′vp
′
)r/p′(∫ ξk

b−1(ski )

wq
)−r/q′]q/r

‖fχ%ki ‖
q
p (2.27)

and

‖T ρk f‖
q
q ≤

i+k∑
i=1

‖T ρ
k,i−k +i

f‖qq �
Mk∑

i=i−k +1

[(∫ tki

ski

W p′vp
′
)r/p′(∫ a−1(tki )

ξk

wq
)−r/q′]q/r

‖fχ%ki ‖
q
p. (2.28)

Consider estimates (2.27) and (2.28). If i−k = 1, then b−1(ρ−1(ξk)) ≤ ρ(a(ξk)), and we have
by (1.5):

‖Sρk‖
r = ‖Sρ

k,i−k
‖r =‖Sρk,1‖

r �
(∫ ρ−1(ξk)

b(ξk−1)

W p′vp
′
)r/p′(∫ ξk

ξk−1

wq
)−r/q′

=2

(∫ ρ−1(ξk)

b(ξk−1)

W p′vp
′
)r/p′(∫ ξk

ξk−1

wq
)−r/p′ ∫ ξk

ρ(a(ξk))

wq(t) dt.

Since a(t) ≤ a(ξk) = b(ξk−1) for t ≤ ξk, and ρ
−1(ξk) ≤ b(t) for b−1(ρ−1(ξk)) ≤ ρ(a(ξk)) ≤ t, then

‖Sρk‖
r =‖Sρk,1‖

r �
(∫ ξk

ξk−1

wq
)−r/p′ ∫ ξk

ρ(a(ξk))

(∫ b(t)

a(t)

W p′vp
′
)r/p′

wq(t) dt.
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Since ξk−1 ≤ b−1(ρ−1(t)) for t ≥ ρ(b(ξk−1) = ρ(a(ξk)), we obtain, in view of (1.5), that

‖Sρk‖
r =‖Sρk,1‖

r �
∫ ξk

ρ(a(ξk))

(∫ b(t)

a(t)

W p′vp
′
)r/p′(∫ t

b−1(ρ−1(t))

wq
)−r/p′

wq(t) dt

=2r/p
′
∫ ξk

ρ(a(ξk))

(∫ b(t)

a(t)

W p′vp
′
)r/p′(∫ a−1(ρ−1(t))

b−1(ρ−1(t))

wq
)−r/p′

wq(t) dt.

Analogously, if i+k = 1, then

‖T ρk ‖
r = ‖T ρk,1‖

r �
∫ ρ(b(ξk))

ξk

(∫ b(t)

a(t)

W p′vp
′
)r/p′(∫ a−1(ρ−1(t))

b−1(ρ−1(t))

wq
)−r/p′

wq(t) dt.

Let i−k > 1 and/or i+k > 1. By the construction of the %ki ,

b−1(tki ) = ρ(ski ) (1 ≤ i ≤ i−k , i−k > 1); a−1(ski ) = ρ(tki ) (i−k + 1 ≤ i ≤Mk, i+k > 1).

Then∫ ξk

b−1(ski )

wq ≤
∫ a−1(ski )

b−1(ski )

wq = 2

∫ a−1(ski )

ρ(ski )

wq ≤ 2

∫ a−1(tki )

b−1(tki )

wq = 4

∫ ρ(tki )

b−1(tki )

wq = 4

∫ ρ(tki )

ρ(ski )

wq,∫ a−1(tki )

ξk

wq ≤
∫ a−1(tki )

b−1(tki )

wq = 2

∫ ρ(tki )

b−1(tki )

wq ≤ 2

∫ a−1(ski )

b−1(ski )

wq = 4

∫ a−1(ski )

ρ(ski )

wq = 4

∫ ρ(tki )

ρ(ski )

wq;

and for ρ(ski ) ≤ t ≤ ρ(tki )

tki ≤ b(t), a(t) ≤ a(ρ(tki )) ≤ a(ξk) ≤ ski (1 ≤ i ≤ i−k , i−k > 1);

a(t) ≤ ski , t
k
i ≤ b(ξk) ≤ b(ρ(ski )) ≤ b(t) (i−k + 1 ≤ i ≤Mk, i+k > 1).

Moreover, if ρ(ski ) ≤ t ≤ ρ(tki ),

b−1(ρ−1(t)) ≥ b−1(ski ), ρ(tki ) ≤ ξk (1 ≤ i ≤ i−k , i−k > 1),

a−1(ρ−1(t)) ≤ b−1(tki ), ξk ≥ ρ(ski ) (i−k + 1 ≤ i ≤Mk, i+k > 1).

Thus, by taking into account (1.5), we obtain for the components in the right hand sides of
(2.27) and (2.28) if i−k > 1 and i+k > 1:

(∫ tki

ski

W p′vp
′
)r/p′(∫ ξk

b−1(ski )

wq
)−r/q′

≤ 4

(∫ tki

ski

W p′vp
′
)r/p′(∫ ξk

b−1(ski )

wq
)−r/p′ ∫ ρ(tki )

ρ(ski )

wq(t) dt

≤ 4

∫ ρ(tki )

ρ(ski )

(∫ b(t)

a(t)

W p′vp
′
)r/p′(∫ t

b−1(ρ−1(t))

wq
)−r/p′

wq(t) dt

= 22+r/p′
∫ ρ(tki )

ρ(ski )

(∫ b(t)

a(t)

W p′vp
′
)r/p′(∫ a−1(ρ−1(t))

b−1(ρ−1(t))

wq
)−r/p′

wq(t) dt,
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(∫ tki

ski

W p′vp
′
)r/p′(∫ a−1(tki )

ξk

wq
)−r/q′

≤ 4

(∫ tki

ski

W p′vp
′
)r/p′(∫ a−1(tki )

ξk

wq
)−r/p′ ∫ ρ(tki )

ρ(ski )

wq(t) dt

≤ 4

∫ ρ(tki )

ρ(ski )

(∫ b(t)

a(t)

W p′vp
′
)r/p′(∫ a−1(ρ−1(t))

t

wq
)−r/p′

wq(t) dt

= 22+r/p′
∫ ρ(tki )

ρ(ski )

(∫ b(t)

a(t)

W p′vp
′
)r/p′(∫ a−1(ρ−1(t))

b−1(ρ−1(t))

wq
)−r/p′

wq(t) dt.

This yields, in particular, (2.27), by H�older's inequality with powers r/q and p/q,

‖Sρkf‖
q
q �

i−k∑
i=1

[∫ ρ(tki )

ρ(ski )

(∫ b(t)

a(t)

W p′vp
′
)r/p′(∫ a−1(ρ−1(t))

b−1(ρ−1(t))

wq
)−r/p′

wq(t) dt

]q/r
‖fχ%ki ‖

q
p

≤
( i−k∑
i=1

∫ ρ(tki )

ρ(ski )

(∫ b(t)

a(t)

W p′vp
′
)r/p′(∫ a−1(ρ−1(t))

b−1(ρ−1(t))

wq
)−r/p′

wq(t) dt

)q/r( i−k∑
i=1

‖fχ%ki ‖
p
p

)q/p
�
(∫ ξk

ρ(a(ξk))

(∫ b(t)

a(t)

W p′vp
′
)r/p′(∫ a−1(ρ−1(t))

b−1(ρ−1(t))

wq
)−r/p′

wq(t) dt

)q/r
‖fχ[a(ξk),ρ−1(ξk)]‖qp

since no point of [ρ(a(ξk)), ξk] lies in more than two of the [ρ(ski ), ρ(tki )], and no point of
[a(ξk), ρ

−1(ξk)] lies in more than two of the [ski , t
k
i ], where

[ρ(a(ξk)), ξk] =

i−k⋃
i=1

[ρ(ski ), ρ(tki )] and [a(ξk), ρ
−1(ξk)] =

i−k⋃
i=1

[ski , t
k
i ].

Analogously, we obtain the following estimate for ‖T ρk f‖:

‖T ρk f‖
q
q �

(∫ ρ(b(ξk))

ξk

(∫ b(t)

a(t)

W p′vp
′
)r/p′(∫ a−1(ρ−1(t))

b−1(ρ−1(t))

wq
)−r/p′

wq(t) dt

)q/r
‖fχ[ρ−1(ξk),b(ξk)]‖qp.

Now, we have, by H�older's inequality with the powers r/q and p/q, by virtue of [19, Lemma
3.1], that

‖Hf‖qq �
∑
k∈Z

‖Sρkf‖
q
q + ‖T ρk f‖

q
q

�
∑
k∈Z

(∫ ξk

ρ(a(ξk))

(∫ b(t)

a(t)

W p′vp
′
)r/p′[

W (ρ−1(t))
]−r/p′

wq(t) dt

)q/r
‖fχ[a(ξk),ρ−1(ξk)]‖qp

+

(∫ ρ(b(ξk))

ξk

(∫ b(t)

a(t)

W p′vp
′
)r/p′[

W (ρ−1(t))
]−r/p′

wq(t) dt

)q/r
‖fχ[ρ−1(ξk),b(ξk)]‖qp

�
∑
k∈Z

(∫ ρ(b(ξk))

ρ(a(ξk))

(∫ b(t)

a(t)

W p′vp
′
)r/p′[

W (ρ−1(t))
]−r/p′

wq(t) dt

)q/r
‖fχ[a(ξk),b(ξk)]‖qp

≤

(∑
k∈Z

∫ ρ(b(ξk))

ρ(a(ξk))

(∫ b(t)

a(t)

W p′vp
′
)r/p′[

W (ρ−1(t))
]−r/p′

wq(t) dt

)q/r
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×
(∑
k∈Z

∥∥fχ[a(ξk),b(ξk)]‖pp
)q/p

� Bqρ‖f‖qp,

and the estimate ‖H‖ � Bρ is proven.
To establish the estimate ‖H‖ � (Bρ)∗ in the case 0 < q < 1 we cover Sρk + T ρk , k ∈ Z, as

follows

‖Sρkf + T ρk f‖
q
q ≤

Mk−1∑
i=1

‖Hρ
k,if +Hρ

k,i+1f‖
q
q

≤
Mk−1∑
i=1

[(∫ tki+1

ski

vp
′
)r/p′(∫ a−1(tki+1)

b−1(ski )

wq
)r/q]q/r

‖fχρki ∪ρki+1
‖qp. (2.29)

Here Hρ
k,i stands for S

ρ
k,i if 1 ≤ i ≤ i−k and for T ρk,i in the case i−k + 1 ≤ i ≤Mk.

For any i ∈ {1, . . . ,Mk − 1} we compare V k
i :=

∫
%ki
vp
′
and V k

i+1 and denote

%̃ki :=

{
%ki , V k

i ≥ V k
i+1,

%ki+1, V k
i < V k

i+1.

Notice that W (ski ) ≈ W (tki ) ≈ W (ski+1) ≈ W (tki+1) ≈ W (x), x ∈ %ki ∪ %ki+1, by the construction
of {%ki }.

We write, in view of r/q = r − r/q′ = rp′/q′ + p′ − r/q′,

‖Hρ
k,i +Hρ

k,i+1‖
r :=

(∫ tki+1

ski

vp
′
)r/p′(∫ a−1(tki+1)

b−1(ski )

wq
)r/q

≈
[
W (ski )

]r/q(∫ tki+1

ski

vp
′
)r/q′ ∫ tki+1

ski

vp
′
(t) dt

≤2

(∫ tki+1

ski

W p′vp
′
)r/q′ ∫

%̃ki

[W (t)]p
′−r/q′vp

′
(t) dt =: Bki .

If %̃ki = %ki then, since q
′ < 0,

Bki =

(∫ tki+1

ski

W p′vp
′
)r/q′ ∫ tki

ski

[W (t)]p
′−r/q′vp

′
(t) dt

≤
∫ tki

ski

(∫ tki+1

t

W p′vp
′
)r/q′

[W (t)]p
′−r/q′vp

′
(t) dt

≤
∫ tki

ski

(∫ min{ρ−1(a−1(t)),b(ρ(t))}

t

W p′vp
′
)r/q′

[W (t)]p
′−r/q′vp

′
(t) dt

≤
∫ tki

ski

(∫ ρ−1(a−1(t))

t

W p′vp
′
)r/q′

[W (t)]p
′−r/q′vp

′
(t) dt

+

∫ tki

ski

(∫ b(ρ(t))

t

W p′vp
′
)r/q′

[W (t)]p
′−r/q′vp

′
(t) dt.
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Analogously, if %̃ki = %ki+1 then

Bki =

(∫ tki+1

ski

W p′vp
′
)r/q′ ∫ tki+1

ski+1

[W (t)]p
′−r/q′vp

′
(t) dt

≤
∫ tki+1

ski+1

(∫ t

ski

W p′vp
′
)r/q′

[W (t)]p
′−r/q′vp

′
(t) dt

≤
∫ tki+1

ski+1

(∫ t

max{ρ−1(b−1(t)),a(ρ(t))}
W p′vp

′
)r/q′

[W (t)]p
′−r/q′vp

′
(t) dt

≤
∫ tki+1

ski+1

(∫ t

ρ−1(b−1(t))

W p′vp
′
)r/q′

[W (t)]p
′−r/q′vp

′
(t) dt

+

∫ tki+1

ski+1

(∫ t

a(ρ(t))

W p′vp
′
)r/q′

[W (t)]p
′−r/q′vp

′
(t) dt.

We, �nally, obtain from (2.29), by H�older's inequality with the powers r/q and p/q:

‖Hf‖qq �
∑
k∈Z

‖Sρkf + T ρk f‖
q
q

≤
∑
k∈Z

Mk−1∑
i=1

‖Hρ
k,if +Hρ

k,i+1f‖
q
q �

∑
k∈Z

Mk−1∑
i=1

[
Bki
]q/r‖fχ%ki ∪%ki+1

‖qp

≤
(∑
k∈Z

Mk−1∑
i=1

Bki
)q/r(∑

k∈Z

Mk−1∑
i=1

‖fχ%ki ∪%ki+1
‖pp
)q/p

≤2q/p
(∑
k∈Z

Mk−1∑
i=1

Bki
)q/r(∑

k∈Z

‖fχ[a(ξk),b(ξk)]‖pp
)q/p

≤2q/p+q/r
[
(Bρ)∗

]q(∑
k∈Z

‖fχ[a(ξk),b(ξk)]‖pp
)q/p
≤ 2
[
(Bρ)∗

]q‖f‖qp.
For proving the lower estimates ‖H‖ � Bρ, ‖H‖ � (Bρ)∗ in the case 0 < q < 1 we assume,

�rst, that ρ(y) = y. The claims will be established under this condition on ρ if we show that

‖H‖ � B±q<1, ‖H‖ � (B±q>1)∗, ‖H‖ � (B±q<1)∗, (2.30)

where

B±q<1 :=

(∫ ∞
0

[∫
δ−ρ (t)

W p′vp
′
]r/p′

W (ρ−1(t))−r/p
′
wq(t) dt

)1/r

.

Let us prove inequalities (2.30) with B−q<1, (B−q>1)∗ and (B−q<1)∗. The arguments for B+
q<1, (B+

q>1)∗

and (B+
q<1)∗ are similar.

Splitting (0,∞) by points (2.19) (with ã = a) we form the sequence of intervals δ−ρ (ηk),
taking into account that ρ(y) = y. After this, we cover each δ−ρ (ηk+1) by [mk

n−1,m
k
n], n =

1, . . . , n−k , constructed as follows. For �xed k ∈ Z we denote [N−k ] the integer part of the
number

N−k := log2

∫ ηk+1

b−1(ηk)
wq∫ ηk+1

b−1(ηk+1)
wq
.

Then we put m0 = ηk, mn−k
= ηk+1 and choose mn, n = 0, . . . , n−k , as follows:



Alternative boundedness characteristics for the Hardy�Steklov operator 91

1. if [N−k ] ≤ 1 then n−k = 1;

2. if N−k > 1 then n−k =

{
[N−k ], N−k = [N−k ]

[N−k ] + 1, N−k > [N−k ]
, and we choose mn for 1 ≤ n ≤ [N−k ] so

that ∫ ηk+1

b−1(mn−1)

wq = 2

∫ ηk+1

b−1(mn)

wq. (2.31)

Fixed k ∈ Z we denote γkn :=
∫ ηk+1

b−1(mn)
wq the elements of the strongly decreasing sequence

γkn with 0 ≤ n ≤ [N−k ] (see [5, De�nition 2.2(a)] for details), because γkn−1 ≥ 2γkn by the
construction. Moreover,∫ ηk+1

b−1(mkn−1)

wq ≈
∫ ηk+1

b−1(mkn)

wq ≈ W (y), y ∈ [mk
n−1,m

k
n]. (2.32)

Let

lk,n :=

(∫ ηk+1

b−1(mkn−1)

wq(x) dx

)−r/(pq′)+p′−1(∫ mkn

mkn−1

W p′(y)vp
′
(y) dy

)r/(pq′)
and de�ne

fa(t) :=
K∑

k=−K

n−k∑
n=1

v(t)p
′−1χ[mkn−1,m

k
n](t) lk,n K ∈ N.

Since (mk
n−1,m

k
n) are mutually disjoint for all k ∈ Z and n = 1, . . . , n−k , and since r/p

′ = 1+r/q′,

‖fa‖pp =
∑
k∈Z

n−k∑
n=1

∫ mkn

mkn−1

fpa (y) dy =
K∑

k=−K

n−k∑
n=1

lpk,n

∫ mkn

mkn−1

vp
′
(y) dy

≈
K∑

k=−K

n−k∑
n=1

(∫ mkn

mkn−1

W (y)p
′
vp
′
(y) dy

)r/p′(∫ ηk+1

b−1(mkn−1)

wq
)−r/q′

. (2.33)

Since a(mk
n) ≤ mk

0 ≤ mk
n−1 then [mk

n−1,m
k
n] ⊂ [a(x), b(x)] for x ∈ [b−1(mk

n),mk
n], n =

1, . . . , n−k . Moreover,
b(mk

n−1) ≥ mk
n, (2.34)

where b−1(mk
1) = mk

0 if n
−
k > 1. If we assume the contrary to (2.34) for some 1 ≤ n ≤ n−k then,

by the construction, ∫ ηk+1

b−1(mkn−1)

wq ≤ 2

∫ ηk+1

b−1(mkn)

wq < 2

∫ ηk+1

mkn−1

wq,

that contradicts (1.5).

Now we cover [ηk, ηk+1] by {τ kn}
n−k
n=1 as follows. If n−k = 1 then τ k1 = [ηk, ηk+1]. In the case

n−k > 1 we put τ kn = [b−1(mk
n),mk

n] for n = n−k −1 and n = n−k , and let τ
k
n = [b−1(mk

n), b−1(mk
n+1)]
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for 1 ≤ n < n−k − 1 if n−k > 2. Since r/(pq′) + 1 = r/(p′q) and −r/p′ + 1 = −r/q′, then

‖(Hfa)w‖qq ≥
1

2

K∑
k=−K

n−k∑
n=1

∫
τkn

(∫ b(x)

a(x)

fa(y)v(y) dy

)q
wq(x) dx

≥
K∑

k=−K

n−k∑
n=1

∫
τkn

(∫ b(x)

a(x)

lk,n v
p′(y)χ[mkn−1,m

k
n](y) dy

)q
wq(x) dx

�
K∑

k=−K

n−k∑
n=1

(∫ mkn

mkn−1

W p′vp
′
)q(∫ ηk+1

b−1(mkn−1)

wq
)−rq/(pq′)−q+1(∫ mkn

mkn−1

W p′vp
′
)rq/(pq′)

≈
K∑

k=−K

n−k∑
n=1

(∫ mkn

mkn−1

[W (y)]p
′
vp
′
(y) dy

) r
p′
(∫ ηk+1

b−1(mkn−1)

wq
)− r

q′

, (2.35)

because no point of [ηk, ηk+1] lies in more than two of the τ kn . In combination with (2.33) and
under assumption ‖H‖ <∞ this yields the estimate

‖H‖r � lim
K→∞

K∑
k=−K

n−k∑
n=1

(∫ mkn

mkn−1

W p′ vp
′
)r/p′(∫ ηk+1

b−1(mkn−1)

wq
)−r/q′

=:
∑
k∈Z

n−k∑
n=1

µk,n, (2.36)

which is true for q > 1 as well.
In order to establish the estimate ‖H‖ � B−q<1 we write, using (2.32), taking into account

−r/q′ > 0, and denoting mk
−1 = mk−1

0 ,

[B−q<1]r ≤
∑
k∈Z

n−k∑
n=1

∫ mkn

mkn−1

[∫
δ−ρ (t)

W p′vp
′
]r/p′

W (t)−r/p
′
wq(t) dt

�
∑
k∈Z

n−k∑
n=1

(∫ mkn

a(mkn−1)

W p′vp
′
)r/p′(∫ ηk+1

b−1(mkn)

wq
)−r/q′

≤
∑
k∈Z

n−k∑
n=1

(∫ mkn

mk−1
0

W p′vp
′
)r/p′(∫ ηk+1

b−1(mkn)

wq
)−r/q′

≤
∑
k∈Z

n−k∑
n=0

(∫ mkn

mk−1
0

W p′vp
′
)r/p′(∫ ηk+1

b−1(mkn)

wq
)−r/q′

≤
∑
k∈Z

[ n−k∑
n=0

( n∑
l=0

∫ mkl

mkl−1

W p′vp
′
)r/p′(∫ ηk+1

b−1(mkn)

wq
)−r/q′]

. (2.37)

Since r/p′ < 1 and for each k ∈ Z the γkn form strongly decreasing sequence, we obtain by [5,
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Proposition 2.1(b)]:

n−k∑
n=0

( n∑
l=0

∫ mkl

mkl−1

W p′vp
′
)r/p′(∫ ηk+1

b−1(mkn)

wq
)−r/q′

�
n−k∑
n=0

(∫ mkn

mkn−1

W p′vp
′
)r/p′(∫ ηk+1

b−1(mkn)

wq
)−r/q′

≤ 2

n−k−1∑
n=1

(∫ mk−1
n

mk−1
n−1

W p′vp
′
)r/p′(∫ ηk

b−1(mk−1
n )

wq
)−r/q′

+

n−k∑
n=1

(∫ mkn

mkn−1

W p′vp
′
)r/p′(∫ ηk+1

b−1(mkn)

wq
)−r/q′

.

This yields

[B−q<1]r �
∑
k∈Z

[n−k−1∑
n=1

(∫ mk−1
n

mk−1
n−1

W p′vp
′
)r/p′(∫ ηk

b−1(mk−1
n−1)

wq
)−r/q′

+

n−k∑
n=1

(∫ mkn

mkn−1

W p′vp
′
)r/p′(∫ ηk+1

b−1(mkn−1)

wq
)−r/q′]

≤ 2
∑
k∈Z

n−k∑
n=1

(∫ mkn

mkn−1

W p′vp
′
)r/p′(∫ ηk+1

b−1(mkn−1)

wq
)−r/q′

=
∑
k∈Z

n−k∑
n=1

µk,n. (2.38)

In combination with (2.36) this implies that‖H‖ � B−q<1.
To establish that ‖H‖ � (B−q>1)∗ and ‖H‖ � (B−q<1)∗ notice that by the construction (see

e.g. (2.34)) and in view of r/p′ − 1 = r/q′ < 0,

r

p′
· µk,n =

∫ mkn

mkn−1

(∫ mkn

t

W (y)p
′
vp
′
(y) dy

)r/q′
W (t)p

′
vp
′
(t) dt

(∫ ηk+1

b−1(mkn−1)

wq
)−r/q′

≥
∫ mkn

mkn−1

(∫ a−1(t)

t

W (y)p
′
vp
′
(y) dy

)r/q′(∫ ηk+1

b−1(mkn−1)

wq
)−r/q′

W (t)p
′
vp
′
(t) dt

≈
∫ mkn

mkn−1

(∫ a−1(t)

t

W (y)p
′
vp
′
(y) dy

)r/q′
W (t)p

′−r/q′ vp
′
(t) dt.

For the same reasons,

r

p′
· µk,n =

∫ mkn

mkn−1

(∫ t

mkn−1

W (y)p
′
vp
′
(y) dy

)r/q′
W (t)p

′
vp
′
(t) dt

(∫ ηk+1

b−1(mkn−1)

wq
)−r/q′

≥
∫ mkn

mkn−1

(∫ t

a(t)

W (y)p
′
vp
′
(y) dy

)r/q′(∫ ηk+1

b−1(mkn−1)

wq
)−r/q′

W (t)p
′
vp
′
(t) dt

≈
∫ mkn

mkn−1

(∫ t

a(t)

W (y)p
′
vp
′
(y) dy

)r/q′
W (t)p

′−r/q′ vp
′
(t) dt.
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Combination of these relations with (2.36) gives the required inequalities ‖H‖ � (B−q>1)∗ and
‖H‖ � (B−q<1)∗.

It remains to con�rm that Bq<1 � Bq>1 for q < 1 and Bq>1 � Bq<1 if q > 1. Since the
proofs of these inequalities are similar to each other, we shall establish the one for q < 1 only.

Observe that if n−k > 1 then, by (2.31) and in view of (1.5),∫ ηk+1

b−1(mkn−1)

wq = 2

∫ b−1(mkn)

b−1(mkn−1)

wq =

∫ ηk+1

b−1(mkn)

wq, 1 ≤ n ≤ n−k − 1,

where mk
1 = b(mk

0). Thus, we obtain if n−k > 3, taking into account (2.34),

n−k∑
n=1

µk,n �
n−k −2∑
n=1

(∫ ηk+1

mkn−1

W p′vp
′
)r/p′ ∫ b−1(mkn+1)

b−1(mkn)

wq
(∫ ηk+1

b−1(mkn−1)

wq
)−r/p′

≤
n−k −2∑
n=1

∫ b−1(mkn+1)

b−1(mkn)

(∫ a−1(t)

b−1(t)

W p′vp
′
)r/p′

wq(t)

(∫ ηk+1

b−1(mkn−1)

wq
)−r/p′

dt

≈
n−k −2∑
n=1

∫ b−1(mkn+1)

b−1(mkn)

(∫ a−1(t)

b−1(t)

W p′vp
′
)r/p′

W (t)−r/p
′
wq(t) dt

≤
∫ ηk+1

ηk

(∫ a−1(t)

b−1(t)

W p′vp
′
)r/p′

W (t)−r/p
′
wq(t) dt.

If n−k ≤ 3 we have

n−k∑
n=1

µk,n �
(∫ ηk+1

ηk

W p′vp
′
)r/p′ ∫ min{b(ηk),ηk+1}

ηk

W (t)−r/p
′
wq(t) dt

≤
∫ min{b(ηk),ηk+1}

ηk

(∫ a−1(t)

b−1(t)

W p′vp
′
)r/p′

W (t)−r/p
′
wq(t) dt

≤
∫ ηk+1

ηk

(∫ a−1(t)

b−1(t)

W p′vp
′
)r/p′

W (t)−r/p
′
wq(t) dt.

Together with (2.38) these lead to
B−q<1 � Bq>1. (2.39)

Analogously, but by starting with establishing the estimate for B+
q<1 similar to that in (2.38),

we can prove that B+
q<1 � Bq>1. Together with (2.39), this gives Bq<1 � Bq>1.
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