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ALTERNATIVE BOUNDEDNESS CHARACTERISTICS
FOR THE HARDY-STEKLOV OPERATOR

E.P. Ushakova

Communicated by R. Oinarov
Dedicated to the 70" birthday of Professor Ryskul Oinarov

Key words: Hardy-Steklov operator, weighted Lebesgue space, boundedness.
AMS Mathematics Subject Classification: 47G10, 45P05.

Abstract. Using the notions of fairway functions we give the Tomaselli and Persson—Stepanov
type forms of boundedness characterizations for the Hardy-Steklov operators in Lebesgue
spaces. The results are alternatives to the Muckenhoupt and Mazya—Rosin type boundedness
criteria.

1 Introduction

For s € (0,00) let L* := L*(0,00) denote the usual Lebesgue space with the (quasi-)norm

1flls o= (J57 1 f (@) dx)l/s. Let v and w be non—negative weight functions (weights) on (0, c0).
For some fixed real parameters p > 1 and ¢ > 0 we consider the Hardy—Steklov operator
b(x)
Hf(z) = w(x) fyv(y)dy, =€ (0,00) (1.1)

a(x)

with boundary functions a and b satisfying the following conditions:

(i) a, b are differentiable and strictly increasing on (0, co);

(it) a(0) = b(0) = 0, a(z) < b(x) for 0 < < o0, a(c0) = b(oc) = (12)

The family H of integral transformations with both variable boundaries is applicable to many
areas (e.g. differential equations, embeddings of function spaces |2, 10, 11]). The two limiting
cases of H (a(x) = 0 and b(x) = co) are rather well-studied. In particular, the weighted Hardy

integral operator N
ZL“)/O fy)o(y) dy (1.3)

has collected a number of results related to its boundedness properties from L” to L7 (see e.g.
[8, 7]). Systematization most of them (see e.g. [3] and [13]) led to forming two basic types of
boundedness characteristics for H : L? — L4. These are functionals (we say constants also),
which depend on fixed parameters only (e.g. weights, boundaries, summation parameters p and
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q, etc.) and are equivalent to ||H||zr—rs. The Muckenhoupt Ay, and the Mazya—Rozin Byr

functionals
0 1/q t 1/p’
AM:sup(/ wq> (/vp) (1<p<qg<o0),
t>0 t 0
1/r

oo oo r/p t r/p’
Byr = / {/ wq] [/ Up} w(t) dt (0<g<p<oo, p>1),
0 t 0

where p' =p/(p—1) and 1/r = 1/q¢ — 1/p, and also their duals (Ay)* = Ay and
1/r

sur = ([ ][] o)

constitute the bases of the first type boundedness characteristics for H : LP — L?. The second
type is formed by alternative to Ay, and Bj,r the Tomaselli A7 and the Persson—Stepanov Bpg
functionals

e ([T wow) " ([4) 0erzucn
Bps— ( [ oY v I } wq@dt) o ciepes )

and also by their duals (see [13]). The functionals Ay, and Bjyg are classical boundedness
characteristics for H from LP to LY. They are typically used to further investigations and
applications of H. The alternative to them boundedness constants Ar and Bpg appeared to be
useful in the study of the non-linear geometric mean operator Gf(z) = exp (£ ["In f(y) dy)
[12] and in some other problems too.

Scale of the boundedness characteristics for the Hardy-Steklov operator, analogous to that
for H, started to be formed in the articles [1, 4, 6]. The most productive development, related
to the characterization of (1.1) with a and b satisfying (1.2), was undertaken in [19] basing on
the conception of fairway.

Definition 1 ([17, 19]). Given boundary functions a and b, satisfying the conditions (1.2), a
number p € (1, 00) and a weight function v such that 0 < v(y) < oo for almost all y € (0, 00) and
v?" is locally integrable on (0, 00), we define the fairwayfunction o such that a(x) < o(z) < b(z)
and
o(x) , b(x) ,
/ VP (y)dy = / VP (y) dy for all x> 0. (1.4)
a(x) o(z)
The dual fairway-function p appeared in 20| for deriving new forms of L? — L9~boundedness
criteria for H.

Definition 2 (|20, 21, 9]). Given boundary functions a and b on (0, 00), satisfying (1.2), a
parameter ¢ > 0 and a weight w such that 0 < w(z) < oo for almost all z € (0, 00) and w(z
is locally integrable on (0,00), the dual fairway-function p is defined so that b~ (y) < p(y) <
a~1(y) on (0,00) and

p(v) a”(y)
/ wi(x)dr = / wl(z)de  for all y > 0. (1.5)
b=1(y) r(y)

Here a! and b~! are the inverses to the boundary functions a and b, respectively.
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The fairways o and p are strictly increasing and differentiable functions on (0, c0) (see [16,
§ 2.2.1]).

The Muckenhoupt A;; and Mazya—Rozin Byr type boundedness characteristics for H :
LP — L9forall 1l < p <ooand 0 < g < oo in terms of the fairway—function o were first
obtained in [17]:

oty \V [ e \MP
Ay =1 A, = sup / w? / vP (1 <p<qg<o0),
t>0 b= (o (1)) a(t)

o [ paiew) 17T e 17 v
Byr=: B, = / / w? / oP | wi(t)dt 0<g<p<oo, p>1). (1.6
0 b=1(o(t) a(t)
In [20, 19], the dual to Ay, and By g constants (A,)* and (B,)* were found for the parameters
p > 1and g > 1 only. Their expressions involve the notion of the dual fairway-function p:

at \M [ ety \ M
(A,)" =sup / w? / vP (1<p<g<o0),
t>0 b=1(t) a(p(t))

o[ patw 7T ppewn 17T v
(B,)" = / / w? / vP oP (t)dt (1<g<p<o0).
0 b1 (t) a(p(t))

The whole scale of Muckenhoupt and Mazya—Rosin type boundedness characteristics for H :
LP — L7 was established in [9] (see also [21]) for p > 1 and ¢ > 0, both in terms of the fairway
o and its dual function p. Namely, the work [9] extends (B,)* to all0 < ¢ < p < oo, p > 1 and
introduces two additional couples of functionals (A,)*, (B,)* and A,, B,, which are, similarly
to A,, B, and (A,)" and (B,)*, dual to each other if p,q > 1 (see [9] or [21] for detail). This,
finally, formed the basic scale of the first type boundedness constants for the Hardy—Steklov
operators (1.1) from LP to L9. The result was applied in [9] to characterization of embeddings
of a class of AC—functions in the fractional Sobolev space, and in [14, 15, 2] to descriptions of
function spaces associated with a weighted Sobolev space.

First alternative characteristics of the type A7 and Bpg for the Hardy—Steklov operators H
were established in [18]. Namely, it was proven that the norm ||H||rr— e is equivalent to the

functional
GO CIE Yar e TV
Ap = A, =sup / / oP | wi(z)dx / VP (1.7)
t>0 o=1(a(t)) a(z) a(t)

in the case 1 <p < q<oo,and if 0 < ¢ < p < oo, p>1then [|H|rr_1« = Bps =: B, with

- q r/p q—r/p Lr
o [ potew) ( pha) oo
Bps =: B, = / / / P b wi(x) de / VP wi(t) dt (1.8)
0 o~ 1(a(t)) a(z) a(t)

(see also [19, Theorem 4.2]). A, and B, were successively applied to characterization of the
geometric Steklov operator G f(x) = exp <W1a(z) ff((;)) In f) in [18]. By duality, the two fol-

lowing boundedness constants for H : LP — L7 yield the equivalences ||H| rr—re ~ A, and
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|H||zr—sra ~ B, in the case p,q > 1:

P @) [ patw) 17 e Y
(Ap)" = sup / / wt| 0" (y) dy / w' , (L9
>0 p=1(b=1(t)) b—1(y) b=1(¢)

/ r/q o —r/d 1/r

oo | pota i) [ patw) )P =} (1) )
(Bps)" = / / / w? 5 P (y) dy / w oP (t) dt . (1.10)
0 P G OV R () b=1(1)

Together with A, and B,, the (A,)* and (Bpg)* partially form the related scale of alternative
boundedness characteristics for H from LP to L9, but it is not complete. The purpose of
this work is formation the whole basic scale of alternative boundedness characteristics for the
operator H : LP — L9 for all p > 1 and ¢ > 0. Following this goal, we supplement Tomaselli
and Persson—Stepanov type constants (1.7) and (1.8) by their dual analogies in terms of o.
Moreover, by using the notion of p, we find p-analogies of A, and B,, and set up boundedness
characteristics of types (1.9) and (1.10) for the case 0 < ¢ < 1 < p. Except A,, B,, (A,)" and
(Bps)*, the complete set of related functionals includes the following quantities:

o=t b(e (1)) 1/q b(o~ (1)) ) —-1/p
(A,)* = sup (/ quq> (/ vp) ,
>0 \Jo=1(a(o~1(t))) a(e=1())
o prot(b(e™1(t)) rlap pblemt)  1-r/e i/r
(B,)* = (/ [/ quq] {/ vp} vP (t) dt) ,
0 o~ l(a(c=1(t))) a(o=1(t))
P T ®) o N\ a=lp~1(t) -1/d
e[ ) ([
>0 \Jp=L(b=1(p~1(t))) b=1(p=1(t))

Byt < Bgar, g>1
Byc1 K Bgs1, g<1 7

o prla i) T ey - 1
T T i R
0 p (0~ (p™ (1)) b= (p~ (1)
cor pb(t) o qr/P'p paTte (1) —r/v' 1/r
By<1 = (/ { we vp] {/ wq} wi(t) dt) ,
0 a(t) b=t (p~ (1)

where V(z) := fab((z) v?" and W(y) = fbil(g) w?, and

x)

B, =

/

W) (1) dt) "

o) t . r/q
(B, = ( / { / W}
0 p=1(b71())
oo ot a (1) .1
q>1)*: </ {/ vap}
0 t

/

W) (1) dt) "
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00 t . r/q i 1/r
ey = ([T we] e e a)
a(p(t
o[ rble)) /e rld 1r
sy = ([T wre ] ey )
0 t

where (B,)* ~ (Bpg)* if ¢ > 1.

The cumulative outcome of this work, together with the results from [18] (see also [19,
Theorem 4.2]), comprises all basic boundedness characteristics (of the second type) for the
Hardy—Steklov operator H from LP to LY expressed in terms of the fairway o and its dual
function p too. These results can be used in the study of other properties (e.g. characteristic
numbers etc.) of the operators H and their related transforms, as well as in many applications
of the Hardy—Steklov operators (e.g. Sobolev spaces etc.).

Throughout the paper the products of the form 0-oco are taken to be equal to 0. Relations of
the type A < B mean that A < ¢B with some constant ¢ depending, possibly, on parameters p
and q only. We write A ~ B instead of A < B < Aor A = cB. We use Z and N for integers and
natural numbers, respectively. yg stands for the characteristic function (indicator) of a subset
E C (0,00). We make use of the attribution signs := and =: for introducing new quantities
and denote p' := p/(p — 1) for a parameter 0 < p < oo and r :=pq/(p—¢q) if 0 < ¢ < p < 0.
We assume weight functions to be non-negative and locally integrable to appropriate powers.
In order to shorten big formulae, we use [ h instead of [ h(t)dt for a one—variable integrand
h(t), where it makes sence.

2 The result

Theorem 2.1. Let p > 1, ¢ > 0, ¢ # 1 and the operator H be defined by (1.1) with a,b
satisfying conditions (1.2). Suppose that o is the fairway—function on (0,00) satisfying (1.4)
and p is the dual fairway—function on (0,00) satisfying (1.5). Then

[ Hlzrore = Ap = (Ag)" = A, = (A))" (2.1)
if 1 <p<q<oo. Forthe case 0 < qg<p<oo, p>1 we have:

[H][p—ra = B, ~ (B,)" = B, ~ (B,)", (2.2)
where (B,)* =~ (Bpg)* if ¢ > 1.
Proof. Let 1 < p < ¢ < co. The estimate ||H|/zr—rs =~ A, was proven in [19, Theorem 4.2]. If
we apply this result to the dual to H operator H* of the form

a™(y)

o) =o) [ ol (>0 2.3

from L7 to L, then we obtain the equivalence |||z = (A,)*. The rest statements of the
theorem in the case 1 < p < ¢ < oo — those are [|H| r—re = (Ay)* and || H||rr—re = A, —
follow from the two previous estimates by changing variable t = ¢~!(s) with ¢ = ¢ in A, and
s =ptin (A,)*, recpectively.

Consider the case 0 < ¢ < p < 0o, p > 1. The estimate ||H||z»_ 1« = B, was established in
[19, Theorem 4.2|. To prove ||H| rr—re < (By)* we define a sequence {&x }rez C (0, 00) so that

& =1, & = (a7 o b)F(1), keZ. (2.4)
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Denote & = o7 (a(&)), & = o7'(b (&:)) po= (66T = A UAT A = [§,&,
A =&, & ] and form intervals % ,j=1,...,Nx, N, = j, +Ji, on Ay, k € Z, similar to
those in [19, Lemmas 2.7, 2.8|:

(1%) (13) if 0(&) < b(&;) then j; = 1 and A = %’f;
(1%) if o(&) > a(&)) then 5 =1 and Af

+1’

(22[) (27) i b(&) < (&) < blo1(b(&,))) then j; = 2 and A, = U % , where s} =
b(&;;))] and se5 = [b~ (o (&), Ekl;

(21) if a(o™(a(g)))) < o(&) < a(&y) then ji =2 and A} = Ui 1%’“_+ , where %kgﬂ
€k, a7 (o (&k))] and 55, = [0 (a(§)), &;
(33) (32) if b(o7'(b(&;))) < o(&) < blo (b(o™"(b(&;))))) then ji = 3 and Ay = U3—1 at

where s = [§, 07 (0(& )], 24 = [o” ((5 ), o7 (b(e™H(D(E,))))] and s =
b~ (o (8k)), &k;

@3) i alo Nato () < o) < alolalg) then ¢ = 3 and Ap =
Uy here e = (6,07 (0(@)]: 2, = [0 o)) ol (o (6)
wnd 2y = M) 61

Finally, we obtain that A, = UJ 1% and Af = Ui’“ 1%k_+ , where for s Q Ay

s (07 o b)U=1(& ), (07 o b)D(&)], forj=1,...,5, —1ifj, >1,
’ [max{@“k_, b_l(o-(gk))}v fk}’ for j = jk_a

and if %j’? C A/ then
o (a0 o)i ™ D(&), (a o) D(&)], forj=j; +1,....Ny —1if jji >1,
T | max{&e oM a(§))} 6 for j = Ni.

Denote by I¥ the left end-points of the »; and by r} the right end-points of the intervals .
Without loss of generality we assume that f > 0 a.e. on (0,00). Breaking the semiaxis
(0,00) by the points &, we represent the operator H as the sum of two sequences of operators

HI@) =3 (Xap @VHU X, ) @) + X (@HX0(60) (2)

FXap (@ Xm0 (@) + Xap @t ) (@)

< Z (ST f(z) +T7 f(x)), (2.5)
where 6, (t) := [a(t),b(t)] = 6, (t) UdI(t), 0, (t) := [a(t),o(t)], 01 (t) := [o(t),b(t)] and
b(z)
Sif (@) = w(x) o fly)dy  (z € Ay), (2.6)
b(Ey)

1) = w) [ ey e ap), 27
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By virtue of [19, (2.44) from Lemma 2.3 and (2.52) from Lemma 2.4] we obtain

t bz) 149 r/p o) q—r/p
st~ [ ([ ] war) T e e a 8)
A e Walgy) a(€y)
& e 9 rproebEh)  jar/e
|77 (" ~ / (/ [/ vp] wi(x) da:) [/ vp] wi(t) dt. (2.9)
AF\Jt a(x) a(t)

k

and

By covering A, by the intervals %f, j=1,...,j,, we write, taking into account that r/p+1 =

r/q:
Je t b@) 79 r/ppopbt)  qaT/p
152 <<Z/ (/ U vp] w(z) dx) U vp] wi(t) dt
j=1 %;-C &, LJa(gy) a(§;;)
Ji rhrob@) qa rlpropbs)  q-r/e bt) 74
< Z(/ / P | wi(z) dx) / VP / {/ vp} wi(t)dt
j=1 3 a(§,) J LS a(&,) %;-C a(§,)

Ji T;?
(]
j=1 &

ropbl@) 74 r/ar rb(lk) b —r/p
/ P | wi(x) dx) VP = X.. (2.10)
If j. =1, we have, by (1.4),

(&)
& b(z) 749 r/q b)) —r/p
Zk—(/ [/ vp] wq(x)dx) {/ UP}
& LJalgy) a(§,)
& [ rbl@) 74 rlar o pb(&) 17T/ k)
<2 (/ / oP | wi(z) da:) [/ VP } / vP
& LJag) a(¢;,) o(&)
& [ rblz) 4 rlap opoer) /e poler)
<4 (/ / oP | wi(x) dx) {/ Up:| / oP (t) dt
& LJa(§) a(y) a(&)
§e [ pblx) 749 r/a po(k) t 17T
<4 (/ / oP | wi(z) dx) / {/ vp} vP (t) dt
& La§) o(§,) La(o=1(t)

since a(&) = o(&;,), and b(&,) > o(&), by the construction of the %]’i = [, &) in the case
k
Jr. = 1. Notice that, by (1.4),

‘ L pele) ety i)
/ VP :/ VP :/ P = —/ P (2.11)
a(c~1(1)) a(c~1(1)) o(o=1(t)) 2 Jae—1)

Moreover, since a(&, ) < a(z) < a(&;) for € A, then

o) e pba) ba) ba) o)
/ vp:2/ vp+/ vp§2/ vp§2/ vp§2/ o, (2.12)
a(éy) a(&k) b(&,) a(ék) a(z) a(éy)
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Therefore, we obtain for the case j, = I:

& [ bl@ 749 r/a o) [opbleTt®)  1or/e
¥, <orfatr (/ {/ vp} wi(x) dx) / [/ vp] oP () dt
&, L/a(2) o(§,) La(o=1(1)

k

() r/a o) [ opble”®)  yr/e
<or/at2tr (/ quq) / [/ v”] oP (t) dt
o=t (a(&)) o(&) La(e=1(1))
(&) oM b(e™ (1)) rlap pbe=t®)  q-r/e
<or/atatr / ( / vqwq> [ / vp] oP (1) dt. (2.13)
a(ék) o~ ta(o=1(1))) a(o=1(1))

If j, > 1, then, by virtue of (2.12) and in view of (1.4),
Ik AN r/ar pb(¥)  q-r/p
Ek—Z(/ [/ vp} wq(x)da:> [/ vp}
i & a(§y) a(éy)
rk b(z) 74 r/q b(1%) ) —r/a  rb(lk) /
[/ vp} wl(x) da:) [/ vp} / VP
a(x) a(lh) ah)
Tk rk r/q b(Iy) /e by
—or+l Z(/ ! quQ> [/ ! UP:| / ! P (t) dt
= e a(lh) o(th)

Jk k
§27‘+1 Z (

rh /g rb(ik) t e
/ quq> / [/ vp] oP (t) dt.
= \Uer o) LJa@1)

k

Further, we obtain by (2.11), taking into account & > o '(a(r})) and b(l}) = o(r}), and
following the construction of the %f, Jj=1,...,J, in the case j, > 1, that

Ir. rk rla b opb(eT ®) 1Tl
S <or/atitr Z (/ quq) / {/ vp} oP () dt
j=1 W& o(lf) La(o=1(¥)

k

I

o= 1(b(1k)) r/q  po(rk) b(o=1(t)) -r/q
<or/atlr Z (/ ! quq> / ! [/ vp’} o (¢) dt
‘ o= Ha(r})) a(l%) a(o=1(t))

Jj=1

b(1k) (1)) rlar pbleTt®) /e
2r/¢1+1+r Z/ </ quq) [/ Up} vP (t) dt
o~ Ha(o=1(t))) a(o=1(1))

o(&) H(b(o (1)) rap bletw)  q-r/a
§2r/q+2+r/ (/ quq> {/ ’Up:| oP (t) dt (2.14)
a(€x) o~ ta(o71 (1)) a(o=t(t))

because no point of [a(&x), o(&)] lies in more than two of the [o(1}), b(l¥)]. Combining (2.8),
(2.10) with (2.13) and (2.14) leads to

o (&) o1 (b(a™ (1)) rlap pbeTi@)  1-r/e
1Szl <</ (/ V‘IwQ> V vp] oP () dt. (2.15)
a(€k) o= t(a(e71(1))) a(o=1(t))
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Analogously, by covering Af by the intervals s}, where j = j~ 4 1,..., Ny, we obtain from
(2.9) that
A CCa O)) rlap pbleTt®)  1-r/e
< [ (| var) [ ] Tewa e
o(&k) o~ Ha(o™1(1))) a(c™1(t))

Now, from (2.5), (2.15) and(2.16), we have by virtue of [19, Lemma 3.1] and by Hoélder’s
inequality with the powers r/q and p/q,

IR < D USTAIE+ ITE F1I2}

keZ
o= (oo™ (1)) rlap o pbete) q-r/a a/r
B Z{ (/ U V"wq} { / } o (1) dt) | X el
k€L (&) L/o~ta(o=1(®) a(o=1(t))
( b(&x) o~ 1(b(e1 (1)) r/q b(o—1(t)) / —r/q / q/T” Hq
o(&r) LJo=1(a(o™1(1))) a(o—1(t)) [a(€k),b(E )] I p
Z( e rlap pbleTt®) 17T/ q/r|| I,
< / {/ quql {/ 1)1"1 VP () dt) X o) biet
kez, \Yalér) o~ a(c~1(t))) a(o=1(t)) la(g;, ),0(&)]Hp
b(&x) o= (t))) rlap pblemi®)  1-r/a
o o S N T
kez ” a(o=1(t))

q/p
< Exsnilt) < (@I

keZ

qa/r

since no point of (0, 00) lies in more than two of the [a(&), b(&x)] and in more than three of the
[a(&;),b(&)]. From here the estimate ||H|| < (B,)* follows immediately.

The inequality ||H|| > (B,)* can be obtained analogously to the estimate ||| > B, in [19,
§4.1], where B, is the Mazya-Rozin type boundedness constant (1.6) for the operator H from
L? to L9. Namely, changing variables in the initial inequality

1751, < Cllfl

that reflects the boundedness of the operator H : LP — L9, we pass to the inequality

00 b(x) q 1/q 0o 1/p
(/ / fo| wl(x) dx) < C’(/ \f\p) (2.17)
0 a(x) 0

with a(z) = a(o™!(x)), b(z) = b(o~"(2)) and @(z) = w(o~(2))[(c~")'(2)]"/%. Notice, that, by
(2.11), the function &(x) = x is the fairway for the boundaries @ and b with respect to v in
this case. To establish the relation ||| > (B;)* for the case &(z) = x with

) or i rap b 1-rle 1
<Ba>*=(/ V Vw] U vp] vp(t)dt)
o Llaw a(t)

we employ the method for the proof of the estimate ||H| > B, in [19, §4.1, pp. 477-481],

extracting the inequality
1/r
-] > ngxgo( > Ak> (2.18)

|k|<N
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[ o) ([ o)

with

where
m=1 mui=a'(m), me—1=alm), ke (2.19)
It is possible to establish that

A > /n W ( /77 t { /77 lvp’(y) dy} qu?q(x) dx) . ( /n t lvp’(y) dy> _r/qvp/(t) dt (2.20)

(see [19, §4.2, pp. 491-492] or [16, §2.2.3, p. 90| for details). We also have, by (1.4) and (2.19),
for t € [7’}k+1,77k+2] that

t , Nk , Mh+1 t ,
/ v (y)dy = / v (y) dy + / P (y) dy + / o (y) dy
NMe—1 Me—1 Nk Mk+1

b(mi,) , b(nt1) , t )
= / oP (y) dy + / oP (y) dy + / o? (y) dy
n

k Mk+1 Mk+1
b(Mk+1) , b(t) . t )
< / v” (y) dy + / v (y) dy + / v” (y) dy
Nk Nk+1 Mk+1
b(Mrt1) , b(t) , b(t) ,
32/ v”(y)dy+2/ v”(y)dy§4/ oP (y) dy.
Mh+1 Nk+1 a(t)

Combining this with (2.20) we obtain, by (1.4), (2.19) and (2.11), that

2 UL oo (] con)

1
77k+2 q r/q b(t) ) —r/q ,
( [/ } wi(x) dx) (/ VP (y) dy) oP () dt
Me+1 ()
Mk+2 t b(z) q r/q ® -rle
> / (/ [/ vP (y) dy] wl(x) dx) (/ VP (y) dy) oP (t) dt,
Me+1 a(t) L/ a(z) a(t)

and, therefore, by (2.18),

1> Jim (Z /77 :T ( / t { / b(j) ,(y)dy} qwq(a:)dx) . ( /a :)t) Up’(y)dy) T/qvp'(wdt) v

|k|<N

— /0 h ( / ;) { / (b:) vp’} qwq(x) d:c) " ( / f:) vp’>_r/qvp’ (t) dt) " = (B,)". (2.21)

The estimate || #|| > (B;)* with

~ S b(t) r/q b(t) e 1/r
(By)" = ( / { / quq} [ / vp] P (t) dt)
0 t a(t)

=l

o
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can be proven similarly, using the intervals [, (x+1) formed by the boundary b(x):

=1, G =bG), G =0, ke Z. (2.22)
By using and (2.21), we obtain that

) b(t) b(t) ) q r/q
i > [ (/ [/ vﬂ(y)dy] w%a:)dx)
0 at) LJa()

X ( / o M dy> _r/qvp’(t) dt) " = (B,)*, (2.23)

a(t)

since a(x) = a(o(x)), b(z) = b(o~(z)) and w(z) = w(o™ (z))[(c~1) (z)]"/4.
If ¢ > 1 then the estimates ||H| ~ B, ~ (B,)* follow, by duality, from the equivalences
|H|| =~ (B,)* ~ B, applied to operator (2.3) from L? to L (see [20, Theorem 2.2| for details).
To show that ||H| < B, for 0 < ¢ < 1 we introduce sequence (2.4) and cover H as follows:

) = Xiter e @H (P e)) (@) + Xlera - €0 (O H (FXo7 ) ()

keZ
) X1 (@ (X ) () + Xiew o) (O H (F X515 e) ()
keZ
<> Spf(a) + TLf(2), (2.24)
kEZ

where §,(t) = [a(t), b(t)] = &5 () USF(£), 67 (t) == [a(t), p* (£)], 5 (1) == [p~"(¢), b(¢)] and

min{b(z),p~ (&)}

S2F(x) = w(x) /(g) fpdy e lGna o @), (225
b&k)

T? f(x) = w(a) / Fowdy (@ e b ED). ). (2.26)
max{p~1(&),a(x)}

Similarly to % , 7 =1,..., Ny, on Ay (see the first part of the proof), we form intervals of,
i=1,..., M, Mk =iy +zk, on b, := 6,(&) = 6, UG, k € Z, where 6 := 65 (&):

(15) (15) i b~ (p7' (&) < pla(&)) then i =1 and & = of;
(17) if a=*(p~' (&) > p(b(&)) then i =1 and §; = of

(25) (25) if b~ (p (Sk[

where o} =

REEE

) > pla(&e)) = b7 (p~' (b (p 1(5 )))) then i, = 2 and 6, = UL, ),
b(Ek—-1), D(p(b(E- 1)))] and 0§ = [p~ (b~ (p™1(&))), 7" (&k)];
(25) i a (p7H (&) < p(b(&k)) < a™ (p~ (a (p ! (&)))) then i = 2and 6 = UL, 0l

where g, = [p~ {6, p~ (o~ (o )] and 2, = falplo(Eus)) s

(3%) (35) if (b p D (&) > plalé )) (b~top™H)®)(¢ )then i =3 and 5, = U3 0F, where
[(§k 1), 0(p(0(Ex-1)))], &5 = [(p~ 0 b )P (p~ (&), (p~ 0 b™ ) '(p~"(&))] and
93 [ O (p M (6R)), *1(&)]

(B 0 57)(6) < p(60) < (™' ™)) then i =3 and 6 = Uatl
where Qiﬁlz[,o—l(m,p o (TGN gy = (07 o @)D (@), (0 o
O (6)] and o, = la(p(a(€), 6]
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We, finally, obtain that J, = Uk, of and o = Uzklef_+i, where for of C 6,
k

[b(fkfl), min{b(p(b(&x-1))), P_l(fk)}]a fori=1,
of = ¢ [(p~t o b G0 (p=H(&), (p7 o b =D (p7H(&))], fori=2,...,i
and if 7, > 1;

and if of C §;" then

[(p7 0™ )= =D (71 (&), (p~ " 0 b~ (p7H(&))], for i =i +1,...

. Mo -1
! and if i} > 1,

[max{p~" (&), a(p(a(&rs1)))}; al€kra)], for i = Nj.

Denote by s¥ the lower end-points of the of and by t¥ the upper end-points of the intervals oF.
Now, fixed k € Z, we cover Sy, and T}, by operators Sy, f(x) := S{(fx(sr 1) (2), 1 <8 <,

and TY, f(w) := TE(fxsr ) (%), 7, +1 <0 < M. By [19, (2.50) in Lemma 2.4 and (2.42) in
Lemma 2.3],

a ' (p™ (&) a p~ (&) r/p min{tf b(2)} N\ /P
st = | (/ ) ([T ) e
’ b=1(s%) 2 sf
a”Hp (&) a=Hp™ (&) —r/p'
Lo L)
b=1(sk) z
min{t} b(2)} 1 pa= (o~ (&) v T/’
X (/ {/ wq] VP (y) dy) wi(z)dz,
b= (y)
r/p th NP
(/ wq) (/ vp> w(z)dz
b1 (p™ (k) max{s},a(z)}
—r/p'
R
b=1(p=1(&))

a L(y) v r/p
( [ wq] VP (y) dy) wi(z) dz.
max{s},a(z) e (k)
<y

< p~ (&), by (1.5),

17" ~

/1k
i

Notice that for b(&,_1)

a(p7 (&) &k a”t(p™ (&) &k &k &k
/ wq=/ wq+/ wq:/ wq—i—/ wq§2/ w;
b= (y) b=1(y) &k b=1(y) b=1(p~1(&)) b=1(y)

analogously, for p~ (&) <y < a(&1)

a=(y) &k a=(y) a=(p™ (&) a™(y) a™(y)
/ wq:/ wq+/ wq:/ wq—l—/ wq§2/ w?.
b=1(p=1(&)) b=1(p=1(&)) I3 13" 13 &k

k
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Therefore, since —r/p’ +1 = —r/q’, where /¢’ < 0 for 0 < ¢ < 1, and in view of (1.5),

a Y (p~ (&) / papm (ER)) —r/p’ g pmin{tb(2)} - i
s < [ (/ I A A L R
’ bil(sf) z 8? bil(y)

a1 (e &)/ pa (o7 E) N /P, pmin{thb(2) o
</ ( / wq) ( / W @) e (4) dy
b=1(sk) z sk
BN e\l
K ( WP P ) ( / wq>
s b=1(sh)
and

tk) —r/p/ t? a—l (y) pl / ,,,/pl
e < [ ( / ) ( / { / wq] 7 (y) dy) wi(2) dz
b=1(p~1(&)) \Jb—1( max{s¥ a(2)} L/ &
a=t(tf) —r/p’ stk - i
(L) (L e ma) )
b 1(p—1 (&x)) b=1(p=1(&)) max{s¥ a(z)}
() —r/d
< ( w?r vp) (/ wq) .
sk &k

Thus, since 0 < ¢ < 1,

e i NP e —r/dya/r
Isertg < ottty < () w ) (L ) ] il e
i=1 i=1 b

,1(5};

N————
3
g
s
¥
(o
N

Si

and

i a=l(th)y \ —r/dya/r
mesy < S i< S ([ ) (/ﬁ ) Il 229
i=1 k

sz—f—l z

Consider estimates (2.27) and (2.28). If iy = 1, then b1 (p™*(&)) < p(a(&x)), and we have

by (1.5):
p (k) o r/p’ &k —r/q
1S21 = 17| =[182, ] < ( / W) ( / wq)
Tk b(&k—1) Ep—1

(&) . r/p’ &k /P &
=2 </ we v”) (/ wq) / wi(t) dt.
b(Ex—1) §k—1 p(a(ér))

Since a(t) < a(&) = b(&x_1) for t < &, and p= (&) < b(t) for b1 (p™1(&)) < pla(&y)) < t, then

&k —r/p’ P
HS;’SH’”—HSIZIHT«(/g wq) /“)(/ w) ()t
k—1 k
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Since &1 < b (p7(t)) for t > p(b(&x—1) = p(a(&x)), we obtain, in view of (1.5), that

4 t —r/p’
ISelr =I1SE, 7 < / (/ w) (/ wq) W (t) dt
pla(r)) b1 (p1(1))
r/p' “Lp~ (1) —r/p'
o [ () ()
(a(ér)) b=1(p=1(t))

Analogously, if ¢} = 1, then
p(b(&x)) b(t) ., r/p' a"l(p71(t)) —r/p’
21 = W < [ ( W ) ( / wq) wi(t) dt.
&k a(t) b= (p~1(t))

Let i;, > 1 and/or i} > 1. By the construction of the ok,

PUE) = p(sf) (L <i<in, ip > 1 aMsb) =) (i +1<i< My if > 1),

2

Then

&k a=(sF) a=t(sF) a= ' (tF) p(tF) p(t})
/ wqg/ wq:2/ wq§2/ wq:4/ wq:4/ w?,

b=1(s}) b=1(sF) p(sy) b1 (tF) b=1(tF) p(sf)

i i i a i ‘ a i i

(1), a(t) < a(p(ty)) < a(&) <57 (1<i<idp, @ > 1)

Thus, by taking into account (1.5), we obtain for the components in the right hand sides of
(2.27) and (2.28) if iy > 1 and i} > I:

N _—
(rve) Us)
sk b—1(
&k /P pp(tF)
<4 ( we ’Up) (/ wq> / wi(t) dt
sy b= (sf) p(sy)
p(th) b(t) r/p' t —r/p’
/ ( we Up> (/ wq) wi(t) dt
p(s) a(t) b= (p~ (1)
p(tF) /() /P s e (e (1) —r/v'
= 22”/”// (/ Wp/vp,) (/ wq) wi(t) dt,
p(sf) a(t) b= p~ (1)

<

W
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N i)\ T
(o) ()
s¥
a1 (tF) =/’ p(th)
<4 ( Wp vp) (/ wq> / wi(t)dt
f &k p(sF)
b(t) /' a=(p~1(t)) —r/p'
< 4/ ( we vp> (/ wq) wi(t)dt
p(st) \Ja@v t
o(t) / pb(t) Y i) N e
= 22“/”// </ W”Ivf”/) (/ wq> wi(t) dt.
p(sF) a(t) b= (p~ (1))

This yields, in particular, (2.27), by Holder’s inequality with powers r/q and p/q,

p(th) bty NP a t(p=t(®) N /P q/r
||Spf||q<<2[ Lo ) () o] i
b=1(p

) —1(®)

r/p’ a~(p~1(t)) —T/p i a/p
W) (/ ) dt) ( ||fx.k||”)
( / (/ b—1<p—1<t)> z; o
ak e e O BN alr
< ( / ( Wp P ) ( / wq) w(t)dt ) N fXaten) ool
pla(er)) \Ja(t) b1 (p= ()

since no point of [p(a(&)), &) lies in more than two of the [p(sF), p(tF)], and no point of
[a(&), p~1(&)] lies in more than two of the [sF,t¥], where

[p(a(&)), & = Uln(s1), o)) and  [a(&e), 7 (€)] = st #)

Analogously, we obtain the following estimate for || T} f|:

pbE) /b N a0 ®) N /Y afr
sty (L e ) (L7 ) ) el
€k a(t) b=t (p~ 1 (1))

Now, we have, by Holder’s inequality with the powers r/q and p/q, by virtue of [19, Lemma
3.1], that

IHfNE < Y ISErlg + 1T f N

keZ
&k b(t) . r/p : e q/r
< Z(/ ( WP Up) (W(p~(t))] w(t) dt) 1 Xater)o1 e ]|
kez \Yra(ér)) \Va(t)

pBE) by NTI ”
Jr(/5 ( W%P) W (o (£))] ()dt> 1 Xt e bcenllp
k

a(t)

<> [ e ( / W) /[W<p-1<t>>}”"’w%t)dt)wﬂfx el

kEZ

(R0 (L) o)
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q/p
X (ZHfX[a@k),b(skn H;’Z) < BI|IfI1%,

kEZ

and the estimate ||| < B, is proven.
To establish the estimate ||H| < (B,)* in the case 0 < ¢ < 1 we cover Sp + T}, k € Z, as
follows

My—1

ISEF+TLANE< D IHE S +HE i fIE
=1

M —1 ti‘c+1 r/p a‘l(t§+1) r/q1q/r
g ’ X peupn, IS (2.29)
= ; sk ! b—1(sk) v XpiUpz‘+1 p’ ’

Here ’Hz,i stands for S,’c”i if 1 <4 <4, and for T,ﬁi in the case i, +1 <i < M.
For any i € {1,..., M}, — 1} we compare V} := fgk v and V% and denote

k k k
ko 9; V; > V@'+17
v k k k

Oiv1, Vi< Vi

Notice that W (sF) ~ W (tF) = W(sk ;) = W(th, ) = W(z), z € of U 0¥, by the construction

of {o}.
We write, in view of /¢ =r—1/¢ =rp' /¢ +p — 1/,

t§+1 , r/p’ a_l(t§+l) r/q
o+ =) ()
, 7 sk b=1(sk)
! k
S
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Analogously, if gf = oF ; then

t§+1 / /
Bf;( vap) / (W ()] =/ ¥ (t) dt
k k

/ ( vap) [W(t)]?*’“/qvp (t)dt

r/q
/ ( Wp’vp’> (W ()P ="/ o¥ (t) dt
ax{p~! a(p(t)}

r/d
/ ( W vp) (W ()] /9% (t) dt
~1(b-1(t))

IN

IN

r/qd
+ / ( W vp) [W ()P /40P (t) dt.
(p(1))

k
Sit1

We, finally, obtain from (2.29), by Holder’s inequality with the powers r/q and p/q:
I#11G <D ISEf + TEAII

keZ
M—1 M—1 y
<D MRS FHE <Y Y B X g, I
keZ =1 keZ =1
Mk 1 Mk 1
k
(X3 %) (2% W)
keZ i=1 keZ i=1
M1 a/p
(33 ) (S ivwcnelt)
keZ =1 keZ

a/p
<9u/rta/" [(B) ]q(Z \Ifx[a(sk»b(sk)]\lﬁ) < 2[(B,)"]"lI 117

kEZ

For proving the lower estimates ||| > B, ||| > (B,)* in the case 0 < ¢ < 1 we assume,
first, that p(y) = y. The claims will be established under this condition on p if we show that

1M > B, I1HIE> B0 17> (B,), (2.30)

B, = (/m U WP’UP']r/plW(p—l(t))—r/P'wq(t) dt) W.

p

where

Let us prove inequalities (2.30) with B__,, (B,.,)* and (B__,)*. The arguments for B}_,, (B} ,)*
and (B,_,)* are similar.

Splitting (0,00) by points (2.19) (with @ = a) we form the sequence of mtervals 6, (n )
taking into account that p(y) = y. After this, we cover each &, (1) by [mf_ 1,mf§], n =
1,...,n,, constructed as follows. For fixed & € Z we denote [Nk_] the integer part of the

number

Nk+1 q
S b=t (nx)
N, =logy e .
b1 (ng41)
Then we put mg = ny, My = Mt and choose m,,, n =0,...,n,, as follows:
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1. if [N ] <1 then n, =1,

2. if N7 > 1 then n, = {%‘L . j/:/[ ; %
k )

Nk+1 Nk+1
/ w! = 2/ w. (2.31)
b~ l(mp—1) b~ L(my)

Fixed k € Z we denote 7% = b@‘ﬁ(jﬂ )wq the elements of the strongly decreasing sequence

& with 0 < n < [N] (see |5, Definition 2.2(a)] for details), because 7% _; > 2% by the
construction. Moreover,

and we choose m,, for 1 <n < [N ] so

that

Mk+1 Mk+1
/ Wl ~ / W~ W),  yemt_,mh]. (2.32)
b=t (my_y) b=t (m})
Let
M1 —r/(pq')+p'—1 mk ) , /(pd’)
o= ([ wrtoya) ([ wwwome)

b_l(mﬁ,—ﬂ mﬁ—l

and define
Z Z Xt o)) b K EN.
—K n=1

Since (m%_,, mF) are mutually disjoint for all k € Z andn = 1,...,n,, and since r/p’ = 1+r/¢,

IIfalp—ZZ/ R dy—ZZl/ iy

keZ n=1 —K n=1

, T/ Nk+1 —r/q
(/ PP (y) dy> (/ wq> . (2.33)
Kn 1 m b_l(mﬁ—ﬂ

Since a(mk) < mk < mF | then [mk_| mF] C [a(z),b(z)] for z € [b~1(mF),mF], n =
1,...,n,. Moreover,

b(mF_ ) > mF, (2.34)

n—1

where b=t (mF) = mf if n;, > 1. If we assume the contrary to (2.34) for some 1 < n < n, then,

by the construction,
Mk+1 Nk+1 Nk+1
/ w? <2 / wd < 2 / wi,
b=t (my_y) b=t (mi) M

that contradicts (1.5).

Now we cover [ny, nk+1] by {TT’f}Zil as follows. If n; = 1 then 7F = [y, Mks1). In the case

ny > 1weput 7t = [b~'(mkE), mE] forn =n, —1and n = n;, and let 7F = [~ (mF), b~ (mk )]
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for1<n<mn, —1ifn, >2. Sincer/(pg')+1=1r/(p'q) and —r/p' +1= —r/q’, then

Il > ¢ Z 5 / ( B v(y)dy)qwq(:v)dx

=—K n=1
) q
Z Z/ (/ Ui VP (y)x[mﬁ,l,m’fl](y) dy) wi(z) dz
—K n=1
Nht1 —rq/(pqd')—q+1 ; pmk oo\ e/ ed)
R )
K n=1 b=t(mk_)) mk_,
K my; . P Mht1 -
~ ) Z(/ (W (y)[” v (y) dy) (/ uﬂ) , (2.35)
hm K n=1 \/mi_y b=t (mk_})

because no point of |1y, nx11] lies in more than two of the 7*. In combination with (2.33) and
under assumption ||H|| < oo this yields the estimate

[ > Jim Z Z(/ W Up) pl(/b"’““ 1)wq)_r/q' zzzium, (2.36)

k
_K n=1 H(my keZ n=1

which is true for ¢ > 1 as well.
In order to establish the estimate ||H| > B,_, we write, using (2.32), taking into account

—r/q >0, and denoting m*, = m{™,

i m):L VA T/p/ ’
{ WP P ] W ()P wi(t) dt
ez n=1 7 M1 L/, (1)

"k mp NP Nh+1 -r/q
<<ZZ</ vap> (/ wq)
kez n=1 \Ja(my_;) b=1(mk)
ZZ( N e\
< W Up) ( / wq>
vz ne1 \Jmg ! b=1(mk)
e mk . r/p Mh+1 —r/d
p P q
<SS( [ we) ([ )
keZ n=0 \Y Mg b=t(mk)
mf ., /v’ Nk+1 —r/q
<Z{Z (Z [ ) ( / wq) } (237)
ez Ln=0 Ni—0 M, b=1(mk)

Since r/p’ < 1 and for each k € Z the 4 form strongly decreasing sequence, we obtain by [5,
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Proposition 2.1(b)]:

"o mp r/p' Mhot1 —r/q
S (S [T wre) ([ )
n=0 \1=0 /M, b=t (mk)
TL; mlfl ., T/p/ Me+1 77‘/(1’
< Z </ V% vp) (/ wq>
n=0 mﬁ—l b=1(mk)
Ny_q mk—1 o r/p' e —r/q
<2 (/ we vp) </ wq)
n=1 \mpT b=t (mi )

This yields

k—

mET N —r/d
Q<1 <<Z|:Z(/ — vap) (/b 1( )wq>
1 my 1

k€Z =n=1 -

ny, mk r/p Nt 1 —r/q
+ Z / we'y?' / w?
_ mk _ b1 (mﬁ71 )

<2ZZ(/ WPqﬂ)) pl(/:k“ll)wq)_r/q_zzﬂm (2.38)

k
keZ n=1 H(my, keZ n=1

In combination with (2.36) this implies that||#[| > B__,.
To establish that ||H| > (B,.,)* and [[#H][| > (B,_,)* notice that by the construction (see
e.g. (2.34)) and in view of r/p' — 1 =1r/q' <0,

r q’ , , Nk+1 *T/q/
U / </ W (y)? v¥'( )dy) W ()P oP (t)dt (/ wq>
p -1 b_l(mfl—l)
l,cl T/ql Me4-1 *T/q/ , ,
= [ / worvoma) ([T w)  wer o
mﬁ—l t bil(mzfl)

k

my a1t () , , r/q , , ,
~ [ ( [y dy) Wy o (1)t
mk t

n—1

For the same reasons,

r/q , , Nk+1 —-r/q
ukn:/ (/ W (y)? o* (y) dy ) W (t)? vp(t)dt(/ wq)
mk b=t (my;_y)
/ / T/q/ Me+1 _T/q’ / /
/ ( W(y)? V¥ (y) dy> (/ wq> W(t)? vP (t)dt
mk b=1(mk_))

m t r/q
~ [ ( [ wwr ) dy) Wy o (1)t
mk a(t)

:w

1
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Combination of these relations with (2.36) gives the required inequalities ||| > (B,.,)* and
1] > (Byer)™

It remains to confirm that B,o; < B,>; for ¢ < 1 and B,»1 < By« if ¢ > 1. Since the
proofs of these inequalities are similar to each other, we shall establish the one for ¢ < 1 only.
Observe that if n,, > 1 then, by (2.31) and in view of (1.5),

Mh+1 b=t (mk) Nt 1
/ wq:2/ wq:/ w, 1<n<n, —1,
b=t(mk ) b=(mk ) b=1(mk)

1

where my = b(mf). Thus, we obtain if n, > 3, taking into account (2.34),

Mk+1 , , T/p, b_l(m,l,gH_l) MNk+1 _T/p/
Z,ukn<<z< vap> /bl( wq</b )wq)
1

my) Hmy
b=t(mk ) () . r/p' Mht+1 —r/p’
< Z / (/ wer vp> wi(t) (/ wq) dt
t(my) () b=t (my; )
T b~ 1(mn+1) (@) ., r/p' ,
~ ) / ( / wr vp> W ()P wi(t) dt
n=1 Jo7H(m3) b= (®)

Mot1 a"l(t) ., T/’ ,
< / ( / WP P ) W ()P wi(t) dt.
Nk b=1(t)

If n, <3 we have

NMk+1 ., /P’ pmin{b(ny)me41} ,
Z [kn <<( WP P ) / W ()P wi(t) dt

Nk

/

min{b(nk),Mk+1} a=t(t) . T/p ,
< / ( / WP P ) W ()™ /P wi(t)dt
Nk b=1(t)

Nk+1 a”1l(t) o r/p’ )
< / ( / WP ) W (t)~"/Pwi(t) dt.
Nk b=1(t)

Together with (2.38) these lead to

B, < B (2.39)
Analogously, but by starting with establishing the estimate for B, similar to that in (2.38),
we can prove that B,_; < Bgs1. Together with (2.39), this gives By < Bgs1. O
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