Eurasian Mathematical Journal

2017, Volume 8, Number 2

Founded in 2010 by
the L.N. Gumilyov Eurasian National University
in cooperation with
the M.V. Lomonosov Moscow State University
the Peoples' Friendship University of Russia
the University of Padua

Supported by the ISAAC (International Society for Analysis, its Applications and Computation) and by the Kazakhstan Mathematical Society

Published by the L.N. Gumilyov Eurasian National University Astana, Kazakhstan

EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors-in-Chief

V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (China), O.V. Besov (Russia), N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud (France), A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov (Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia), M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany), A. Hasanoglu (Turkey), M. Huxley (Great Britain), M. Imanaliev (Kyrgyzstan), P. Jain (India), T.Sh. Kalmenov (Kazakhstan), B.E. Kangyzhin (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin (Great Britain), V. Kokilashvili (Georgia), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic), L.K. Kussainova (Kazakhstan), P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), V.G. Maz'ya (Sweden), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan), K.N. Ospanov (Kazakhstan), I.N. Parasidis (Greece), J. Pečarić (Croatia), S.A. Plaksa (Ukraine), L.-E. Persson (Sweden), E.L. Presman (Russia), M.A. Ragusa (Italy), M.D. Ramazanov (Russia), M. Reissig (Germany), M. Ruzhansky (Great Britain), S. Sagitov (Sweden), T.O. Shaposhnikova (Sweden), A.A. Shkalikov (Russia), V.A. Skvortsov (Poland), G. Sinnamon (Canada), E.S. Smailov (Kazakhstan), V.D. Stepanov (Russia), Ya.T. Sultanaev (Russia), I.A. Taimanov (Russia), T.V. Tararykova (Great Britain), J.A. Tussupov (Kazakhstan), U.U. Umirbaev (Kazakhstan), Z.D. Usmanov (Tajikistan), N. Vasilevski (Mexico), Dachun Yang (China), B.T. Zhumagulov (Kazakhstan)

Managing Editor

A.M. Temirkhanova

Aims and Scope

The Eurasian Mathematical Journal (EMJ) publishes carefully selected original research papers in all areas of mathematics written by mathematicians, principally from Europe and Asia. However papers by mathematicians from other continents are also welcome.

From time to time the EMJ publishes survey papers.

The EMJ publishes 4 issues in a year.

The language of the paper must be English only.

The contents of EMJ are indexed in Scopus, Web of Science (ESCI), Mathematical Reviews, MathSciNet, Zentralblatt Math (ZMATH), Referativnyi Zhurnal – Matematika, Math-Net.Ru.

The EMJ is included in the list of journals recommended by the Committee for Control of Education and Science (Ministry of Education and Science of the Republic of Kazakhstan) and in the list of journals recommended by the Higher Attestation Commission (Ministry of Education and Science of the Russian Federation).

Information for the Authors

<u>Submission.</u> Manuscripts should be written in LaTeX and should be submitted electronically in DVI, PostScript or PDF format to the EMJ Editorial Office via e-mail (eurasianmj@yandex.kz).

When the paper is accepted, the authors will be asked to send the tex-file of the paper to the Editorial Office.

The author who submitted an article for publication will be considered as a corresponding author. Authors may nominate a member of the Editorial Board whom they consider appropriate for the article. However, assignment to that particular editor is not guaranteed.

Copyright. When the paper is accepted, the copyright is automatically transferred to the EMJ. Manuscripts are accepted for review on the understanding that the same work has not been already published (except in the form of an abstract), that it is not under consideration for publication elsewhere, and that it has been approved by all authors.

<u>Title page</u>. The title page should start with the title of the paper and authors' names (no degrees). It should contain the <u>Keywords</u> (no more than 10), the <u>Subject Classification</u> (AMS Mathematics Subject Classification (2010) with primary (and secondary) subject classification codes), and the Abstract (no more than 150 words with minimal use of mathematical symbols).

<u>Figures</u>. Figures should be prepared in a digital form which is suitable for direct reproduction.

<u>References</u>. Bibliographical references should be listed alphabetically at the end of the article. The authors should consult the Mathematical Reviews for the standard abbreviations of journals' names.

<u>Authors' data.</u> The authors' affiliations, addresses and e-mail addresses should be placed after the References.

<u>Proofs.</u> The authors will receive proofs only once. The late return of proofs may result in the paper being published in a later issue.

Offprints. The authors will receive offprints in electronic form.

Publication Ethics and Publication Malpractice

For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the EMJ implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The EMJ follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/New_Code.pdf). To verify originality, your article may be checked by the originality detection service CrossCheck http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the EMJ.

The Editorial Board of the EMJ will monitor and safeguard publishing ethics.

The procedure of reviewing a manuscript, established by the Editorial Board of the Eurasian Mathematical Journal

1. Reviewing procedure

- 1.1. All research papers received by the Eurasian Mathematical Journal (EMJ) are subject to mandatory reviewing.
- 1.2. The Managing Editor of the journal determines whether a paper fits to the scope of the EMJ and satisfies the rules of writing papers for the EMJ, and directs it for a preliminary review to one of the Editors-in-chief who checks the scientific content of the manuscript and assigns a specialist for reviewing the manuscript.
- 1.3. Reviewers of manuscripts are selected from highly qualified scientists and specialists of the L.N. Gumilyov Eurasian National University (doctors of sciences, professors), other universities of the Republic of Kazakhstan and foreign countries. An author of a paper cannot be its reviewer.
- 1.4. Duration of reviewing in each case is determined by the Managing Editor aiming at creating conditions for the most rapid publication of the paper.
- 1.5. Reviewing is confidential. Information about a reviewer is anonymous to the authors and is available only for the Editorial Board and the Control Committee in the Field of Education and Science of the Ministry of Education and Science of the Republic of Kazakhstan (CCFES). The author has the right to read the text of the review.
 - 1.6. If required, the review is sent to the author by e-mail.
 - 1.7. A positive review is not a sufficient basis for publication of the paper.
- 1.8. If a reviewer overall approves the paper, but has observations, the review is confidentially sent to the author. A revised version of the paper in which the comments of the reviewer are taken into account is sent to the same reviewer for additional reviewing.
- 1.9. In the case of a negative review the text of the review is confidentially sent to the author.
- 1.10. If the author sends a well reasoned response to the comments of the reviewer, the paper should be considered by a commission, consisting of three members of the Editorial Board.
- 1.11. The final decision on publication of the paper is made by the Editorial Board and is recorded in the minutes of the meeting of the Editorial Board.
- 1.12. After the paper is accepted for publication by the Editorial Board the Managing Editor informs the author about this and about the date of publication.
- 1.13. Originals reviews are stored in the Editorial Office for three years from the date of publication and are provided on request of the CCFES.
 - 1.14. No fee for reviewing papers will be charged.

2. Requirements for the content of a review

- 2.1. In the title of a review there should be indicated the author(s) and the title of a paper.
- 2.2. A review should include a qualified analysis of the material of a paper, objective assessment and reasoned recommendations.
 - 2.3. A review should cover the following topics:
 - compliance of the paper with the scope of the EMJ;
 - compliance of the title of the paper to its content;
- compliance of the paper to the rules of writing papers for the EMJ (abstract, key words and phrases, bibliography etc.);
- a general description and assessment of the content of the paper (subject, focus, actuality of the topic, importance and actuality of the obtained results, possible applications);

- content of the paper (the originality of the material, survey of previously published studies on the topic of the paper, erroneous statements (if any), controversial issues (if any), and so on);
- exposition of the paper (clarity, conciseness, completeness of proofs, completeness of bibliographic references, typographical quality of the text);
- possibility of reducing the volume of the paper, without harming the content and understanding of the presented scientific results;
- description of positive aspects of the paper, as well as of drawbacks, recommendations for corrections and complements to the text.
- 2.4. The final part of the review should contain an overall opinion of a reviewer on the paper and a clear recommendation on whether the paper can be published in the Eurasian Mathematical Journal, should be sent back to the author for revision or cannot be published.

Web-page

The web-page of EMJ is www.emj.enu.kz. One can enter the web-page by typing Eurasian Mathematical Journal in any search engine (Google, Yandex, etc.). The archive of the web-page contains all papers published in EMJ (free access).

Subscription

For Institutions

- US\$ 200 (or equivalent) for one volume (4 issues)
- US\$ 60 (or equivalent) for one issue

For Individuals

- US\$ 160 (or equivalent) for one volume (4 issues)
- US\$ 50 (or equivalent) for one issue.

The price includes handling and postage.

The Subscription Form for subscribers can be obtained by e-mail:

eurasian mj@yandex.kz

The Eurasian Mathematical Journal (EMJ)
The Editorial Office

The L.N. Gumilyov Eurasian National University

Building no. 3 Room 306a

Tel.: +7-7172-709500 extension 33312

13 Kazhymukan St 010008 Astana Kazakhstan This issue contains the first part of the collection of papers sent to the Eurasian Mathematical Journal dedicated to the 70th birthday of Professor R. Oinarov.

The first part of the collection was published in Volume 8, Number 1.

EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879

Volume 8, Number 2 (2017), 47 – 73

ON THE BOUNDEDNESS OF QUASILINEAR INTEGRAL OPERATORS OF ITERATED TYPE WITH OINAROV'S KERNELS ON THE CONE OF MONOTONE FUNCTIONS

V.D. Stepanov and G.E. Shambilova

Communicated by V. Kokilashvili

Dedicated to the 70th birthday of Professor Ryskul Oinarov

Keywords: Hardy type inequality, weighted Lebesgue space, quasilinear integral operator, Oinarov's kernel, cone of monotone functions.

AMS Mathematics Subject Classification: 26D15

Abstract. We solve the characterization problem of $L_v^p - L_\rho^r$ weighted inequalities on Lebesgue cones of monotone functions on the half-axis for quasilinear integral operators of iterated type with Oinarov's kernels.

1 Introduction

Denote \mathfrak{M} the set of all measurable functions on $\mathbb{R}_+ := [0, \infty)$, $\mathfrak{M}^+ \subset \mathfrak{M}$ the subset of all non-negative functions and $\mathfrak{M}^{\downarrow} \subset \mathfrak{M}^+$ is the cone of all non-increasing functions.

If $0 and <math>v \in \mathfrak{M}^+$ we define

$$L_v^p := \left\{ f \in \mathfrak{M} : \|f\|_{L_v^p} := \left(\int_0^\infty |f(x)|^p v(x) dx \right)^{\frac{1}{p}} < \infty \right\},$$

$$L_v^{\infty} := \left\{ f \in \mathfrak{M} : \|f\|_{L_v^{\infty}} := \underset{x \ge 0}{\operatorname{ess \, sup}} \ v(x)|f(x)| < \infty \right\}.$$

The story was started since 90's of the last century, when in a process of characterization of the weighted Hardy inequality

$$||Hf||_{L^q_m} \le C||f||_{L^p_n}, \ f \in \mathfrak{M}^+,$$
 (1.1)

with $1 \le p \le \infty, 0 < q \le \infty$, where

$$Hf(x) := \int_0^x f(y)dy$$
 or $Hf(x) := \int_x^\infty f(y)dy$,

basically given in the papers [38] $(1 , [6] <math>(1 \le p = q \le \infty)$, [2] $(1 , [5] <math>(1 \le p, q \le \infty)$, [30] $(0 < q < 1 < p < \infty)$, [31] (0 < q < 1 = p), further extensions were found for some convolution operators [34], [35], [4]. For a more general transformation a

breakthrough was achieved by R. Oinarov [15] (with an earlier announcement in [16]) for the operator

$$Kf(x) := \int_0^x k(x, y) f(y) dy, \qquad (1.2)$$

where a kernel $k(x,y) \geq 0$ satisfies

$$k(x,y) \approx k(x,z) + k(z,y), \ 0 \le y \le z \le x. \tag{1.3}$$

The Oinarov techniques used to prove (1.1) (with K instead of H) and alternative proofs found in [1], [37] have opened up the study in many directions: for general Lebesgue spaces with measures, higher dimensions, general Banach function spaces, different classes of functions and so on (see [13], [14], [26] and references therein).

In particular, the problem appeared in connection with the necessity to consider weighted integral inequalities on the cones of monotone and quasiconcave functions which arise in the study of the classical operators in weighted Lebesgue and Lorentz spaces (see, for example, [27], [12], [8], [29], more recent papers [21], [19], [20], surveys [7], [9]). It was recently revealed that new quasilinear integral operators of iterated type are involved into study of the problems on the cones of monotone and quasi-concave functions (see, for instance, [3], [19], [20], [25]).

Let $u, v, w, \rho \in \mathfrak{M}^+$, $0 < p, r, q \leq \infty$. In this paper we study the problem of characterizing the inequality

$$||Rf||_{L_{\rho}^{r}} \le C||f||_{L_{\nu}^{p}}, \ f \in \mathfrak{M}^{\downarrow}, \tag{1.4}$$

where a constant C does not depend on f and is assumed the least possible. Operator R is a quasilinear integral operators of the forms

$$\mathcal{T}f(x) := \left(\int_0^x k_1(x,y)w(y) \left(\int_y^\infty k_2(z,y)f(z)u(z)dz\right)^q dy\right)^{\frac{1}{q}},\tag{1.5}$$

$$Sf(x) := \left(\int_0^x k_1(x, y) w(y) \left(\int_0^y k_2(y, z) f(z) u(z) dz \right)^q dy \right)^{\frac{1}{q}}, \tag{1.6}$$

where the kernels $k_i(x,y) \ge 0$, (i = 1,2) satisfy Oinarov's condition (1.3). Symmetrical cases

$$Tf(x) := \left(\int_{x}^{\infty} k_1(y, x) w(y) \left(\int_{0}^{y} k_2(y, z) f(z) u(z) dz \right)^{q} dy \right)^{\frac{1}{q}}, \tag{1.7}$$

$$Sf(x) := \left(\int_x^\infty k_1(y, x) w(y) \left(\int_y^\infty k_2(z, y) f(z) u(z) dz \right)^q dy \right)^{\frac{1}{q}}, \tag{1.8}$$

were recently characterized in [33].

It have been solved for $k_1(x,y) = k_2(x,y) = 1, 0 \le y \le x$ (see [28]) by the reduction method [9] to weighted inequalities of an analogous form on cones of non-negative functions. These are actively studied [10], [11], [24], [25], [23] and found various applications [3], [17], [18], [19]. Observe, that characterization of (1.4) with two-kernel operators (1.5)–(1.6) required a more complicated technique. As in [28], the main results have a reduction form, i.e., for each of the operators (1.5)–(1.6), the inequality (1.4) is reduced to validity of analogous inequalities on the cone of nonnegative functions, criteria for which are known.

In Section 2, we obtain a criterion for the fulfillment of (1.4) with the operator \mathcal{T} , in Section 3, with the operator \mathcal{S} , and in Section 4, we formulate for completeness results for the operators (1.7) μ (1.8).

Throughout the article, the products of the form $0 \cdot \infty$ are assumed equal to 0. The record $A \lesssim B$ means $A \leq cB$ with c a constant depending only on p, q and r; $A \approx B$ is equivalent $A \lesssim B \lesssim A$. Also \mathbb{Z} stands for the set of all integers,and χ_E – characteristic function (indicator) of a set $E \subset (0,\infty)$. We use the symbols := and =: for defining new quantities. If $1 \leq p \leq \infty$, then $p' := \frac{p}{p-1}$ for $1 , <math>p' := \infty$ for p = 1 and p' := 1 for $p = \infty$.

2 The operator \mathcal{T}

Put $V(t) := \int_0^t v$, $U(t) := \int_0^t u$, $W(t) := \int_t^\infty w$, $\widetilde{u} := \frac{u}{V^{\frac{2}{p}}}$, $\widetilde{U}(t) := \int_t^\infty \widetilde{u}$, $0 < t < \infty$. Assume for simplicity that $0 < \int_x^\infty \rho < \infty$, $0 < \int_x^\infty w < \infty$ for every x > 0 and $\int_0^\infty \rho = \infty$, $\int_0^\infty w = \infty$. Define the sequence $\{b_n\} \subset (0,\infty)$ from the equations

$$\int_{b_n}^{\infty} \rho = 2^{-n}, \ n \in \mathbb{Z}. \tag{2.1}$$

Let $\zeta:[0,\infty)\to[0,\infty)$ and $\zeta^{-1}:[0,\infty)\to[0,\infty)$ be define by the formulas (here $\sup\varnothing=0$)

$$\zeta(x) := \sup \left\{ y > 0 : \int_y^\infty \rho \ge \frac{1}{2} \int_x^\infty \rho \right\}, \zeta^{-1}(x) := \sup \left\{ y > 0 : \int_y^\infty \rho \ge 2 \int_x^\infty \rho \right\}. \tag{2.2}$$

Then ζ and ζ^{-1} are increasing functions such that $\int_{\zeta(x)}^{\infty} \rho = \frac{1}{2} \int_{x}^{\infty} \rho$, $\int_{\zeta^{-1}(x)}^{\infty} \rho = 2 \int_{x}^{\infty} \rho$. In particular, $\zeta(b_n) = b_{n+1}$, $b_n = \zeta^{-1}(b_{n+1})$.

Given $0 < c < d \le \infty, 0 < t, p < \infty, h \in \mathfrak{M}^+$, put

$$\widetilde{T}_t h(x) := \chi_{(0,t]}(x) \left(\int_x^\infty k_2(s,x) \widetilde{u}(s) \left(\int_0^s hV \right)^{\frac{1}{p}} ds \right)^p, \tag{2.3}$$

$$\widetilde{T}_{[c,d]}h(x) := \chi_{[c,d]}(x) \left(\int_x^{\zeta(d)} k_2(s,x) \widetilde{u}(s) \left(\int_c^s hV \right)^{\frac{1}{p}} ds \right)^p. \tag{2.4}$$

$$\left\| \widetilde{T}_t \right\|_{L_v^p \to L_w^q} := \sup_{0 \neq h \in \mathfrak{M}^+} \frac{\left(\int_0^\infty [\widetilde{T}_t h]^q w \right)^{\frac{1}{q}}}{\left(\int_0^\infty [h]^p v \right)^{\frac{1}{p}}} \tag{2.5}$$

Theorem 2.1. Let $0 < q < \infty, 0 < p < \infty, 0 < r < \infty$. Then the best constant C_T in

$$\left(\int_0^\infty [\mathcal{T}f(x)]^r \rho(x) dx\right)^{\frac{1}{r}} \le C_{\mathcal{T}} \left(\int_0^\infty [f(x)]^p v(x) dx\right)^{\frac{1}{p}}, f \in \mathfrak{M}^{\downarrow}$$
 (2.6)

satisfies

$$C_{\mathcal{T}} \approx \mathcal{A}_1 + \mathcal{A}_2 + \mathcal{A}_3 + \mathcal{A}_4 + B$$

where A_1, A_2, A_3, A_4 are the best constants in the inequalities

$$\left(\int_0^\infty \rho(x) \left(\int_0^x k_1(x,y)k_2(x,y)^q w(y)dy\right)^{\frac{r}{q}} \left(\int_x^\infty \left(\int_0^s hV\right)^{\frac{1}{p}} \tilde{u}(s)ds\right)^r dx\right)^{\frac{p}{r}} \le \mathcal{A}_1^p \int_0^\infty h,\tag{2.7}$$

$$\left(\int_{0}^{\infty} \rho(x) \left(\int_{0}^{x} k_{1}(x,y)w(y)dy\right)^{\frac{r}{q}} \left(\int_{x}^{\infty} k_{2}(s,x) \left(\int_{0}^{s} hV\right)^{\frac{1}{p}} \tilde{u}(s)ds\right)^{r} dx\right)^{\frac{p}{r}} \leq \mathcal{A}_{2}^{p} \int_{0}^{\infty} h, \tag{2.8}$$

$$\left(\int_{0}^{\infty} \rho(x) \left(\int_{0}^{x} k_{1}(x,y)w(y) \left(\int_{y}^{\infty} k_{2}(s,y)\tilde{u}(s)ds\right)^{q} \left(\int_{0}^{y} hV\right)^{\frac{q}{p}} dy\right)^{\frac{r}{q}} dx\right)^{\frac{p}{r}} \leq \mathcal{A}_{3}^{p} \int_{0}^{\infty} h, \tag{2.9}$$

$$\left(\int_{0}^{\infty} \rho(x)k_{1}(x,\zeta^{-2}(x))^{\frac{r}{q}} \left(\int_{0}^{\zeta^{-2}(x)} w(y) \left(\int_{y}^{\infty} k_{2}(s,y)\tilde{u}(s) \left(\int_{0}^{s} hV\right)^{\frac{1}{p}}\right)^{q} dy\right)^{\frac{r}{q}} dx\right)^{\frac{p}{r}} \leq \mathcal{A}_{4}^{p} \int_{0}^{\infty} h, \tag{2.10}$$

for $h \in \mathfrak{M}^+$, and the constant B has the form

$$B := \begin{cases} \sup_{t>0} \left(\int_t^\infty \rho \right)^{\frac{1}{r}} \left\| \widetilde{T}_t \right\|_{L^1 \to L_{k_1(t,\cdot)w(\cdot)}}^{\frac{1}{p}}, & p \le r, \\ \left(\int_0^\infty \rho(x) \left[\left(\int_x^\infty \rho \right) \left\| \widetilde{T}_{[\zeta^{-1}(x),\zeta^2(x)]} \right\|_{L^1 \to L_{k_1(\zeta^2(x),\cdot)w(\cdot)}}^{\frac{q}{p}} \right]^{\frac{s}{p}} dx \right)^{\frac{1}{s}}, & r < p, \end{cases}$$

where $\frac{1}{s} := \frac{1}{r} - \frac{1}{p}$.

Proof. The change $f^p \to f$ in (2.6) leads to the inequality

$$\left(\int_0^\infty \rho(x) \left(\int_0^x k_1(x,y)w(y) \left(\int_y^\infty k_2(s,y)f^{\frac{1}{p}}(s)u(s)ds\right)^q dy\right)^{\frac{r}{q}} dx\right)^{\frac{p}{r}} \leq C_{\mathcal{T}}^p \int_0^\infty fv.$$

Using Theorem 3.2 from [9], we obtain the equivalent inequality

$$\left(\int_0^\infty \rho(x) \left(\int_0^x k_1(x,y)w(y) \left(\int_y^\infty k_2(s,y)\tilde{u}(s) \left(\int_0^s hV\right)^{\frac{1}{p}} ds\right)^q dy\right)^{\frac{r}{q}} dx\right)^{\frac{p}{r}} \le C_T^p \int_0^\infty h, \tag{2.11}$$

for $h \in \mathfrak{M}^+$.

The upper bound. Bellow we shall use well-known relation (see, for example, [12], Proposition 2.1)

$$\sum_{n \in \mathbb{Z}} 2^{-n} \left(\sum_{i \le n} a_i \right)^s \approx \sum_{n \in \mathbb{Z}} 2^{-n} a_n^s, \tag{2.12}$$

valid for all sequences of nonnegative numbers and every s > 0. Put

$$T_p h(y) := \left(\int_y^\infty k_2(s, y) \tilde{u}(s) \left(\int_0^s hV \right)^{\frac{1}{p}} ds \right)^p.$$

We write

$$J := \sum_{n} \int_{b_{n-1}}^{b_n} \rho(x) \left(\int_0^x k_1(x, y) w(y) \left(T_p h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}} dx$$

$$\ll \sum_{n} 2^{-n} \left(\int_{0}^{b_{n}} k_{1}(b_{n}, y)w(y) \left(T_{p}h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}} \\
\approx \sum_{n} 2^{-n} \left(\int_{0}^{b_{n-2}} k_{1}(b_{n}, y)w(y) \left(T_{p}h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}} \\
+ \sum_{n} 2^{-n} \left(\int_{b_{n-2}}^{b_{n}} k_{1}(b_{n}, y)w(y) \left(T_{p}h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}} =: J_{1} + J_{2}.$$

$$J_{2} \approx \sum_{n} 2^{-n} \left(\int_{b_{n-2}}^{b_{n}} k_{1}(b_{n}, y)w(y) \left(\int_{y}^{b_{n+1}} k_{2}(s, y)\tilde{u}(s) \left(\int_{0}^{s} hV \right)^{\frac{1}{p}} ds \right)^{q} dy \right)^{\frac{r}{q}} \\
+ \sum_{n} 2^{-n} \left(\int_{b_{n-2}}^{b_{n}} k_{1}(b_{n}, y)w(y) \left(\int_{b_{n+1}}^{\infty} k_{2}(s, y)\tilde{u}(s) \left(\int_{0}^{s} hV \right)^{\frac{1}{p}} ds \right)^{q} dy \right)^{\frac{r}{q}} =: J_{2,1} + J_{2,2}.$$

By Oinarov's condition (1.3) we have $k_2(s,y) \approx k_2(x,y) + k_2(s,x)$ for $y \leq x \leq s$. Hence,

$$J_{2,2} \approx \sum_{n} \int_{b_{n}}^{b_{n+1}} \rho(x) dx \left(\int_{b_{n-2}}^{b_{n}} k_{1}(b_{n}, y) w(y) \left(\int_{b_{n+1}}^{\infty} k_{2}(s, y) \tilde{u}(s) \left(\int_{0}^{s} hV \right)^{\frac{1}{p}} ds \right)^{q} dy \right)^{\frac{r}{q}}$$

$$\approx \sum_{n} \int_{b_{n}}^{b_{n+1}} \rho(x) dx \left(\int_{b_{n-2}}^{b_{n}} k_{1}(b_{n}, y) k_{2}^{q}(x, y) w(y) \left(\int_{b_{n+1}}^{\infty} \left(\int_{0}^{s} hV \right)^{\frac{1}{p}} \tilde{u}(s) ds \right)^{q} dy \right)^{\frac{r}{q}}$$

$$+ \sum_{n} \int_{b_{n}}^{b_{n+1}} \rho(x) dx \left(\int_{b_{n-2}}^{b_{n}} k_{1}(b_{n}, y) w(y) \left(\int_{b_{n+1}}^{\infty} k_{2}(s, x) \tilde{u}(s) \left(\int_{0}^{s} hV \right)^{\frac{1}{p}} ds \right)^{q} dy \right)^{\frac{r}{q}}$$

$$\ll \int_{0}^{\infty} \rho(x) \left(\int_{0}^{x} k_{1}(x, y) k_{2}^{q}(x, y) w(y) dy \right)^{\frac{r}{q}} \left(\int_{x}^{\infty} \left(\int_{0}^{s} hV \right)^{\frac{1}{p}} \tilde{u}(s) ds \right)^{r} dx$$

$$+ \int_{0}^{\infty} \rho(x) \left(\int_{0}^{x} k_{1}(x, y) w(y) dy \right)^{\frac{r}{q}} \left(\int_{x}^{\infty} k_{2}(s, x) \tilde{u}(s) \left(\int_{0}^{s} hV \right)^{\frac{1}{p}} ds \right)^{r} dx$$

$$\ll \left(\mathcal{A}_{1}^{r} + \mathcal{A}_{2}^{r} \right) \|h\|_{L^{1}}^{\frac{r}{p}}. \tag{2.13}$$

Write

$$J_{2,1} \approx \sum_{n} 2^{-n} \left(\int_{b_{n-2}}^{b_n} k_1(b_n, y) w(y) \left(\int_{y}^{b_{n+1}} k_2(s, y) \tilde{u}(s) \left(\int_{0}^{b_{n-2}} hV \right)^{\frac{1}{p}} ds \right)^{q} dy \right)^{\frac{r}{q}}$$

$$+ \sum_{n} 2^{-n} \left(\int_{b_{n-2}}^{b_n} k_1(b_n, y) w(y) \left(\int_{y}^{b_{n+1}} k_2(s, y) \tilde{u}(s) \left(\int_{b_{n-2}}^{s} hV \right)^{\frac{1}{p}} ds \right)^{q} dy \right)^{\frac{r}{q}} =: J_{2,1,1} + J_{2,1,2}$$

We have

$$J_{2,1,1} \approx \sum_{n} \int_{b_{n}}^{b_{n+1}} \rho(x) \left(\int_{b_{n-2}}^{b_{n}} k_{1}(b_{n}, y) w(y) \left(\int_{y}^{b_{n+1}} k_{2}(s, y) \tilde{u}(s) \left(\int_{0}^{b_{n-2}} hV \right)^{\frac{1}{p}} ds \right)^{q} dy \right)^{\frac{r}{q}}$$

$$\leq \int_{0}^{\infty} \rho(x) \left(\int_{0}^{x} k_{1}(x, y) w(y) \left(\int_{y}^{\infty} k_{2}(s, y) \tilde{u}(s) ds \right)^{q} \left(\int_{0}^{y} hV \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}} dx \leq \mathcal{A}_{3}^{r} \|h\|_{L^{1}}^{\frac{r}{p}}. \tag{2.14}$$

Next, using (2.3) and (2.4), we obtain

$$J_{2,1,2} = \sum_{n} 2^{-n} \left[\left(\int_{b_{n-2}}^{b_n} k_1(b_n, y) w(y) \left(\widetilde{T}_{[b_{n-2}, b_n]} h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{p}{q}} \right]^{\frac{r}{p}}$$

$$\leq \sum_{n} 2^{-n} \left\| \widetilde{T}_{[b_{n-2},b_n]} \right\|_{L^1[b_{n-2},b_{n+1}] \to L^{\frac{q}{p}}_{k_1(b_n,\cdot)w(\cdot)}[b_{n-2},b_n]} \left(\int_{b_{n-2}}^{b_{n+1}} h \right)^{\frac{r}{p}}.$$

For $p \leq r$ by Jensen's inequality

$$J_{2,1,2} \leq \sup_{n} \left(\int_{b_{n+1}}^{\infty} \rho \right) \left\| \widetilde{T}_{[b_{n-2},b_n]} \right\|_{L^1 \to L^{\frac{q}{p}}_{k_1(b_n,\cdot)w(\cdot)}}^{\frac{r}{p}} \left(\int_{0}^{\infty} h \right)^{\frac{r}{p}}$$

$$\leq \sup_{t>0} \left(\int_{t}^{\infty} \rho \right) \left\| \widetilde{T}_{t} \right\|_{L^1 \to L^{\frac{q}{p}}_{k_1(t,\cdot)w(\cdot)}}^{\frac{r}{p}} \left(\int_{0}^{\infty} h \right)^{\frac{r}{p}}.$$

Hence,

$$J_{2,1,2}^{\frac{p}{r}} \le B^p \int_0^\infty h. \tag{2.15}$$

For r < p, by Hölder's inequality, we find with $\frac{1}{s} = \frac{1}{r} - \frac{1}{p}$ that

$$J_{2,1,2} \le \left(\sum_{n} 2^{\frac{-ns}{r}} \left\| \widetilde{T}_{[b_{n-2},b_n]} \right\|_{L^1 \to L^{\frac{q}{p}}_{k_1(b_n,\cdot)w(\cdot)}}^{\frac{r}{p}} \right)^{\frac{r}{s}} \left(\int_0^\infty h \right)^{\frac{r}{p}}.$$

because

$$\sum_{n} 2^{\frac{-ns}{r}} \left\| \widetilde{T}_{[b_{n-2},b_n]} \right\|_{L^{1} \to L^{\frac{q}{p}}_{k_{1}(b_{n},\cdot)w(\cdot)}}^{\frac{s}{p}}$$

$$\approx \sum_{n} \left(\int_{b_{n-2}}^{b_{n-1}} \rho \right) \left(\int_{b_{n-1}}^{\infty} \rho \right)^{\frac{s}{p}} \left\| \widetilde{T}_{[\zeta^{-1}(b_{n-1}),\zeta^{2}(b_{n-2})]} \right\|_{L^{1} \to L^{\frac{q}{p}}_{k_{1}(\zeta^{2}(b_{n-2}),\cdot)w(\cdot)}}^{\frac{s}{p}}$$

$$\leq \sum_{n} \int_{b_{n-2}}^{b_{n-1}} \rho(x) \left[\left(\int_{x}^{\infty} \rho \right) \left\| \widetilde{T}_{[\zeta^{-1}(x),\zeta^{2}(x)]} \right\|_{L^{1} \to L^{\frac{q}{p}}_{k_{1}(\zeta^{2}(x),\cdot)w(\cdot)}} \right]^{\frac{s}{p}} dx$$

$$= \int_{0}^{\infty} \rho(x) \left[\left(\int_{x}^{\infty} \rho \right) \left\| \widetilde{T}_{[\zeta^{-1}(x),\zeta^{2}(x)]} \right\|_{L^{1} \to L^{\frac{q}{p}}_{k_{1}(\zeta^{2}(x),\cdot)w(\cdot)}} \right]^{\frac{s}{p}} dx = B^{s}.$$

Therefore,

$$J_{2,1,2}^{\frac{p}{r}} \le B^p \int_0^\infty h. \tag{2.16}$$

Consider

$$J_1 = \sum_{n} 2^{-n} \left(\int_0^{b_{n-2}} k_1(b_n, y) w(y) \left(T_p h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}}$$

$$= \sum_{n} 2^{-n} \left(\sum_{i \le n} \int_{b_{i-3}}^{b_{i-2}} k_1(b_n, y) w(y) \left(T_p h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}}$$

$$\approx \sum_{n} 2^{-n} \left(\sum_{i \le n} \int_{b_{i-3}}^{b_{i-2}} k_1(b_n, b_{i-1}) w(y) \left(T_p h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}}$$

$$+ \sum_{n} 2^{-n} \left(\sum_{i \le n} \int_{b_{i-3}}^{b_{i-2}} k_1(b_{i-1}, y) w(y) \left(T_p h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}} =: J_{1,1} + J_{1,2}.$$

Applying (2.12), we get

$$J_{1,2} \leq \sum_{n} 2^{-n} \left(\int_{b_{n-3}}^{b_{n-1}} k_1(b_{n-1}, y) w(y) \left(T_p h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}} \approx J_2$$

$$\leq \left(\mathcal{A}_1^r + \mathcal{A}_2^r + \mathcal{A}_3^r + B^r \right) \|h\|_{L^1}^{\frac{r}{p}}. \tag{2.17}$$

To estimate $J_{1,1}$, we use inequality (see [9], Lemma 3.1)

$$k_1(b_n, b_{i-1}) \ll \left(\sum_{j=i}^n k_1(b_j, b_{j-1})^{\alpha}\right)^{\frac{1}{\alpha}}, \ \alpha \in (0, 1)$$
 (2.18)

and Minkowski's inequality to derive that

$$J_{1,1} = \sum_{n} 2^{-n} \left(\sum_{i \leq n} k_{1}(b_{n}, b_{i-1}) \int_{b_{i-3}}^{b_{i-2}} w(y) \left(T_{p}h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}}$$

$$\ll \sum_{n} 2^{-n} \left(\sum_{i \leq n} \left(\sum_{j=i}^{n} k_{1}(b_{j}, b_{j-1})^{\alpha} \right)^{\frac{1}{\alpha}} \int_{b_{i-3}}^{b_{i-2}} w(y) \left(T_{p}h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}}$$

$$\leq \sum_{n} 2^{-n} \left(\sum_{j \leq n} k_{1}(b_{j}, b_{j-1})^{\alpha} \left(\sum_{i \leq j} \int_{b_{i-3}}^{b_{i-2}} w(y) \left(T_{p}h(y) \right)^{\frac{q}{p}} dy \right)^{\alpha} \right)^{\frac{r}{\alpha q}}$$

$$= \sum_{n} 2^{-n} \left(\sum_{j \leq n} k_{1}(b_{j}, b_{j-1})^{\alpha} \left(\int_{0}^{b_{j-2}} w(y) \left(T_{p}h(y) \right)^{\frac{q}{p}} dy \right)^{\alpha} \right)^{\frac{r}{\alpha q}}$$

$$\stackrel{(2.12)}{\approx} \sum_{n} 2^{-n} \left(k_{1}(b_{n}, b_{n-1}) \left(\int_{0}^{b_{n-2}} w(y) \left(T_{p}h(y) \right)^{\frac{q}{p}} dy \right) \right)^{\frac{r}{q}}$$

$$\approx \sum_{n} \int_{b_{n}}^{b_{n+1}} \rho(x) k_{1}(b_{n}, b_{n-1})^{\frac{r}{q}} \left(\int_{0}^{b_{n-2}} w(y) \left(T_{p}h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}} dx$$

$$\leq \sum_{n} \int_{b_{n}}^{b_{n+1}} \rho(x) k_{1}(x, \zeta^{-2}(x))^{\frac{r}{q}} \left(\int_{0}^{\zeta^{-2}(x)} w(y) \left(T_{p}h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}} dx$$

$$= \int_0^\infty \rho(x)k_1(x,\zeta^{-2}(x))^{\frac{r}{q}} \left(\int_0^{\zeta^{-2}(x)} w(y) \left(T_p h(y)^{\frac{q}{p}} dy \right) \right)^{\frac{r}{q}} dx \le \mathcal{A}_4^r \|h\|_{L^1}^{\frac{r}{p}}$$
(2.19)

It follows from (2.13)-(2.19) that the upper estimate $C_{\mathcal{T}} \ll A_1 + A_2 + A_3 + A_4 + B$ is proved. The lower bound. Diminish the domains of integration in (2.11):

- (1) $[y, \infty] \to [x, \infty]$ and obtain $C_{\mathcal{T}} \geq \mathcal{A}_1 + \mathcal{A}_2$ (since $k_2(s, y) \approx k_2(x, y) + k_2(s, x)$ for $0 < y \leq x \leq s$).
 - (2) $[0, s] \rightarrow [0, y]$ and obtain $C_{\mathcal{T}} \geq \mathcal{A}_3$.
- (3) $[0,x] \to [0,\zeta^{-2}(x)]$ and obtain $C_{\mathcal{T}} \geq \mathcal{A}_4$ (since $k_1(x,y) \gtrsim k_1(x,\zeta^{-2}(x))$ for $y \leq \zeta^{-2}(x) < x$).

Inequality (2.11) for $h \in \mathfrak{M}^+$ implies that

$$\left(\int_{t}^{\infty}\rho\right)^{\frac{p}{r}}\left(\int_{0}^{t}k_{1}(t,y)w(y)\left(\int_{y}^{\infty}k_{2}(s,y)\tilde{u}(s)\left(\int_{0}^{s}hV\right)^{\frac{1}{p}}ds\right)^{q}dy\right)^{\frac{p}{q}}\leq C_{\mathcal{T}}^{p}\int_{0}^{\zeta(t)}h,$$

therefore, $C_{\mathcal{T}} \gg B$, and the theorem is proved for $p \leq r$.

It remains to find the lower bound for B when r < p. We have

$$B^{s} = \int_{0}^{\infty} \rho(x) \left[\left(\int_{x}^{\infty} \rho \right) \left\| \widetilde{T}_{[\zeta^{-1}(x),\zeta^{2}(x)]} \right\|_{L^{1} \to L^{\frac{q}{p}}_{k_{1}(\zeta^{2}(x),\cdot)w(\cdot)}} \right]^{\frac{s}{p}} dx$$

$$= \sum_{n} \int_{b_{n-1}}^{b_{n}} \rho(x) \left[\left(\int_{x}^{\infty} \rho \right) \left\| \widetilde{T}_{[\zeta^{-1}(x),\zeta^{2}(x)]} \right\|_{L^{1} \to L^{\frac{q}{p}}_{k_{1}(\zeta^{2}(x),\cdot)w(\cdot)}} \right]^{\frac{s}{p}} dx$$

$$\leq \sum_{n} \int_{b_{n-1}}^{b_{n}} \rho(x) dx \left(\int_{b_{n-1}}^{\infty} \rho \right)^{\frac{s}{p}} \left\| \widetilde{T}_{[\zeta^{-1}(b_{n-1}),\zeta^{2}(b_{n})]} \right\|_{L^{1} \to L^{\frac{q}{p}}_{k_{1}(\zeta^{2}(x),\cdot)w(\cdot)}}^{\frac{s}{p}}$$

$$\approx \sum_{n} 2^{-\frac{ns}{r}} \left\| \widetilde{T}_{[b_{n-2},b_{n+2}]} \right\|_{L^{1} \to L^{\frac{q}{p}}_{k_{1}(b_{n+2},\cdot)w(\cdot)}}^{\frac{s}{p}}.$$

Hence

$$B^{s} \ll \sum_{n} 2^{-\frac{ns}{r}} \left\| \widetilde{T}_{[b_{n-2},b_{n+2}]} \right\|_{L^{1} \to L^{\frac{q}{p}}_{k_{1}(b_{n+2},\cdot)w(\cdot)}}^{\frac{s}{p}} =: \mathcal{B}^{s}.$$

Let $\theta \in (0,1)$ be some fixed number. Then for every $n \in \mathbb{Z}$ there exists $h_n \in L^1[b_{n-2}, b_{n+3}]$ such that $||h_n||_{L^1[b_{n-2}, b_{n+3}]} = 1$ and

$$\left\| \widetilde{T}_{[b_{n-2},b_{n+2}]} h_n \right\|_{L^{\frac{q}{p}}_{k_1(b_{n+2},\cdot)w(\cdot)}} \ge \theta \left\| \widetilde{T}_{[b_{n-2},b_{n+2}]} \right\|_{L^1 \to L^{\frac{q}{p}}_{k_1(b_{n+2},\cdot)w(\cdot)}}.$$

Put

$$g_n := 2^{\frac{-ns}{r}} \left\| \widetilde{T}_{[b_{n-2},b_{n+2}]} \right\|_{L^1 \to L^{\frac{q}{p}}_{k_1(b_{n+2},\cdot)w(\cdot)}}^{\frac{s}{p}} h_n; \ \mathbf{T}_n := \left\| \widetilde{T}_{[b_{n-2},b_{n+2}]} \right\|_{L^1 \to L^{\frac{q}{p}}_{k_1(b_{n+2},\cdot)w(\cdot)}}; \ g := \sum g_n.$$

Then

$$||g||_{L^1} \ll \sum_n \int_{b_{n-2}}^{b_{n+3}} g_n = \sum_n 2^{\frac{-ns}{r}} \mathbf{T}_n^{\frac{s}{p}} = \mathcal{B}^s.$$

On the other hand

$$D := \int_{0}^{\infty} \rho(x) \left(\int_{0}^{x} k_{1}(x, y) w(y) (T_{p}g(y))^{\frac{q}{p}} \right)^{\frac{r}{q}} dx$$

$$\gg \sum_{n} \int_{b_{n+2}}^{b_{n+3}} \rho(x) dx \left[\left(\int_{b_{n-2}}^{b_{n+2}} k_{1}(b_{n+2}, y) w(y) (T_{p}g(y))^{\frac{q}{p}} \right)^{\frac{p}{q}} \right]^{\frac{r}{p}}$$

$$\gg \sum_{n} 2^{-n} \left[\left(\int_{b_{n-2}}^{b_{n+2}} k_{1}(b_{n+2}, y) w(y) \left[\left(\int_{y}^{b_{n+3}} k_{2}(s, y) \tilde{u}(s) \left(\int_{b_{n-2}}^{s} g_{n} V \right)^{\frac{1}{p}} ds \right)^{\frac{q}{p}} \right]^{\frac{r}{p}} dy \right)^{\frac{p}{q}} dy \right]^{\frac{p}{q}}$$

$$= \sum_{n} 2^{-n} \left[\left(\int_{b_{n-2}}^{b_{n+2}} k_{1}(b_{n+2}, y) w(y) \left(\widetilde{T}_{[b_{n-2}, b_{n+2}]} g_{n} \right)^{\frac{q}{p}} dy \right)^{\frac{p}{q}} dy \right]^{\frac{r}{p}}$$

$$= \sum_{n} 2^{-n} 2^{\frac{-ns}{p}} \mathbf{T}_{n}^{\frac{sr}{p}} \left\| \widetilde{T}_{[b_{n-2}, b_{n+2}]} h_{n} \right\|_{L_{k_{1}(b_{n+2}, \cdot)w(\cdot)}^{\frac{r}{p}}} \ge \theta^{\frac{r}{p}} \sum_{n} 2^{\frac{-ns}{r}} \mathbf{T}_{n}^{\frac{s}{p}} = \theta^{\frac{r}{p}} \mathcal{B}^{s}.$$

Inequality (2.11) yields

$$\mathcal{B}^s C^p_{\mathcal{T}} \gg C^p_{\mathcal{T}} \|g\|_{L^1} \stackrel{(2.11)}{\geq} D^{\frac{p}{r}} \gg \theta \mathcal{B}^{\frac{sp}{r}}.$$

Consequently,

$$C_{\mathcal{T}} \gg \theta^{\frac{1}{p}} \mathcal{B} \geq \theta^{\frac{1}{p}} B.$$

Since $\theta \in (0,1)$ is arbitrary, $C_{\mathcal{T}} \gg B$.

Remark 1. (1) If $q = \infty$ then $C_T \approx A_1 + A_2 + A_3 + A_4 + B$, where A_1, A_2, A_3 and A_4 are the best constants in

$$\left(\int_{0}^{\infty} \rho(x) \left[\operatorname{ess\,sup}_{y \in (0,x)} k_{1}(x,y) k_{2}(x,y) w(y)\right]^{r} \left(\int_{x}^{\infty} \left(\int_{0}^{s} hV\right)^{\frac{1}{p}} \tilde{u}(s) ds\right)^{r} dx\right)^{\frac{p}{r}} \leq \mathcal{A}_{1}^{p} \int_{0}^{\infty} h, \quad (2.20)$$

$$\left(\int_{0}^{\infty} \rho(x) \left[\operatorname{ess\,sup}_{y \in (0,x)} k_{1}(x,y) w(y)\right]^{r} \left(\int_{x}^{\infty} k_{2}(s,x) \left(\int_{0}^{s} hV\right)^{\frac{1}{p}} \tilde{u}(s) ds\right)^{r} dx\right)^{\frac{p}{r}} \leq \mathcal{A}_{2}^{p} \int_{0}^{\infty} h, \quad (2.21)^{\frac{p}{r}} ds = 0$$

$$\left(\int_{0}^{\infty} \rho(x) \left[\operatorname{ess\,sup}_{y \in (0,x)} k_{1}(x,y) w(y) \left(\int_{y}^{\infty} k_{2}(s,y) \tilde{u}(s) ds \right) \left(\int_{0}^{y} hV \right)^{\frac{1}{p}} \right]^{r} dx \right)^{\frac{p}{r}} \leq \mathcal{A}_{3}^{p} \int_{0}^{\infty} h, \quad (2.22)$$

$$\left(\int_{0}^{\infty} \rho(x)k_{1}(x,\zeta^{-2}(x))^{r} \left[\operatorname{ess\,sup}_{y \in (0,\zeta^{-2}(x))} w(y) \left(\int_{y}^{\infty} k_{2}(s,y)\tilde{u}(s) \left(\int_{0}^{s} hV\right)^{\frac{1}{p}} ds \right) \right]^{r} dx \right)^{\frac{r}{r}} \leq \mathcal{A}_{4}^{p} \int_{0}^{\infty} h, \tag{2.23}$$

for $h \in \mathfrak{M}^+$ and the constant B has the form

$$B := \begin{cases} \sup_{t>0} \left(\int_t^\infty \rho \right)^{\frac{1}{r}} \left\| \tilde{T}_t \right\|_{L^1 \to L^\infty_{k_1(t,\cdot)w(\cdot)}}^{\frac{1}{p}}, & p \le r, \\ \left(\int_0^\infty \rho(x) \left[\left(\int_x^\infty \rho \right) \left\| \tilde{T}_{[\zeta^{-1}(x),\zeta^2(x)]} \right\|_{L^1 \to L^\infty_{k_1(\zeta^2(x),\cdot)w(\cdot)}} \right]^{\frac{s}{p}} dx \right)^{\frac{1}{s}}, & r < p. \end{cases}$$

(2) if $p = \infty$ or $r = \infty$, then

$$C_{\mathcal{T}} = \|\mathcal{T}(\frac{1}{v})\|_{L_{\rho}^{r}}, \ p = \infty;$$

$$C_{\mathcal{T}} \approx \sup_{t>0} \mathcal{R}(t) \|\widetilde{T}_{t}\|_{L_{V}^{1} \to L_{k_{1}(t,\cdot)w(\cdot)}^{\frac{q}{p}}}^{\frac{q}{p}}, \ r = \infty,$$

where

$$\mathcal{R}(t) := \underset{z > t}{\text{ess sup}} \rho(z).$$

Proof. (1) For $q = \infty$, we have

$$J := \sum_{n} \int_{b_{n-1}}^{b_{n}} \rho(x) \left[\underset{y \le x}{\text{ess sup }} k_{1}(x, y) w(y) \left(T_{p} h(y) \right)^{\frac{1}{p}} \right]^{r} dx$$

$$\ll \sum_{n} 2^{-n} \left[\underset{y \in (0, b_{n-2}]}{\text{ess sup }} k_{1}(b_{n}, y) w(y) \left(T_{p} h(y) \right)^{\frac{1}{p}} \right]^{r}$$

$$+ \sum_{n} 2^{n} \left[\underset{y \in (b_{n-2}, b_{n}]}{\text{ess sup }} k_{1}(b_{n}, y) w(y) \left(T_{p} h(y) \right)^{\frac{1}{p}} \right]^{r} =: J_{1} + J_{2}.$$

By analogy to Theorem 2.1, we prove the inequality

$$J_2 \ll (\mathcal{A}_1^r + \mathcal{A}_2^r + \mathcal{A}_3^r + B^r) \|h\|_{L^1}^{\frac{1}{p}}.$$
 (2.24)

To estimate J_1 use relation

$$\sum_{n \in \mathbb{Z}} 2^{-n} \left(\sup_{i \ge n} a_i \right)^s \approx \sum_{n \in \mathbb{Z}} 2^{-n} a_n^s. \tag{2.25}$$

instead of (2.12). We have

$$J_{1} = \sum_{n} 2^{-n} \left[\underset{y \in (0,b_{n-2}]}{\operatorname{ess \, sup}} k_{1}(b_{n}, y) w(y) \left(T_{p}h(y) \right)^{\frac{1}{p}} \right]^{r} =$$

$$= \sum_{n} 2^{-n} \left[\underset{i \leq n}{\operatorname{sup \, ess \, sup}} k_{1}(b_{n}, y) w(y) \left(T_{p}h(y) \right)^{\frac{1}{p}} \right]^{r}$$

$$\approx \sum_{n} 2^{-n} \left[\underset{i \leq n}{\operatorname{sup \, ess \, sup}} k_{1}(b_{n}, b_{i-1}) w(y) \left(T_{p}h(y) \right)^{\frac{1}{p}} \right]^{r}$$

$$+ \sum_{n} 2^{n} \left[\sup_{i \ge n} \underset{y \in (b_{i-3}, b_{i-2}]}{\text{ess sup}} k_{1}(b_{i-1}, y) w(y) \left(T_{p} h(y) \right)^{\frac{1}{p}} \right]^{r} =: J_{1,1} + J_{1,2}.$$

Applying (2.25) as in Theorem 2.1, we obtain

$$J_{1,2} \le (\mathcal{A}_1^r + \mathcal{A}_2^r + \mathcal{A}_3^r + B^r) \|h\|_{L^1}^{\frac{r}{p}}.$$
 (2.26)

To estimate $J_{1,1}$ we use Minkowski's inequality and (2.18) to see that

$$J_{1,1} = \sum_{n} 2^{-n} \left[\sup_{i \le n} \underset{y \in (b_{i-3}, b_{i-2}]}{\operatorname{ess \, sup}} k_1(b_n, b_{i-1}) w(y) \left(T_p h(y) \right)^{\frac{1}{p}} \right]^r$$

$$\ll \sum_{n} 2^{-n} \left[\sup_{i \le n} \left(\sum_{j=i}^{n} k_1(b_j, b_{j-1})^{\alpha} \right)^{\frac{1}{\alpha}} \underset{y \in (b_{i-3}, b_{i-2}]}{\operatorname{ess \, sup}} w(y) \left(T_p h(y) \right)^{\frac{1}{p}} \right]^r$$

$$\leq \sum_{n} 2^{-n} \left[\sum_{j \le n} k_1(b_j, b_{j-1})^{\alpha} \left(\sup_{i \le j} \underset{y \in (b_{i-3}, b_{i-2}]}{\operatorname{ess \, sup}} w(y) \left(T_p h(y) \right)^{\frac{1}{p}} \right)^{\alpha} \right]^{\frac{r}{\alpha}}$$

$$= \sum_{n} 2^{-n} \left[\sum_{j \le n} k_1(b_j, b_{j-1}) \underset{y \le b_{j-2}}{\operatorname{ess \, sup}} w(y) \left(T_p h(y) \right)^{\frac{1}{p}} \right]^r$$

$$\approx \sum_{n} \sum_{j=1}^{n} \sum_{j=1}^{n} k_1(b_n, b_{n-1})^r \left[\underset{j \le b_{n-2}}{\operatorname{ess \, sup}} w(y) \left(T_p h(y) \right)^{\frac{1}{p}} \right]^r$$

$$\approx \sum_{n} \int_{b_n}^{b_{n+1}} \rho(x) dx k_1(b_n, b_{n-1})^r \left[\underset{j \le b_{n-2}}{\operatorname{ess \, sup}} w(y) \left(T_p h(y) \right)^{\frac{1}{p}} \right]^r$$

$$\leq \sum_{n} \int_{b_n}^{b_{n+1}} \rho(x) k_1(x, \zeta^{-2}(x))^r \left[\underset{j \le \zeta^{-2}(x)}{\operatorname{ess \, sup}} w(y) \left(T_p h(y) \right)^{\frac{1}{p}} \right]^r dx$$

$$= \int_{0}^{\infty} \rho(x) k_1(x, \zeta^{-2}(x))^r \left[\underset{j \le \zeta^{-2}(x)}{\operatorname{ess \, sup}} w(y) \left(T_p h(y) \right)^{\frac{1}{p}} \right]^r dx \le \mathcal{A}_4^r \|h\|_{L_1}^{\frac{r}{p}}. \tag{2.27}$$

Relations (2.24)-(2.27) imply the upper estimate $C_{\mathcal{T}} \ll A_1 + A_2 + A_3 + A_4 + B$. The lower estimate is proved by analogy to Theorem 2.1.

Remark 2. Sharp two-sided estimates of the best constants in (2.7)–(2.9), (2.20)–(2.22) and the constants B by explicit integral functionals are found by reduction theorems in [24], [25] and criteria for the boundedness of Hardy-type integral operators [15], [31], [32], [22]. However, (2.10) and (2.23) contain an additional iteration on the left-hand sides, therefore, we give the separate reduction for this case (see Lemma 2.1).

Supposed that $\lambda, \mu, \nu, \eta \in \mathfrak{M}^+$ and the kernel k(x, y) satisfies Oinarov's condition (1.3), while the sequence b_n and the function $\zeta(x)$ are defined by (2.1) and (2.2) with λ in place of ρ . Given $0 < c < d \le \infty, 0 < t, q < \infty, h \in \mathfrak{M}^+$ put

$$\widetilde{T}_t h(x) := \chi_{(0,t]}(x) \left(\int_x^\infty k(s,x) \nu(s) \left(\int_0^s h \right)^{\frac{1}{q}} ds \right)^q, \tag{2.28}$$

$$\widetilde{T}_{[c,d]}h(x) := \chi_{[c,d]}(x) \left(\int_{x}^{\zeta(d)} k(s,x)\nu(s) \left(\int_{c}^{s} h \right)^{\frac{1}{q}} ds \right)^{q}.$$

$$(2.29)$$

Lemma 2.1. Let $0 < p, q, r < \infty$. Then for the best constant C in the inequality

$$\left(\int_{0}^{\infty} \lambda(x) \left(\int_{0}^{x} \mu(y) \left(\int_{y}^{\infty} k(s,y)\nu(s) \left(\int_{0}^{s} h\right)^{q} ds\right)^{\frac{r}{q}} dy\right)^{\frac{p}{r}} dx\right)^{\frac{1}{p}} \leq C \int_{0}^{\infty} h\eta, h \in \mathfrak{M}^{+}$$

satisfies

$$C \approx G_1 + G_2 + G_3 + G,$$

where G_1, G_2, G_3 are the best constants in the inequalities

$$\left(\int_{0}^{\infty} \lambda(x) \left(\int_{0}^{x} \mu(y)[k(x,y)]^{\frac{r}{q}} dy\right)^{\frac{p}{r}} \left(\int_{x}^{\infty} \nu(s) \left(\int_{0}^{s} h\right)^{q} ds\right)^{\frac{p}{q}} dx\right)^{\frac{1}{p}} \leq G_{1} \int_{0}^{\infty} h\eta,$$

$$\left(\int_{0}^{\infty} \lambda(x) \left(\int_{0}^{x} \mu\right)^{\frac{p}{r}} \left(\int_{x}^{\infty} k(s,x)\nu(s) \left(\int_{0}^{s} h\right)^{q} ds\right)^{\frac{p}{q}} dx\right)^{\frac{1}{p}} \leq G_{2} \int_{0}^{\infty} h\eta,$$

$$\left(\int_{0}^{\infty} \lambda(x) \left(\int_{0}^{x} \mu(y) \left(\int_{y}^{\infty} k(s,y)\nu(s) ds\right)^{\frac{r}{q}} \left(\int_{0}^{y} h\right)^{r} dy\right)^{\frac{p}{r}} dx\right)^{\frac{1}{p}} \leq G_{3} \int_{0}^{\infty} h\eta,$$

for $h \in \mathfrak{M}^+$ and the constant G has the form

$$G := \begin{cases} \sup_{t>0} \left(\int_{t}^{\infty} \lambda \right)^{\frac{1}{p}} \left\| \widetilde{T}_{t} \right\|_{L_{\eta}^{1} \to L_{\mu}^{r}}, & p \geq 1, \\ \left(\int_{0}^{\infty} \lambda(x) \left[\left(\int_{t}^{\infty} \lambda \right) \left\| \widetilde{T}_{[\zeta^{-1}(x), \zeta(x)]} \right\|_{L_{\eta}^{1} \to L_{\mu}^{r}} \right]^{\frac{p}{1-p}} dx \right)^{\frac{1-p}{p}}, & 0$$

Proof. The upper bound. Write

$$J^{p} := \int_{0}^{\infty} \lambda(x) \left(\int_{0}^{x} \mu(y) \left(\int_{y}^{\infty} k(s, y) \nu(s) \left(\int_{0}^{s} h \right)^{q} ds \right)^{\frac{r}{q}} dy \right)^{\frac{p}{r}} dx$$

$$\approx \sum_{n} 2^{-n} \left(\int_{b_{n-1}}^{b_{n}} \mu(y) \left(\int_{y}^{\infty} k(s, y) \nu(s) \left(\int_{0}^{s} h \right)^{q} ds \right)^{\frac{r}{q}} dy \right)^{\frac{p}{r}}$$

$$\approx \sum_{n} 2^{-n} \left(\int_{b_{n-1}}^{b_{n}} \mu(y) \left(\int_{y}^{b_{n+1}} k(s, y) \nu(s) \left(\int_{0}^{s} h \right)^{q} ds \right)^{\frac{r}{q}} dy \right)^{\frac{p}{r}}$$

$$+\sum_{n} 2^{-n} \left(\int_{b_{n-1}}^{b_n} \mu(y) \left(\int_{b_{n+1}}^{\infty} k(s,y) \nu(s) \left(\int_{0}^{s} h \right)^{q} ds \right)^{\frac{r}{q}} dy \right)^{\frac{p}{r}} =: J_1^p + J_2^p.$$

Estimate of J_2 .

$$J_2^p \approx \sum_n \int_{b_n}^{b_{n+1}} \lambda(x) dx \left(\int_{b_{n-1}}^{b_n} \mu(y) \left(\int_{b_{n+1}}^{\infty} k(s, y) \nu(s) \left(\int_0^s h \right)^q ds \right)^{\frac{r}{q}} dy \right)^{\frac{p}{r}} =: J_1^p + J_2^p.$$

Since $k(s,y) \approx k(x,y) + k(s,x)$ for $y \le b_n \le x \le b_{n+1} \le s$, we get

$$J_{2}^{p} \approx \sum_{n} \int_{b_{n}}^{b_{n+1}} \lambda(x) \left(\int_{b_{n-1}}^{b_{n}} \mu(y) [k(x,y)]^{\frac{r}{q}} dy \right)^{\frac{p}{r}} dx \left(\int_{b_{n+1}}^{\infty} \nu(s) \left(\int_{0}^{s} h \right)^{q} ds \right)^{\frac{p}{q}} dx$$

$$+ \sum_{n} \int_{b_{n}}^{b_{n+1}} \lambda(x) \left(\int_{b_{n+1}}^{\infty} k(s,x) \nu(s) \left(\int_{0}^{s} h \right)^{q} ds \right)^{\frac{p}{q}} dx \left(\int_{b_{n-1}}^{b_{n}} \mu \right)^{\frac{p}{r}} dx$$

$$\ll \sum_{n} \int_{b_{n}}^{b_{n+1}} \lambda(x) \left(\int_{0}^{x} \mu(y) [k(x,y)]^{\frac{r}{q}} dy \right)^{\frac{p}{r}} \left(\int_{x}^{\infty} \nu(s) \left(\int_{0}^{s} h \right)^{q} ds \right)^{\frac{p}{q}} dx$$

$$+ \sum_{n} \int_{b_{n}}^{b_{n+1}} \lambda(x) \left(\int_{0}^{x} \mu \right)^{\frac{p}{r}} \left(\int_{x}^{\infty} k(s,x) \nu(s) \left(\int_{0}^{s} h \right)^{q} ds \right)^{\frac{p}{q}} dx$$

$$= \int_{0}^{\infty} \lambda(x) \left(\int_{0}^{x} \mu(y) [k(x,y)]^{\frac{r}{q}} dy \right)^{\frac{p}{r}} \left(\int_{x}^{\infty} \nu(s) \left(\int_{0}^{s} h \right)^{q} ds \right)^{\frac{p}{q}} dx$$

$$+ \int_{0}^{\infty} \lambda(x) \left(\int_{0}^{x} \mu \right)^{\frac{p}{r}} \left(\int_{x}^{\infty} k(s,x) \nu(s) \left(\int_{0}^{s} h \right)^{q} ds \right)^{\frac{p}{q}} dx$$

$$\leq \left(G_{1}^{p} + G_{2}^{p} \right) \left(\int_{0}^{\infty} h \eta \right)^{p}.$$

Estimate of J_1 .

$$J_1^p \approx \sum_n 2^{-n} \left(\int_{b_{n-1}}^{b_n} \mu(y) \left(\int_y^{b_{n+1}} k(s, y) \nu(s) \left(\int_0^{b_{n-1}} h \right)^q ds \right)^{\frac{r}{q}} dy \right)^{\frac{p}{r}}$$

$$+ \sum_n 2^{-n} \left(\int_{b_{n-1}}^{b_n} \mu(y) \left(\int_y^{b_{n+1}} k(s, y) \nu(s) \left(\int_{b_{n-1}}^s h \right)^q ds \right)^{\frac{r}{q}} dy \right)^{\frac{p}{r}} =: J_{1,1}^p + J_{1,2}^p.$$

Estimate of $J_{1,1}$.

$$J_{1,1}^{p} \approx \sum_{n} \int_{b_{n}}^{b_{n+1}} \lambda(x) dx \left(\int_{b_{n-1}}^{b_{n}} \mu(y) \left(\int_{y}^{b_{n+1}} k(s,y) \nu(s) ds \right)^{\frac{r}{q}} dy \right)^{\frac{p}{r}} \left(\int_{0}^{b_{n-1}} h \right)^{p}$$

$$\ll \int_{0}^{\infty} \lambda(x) \left(\int_{0}^{x} \mu(y) \left(\int_{y}^{\infty} k(s,y) \nu(s) ds \right)^{\frac{r}{q}} \left(\int_{0}^{y} h \right)^{r} dy \right)^{\frac{p}{r}} \leq G_{3}^{p} \left(\int_{0}^{\infty} h \eta \right)^{p}.$$

Now we estimate $J_{1,2}$. Using notations (2.28) and (2.29), write

$$J_{1,2}^{p} = \sum_{n} 2^{-n} \left(\int_{b_{n-1}}^{b_{n}} \mu(y) \left[\widetilde{T}_{[b_{n-1},b_{n}]} h(y) \right]^{r} dy \right)^{\frac{p}{r}}$$

$$\leq \sum_{n} 2^{-n} \left\| \widetilde{T}_{[b_{n-1},b_{n}]} \right\|_{L_{n}^{1} \to L_{n}^{r}}^{p} \left(\int_{b_{n-1}}^{b_{n+1}} h \eta \right)^{p}.$$

For $p \geq 1$, applying Jensen's inequality, we have

$$J_{1,2}^p \ll \sup_{n} \left(\int_{b_n}^{\infty} \lambda \right) \left\| \widetilde{T}_{[b_{n-1},b_n]} \right\|_{L_{\eta}^1 \to L_{\mu}^r}^p \left(\int_{0}^{\infty} h \eta \right)^p \ll G^p \left(\int_{0}^{\infty} h \eta \right)^p.$$

For 0 , by Hölder's inequality, we obtain

$$J_{1,2}^{p} \ll \left(\sum_{n} \left(\int_{b_{n-1}}^{b_{n}} \lambda(x) dx \right)^{\frac{1}{1-p}} \left\| \widetilde{T}_{[b_{n-1},b_{n}]} \right\|_{L_{\eta}^{1} \to L_{\mu}^{r}}^{\frac{p}{1-p}} \right)^{1-p} \left(\int_{0}^{\infty} h \eta \right)^{p} \ll G^{p} \left(\int_{0}^{\infty} h \eta \right)^{p}.$$

Therefore, the upper estimate $C \ll G_1 + G_2 + G_3 + G$ is proved. For the lower estimate it suffices to repeat the corresponding arguments in the proof of Theorem 2.1.

3 The main results for S

Given $0 < c < d \le \infty, 0 < t < \infty, h \in \mathfrak{M}^+$ put

$$\widetilde{\mathcal{T}}_t h(x) := \chi_{(0,t]}(x) \left(\int_0^x k_2(x,s) u(s) \left(\int_s^\infty h \right)^{\frac{1}{p}} ds \right)^p, \tag{3.1}$$

$$\widetilde{\mathcal{T}}_{[c,d]}h(x) := \chi_{[c,d]}(x) \left(\int_{\zeta^{-1}(c)}^{x} k_2(x,s)u(s) \left(\int_s^d h \right)^{\frac{1}{p}} ds \right)^p. \tag{3.2}$$

$$\left\|\widetilde{\mathcal{T}}_{t}\right\|_{L_{v}^{p}\to L_{w}^{q}} := \sup_{0\neq h\in\mathfrak{M}^{+}} \frac{\left(\int_{0}^{\infty} \left[\widetilde{\mathcal{T}}_{t}h\right]^{q}w\right)^{\frac{1}{q}}}{\left(\int_{0}^{\infty} \left[h\right]^{p}v\right)^{\frac{1}{p}}}$$
(3.3)

Theorem 3.1. Let $0 < q < \infty, 0 < p < \infty, 0 < r < \infty$. Then the best constant C_S in

$$\left(\int_0^\infty [\mathcal{S}f(x)]^r \rho(x) dx\right)^{\frac{1}{r}} \le C_{\mathcal{S}} \left(\int_0^\infty [f(x)]^p v(x) dx\right)^{\frac{1}{p}}, f \in \mathfrak{M}^{\downarrow}$$
(3.4)

satisfies $C_{\mathcal{S}} \approx \mathbf{A}_1 + \mathbf{A}_2 + \mathbf{A}_3 + \mathbf{A}_4 + \mathbf{B}$, where $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3, \mathbf{A}_4$ are the best constants in inequalities

$$\left(\int_{0}^{\infty} \rho(x) \left(\int_{\zeta^{-3}(x)}^{x} k_{1}(x,y) k_{2}^{q}(y,\zeta^{-3}(x)) w(y) dy\right)^{\frac{r}{q}} \left(\int_{0}^{\zeta^{-3}(x)} \left(\int_{s}^{\infty} h\right)^{\frac{1}{p}} u(s) ds\right)^{r} dx\right)^{\frac{p}{r}} \\
\leq \mathbf{A}_{1}^{p} \int_{0}^{\infty} hV,$$

$$\left(\int_{0}^{\infty} \rho(x) \left(\int_{\zeta^{-3}(x)}^{x} k_{1}(x,y)w(y)dy\right)^{\frac{r}{q}} \left(\int_{0}^{\zeta^{-3}(x)} k_{2}(\zeta^{-3}(x),s)u(s) \left(\int_{s}^{\infty} h\right)^{\frac{1}{p}}ds\right)^{r}dx\right)^{\frac{p}{r}} \\
\leq \mathbf{A}_{2}^{p} \int_{0}^{\infty} hV, \\
\left(\int_{0}^{\infty} \rho(x) \left(\int_{0}^{x} k_{1}(x,y)w(y) \left(\int_{0}^{y} k_{2}(y,s)u(s)ds\right)^{q} \left(\int_{y}^{\infty} h\right)^{\frac{q}{p}}dy\right)^{\frac{r}{q}}dx\right)^{\frac{p}{r}} \leq \mathbf{A}_{3}^{p} \int_{0}^{\infty} hV, \\
\left(\int_{0}^{\infty} \rho(x)k_{1}(x,\zeta^{-2}(x))^{\frac{r}{q}} \left[\int_{0}^{\zeta^{-2}(x)} w(y) \left(\int_{0}^{y} k_{2}(y,s)u(s) \left(\int_{s}^{\infty} h\right)^{\frac{1}{p}}\right)^{q}dy\right]^{\frac{r}{q}}dx\right)^{\frac{p}{r}} \\
\leq \mathbf{A}_{4}^{p} \int_{0}^{\infty} hV, \\
\leq \mathbf{A}_{4}^{p} \int_{0}^{\infty} hV,$$

for $h \in \mathfrak{M}^+$ and the constant **B** has the form

$$\mathbf{B} := \begin{cases} \sup_{t>0} \left(\int_t^\infty \rho \right)^{\frac{1}{r}} \left\| \widetilde{\mathcal{T}}_t \right\|_{L^1_V \to L^{\frac{q}{p}}_{k_1(t,\cdot)w(\cdot)}}^{\frac{1}{p}}, & p \leq r, \\ \left(\int_0^\infty \rho(x) \left[\left(\int_x^\infty \rho \right) \left\| \widetilde{\mathcal{T}}_{[\zeta^{-1}(x),\zeta^2(x)]} \right\|_{L^1_V \to L^{\frac{q}{p}}_{k_1(\zeta^2(x),\cdot)w(\cdot)}} \right]^{\frac{s}{p}} dx \right)^{\frac{1}{s}}, & r < p, \end{cases}$$

where $\frac{1}{s} := \frac{1}{r} - \frac{1}{p}$.

Proof. The change $f^p \to f$ in (3.4) leads to the inequality

$$\left(\int_0^\infty \rho(x) \left(\int_0^x k_1(x,y)w(y) \left(\int_0^y k_2(y,s)f^{\frac{1}{p}}(s)u(s)ds\right)^q dy\right)^{\frac{r}{q}} dx\right)^{\frac{p}{r}} \leq C_{\mathcal{S}}^p \int_0^\infty fv.$$

Using Proposition 2.1 [9] and the Monotone Convergence Theorem, we obtain the equivalent inequality

$$\left(\int_{0}^{\infty} \rho(x) \left(\int_{0}^{x} k_{1}(x,y)w(y) \left(\int_{0}^{y} k_{2}(y,s)u(s) \left(\int_{s}^{\infty} h\right)^{\frac{1}{p}} ds\right)^{q} dy\right)^{\frac{r}{q}} dx\right)^{\frac{p}{r}} \leq C_{\mathcal{S}}^{p} \int_{0}^{\infty} hV, \tag{3.5}$$

for $h \in \mathfrak{M}^+$.

The upper bound. Put

$$\mathcal{T}_p h(y) := \left(\int_0^y k_2(y,s) u(s) \left(\int_s^\infty h \right)^{\frac{1}{p}} ds \right)^p.$$

Plainly,

$$I := \sum_{n} \int_{b_{n-1}}^{b_n} \rho(x) \left(\int_{0}^{x} k_1(x, y) w(y) \left(\mathcal{T}_p h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}} dx$$

$$\ll \sum_{n} 2^{-n} \left(\int_{0}^{b_{n}} k_{1}(b_{n}, y)w(y) \left(\mathcal{T}_{p}h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}} \\
\approx \sum_{n} 2^{-n} \left(\int_{0}^{b_{n-2}} k_{1}(b_{n}, y)w(y) \left(\mathcal{T}_{p}h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}} \\
+ \sum_{n} 2^{-n} \left(\int_{b_{n-2}}^{b_{n}} k_{1}(b_{n}, y)w(y) \left(\mathcal{T}_{p}h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}} =: I_{1} + I_{2}.$$

$$I_{2} \approx \sum_{n} 2^{-n} \left(\int_{b_{n-2}}^{b_{n}} k_{1}(b_{n}, y)w(y) \left(\int_{0}^{b_{n-3}} k_{2}(y, s)u(s) \left(\int_{s}^{\infty} h \right)^{\frac{1}{p}} ds \right)^{q} dy \right)^{\frac{r}{q}} \\
+ \sum_{n} 2^{-n} \left(\int_{b_{n-2}}^{b_{n}} k_{1}(b_{n}, y)w(y) \left(\int_{b_{n-3}}^{y} k_{2}(y, s)u(s) \left(\int_{s}^{\infty} h \right)^{\frac{1}{p}} ds \right)^{q} dy \right)^{\frac{r}{q}} =: I_{2,1} + I_{2,2}.$$

Next, by Oinarov's condition (1.3) $k_2(y, s) \approx k_2(y, \zeta^{-3}(x)) + k_2(\zeta^{-3}(x), s)$ for $0 < s \le \zeta^{-3}(x) \le y$, Hence,

$$I_{2,1} \approx \sum_{n} \int_{b_{n}}^{b_{n+1}} \rho(x) dx \left(\int_{b_{n-2}}^{b_{n}} k_{1}(b_{n}, y) w(y) \left(\int_{0}^{b_{n-3}} k_{2}(y, s) u(s) \left(\int_{s}^{\infty} h \right)^{\frac{1}{p}} ds \right)^{q} dy \right)^{\frac{r}{q}}$$

$$\approx \sum_{n} \int_{b_{n}}^{b_{n+1}} \rho(x) dx \left(\int_{b_{n-2}}^{b_{n}} k_{1}(b_{n}, y) k_{2}^{q}(y, \zeta^{-3}(x)) w(y) \left(\int_{0}^{b_{n-3}} \left(\int_{s}^{\infty} h \right)^{\frac{1}{p}} u(s) ds \right)^{q} dy \right)^{\frac{r}{q}}$$

$$+ \sum_{n} \int_{b_{n}}^{b_{n+1}} \rho(x) dx \left(\int_{b_{n-2}}^{b_{n}} k_{1}(b_{n}, y) w(y) \left(\int_{0}^{b_{n-3}} k_{2}(\zeta^{-3}(x), s) u(s) \left(\int_{s}^{\infty} h \right)^{\frac{1}{p}} ds \right)^{q} dy \right)^{\frac{r}{q}}$$

$$\ll \int_{0}^{\infty} \rho(x) \left(\int_{\zeta^{-3}(x)}^{x} k_{1}(x, y) k_{2}^{q}(y, \zeta^{-3}(x)) w(y) dy \right)^{\frac{r}{q}} \left(\int_{0}^{\zeta^{-3}(x)} \left(\int_{s}^{\infty} h \right)^{\frac{1}{p}} u(s) ds \right)^{r} dx$$

$$+ \int_{0}^{\infty} \rho(x) \left(\int_{\zeta^{-3}(x)}^{x} k_{1}(x, y) w(y) dy \right)^{\frac{r}{q}} \left(\int_{0}^{\zeta^{-3}(x)} k_{2}(\zeta^{-3}(x), s) u(s) \left(\int_{s}^{\infty} h \right)^{\frac{1}{p}} ds \right)^{r} dx$$

$$\ll \left(\mathbf{A}_{1}^{r} + \mathbf{A}_{2}^{r} \right) \|h\|_{L_{tr}^{r}}^{\frac{r}{p}}. \tag{3.6}$$

Write

$$I_{2,2} \approx \sum_{n} 2^{-n} \left(\int_{b_{n-2}}^{b_n} k_1(b_n, y) w(y) \left(\int_{b_{n-3}}^{y} k_2(y, s) u(s) \left(\int_{s}^{b_n} h \right)^{\frac{1}{p}} ds \right)^{q} dy \right)^{\frac{1}{q}}$$

$$+ \sum_{n} 2^{-n} \left(\int_{b_{n-2}}^{b_n} k_1(b_n, y) w(y) \left(\int_{b_{n-3}}^{y} k_2(y, s) u(s) \left(\int_{b_n}^{\infty} h \right)^{\frac{1}{p}} ds \right)^{q} dy \right)^{\frac{r}{q}} =: I_{2,2,1} + I_{2,2,2}$$

Then

$$I_{2,2,2} \approx \sum_{n} \int_{b_{n}}^{b_{n+1}} \rho(x) \left(\int_{b_{n-2}}^{b_{n}} k_{1}(b_{n}, y) w(y) \left(\int_{b_{n-3}}^{y} k_{2}(y, s) u(s) \left(\int_{b_{n}}^{\infty} h \right)^{\frac{1}{p}} ds \right)^{q} dy \right)^{\frac{r}{q}}$$

$$\leq \int_0^\infty \rho(x) \left(\int_0^x k_1(x, y) w(y) \left(\int_0^y k_2(y, s) u(s) ds \right)^q \left(\int_y^\infty h \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}} dx \leq \mathbf{A}_3^r \|h\|_{L_V^1}^{\frac{r}{p}}.$$
(3.7)

Next, using (3.1) and (3.2), we have

$$I_{2,2,1} = \sum_{n} 2^{-n} \left[\left(\int_{b_{n-2}}^{b_n} k_1(b_n, y) w(y) \left(\widetilde{\mathcal{T}}_{[b_{n-2}, b_n]} h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{p}{q}} \right]^{\frac{r}{p}}$$

$$\leq \sum_{n} 2^{-n} \left\| \widetilde{\mathcal{T}}_{[b_{n-2},b_n]} \right\|_{L_V^1[b_{n-2},b_{n+1}] \to L_{k_1(b_n,\cdot)w(\cdot)}[b_{n-2},b_n]}^{\frac{q}{p}} \left(\int_{b_{n-2}}^{b_{n+1}} hV \right)^{\frac{1}{p}}.$$

For $p \leq r$, applying Jensen's inequality, we infer

$$I_{2,2,1} \leq \sup_{n} \left(\int_{b_{n+1}}^{\infty} \rho \right) \left\| \widetilde{\mathcal{T}}_{[b_{n-2},b_n]} \right\|_{L_{V}^{1} \to L_{k_{1}(b_{n},\cdot)w(\cdot)}}^{\frac{r}{p}} \left(\int_{0}^{\infty} hV \right)^{\frac{r}{p}}$$

$$\leq \sup_{t>0} \left(\int_{t}^{\infty} \rho \right) \left\| \widetilde{\mathcal{T}}_{t} \right\|_{L_{V}^{1} \to L_{k_{1}(b_{n},\cdot)w(\cdot)}}^{\frac{r}{p}} \left(\int_{0}^{\infty} hV \right)^{\frac{r}{p}}.$$

Hence,

$$I_{2,2,1}^{\frac{p}{r}} \le \mathbf{B}^p \int_0^\infty hV. \tag{3.8}$$

For r < p, by Hölder's inequality, we find that

$$I_{2,2,1} \le \left(\sum_{n} 2^{\frac{-ns}{r}} \left\| \widetilde{\mathcal{T}}_{[b_{n-2},b_n]} \right\|_{L_V^1 \to L_{k_1(b_n,\cdot)w(\cdot)}}^{\frac{s}{p}} \right)^{\frac{r}{s}} \left(\int_0^\infty hV \right)^{\frac{r}{p}}.$$

because

$$\sum_{n} 2^{\frac{-ns}{r}} \left\| \widetilde{\mathcal{T}}_{[b_{n-2},b_{n}]} \right\|_{L_{V}^{1} \to L_{k_{1}(b_{n},\cdot)w(\cdot)}}^{\frac{s}{p}}$$

$$\approx \sum_{n} \left(\int_{b_{n-2}}^{b_{n-1}} \rho \right) \left(\int_{b_{n-1}}^{\infty} \rho \right)^{\frac{s}{p}} \left\| \widetilde{\mathcal{T}}_{[\zeta^{-1}(b_{n-1}),\zeta^{2}(b_{n-2})]} \right\|_{L_{V}^{1} \to L_{k_{1}(\zeta^{2}(b_{n-2}),\cdot)w(\cdot)}}^{\frac{s}{p}}$$

$$\leq \sum_{n} \int_{b_{n-2}}^{b_{n-1}} \rho(x) \left[\left(\int_{x}^{\infty} \rho \right) \left\| \widetilde{\mathcal{T}}_{[\zeta^{-1}(x),\zeta^{2}(x)]} \right\|_{L_{V}^{1} \to L_{k_{1}(\zeta^{2}(x),\cdot)w(\cdot)}}^{\frac{s}{p}} dx \right]^{\frac{s}{p}} dx$$

$$= \int_{0}^{\infty} \rho(x) \left[\left(\int_{x}^{\infty} \rho \right) \left\| \widetilde{\mathcal{T}}_{[\zeta^{-1}(x),\zeta^{2}(x)]} \right\|_{L_{V}^{1} \to L_{k_{1}(\zeta^{2}(x),\cdot)w(\cdot)}}^{\frac{s}{p}} dx = \mathbf{B}^{s}.$$

Therefore,

$$I_{2,2,1}^{\stackrel{p}{r}} \le \mathbf{B}^p \int_0^\infty hV. \tag{3.9}$$

Consider

$$I_{1} = \sum_{n} 2^{-n} \left(\int_{0}^{b_{n-2}} k_{1}(b_{n}, y) w(y) \left(\mathcal{T}_{p} h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}}$$

$$= \sum_{n} 2^{-n} \left(\sum_{i \le n} \int_{b_{i-3}}^{b_{i-2}} k_1(b_n, y) w(y) \left(\mathcal{T}_p h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}}$$

$$\approx \sum_{n} 2^{-n} \left(\sum_{i \le n} \int_{b_{i-3}}^{b_{i-2}} k_1(b_n, b_{i-1}) w(y) \left(\mathcal{T}_p h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}}$$

$$+ \sum_{n} 2^{-n} \left(\sum_{i \le n} \int_{b_{i-3}}^{b_{i-2}} k_1(b_{i-1}, y) w(y) \left(\mathcal{T}_p h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}} =: I_{1,1} + I_{1,2}.$$

Applying (2.12), we get

$$I_{1,2} \leq \sum_{n} 2^{-n} \left(\int_{b_{n-3}}^{b_{n-1}} k_1(b_{n-1}, y) w(y) \left(\mathcal{T}_p h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}} \approx I_2$$

$$\leq (\mathbf{A}_1^r + \mathbf{A}_2^r + \mathbf{A}_3^r + \mathbf{B}^r) \|h\|_{L_1^1}^{\frac{r}{p}}.$$
(3.10)

To estimate $I_{1,1}$, we use (2.18) and Minkowski's inequality to find that

$$I_{1,1} = \sum_{n} 2^{-n} \left(\sum_{i \leq n} k_{1}(b_{n}, b_{i-1}) \int_{b_{i-3}}^{b_{i-2}} w(y) \left(\mathcal{T}_{p}h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{1}{q}}$$

$$\ll \sum_{n} 2^{-n} \left(\sum_{i \leq n} \left(\sum_{j=i}^{n} k_{1}(b_{j}, b_{j-1})^{\alpha} \right)^{\frac{1}{\alpha}} \int_{b_{i-3}}^{b_{i-2}} w(y) \left(\mathcal{T}_{p}h(y) \right)^{\frac{q}{p}} dy \right)^{\frac{r}{q}}$$

$$\leq \sum_{n} 2^{-n} \left(\sum_{j \leq n} k_{1}(b_{j}, b_{j-1})^{\alpha} \left(\sum_{i \leq j} \int_{b_{i-3}}^{b_{i-2}} w(y) \left(\mathcal{T}_{p}h(y) \right)^{\frac{q}{p}} dy \right)^{\alpha} \right)^{\frac{r}{\alpha q}}$$

$$= \sum_{n} 2^{-n} \left(\sum_{j \leq n} k_{1}(b_{j}, b_{j-1})^{\alpha} \left(\int_{0}^{b_{j-2}} w(y) \left(\mathcal{T}_{p}h(y) \right)^{\frac{q}{p}} dy \right)^{\alpha} \right)^{\frac{r}{\alpha q}}$$

$$\stackrel{(2.12)}{\approx} \sum_{n} 2^{-n} \left(k_{1}(b_{n}, b_{n-1}) \left(\int_{0}^{b_{n-2}} w(y) \left(\mathcal{T}_{p}h(y) \right)^{\frac{q}{p}} dy \right) \right)^{\frac{r}{q}}$$

$$\approx \sum_{n} \int_{b_{n}}^{b_{n+1}} \rho(x) k_{1}(b_{n}, b_{n-1})^{\frac{r}{q}} \left(\int_{0}^{b_{n-2}} w(y) \left(\mathcal{T}_{p}h(y)^{\frac{q}{p}} dy \right) \right)^{\frac{r}{q}} dx$$

$$\leq \sum_{n} \int_{b_{n}}^{b_{n+1}} \rho(x) k_{1}(x, \zeta^{-2}(x))^{\frac{r}{q}} \left(\int_{0}^{\zeta^{-2}(x)} w(y) \left(\mathcal{T}_{p}h(y)^{\frac{q}{p}} dy \right) \right)^{\frac{r}{q}} dx$$

$$= \int_{0}^{\infty} \rho(x) k_{1}(x, \zeta^{-2}(x))^{\frac{r}{q}} \left(\int_{0}^{\zeta^{-2}(x)} w(y) \left(\mathcal{T}_{p}h(y)^{\frac{q}{p}} dy \right) \right)^{\frac{r}{q}} dx \leq A_{4}^{r} \|h\|_{L_{V}^{r}}^{\frac{r}{p}}$$

$$(3.11)$$

It follows from (3.6)-(3.11) that the upper estimate $C_{\mathcal{S}} \ll \mathbf{A}_1 + \mathbf{A}_2 + \mathbf{A}_3 + A_4 + \mathbf{B}$ is proved. The lower bound. Diminish the domains of integration in (3.5):

- (1) $[0, x] \to [\zeta^{-3}(x), x]$ and obtain $C_{\mathcal{S}} \ge \mathbf{A}_1 + \mathbf{A}_2$ (since $k_2(y, s) \approx k_2(y, \zeta^{-3}(x)) + k_2(\zeta^{-3}(x), s)$ for $0 < s \le \zeta^{-3}(x) \le y$).
 - (2) $[s, \infty]$) $\to [y, \infty)$ and obtain $C_{\mathcal{S}} \geq \mathbf{A}_3$.
- (3) $[0,x] \to [0,\zeta^{-2}(x)]$ and obtain $C_{\mathcal{S}} \geq \mathbf{A}_4$ (since $k_1(x,y) \gtrsim k_1(x,\zeta^{-2}(x))$ for $y \leq \zeta^{-2}(x) < x$).

 $C_{\mathcal{S}} \gg \mathbf{B}$ is proved analogously to Theorem 2.1.

For the limit values of parameters, we have

Remark 3. (1) $C_S \approx \mathbf{A}_1 + \mathbf{A}_2 + \mathbf{A}_3 + \mathbf{A}_4 + \mathbf{B}$ for $q = \infty$, where $\mathbf{A}_1, \mathbf{A}_2, \mathbf{A}_3$ and \mathbf{A}_4 are the best constants in the inequalities

$$\left(\int_{0}^{\infty} \rho(x) \left[\underset{y \in (\zeta^{-3}(x), x)}{\operatorname{ess \, sup}} k_{1}(x, y) k_{2}(y, \zeta^{-3}(x)) w(y)\right]^{r} \left(\int_{0}^{\zeta^{-3}(x)} \left(\int_{s}^{\infty} h\right)^{\frac{1}{p}} u(s) ds\right)^{r} dx\right)^{\frac{p}{r}} \\
\leq \mathbf{A}_{1}^{p} \int_{0}^{\infty} hV, \\
\left(\int_{0}^{\infty} \rho(x) \left[\underset{y \in (\zeta^{-3}(x), x)}{\operatorname{ess \, sup}} k_{1}(x, y) w(y)\right]^{r} \left(\int_{0}^{\zeta^{-3}(x)} k_{2}(\zeta^{-3}(x), s) u(s) \left(\int_{s}^{\infty} h\right)^{\frac{1}{p}} ds\right)^{r} dx\right)^{\frac{p}{r}} \\
\leq \mathbf{A}_{2}^{p} \int_{0}^{\infty} hV, \\
\left(\int_{0}^{\infty} \rho(x) \left[\underset{y \in (0, x)}{\operatorname{ess \, sup}} k_{1}(x, y) w(y) \left(\int_{0}^{y} k_{2}(y, s) u(s) ds\right) \left(\int_{y}^{\infty} h\right)^{\frac{1}{p}}\right]^{r} dx\right)^{\frac{p}{r}} \leq \mathbf{A}_{3}^{p} \int_{0}^{\infty} hV, \\
\left(\int_{0}^{\infty} \rho(x) k_{1}(x, \zeta^{-2}(x))^{r} \left[\underset{y \in (0, \zeta^{-2}(x))}{\operatorname{ess \, sup}} w(y) \left(\int_{0}^{y} k_{2}(y, s) u(s) \left(\int_{s}^{\infty} h\right)^{\frac{1}{p}} ds\right)\right]^{r} dx\right)^{\frac{p}{r}} \\
\leq \mathbf{A}_{4}^{p} \int_{0}^{\infty} hV, \tag{3.12}$$

for $h \in \mathfrak{M}^+$, and the constant **B** has the form

$$\mathbf{B} := \begin{cases} \sup_{t>0} \left(\int_t^\infty \rho \right)^{\frac{1}{r}} \left\| \tilde{\mathcal{T}}_t \right\|_{L_V^1 \to L_{k_1(t,\cdot)w(\cdot)}^\infty}^{\frac{1}{p}}, & p \leq r, \\ \left(\int_0^\infty \rho(x) \left[\left(\int_x^\infty \rho \right) \left\| \tilde{\mathcal{T}}_{[\zeta^{-1}(x),\zeta^2(x)]} \right\|_{L_V^1 \to L_{k_1(\zeta^2(x),\cdot)w(\cdot)}^\infty} \right]^{\frac{s}{p}} dx \right)^{\frac{1}{s}}, & r < p. \end{cases}$$

(2) For $p = \infty$ and for $r = \infty$, we have

$$C_{\mathcal{S}} = \|\mathcal{S}(\frac{1}{v})\|_{L_{\rho}^{r}}, \ p = \infty;$$

$$C_{\mathcal{S}} \approx \sup_{t>0} \mathcal{R}(t) \|\widetilde{\mathcal{T}}_{t}\|_{L_{V}^{1} \to L_{k_{1}(t,\cdot)w(\cdot)}^{\frac{q}{p}}}^{\frac{q}{p}}, \ r = \infty,$$

65

where

$$\mathcal{R}(t) := \underset{z>t}{\operatorname{ess}} \sup \rho(z).$$

Suppose $\lambda, \mu, \nu, \eta \in \mathfrak{M}^+$, the kernel k(x,y) satisfies Oinarov's condition (1.3), and the sequence b_n and the function $\zeta(x)$ are defined by (2.1) and (2.2) with λ instead of ρ . Given $0 < c < d \le \infty, 0 < t, q < \infty, h \in \mathfrak{M}^+$ put

$$\widetilde{\mathcal{T}}_t h(x) := \chi_{(0,t]}(x) \left(\int_0^x k(x,s) \nu(s) \left(\int_s^\infty h \right)^{\frac{1}{q}} ds \right)^q,$$

$$\widetilde{\mathcal{T}}_{[c,d]} h(x) := \chi_{[c,d]}(x) \left(\int_{\zeta^{-1}(c)}^x k(x,s) \nu(s) \left(\int_s^d h \right)^{\frac{1}{q}} ds \right)^q.$$

Similar to Remark 2, we prove the following lemma that enables us to reduce the inequalities with the constants A_4 .

Lemma 3.1. Suppose $0 < p, q, r < \infty$. Then the best constant C^* in

$$\left(\int_0^\infty \lambda(x) \left(\int_0^x \mu(y) \left(\int_0^y k(y,s)\nu(s) \left(\int_s^\infty h\right)^q ds\right)^{\frac{r}{q}} dy\right)^{\frac{p}{r}} dx\right)^{\frac{1}{p}}$$

$$\leq C^* \int_0^\infty h\eta, h \in \mathfrak{M}^+$$

satisfies

$$C^* \approx G_1^* + G_2^* + G_3^* + G^*,$$

where G_1^*, G_2^*, G_3^* are the best constants in

$$\left(\int_{0}^{\infty} \lambda(x) \left(\int_{\zeta^{-2}(x)}^{x} \mu(y) [k(y, \zeta^{-2}(x))]^{\frac{r}{q}} dy\right)^{\frac{p}{r}} \left(\int_{0}^{\zeta^{-2}(x)} \nu(s) \left(\int_{s}^{\infty} h\right)^{q} ds\right)^{\frac{p}{q}} dx\right)^{\frac{1}{p}}$$

$$\leq G_{1}^{*} \int_{0}^{\infty} h \eta,$$

$$\left(\int_0^\infty \lambda(x) \left(\int_{\zeta^{-2}(x)}^x \mu\right)^{\frac{p}{r}} \left(\int_0^{\zeta^{-2}(x)} k(\zeta^{-2}(x), s) \nu(s) \left(\int_s^\infty h\right)^q ds\right)^{\frac{p}{q}} dx\right)^{\frac{1}{p}} \leq G_2^* \int_0^\infty h\eta,$$

$$\left(\int_0^\infty \lambda(x) \left(\int_0^x \mu(y) \left(\int_0^y k(y,s)\nu(s)ds\right)^{\frac{r}{q}} \left(\int_y^\infty h\right)^r dy\right)^{\frac{p}{r}} dx\right)^{\frac{1}{p}} \le G_3^* \int_0^\infty h\eta$$

for $h \in \mathfrak{M}^+$ and the constant G^* has the form

$$G^* := \begin{cases} \sup_{t>0} \left(\int_t^\infty \lambda \right)^{\frac{1}{p}} \left\| \widetilde{\mathcal{T}}_t \right\|_{L^1_{\eta} \to L^r_{\mu}}, & p \ge 1, \\ \left(\int_0^\infty \lambda(x) \left[\left(\int_x^\infty \lambda \right) \left\| \widetilde{\mathcal{T}}_{[\zeta^{-1}(x), \zeta(x)]} \right\|_{L^1_{\eta} \to L^r_{\mu}} \right]^{\frac{p}{1-p}} dx \right)^{\frac{1-p}{p}}, & 0$$

Inequality (3.12) is reduced similarly.

4 The main results for T и S

The characterization of (1) for the operators T u S is proved in [33]. For completeness below we state the results. We will assume that $0 < \int_0^x \rho < \infty$ for every x > 0 and $\int_0^\infty \rho = \infty$, $\int_0^\infty w = \infty$. Define the sequence $\{a_n\} \subset (0,\infty)$ from the equations

$$\int_0^{a_n} \rho = 2^n, \ n \in \mathbb{Z}.$$

Let $\sigma:[0;\infty)\to[0;\infty)$ и $\sigma^{-1}:[0;\infty)\to[0;\infty)$ be defined by the formulas (here $\inf\varnothing=\infty$)

$$\sigma(x) := \inf \left\{ y > 0 : \int_0^y \rho \ge 2 \int_0^x \rho \right\}, \\ \sigma^{-1}(x) := \inf \left\{ y > 0 : \int_0^y \rho \ge \frac{1}{2} \int_0^x \rho \right\}, \\ x \ge 0.$$

For $0 < c < d \le \infty, 0 < t < \infty, h \in \mathfrak{M}^+$ put

$$\mathcal{T}_t h(x) := \chi_{[t,\infty)}(x) \left(\int_0^x k_2(x,s) u(s) \left(\int_s^\infty h \right)^{\frac{1}{p}} ds \right)^p,$$

$$\mathcal{T}_{[c,d]} h(x) := \chi_{[c,d]}(x) \left(\int_{\sigma^{-1}(c)}^x k_2(x,s) u(s) \left(\int_s^d h \right)^{\frac{1}{p}} ds \right)^p,$$

$$\|\mathcal{T}_t\|_{L_v^p \to L_w^q} := \sup_{0 \neq h \in \mathfrak{M}^+} \frac{\left(\int_0^\infty [\mathcal{T}_t h]^q w \right)^{\frac{1}{q}}}{\left(\int_0^\infty [h]^p v \right)^{\frac{1}{p}}}$$

Theorem 4.1. Suppose that $0 < q < \infty, 0 < p < \infty, 0 < r < \infty$. Then the best constant C_T in

$$\left(\int_0^\infty [Tf(x)]^r \rho(x) dx\right)^{\frac{1}{r}} \le C_T \left(\int_0^\infty [f(x)]^p v(x) dx\right)^{\frac{1}{p}}, f \in \mathfrak{M}^{\downarrow}$$

satisfies

$$C_T \approx A_1 + A_2 + A_3 + A_4 + B,$$

where A_1, A_2, A_3, A_4 are the best constants in

$$\left(\int_0^\infty \rho(x) \left(\int_x^\infty k_1(y,x)k_2(y,x)^q w(y)dy\right)^{\frac{r}{q}} \left(\int_0^x \left(\int_s^\infty h\right)^{\frac{1}{p}} u(s)ds\right)^r dx\right)^{\frac{p}{r}} \le A_1^p \int_0^\infty hV,$$

$$\left(\int_0^\infty \rho(x) \left(\int_x^\infty k_1(y,x)w(y)dy\right)^{\frac{r}{q}} \left(\int_0^x k_2(x,s) \left(\int_s^\infty h\right)^{\frac{1}{p}} u(s)ds\right)^r dx\right)^{\frac{p}{r}} \le A_2^p \int_0^\infty hV,$$

$$\left(\int_{0}^{\infty} \rho(x) \left(\int_{x}^{\infty} k_{1}(y,x)w(y) \left(\int_{0}^{y} k_{2}(y,s)u(s)ds\right)^{q} \left(\int_{y}^{\infty} h\right)^{\frac{q}{p}} dy\right)^{\frac{r}{q}} dx\right)^{\frac{p}{r}} \leq A_{3}^{p} \int_{0}^{\infty} hV,$$

$$\left(\int_{0}^{\infty} \rho(x)k_{1}(\sigma^{2}(x),x)^{\frac{r}{q}} \left[\int_{\sigma^{2}(x)}^{\infty} w(y) \left(\int_{0}^{y} k_{2}(y,s)u(s) \left(\int_{s}^{\infty} h\right)^{\frac{1}{p}}\right)^{q} dy\right]^{\frac{r}{q}} dx\right)^{\frac{p}{r}} \leq A_{4}^{p} \int_{0}^{\infty} hV,$$

for $h \in \mathfrak{M}^+$ and the constant B has the form

$$B := \begin{cases} \sup_{t>0} \left(\int_0^t \rho \right)^{\frac{1}{r}} \| \mathcal{T}_{\sqcup t} \|_{L_V^1 \to L_{k_1(\cdot,t)w(\cdot)}}^{\frac{1}{p}}, & p \leq r; \\ \left(\int_0^\infty \rho(x) \left[\left(\int_0^x \rho \right) \| \mathcal{T}_{[\sigma^{-1}(x),\sigma^2(x)]} \|_{L_V^1 \to L_{k_1(\cdot,\sigma^{-1}(x))w(\cdot)}}^{\frac{q}{p}} \right]^{\frac{s}{p}} dx \right)^{\frac{1}{s}}, & r < p, \end{cases}$$

where $\frac{1}{s} := \frac{1}{r} - \frac{1}{p}$.

Remark 4. (1) $C_T \approx A_1 + A_2 + A_3 + A_4 + B$ for $q = \infty$ where A_1, A_2, A_3, A_4 are the best constants in

$$\left(\int_{0}^{\infty} \rho(x) [\operatorname{ess\,sup}_{y \geq x} k_{1}(y, x) k_{2}(y, x) w(y)]^{r} \left(\int_{0}^{x} \left(\int_{s}^{\infty} h\right)^{\frac{1}{p}} u(s) ds\right)^{r} dx\right)^{\frac{p}{r}} \leq A_{1}^{p} \int_{0}^{\infty} h V,$$

$$\left(\int_{0}^{\infty} \rho(x) [\operatorname{ess\,sup}_{y \geq x} k_{1}(y, x) w(y)]^{r} \left(\int_{0}^{x} k_{2}(x, s) \left(\int_{s}^{\infty} h\right)^{\frac{1}{p}} u(s) ds\right)^{r} dx\right)^{\frac{p}{r}} \leq A_{2}^{p} \int_{0}^{\infty} h V,$$

$$\left(\int_{0}^{\infty} \rho(x) \left[\operatorname{ess\,sup}_{y \geq x} k_{1}(y, x) w(y) \left(\int_{0}^{y} k_{2}(y, s) u(s) ds\right) \left(\int_{y}^{\infty} h\right)^{\frac{1}{p}}\right]^{r} dx\right)^{\frac{p}{r}} \leq A_{3}^{p} \int_{0}^{\infty} h V,$$

$$\left(\int_{0}^{\infty} \rho(x) k_{1}(\sigma^{2}(x), x)^{r} \left[\operatorname{ess\,sup}_{y \geq \sigma^{2}(x)} w(y) \left(\int_{0}^{y} k_{2}(y, s) u(s) \left(\int_{s}^{\infty} h\right)^{\frac{1}{p}} ds\right)\right]^{r} dx\right)^{\frac{p}{r}} \leq A_{4}^{p} \int_{0}^{\infty} h V,$$

for $h \in \mathfrak{M}^+$ and the constant B has the form

$$B := \begin{cases} \sup_{t>0} \left(\int_0^t \rho \right)^{\frac{1}{r}} \| \mathcal{T}_{\sqcup t} \|_{L_V^1 \to L_{k_1(\cdot,t)w(\cdot)}}^{\frac{1}{p}}, & p \le r, \\ \left(\int_0^\infty \rho(x) \left[\left(\int_0^x \rho \right) \| \mathcal{T}_{[\sigma^{-1}(x),\sigma^2(x)]} \|_{L_V^1 \to L_{k_1(\cdot,\sigma^{-1}(x))w(\cdot)}}^{\infty} \right]^{\frac{s}{p}} dx \right)^{\frac{1}{s}}, & r < p. \end{cases}$$

(2) For $p = \infty$ or $r = \infty$, we have

$$C_{T} = \|T(\frac{1}{v})\|_{L_{\rho}^{r}}, \ p = \infty;$$

$$C_{T} \approx \sup_{t>0} R(t) \|\mathcal{T}_{t}\|_{L_{W}^{\frac{1}{p}} \to L_{w}^{\frac{q}{p}}}^{\frac{q}{p}}, \ r = \infty,$$

where $R(t) := \operatorname{ess\,sup}\rho(z)$.

For $0 < c < d \le \infty$, $0 < t < \infty$, $h \in \mathfrak{M}^+$ put

$$T_{t}h(x) := \chi_{[t,\infty)}(x) \left(\int_{x}^{\infty} k_{2}(s,x) \left(\int_{0}^{s} hV \right)^{\frac{1}{p}} \widetilde{u}(s) ds \right)^{p},$$

$$T_{[c,d]}h(x) := \chi_{[c,d]}(x) \left(\int_{x}^{\sigma(d)} k_{2}(s,x) \left(\int_{c}^{s} hV \right)^{\frac{1}{p}} \widetilde{u}(s) ds \right)^{p}.$$

$$\|T_{t}\|_{L_{v}^{p} \to L_{w}^{q}} := \sup_{0 \neq h \in \mathfrak{M}^{+}} \frac{\left(\int_{0}^{\infty} [T_{t}h]^{q} w \right)^{\frac{1}{q}}}{\left(\int_{0}^{\infty} [h]^{p} v \right)^{\frac{1}{p}}}$$

Theorem 4.2. Suppose that $0 < q < \infty, 0 < p < \infty, 0 < r < \infty$. Then the best constant C_S in

$$\left(\int_0^\infty [Sf(x)]^r \rho(x) dx\right)^{\frac{1}{r}} \le C_S \left(\int_0^\infty [f(x)]^p v(x) dx\right)^{\frac{1}{p}}, f \in \mathfrak{M}^{\downarrow}$$

satisfies

$$C_S \approx \mathbb{A}_1 + \mathbb{A}_2 + \mathbb{A}_3 + \mathbb{A}_4 + \mathbb{B},$$

where $\mathbb{A}_1, \mathbb{A}_2, \mathbb{A}_3, \mathbb{A}_4$ are the best constants in

$$\left(\int_{0}^{\infty} \rho(x) \left(\int_{x}^{\sigma^{3}(x)} k_{1}(y,x) k_{2}(\sigma^{3}(x),x)^{q} w(y) dy\right)^{\frac{r}{q}} \left(\int_{\sigma^{3}(x)}^{\infty} \left(\int_{0}^{s} hV\right)^{\frac{1}{p}} \tilde{u}(s) ds\right)^{r} dx\right)^{\frac{p}{r}} \\
\leq \mathbb{A}_{1}^{p} \int_{0}^{\infty} h, \\
\left(\int_{0}^{\infty} \rho(x) \left(\int_{x}^{\sigma^{3}(x)} k_{1}(y,x) w(y) dy\right)^{\frac{r}{q}} \left(\int_{\sigma^{3}(x)}^{\infty} k_{2}(s,\sigma^{3}(x)) \left(\int_{0}^{s} hV\right)^{\frac{1}{p}} \tilde{u}(s) ds\right)^{r} dx\right)^{\frac{p}{r}} \\
\leq \mathbb{A}_{2}^{p} \int_{0}^{\infty} h, \\
\left(\int_{0}^{\infty} \rho(x) \left(\int_{x}^{\infty} k_{1}(y,x) w(y) \left(\int_{y}^{\infty} k_{2}(s,y) \tilde{u}(s) ds\right)^{q} \left(\int_{0}^{y} hV\right)^{\frac{q}{p}} dy\right)^{\frac{r}{q}} dx\right)^{\frac{p}{r}} \leq \mathbb{A}_{3}^{p} \int_{0}^{\infty} h, \\
\left(\int_{0}^{\infty} \rho(x) k_{1}(\sigma^{2}(x),x)^{\frac{r}{q}} \left[\int_{\sigma^{2}(x)}^{\infty} w(y) \left(\int_{y}^{\infty} k_{2}(s,y) \tilde{u}(s) \left(\int_{0}^{s} hV\right)^{\frac{1}{p}}\right)^{q} dy\right]^{\frac{r}{q}} dx\right)^{\frac{p}{r}} \leq \mathbb{A}_{4}^{p} \int_{0}^{\infty} h, \\
\left(\int_{0}^{\infty} \rho(x) k_{1}(\sigma^{2}(x),x)^{\frac{r}{q}} \left[\int_{\sigma^{2}(x)}^{\infty} w(y) \left(\int_{y}^{\infty} k_{2}(s,y) \tilde{u}(s) \left(\int_{0}^{s} hV\right)^{\frac{1}{p}}\right)^{q} dy\right]^{\frac{r}{q}} dx\right)^{\frac{p}{r}} \leq \mathbb{A}_{4}^{p} \int_{0}^{\infty} h, \\
\left(\int_{0}^{\infty} \rho(x) k_{1}(\sigma^{2}(x),x)^{\frac{r}{q}} \left[\int_{\sigma^{2}(x)}^{\infty} w(y) \left(\int_{y}^{\infty} k_{2}(s,y) \tilde{u}(s) \left(\int_{0}^{s} hV\right)^{\frac{1}{p}}\right)^{q} dy\right]^{\frac{r}{q}} dx\right)^{\frac{p}{r}} \leq \mathbb{A}_{4}^{p} \int_{0}^{\infty} h, \\
\left(\int_{0}^{\infty} \rho(x) k_{1}(\sigma^{2}(x),x)^{\frac{r}{q}} \left[\int_{\sigma^{2}(x)}^{\infty} w(y) \left(\int_{y}^{\infty} k_{2}(s,y) \tilde{u}(s) \left(\int_{0}^{s} hV\right)^{\frac{1}{p}}\right)^{\frac{1}{p}} dy\right)^{\frac{r}{q}} dx\right)^{\frac{p}{r}} \leq \mathbb{A}_{4}^{p} \int_{0}^{\infty} h, \\
\left(\int_{0}^{\infty} \rho(x) k_{1}(\sigma^{2}(x),x)^{\frac{r}{q}} \left[\int_{\sigma^{2}(x)}^{\infty} w(y) \left(\int_{y}^{\infty} k_{2}(s,y) \tilde{u}(s) \left(\int_{0}^{s} hV\right)^{\frac{1}{p}}\right)^{\frac{1}{p}} dy\right)^{\frac{r}{q}} dx\right)^{\frac{p}{r}} \leq \mathbb{A}_{4}^{p} \int_{0}^{\infty} h, \\
\left(\int_{0}^{\infty} \rho(x) k_{1}(\sigma^{2}(x),x)^{\frac{1}{p}} \left[\int_{\sigma^{2}(x)}^{\infty} w(y) \left(\int_{y}^{\infty} k_{2}(s,y) \tilde{u}(s) \left(\int_{0}^{s} hV\right)^{\frac{1}{p}} dy\right)^{\frac{1}{p}} dx\right)^{\frac{p}{r}} dx\right)^{\frac{p}{r}} dx\right)^{\frac{p}{r}} dx\right)^{\frac{p}{r}} dx$$

for $h \in \mathfrak{M}^+$ and the constant \mathbb{B} has the form

$$\mathbb{B} := \begin{cases} \sup_{t>0} \left(\int_0^t \rho \right)^{\frac{1}{r}} \|T_t\|_{L^1 \to L^{\frac{q}{p}}_{k_1(\cdot,t)w(\cdot)}}^{\frac{1}{p}}, & p \le r, \\ \left(\int_0^\infty \rho(x) \left[\left(\int_0^x \rho \right) \|T_{[\sigma^{-1}(x),\sigma^2(x)]}\|_{L^1 \to L^{\frac{q}{p}}_{k_1(\cdot,\sigma^{-1}(x))w(\cdot)}} \right]^{\frac{s}{p}} dx \right)^{\frac{1}{s}}, & r < p. \end{cases}$$

Remark 5. (1) $C_S \approx \mathbb{A}_1 + \mathbb{A}_2 + \mathbb{A}_3 + \mathbb{A}_4 + \mathbb{B}$ for $q = \infty$, where $\mathbb{A}_1, \mathbb{A}_2, \mathbb{A}_3, \mathbb{A}_4$ are the best constants in

$$\left(\int_0^\infty \rho(x) [\underset{x < y < \sigma^3(x)}{\operatorname{ess \, sup}} \, k_1(y, x) k_2(\sigma^3(x), x) w(y)]^r \left(\int_{\sigma^3(x)}^\infty \left(\int_0^s hV \right)^{\frac{1}{p}} \tilde{u}(s) ds \right)^r dx \right)^{\frac{p}{r}}$$

$$\leq \mathbb{A}_1^p \int_0^\infty h,$$

$$\left(\int_0^\infty \rho(x) [\underset{x < y < \sigma^3(x)}{\operatorname{ess \, sup}} \, k_1(y, x) w(y)]^r \left(\int_{\sigma^3(x)}^\infty k_2(s, \sigma^3(x)) \left(\int_0^s hV \right)^{\frac{1}{p}} \tilde{u}(s) ds \right)^r dx \right)^{\frac{p}{r}}$$

$$\leq \mathbb{A}_2^p \int_0^\infty h,$$

$$\left(\int_0^\infty \rho(x) \left[\underset{y \ge x}{\operatorname{ess \, sup}} k_1(y, x) w(y) \left(\int_y^\infty k_2(s, y) \tilde{u}(s) ds \right) \left(\int_0^y hV \right)^{\frac{1}{p}} \right]^r dx \right)^{\frac{p}{r}} \leq \mathbb{A}_3^p \int_0^\infty h,$$

$$\left(\int_0^\infty \rho(x) k_1(\sigma^2(x), x)^r \left[\underset{y \ge \sigma^2(x)}{\operatorname{ess \, sup}} w(y) \left(\int_y^\infty k_2(s, y) \tilde{u}(s) \left(\int_0^s hV \right)^{\frac{1}{p}} ds \right) \right]^r dx \right)^{\frac{p}{r}} \leq \mathbb{A}_4^p \int_0^\infty h,$$

for $h \in \mathfrak{M}^+$ and the constant \mathbb{B} has the form

$$\mathbb{B} := \begin{cases} \sup_{t>0} \left(\int_0^t \rho \right)^{\frac{1}{r}} \|T_t\|_{L^1 \to L^{\infty}_{k_1(\cdot,t)w(\cdot)}}^{\frac{1}{p}}, & p \leq r; \\ \left(\int_0^{\infty} \rho(x) \left[\left(\int_0^x \rho \right) \|T_{[\sigma^{-1}(x),\sigma^2(x)]}\|_{L^1 \to L^{\infty}_{k_1(\cdot,\sigma^{-1}(x))w(\cdot)}} \right]^{\frac{s}{p}} dx \right)^{\frac{1}{s}}, & r < p. \end{cases}$$

(2) For $p = \infty$ and $r = \infty$, we have

$$C_S = \|S(\frac{1}{v})\|_{L^r_{\rho}}, \ p = \infty;$$

$$C_S \approx \sup_{t>0} R(t) \|T_t\|_{L^1_V \to L^{\frac{q}{p}}_{k_1(\cdot,t)w(\cdot)}}^{\frac{1}{p}}, \ r = \infty,$$

where $R(t) := \underset{0 < z < t}{\operatorname{ess sup}} \rho(z)$.

Acknowledgments

The research work of G.E. Shambilova and V.D. Stepanov was carried out at the Peoples' Friendship University of Russia and financially supported by the Russian Science Foundation (Project no. 16–41–02004).

References

- [1] S. Bloom, R. Kerman, Weighted norm inequalities for operators of Hardy type, Proc. Amer. Math. Soc. 113 (1991), 135-141.
- [2] L.S. Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull. 21 (1978), 405-408.
- [3] V.I. Burenkov, R. Oinarov, Necessary and sufficient conditions for boundedness of the Hardy-type operator from a weighted Lebesgue space to a Morrey-type space, Math. Inequal. Appl. 16 (2013), 1–19.
- [4] P.J. Martín-Reyes, E. Sawyer, Weighted inequalities for Rieman-Liouville fractional integrals of order one and greater, Proc. Amer. Math. Soc. 106 (1989), 727-733.
- [5] V.G. Maz'ja, Sobolev spaces, Springer, Berlin, 1985.
- [6] B. Muckenhoupt, Hardy inequalities with weights, Studia. Math. 44 (1972), 31-38.
- [7] M. Carro, L. Pick, J. Soria, V.D. Stepanov, On embeddings between clasical Lorentz spaces, Math. Inequal. Appl. 4 (2001), no. 3, 397–428.
- [8] A. Gogatishvili, L. Pick, Discretization and antidiscretization of rearrangement-invariant norms, Publ. Mat. 47 (2003), 311–358.
- [9] A. Gogatishvili, V. D. Stepanov, Reduction theorems for weighted integral inequalities on the cone of monotone functions, Russian Math. Surveys 68 (2013), no. 4, 597–664.
- [10] A. Gogatishvili, R. Mustafayev, L.-E. Persson, Some new iterated Hardy-type inequalities J. Function Spaces Appl. (2013), Art. ID 734194, 30 p.
- [11] A. Gogatishvili, R. Mustafayev, L.-E. Persson, Some new iterated Hardy-type inequalities: the case $\theta = 1$, J. Inequal. Appl. (2013), 2013:515, 29 p.
- [12] M.L. Goldman, H.P. Heinig, V.D. Stepanov, On the principle of duality in Lorentz spaces, Canad. J. Math. 48 (1996), no. 5, 959–979.
- [13] A. Kufner, L.E. Persson, Weighted inequalities of Hardy type, World Scientific Publishing Co., Inc., River Edge, NJ, 2003.
- [14] A. Kufner, L. Maligranda, L.E. Persson, *The Hardy inequality-about its history and some related results*, Vydavatelsky Servis Publishing House, Pilsen, 2007.
- [15] R. Oinarov, Two-sided estimates of the norm of some classes of integral operators, Proc. Steklov Inst. Math. 204 (1994), 205–214.
- [16] R. Oinarov, Weighted inequalities for a class of integral operators, Soviet Math. Dokl. 44 (1992), 291-293.
- [17] R. Oinarov, A. Kalybay, Three-parameter weighted Hardy type inequalities, Banach J. Math. Anal. 2 (2008), no. 2, 85–93.
- [18] R. Oinarov, A. Kalybay, Weighted inequalities for a class of semiadditive operators, Ann. Funct. Anal. 6 (2015), 155–171.
- [19] L.-E. Persson, G.E. Shambilova, V.D. Stepanov, Hardy-type inequalities on the weighted cones of quasiconcave functions, Banach J. Math. Anal. 9 (2015), no. 2, 21-34.
- [20] L.-E. Persson, G.E. Shambilova, V.D. Stepanov, Weighted Hardy-type inequalities for supremum operators on the cones of monotone functions, J. Inequal. Appl. (2016), 2016:237, 18 p. DOI 10.1186/s13660-016-1168-z
- [21] O.V. Popova, Hardy-type inequalities on the cones of monotone functions, Sib. Math. J. 53 (2012), no. 1, 187-204.

- [22] D.V. Prokhorov, On weighted inequalities for a Hardy-type operator, Proc. Steklov Inst. Math. 284 (2014), 208–215.
- [23] D.V. Prokhorov, On a class of weighted inequalities involving quasilinear operators, Proc. Steklov Inst. Math. 293 (2016), 272-287.
- [24] D.V. Prokhorov, V.D. Stepanov, On weighted Hardy inequalities in mixed norms, Proc. Steklov Inst. Math. 283 (2013), 149-164.
- [25] D.V. Prokhorov, V.D. Stepanov, Weighted inequalities for quasilinear integral operators on the semi-axis and applications to Lorentz spaces, Sbornik: Mathematics 207 (2016), no. 8, 135-162.
- [26] D.V. Prokhorov, V.D. Stepanov, E.P. Ushakova, *Hardy-Steklov integral operators*, 22 (2016), Sovremennye Problemy Matematiki, Steklov institute of Mathematics, pp. 1–186. (In Rusian).
- [27] E. Sawyer, Boundedness of classical operators on classical Lorentz spaces, Studia Math. 96 (1990) 145-158.
- [28] G.E. Shambilova, The weighted inequalities for a certain class of quasilinear integral operators on the cone of monotone functions, Siberian Math. J. 55 (2014), no. 4, 745-767.
- [29] G. Sinnamon, Embeddings of concave functions and duals of Lorentz spaces, Publ. Mat. 46 (2002), 489-515.
- [30] G. Sinnamon, Weighted Hardy and Opial type inequalities, J. Math. Anal. Appl. 160 (1991), 434-445.
- [31] G. Sinnamon, V.D. Stepanov, The weighted Hardy inequality: new proofs and the case p=1, J. London Math. Soc. 54 (1996), no. 2, 89-101.
- [32] V.D. Stepanov, E.P. Ushakova, Kernel operators with variable intervals of integration in Lebesgue spaces and applications, Math. Inequal. Appl. 13 (2010), no. 3, 449–510.
- [33] V.D. Stepanov, G.E. Shambilova, Bouledness of quasilinear integral operators on the cone of monotone functions, Siberian Math. J. 57 (2016), no. 5, 884-904.
- [34] V.D. Stepanov, Two-weighted estimates for the Riemann-Liouville integrals, Math USSR-Izv. 36 (1991), 669-681.
- [35] V.D. Stepanov, Weighted inequalities for a class of Volterra convolution operators, J. London Math. Soc. 45 (1992), 232-242.
- [36] V.D. Stepanov, Integral operators on the cone of monotone functions, J. London Math. Soc. 48 (1993), no. 3, 465-487.
- [37] V.D. Stepanov, Weighted norm inequalities of Hardy type for a class of integral operators, J. London Math. Soc. 50 (1994), no. 1, 105-120.
- [38] G. Tomaselli, A class of inequalities, Boll. Un. Mat. Ital. A 6 (1969), 622-631.

Vladimir Dmitrievich Stepanov
Department of Nonlinear Analysis and Optimization
RUDN University
6 Miklukho-Maklay St
117198 Moscow, Russia;
and
Steklov Institute of Mathematics,
8 Gubkina St
119991 Moscow, Russia;
E-mail: stepanov@mi.ras.ru

Guldarya Ermakovna Shambilova Department of Mathematics Financial University under the Government of the Russian Federation 49 Leningradsky Prospekt, 125993 Moscow, Russia.

 $\hbox{E-mail address: } shambilova@mail.ru$

Received: 18.11.2016