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Abstract. We solve the characterization problem of LI — L7 weighted inequalities on Lebesgue
cones of monotone functions on the half-axis for quasilinear integral operators of iterated type
with Oinarov’s kernels.

1 Introduction

Denote 9t the set of all measurable functions on R, := [0,00), M+t C M the subset of all
non-negative functions and 9t C M+ is the cone of all non-increasing functions.
If0<p<ooand veM" we define

Ly = {f €M |[fllzy == (/OOO \f(x)lpv(fv)dx); < OO},

= {1 €M Ul o= esssup o)l 0] < oo

The story was started since 90’s of the last century, when in a process of characterization
of the weighted Hardy inequality

, femr, (1.1)

with 1 < p < 00,0 < ¢ < oo, where

:/:f(y)dy or Hf(z) = /:of(wdy,

basically given in the papers [38] (1 <p =g < 0),[6] (1 <p= q <), 2] (1 <p<qg< ),
5] (1 < p,g <o0),[30] (0<q¢g<1<p<oo),]31] (0 < 1 = p), further extensions
were found for some convolution operators [34], [35], [4]. For a more general transformation a
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breakthrough was achieved by R. Oinarov [15] (with an earlier announcement in [16]) for the
operator

Kf(z) = / k(z,y) f(y)dy, (1.2)
0
where a kernel k(x,y) > 0 satisfies
k(z,y) = k(z,2) + k(z,y), 0y <z < (1.3)

The Oinarov techniques used to prove (1.1) (with K instead of H) and alternative proofs
found in [1], [37] have opened up the study in many directions: for general Lebesgue spaces
with measures, higher dimensions, general Banach function spaces, different classes of functions
and so on (see [13], [14], [26] and references therein).

In particular, the problem appeared in connection with the necessity to consider weighted
integral inequalities on the cones of monotone and quasiconcave functions which arise in the
study of the classical operators in weighted Lebesgue and Lorentz spaces (see, for example, [27],
[12], [8], [29], more recent papers [21], [19], [20], surveys [7], [9]). It was recently revealed that
new quasilinear integral operators of iterated type are involved into study of the problems on
the cones of monotone and quasi-concave functions (see, for instance, [3], [19], [20], [25]).

Let u,v,w,p € M, 0 < p,r,q < oco. In this paper we study the problem of characterizing
the inequality

IRl < Cllfllus, f € oM, (1.4)

where a constant C' does not depend on f and is assumed the least possible. Operator R is a
quasilinear integral operators of the forms

7rw) = ( [ hteutn ( [ ta(e ) GJuladd ) d) (1.5)

st =( [ it ([ k2<y,z>f<z>u<z>dz)qdy>; | (16)

where the kernels k;(z,y) > 0, (i = 1, 2) satisfy Oinarov’s condition (1.3). Symmetrical cases
00 Y q %
Tf(x):= (/ k1 (y, x)w(y) (/ ks (y, z)f(z)u(z)dz) dy) : (1.7)
x 0

st i= ([ mtau) ( / ) k2<z,y>f<z>u<z>dz)qdy); | (1)

were recently characterized in [33].

It have been solved for ky(z,y) = kao(z,y) = 1,0 < y < x (see [28]) by the reduction method
[9] to weighted inequalities of an analogous form on cones of non-negative functions. These
are actively studied [10], [11], [24], [25], [23] and found various applications [3], [17], [18], [19].
Observe, that characterization of (1.4) with two-kernel operators (1.5)—(1.6) required a more
complicated technique . As in [28], the main results have a reduction form, i.e., for each of the
operators (1.5)—(1.6), the inequality (1.4) is reduced to validity of analogous inequalities on the
cone of nonnegative functions, criteria for which are known.

In Section 2, we obtain a criterion for the fulfillment of (1.4) with the operator 7, in
Section 3, with the operator &, and in Section 4, we formulate for completeness results for the
operators (1.7) u (1.8).
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Throughout the article, the products of the form 0 - oo are assumed equal to 0. The record
A < B means A < ¢B with ¢ a constant depending only on p, ¢ and r; A ~ B is equivalent
A < B < A. Also Z stands for the set of all integers,and y g — characteristic function (indicator)
of a set £ C (0,00). We use the symbols := and =: for defining new quantities. If 1 < p < oo,
thenp/::p%lfor1<p<oo,p’::oof0rp:1andp/:zlforp:oo.

2 The operator T

Put V(t) == [, Ut) == [ou, W(t) = [Cw,i =%, Ult):= [T 0<t< oo Assume
Ve

for simplicity that 0 < [7°p < 00,0 < ["w < oo for every > 0 and [~ p = oo, [;~ w = 0.
Define the sequence {b,} C (0;00) from the equations

/ p=2"", neZl. (2.1)
b'n

Let ¢ : [0;00) — [0;00) and (! : [0; 00) — [0; 00) be define by the formulas (here sup @ = 0)

((x) tzsup{y>0:/yoop2%/;p},C‘l(w) rzsup{y>0:/yoop22/:op}- (2.2)

Then ¢ and (! are increasing functions such that fco(z)p =17, fcofl(x)p =2["p. In

particular, C(bn) - bn—i—la bn = C_l(bn+1)'
Given 0 < c<d<o00,0<t,p<oo,heM, put

|7

Theorem 2.1. Let 0 < g < 00,0 <p<o0,0<r<oo. Then the best constant C in

([“rrwr) <cr ([Tiwpa) . rem 20

satisfies
Cr~A+ A+ A3+ Ay + B,

where Ay, Ay, Az, Ay are the best constants in the inequalities

</oOO p(x) (/Ox kl(m,y)kz(x,y)qw(y)dy) : (/;o (/Os hV) ; a(s)d3>rd$>ﬁ i /OOO .

Q
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(/OOO plx) (/0 kl(m,y)w(y)dy)r (/Oo ka(s, ) (/0 hV);a(s)ds>rda:> < A /OOO h.

(2.8)

Q
S

[0 ([ s ([ om0 ) ) <
(/04%) w(y) @w ko (s, )a(s) (/O hv) ;>q dy) u) - ,4{;/000 .

for h € M™, and the constant B has the form

Q3

/0 " @k (e, (@)

1
P

(
1
supiso (f, )"

7} 1 z ) p S;T,
L =Ly () )
B .= 2 s
o) o) -
Jo~ p(@) [(fx o) | T rcreon . ] de |, r<p,
\ k1(¢2 (@) )w ()
where £ =1 1
S T P

Proof. The change f? — f in (2.6) leads to the inequality

</ooo o) ([ sty ([ bt s sputsias) o) g d:ﬂ) <cp [ re

Using Theorem 3.2 from [9], we obtain the equivalent inequality

/Ooop(x) </0x Fa(z, y)w(y) (/yoo ko (s, y)u(s) (/O hV);ds>qdy>2dx ; < cr;/ooo h,

(2.11)

s

for h € M+,
The upper bound. Bellow we shall use well-known relation (see, for example, [12], Proposi-

tion 2.1)
> o <Z ai) ~ > 27, (2.12)

nez i<n nez

valid for all sequences of nonnegative numbers and every s > 0. Put

T,h(y) = (/yoo ko (s, y)ii(s) </0 hv);ds>p.

J = Z / p(x) ( / (e () (L)} dy) " o

We write
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<y (/ (b )10y ><Tph<y>>5dy)2
S ([ k) @ae)E )
D3 (/ (b0 <><Tph<y>>5dy);:: ot
<y < [ bt ( [ wtssato ([ ) : ds)qdy);
D (/b k(b )0 (y) (/b:1k2<s7y>a<s> (/OshV)'l’ds)qdyyz Jo + o
By Oinarov’s condition (L3) we have ka(s, ) = ka(z. ) + kals, ) for y < o < s, Hence
Fam Y /b ol ( /b k() ( / Oo (s i) ([ hV)’l’d«s)qdy);
~2 Ja b v)da < / b ) ( /boo ( | hV);a<s>ds>qdy) q
> /b ol ( / ki) ( / OO ta(s.00i(s) ([0 % ds)Qdy>;
< [T oo ([ b vwn)’ ( ([ hv); a<s>ds)de
o ([ k1<x,y>w<y>dy)z ( [ st ([ av) % ds)rdx
< (A5 + AP 213

Write

1

Y (/ Yo (/yb"“k2<s,y>a<s> (/Ob”hv)"dsydy);
D3y ( / (b, )u(y) ( / " (s p)its) ([ hv)’l”ds)qdyyz Tavs s

We have

s [ ([ [ o ) ) )

Jun
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< [" ot ( [ et / Ook2<s,y>a<s>ds)q< / yhv)’q’dy);dxmghé- (214)

Next, using (2.3) and (2.4), we obtain
Jag0 = Z o—n [(/ k1 (b, y)w(y) (j;[bnfg,b"]h(y» » dy> ]
n 2

bn+1 %
(L)
Ll[bn 2, bn+1]—>Lk1(b (- )[b —92, bn} by—2
For p < r by Jensen’s 1nequahty

o0 — r (e.) g
J21,2 < sup (/ ﬂ) ) T, _ob0] pl (/ h)
n brt1 L %Lk (bnyw) \JO
0o T 0o 5
([P ([
t>0 \J¢ LY=L 4w

Ji1s < B / .
0

For r < p, by Holder’s inequality, we find with % = % —

s S o0 é
Jo1g < 927 HT / n).
ahe <Z - LlﬁLf (b )w <»>> ( 0

Hence,

because .
2 ﬁbn, bn] !
; : LlﬁLk (bn ) ()
Sl :
~ p / p) T1¢=1(bn1),(bn—2)]
n bn—2 bn—1 1 L= Lk (€2 (bp—2),)w(")
S [ || %
< / p(x) < / /)) )’ﬂC*l(z),CQ(r)} . dx
~ Jb, s @ =Ly () i
[e’e} oo —~ %
=/ plx) </ P) HT[c—l<x>,<2(x>] dr = B*.
/0 z Ll%Lf (€2 (@), yw()
Therefore,
Ty 1y < B / h.
Y 0
Consider

Q3

=3 ([ hnuto) b)) i)

n

(2.15)

(2.16)
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e (T |

i<n bi—

(b y)w(y) (Tyh(y))? dy>

q

~ZQ%Z %@1(WWWMO
+22 "<Z/

T

q

bi—1,y)w(y) (Tph(y))% dy) = Jig1+ Ji2.

i<n bi—

Applying (2.12), we get

r

EDRN ( / ) (G0 )~

< (A7} + A5 + A5 + B7)||R|7,.

To estimate .J; 1, we use inequality (see [9], Lemma 3.1)

ki (b, i) < (Z kzl(bjjbj_l)"‘> ,ae(0,1)

j=i
and Minkowski’s inequality to derive that

Jll_ZZ " (Zkl by, bi—1 /1 2 w(y) (Tph(y))gdZ/)q

i<n bi—3

r
q

«Y o (Y (Z /ﬁ(bj,bjl)a)a [ o) ()} ay

i<n \ j= bi-s
g (g (g [ wmwra) )
=32 (Zk (b b;-1) (/ () <Tph<y>>5dy)a>éq

Q3

I B OO ([ vt @it av)
~ Z/b+ 2)k1 (b, b_1) (/b Th(y)zdy>);dx
< Z/b"“ D)k (z, ¢ 2(2))5 (/OC ! Tph(y)gdy>>;dx

53

(2.17)

(2.18)
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:=£wpmmma<2@»2(AC%wa(ﬂuw&wxydeAmm@l (219)

It follows from (2.13)-(2.19) that the upper estimate C'r < Ay + Ay + A3 + A4 + B is proved.
The lower bound. Diminish the domains of integration in (2.11):
(1) [y,00] — [z,00] and obtain C7 > A; + As (since kao(s,y) =~ ka(x,y) + ko(s,z) for
0<y<z<s).
(2) [0,s] — [0,y] and obtain Cy > Aj.
(3) [0,2] — [0,{2(x)] and obtain Cr > Ay (since ki (x,y) = ki(z,(2(x)) for y < (3(z) <
Inequality (2.11) for h € 9" implies that

(/too p)f (/Ot ka(t, y)w(y) (/yoo ka(s, y)ia(s) (/O hv)’l’ds)qdy>

therefore, C > B, and the theorem is proved for p < r.
It remains to find the lower bound for B when r < p. We have

B =/ plx) [(/ P) Hﬁc—lu),c?m] 2 ] dz
0 @ Lo @ w.w)
bn 00 . i
= p(z) ( / P) HTK*(x)v@(z)] 8 dr
zn: /bnl x L= (2w

bn 0o %~ s
P
SEZP@“M;O‘%%mMMMﬁ

n—1 kl((2(z),~)w(-)

QI

¢
<cp[n
0

Z _ns || »
~ 2 r ﬂbn—ben+2] q
L1—>L,§7
n l(bn+2a')w(')
Hence
s _ns || 5 P . 128
B <K E 2 r ‘ﬂbn—27b7l+2] N % —. B
Li—L
n k1 (byy2,)w(:)

Let 0 € (0,1) be some fixed number. Then for every n € Z there exists h, € L'[b, o, b,3]

such that ||| L1, 6n.s = 1 and
HT[bn_g,bn+2]hn g 29HT[bn_2,bn+2] d
k1 (byp2,)w() Tk (bpga ) w ()
Put
gn ‘= 27 ﬂbn727bn+2] o L% hn; Tn = HT[bn727b’n+2} ot L% ;g = E [
- ky(bpyo,)w(:) - k1 (b2, )w(-)
Then

“T? = B,

bn+3 n
ol <32 [ = Y027
n n—2 n
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On the other hand

o)
i

/0°° A (/0"’3 b, y)w(y)(Tpg(y))g> " i

>3 [ s [( [ ks ) G900

SIS
N———

bn72

bn+2 ~ q % %
= ZQ_TL [(/ k1 (bnt2, y)w(y) <T[bn,2,bn+2]9n) dy) ]
n bn72
=> 2m2 T

Inequality (2.11) yields

r

p
q
p

) ﬂb7l—2 7bn+2] h'n I

> 05 3 2L = 03B,

ky(bpyo,)w(:)

211) o
BCL > C%gll;r > Dr>0B+.
Consequently,
1 1
Cr>0vB>0vB.
Since 6 € (0, 1) is arbitrary, C7 > B. O
Remark 1. (1) If ¢ = oo then Cr =~ Ay + Ay + A3 + Ay + B, where Ay, Az, A3 and Ay are the

best constants in

|
38

/p(x)[esssupkl(x,y)kg(x,y)w(y)]T / /hV a(s)ds | de| < Aﬁ’/h, (2.20)
0 ve(®n) z  \0 0

38

y€(0,z)

(7p(x)[esssupk1(as,y)w(y)]r ]Okg(s,x) /ShV u(s)ds | dx §A§7h, (2.21)

3

y€(0,z)

7[)(96)/?1(% “(2))" | esssup w(y) /kz(&y)ﬁ(S) /W ds || dx SAZ]Oh,

y€(0,(~2(x))
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for h € M* and the constant B has the form

( 0 % _ l
Supt>0 (f p) Tt 3 P é r,
¢ LoD yw)
B = El S
oo oo ~ p
J p(z) [(f P) [ - ] do |, r<p
L \o x D=L o), w
(2) if p=o00 orr =00, then
HT( )Ny p=o0;
1
Cr=swpROIEIT . r=oo
t>0 L%,—>Lkl(t“)w(,)

where
R(t) := esssupp(z).

2>t

Proof. (1) For ¢ = oo, we have

B =

1=y " pto) s o pulo) ()

< Z 27" [ess sup k1 (bn, y)w(y) (Tph(y));]

yE 0,by— 2]

+22" [ esssup ki (bn, y)w(y) (Tph(y));] = Ji + Jo.

ye(bn—Q 7b77«]

By analogy to Theorem 2.1, we prove the inequality
Jy < (A7 + Ay + A5 + B[],
To estimate J; use relation

Z 27" (sup az) ~ Z 27 "a;

nez izn nez

instead of (2.12). We have

yG(O bn 2}

22 " [esssup 1 (bn, y)w(y )(Tph(y));] _

= 22 " [sup esssup ki (bn, y)w(y) (Toh(y))

i<n ye(bL 3, bz 2]

B =
| I |
<

n

1<n ye(b;i—3,b;—2]

Ay 2 [sup esssup ki (by, bi—1)w(y) (Tph(y));]

56

(2.24)

(2.25)
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+Z2"

Applying (2.25) as in Theorem 2.1, we obtain

sup esssup  ky(bi—1,y)w(y) (Tph(y))fl’] =t S+ e

zn ye(bl 3,bi— 2]

Jia < (AT + AL + A5 + BY)|B|2. (2.26)

To estimate .J; ; we use Minkowski’s inequality and (2.18) to see that

Jia —ZQ " [sup esssup ki (b, bi—1)w(y )(Tph(y));]

i<n ye(bz 3, bz 2]

SR

<32 o (Zkl ) esssup _w(y) (Tyh(y))

i<n y€(bi—3,b;i—2]

3=

S lz b (sup esssup._w(y) (Tyh(y) ) ]
1<j y€(bi—3,bi—2]

<n

= 22 " [Z k1(bj, bj—1)esssup w(y) (T,h(y))

i<n y<b] 2

qr

3=

=

Z? "y (b, b 1) [esssup w(y) (T,h(y))
y<bn 2

bn+1

x)dxky (b, by_1)" [ess sup w(y) (Tph(y)):’]

ygbn72

S

2)ky (2, (2 (2))" [eji s;zp) w(y) (Tph(y)) ] dx

00 1 T . r
=/ p(x)ki(z, ¢*(x))" [esis;}p) w(y) (Tph(y))7 | de < A|h]|L,. (2.27)
0 y<( 4 (x
Relations (2.24)-(2.27) imply the upper estimate Cr < A; + Ay + A3 + Ay + B. The lower
estimate is proved by analogy to Theorem 2.1. 0

Remark 2. Sharp two-sided estimates of the best constants in (2.7)—(2.9), (2.20)-(2.22) and
the constants B by explicit integral functionals are found by reduction theorems in [24], [25]
and criteria for the boundedness of Hardy-type integral operators [15], [31], [32], [22]. However,
(2.10) and (2.23) contain an additional iteration on the left-hand sides, therefore, we give the
separate reduction for this case (see Lemma 2.1).

Supposed that A\, u,v,n € Mt and the kernel k(x,y) satisfies Oinarov’s condition (1.3),
while the sequence b,, and the function ((x) are defined by (2.1) and (2.2) with A in place of p.
Given 0 < c<d < 00,0 <t,g<oo,heIM put

1 q
oo S q

Tih(z) == X0, () /k(s,x)y(s) /h ds | , (2.28)

T 0
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q

¢(d) s\ @
ﬁc7d]h(x) = Xed (@) /k(s,:p)y(s) (/ h) ds | . (2.29)

T Cc

Lemma 2.1. Let 0 < p,q,r < oo. Then for the best constant C' in the inequality

1
p LS

]OA(x) ju(y) (]Ok(s,y)u(s) (/ h)qu>;dy T dr | < O]Ohn,h cm*

0 0 y 0 0

satisfies
C%G1+G2—|—G3+G,

where G, Go, G are the best constants in the inequalities

p

7A(x) (/wu(y)[k(x,y)]gdy)f (71/(5) (/Sh)qu)qdw 5 < G17hn,

x 0 0

\8
>
&

~

\a
=
~
3
~
\8
ol
2
=
AN
©
~

o\m

>

N~ —

=]
QL
()
N~ —
I
oW
s
=
AN
D!
(Y]
\8
>
=

0 0 x 0
. 1
00 x 00 2 y r " b 00
[r@ | [ ntw) ( / k(s,y>u<s>ds> ( / h) iy | ar| <[,
0 0 y 0 0
for h € M* and the constant G has the form
o (tf A) 7l =t

= 1-p

J M) Kf A) [T, } de| , 0<p<lL
0 t L"Z_>LN

Proof. The upper bound. Write
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32 ( / o) ([ stsio) ([ h)qu)Zdyy Y

Estimate of Js.

Estimate of J;.

=
—
S~—
VR
TS
= V)
>
N———
=
o
& &
N——
Q3 =
.
<
v
n
=
_l’_
=

bn bn+1
—i—ZZ’” /bl,u(y)(/y k(s,y)v(s b

Estimate of J; ;.

brt1 bn brg1 7 v b1 \ P
tam S [ @ ([ ([ ssmoas) ) ([7n)
n n n—1 Yy
. yoN\T z p
P
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Now we estimate J; 5. Using notations (2.28) and (2.29), write

bn _ , %
=32 ([ ) [Fosnant)] )
~ p bn+1 p
< 2‘”HT h) .
- Xn: bl </b_ n)

For p > 1, applying Jensen’s inequality, we have

o0 - P 0 p [eS) p
JTy < sup (/ )\) HT[bn,l,bn] (/ hn) <GP (/ hn) )
' n bn Li—Lr 0 0

For 0 < p < 1, by Holder’s inequality, we obtain

1-p
bn, T—p || _ 2 00 p o0 p
Jia < (Z (/b /\(:p)dx) T,y ] ;I:Lr> (/0 hn) < GP (/0 hn) )

Therefore, the upper estimate C' < G + Gy + G35 + G is proved. For the lower estimate it
suffices to repeat the corresponding arguments in the proof of Theorem 2.1. 0

1

3 The main results for S

Given 0 < c<d<o00,0<t<o00,heM put

Toh(z) = x04(2) ( [ tetesiate) () : d) (31)
Teah(z) = Xiea(a) ( [ e ([ h); ds>p . 32)

I (I Tt

;= sup (3.3)
Theorem 3.1. Let 0 < ¢ < 00,0 <p<o00,0<r<oo. Then the best constant Cs in

LH— LY, 0£REIM+ (fooo [h]pv)%

(/OOO[Sf(x)VP(I)da:)i < Cs </Ooo[f(x)]pv(x)dx); femt (3.4)

satisfies Cs =~ A1+As+A3+A4+B, where Ay, Ag, Az, Ay are the best constants in inequalities

</°Oo ) (/cx3(m> Fa(, y)ka(y. C‘B(x))w(y)dy) (/ch(x) (/SOO h) , u(s)d8>’” dx)f

<at [ w
0
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D
T

Yoo ([ wmaow) ([ we @t ([n) ) ar)
f (L, ) s

<ay [ w
0

| ota ( [ ) ([ ) ( [ ) dy) ") <a [
[ [ e ( [ st ([Tn) qdy] e

<ar [ w.
0

for h € M* and the constant B has the form

Q3
S

/0 )

4
!
o0 = p
supiso ([ 0)" || T a , pP=T,
' Ly =Ly, (1, yw() .
B = % 5
00 e’} -~
I o) | ()7 p) H%l@)@(mﬂ . de |, r<p,
\ VT (2 (@), w()
where L :=1 1
s r D

Proof. The change f? — f in (3.4) leads to the inequality

</O°° p() (/Ox ki (z, y)w(y) (/Oy k‘z(y,S)le?(s)u(S)ds>qdy> % dx)f <c? /OOO fo.

Using Proposition 2.1 [9] and the Monotone Convergence Theorem, we obtain the equivalent
inequality

D
T

/OOO p(x) (/Ow ki (z,y)w(y) (/Oy ko(y, s)u(s) </:o h);ds)qdy> 2 dx | < CF /OOO V.

(3.5)
for h € M+,
The upper bound. Put

Plainly,
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<) 2 ( / " k(b () (Toh()? dy);
~ Z 27" ( / " (b ly) (Toh(y) dy);

3o ( / ba (b, y)uy) (Toh(y)) d;,); — I+ 1.

b ; 2 </bl: ki (bn, y)w(y) (/Obns ka(y, s)u(s) (/:O h) : ds) q dy) 5
([l )

Next, by Oinarov’s condition (1.3) ka(y, s) & ka(y, (3(x)) + k2 (C3(x), 8) for 0 < s < (3(x) <
y, Hence,

™ zn: /:H pla)de (/I:Q (b, y)w(y) (/Obn3 ko (y, s)u(s) (/soo h) % ds) q dy) %

2 /bb plo)ds ( /bb b ) K3, () () ( [ ) b (S)d8> y) ;

S [ oy ( [ttt ( [ s au () : d$>q y>;
< [Tow ([ mlnkm @ )’ ( [ ) ds)’”dx
+/OOO p(z) (/;3(@ krl(x,y)lU(y)dy)q (/Oc 3(a) (=), 5)u(s) (/oo h); ds)rdx

< (A} +AD)[R]]7, (3.6)
Lo ~ En: g (/bb ot (b, 1) (y) (/by sy, $)u(s) </b h) : ds)q dy> s
+y 2 ( / kb, ) () ( / ka(y, s)u(s) ( | h) % ds)qdy>; Doy + Do

Then

haa= 3 / o(2) ( / 1 (b )0 () ( / a(y, 5)u(s) ( / °° h)’i ds>qdy);

q
d
d

Write
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Next, using (3.1) and (3.2), we have

Irp1 = Z 2™ [(/n 2 k1 (bn, y)w(y) (ﬁbng,bn]h(y))g dy) Z] %

bn+1 %
< 22 HTbn 2,bn] (/ hV) .
Ll [bn 2 bn+1]_)Lk1(b Hw(- )[b -2, bn] bn_2

For p < r, applying Jensen’s inequality, we infer

r o0 5
1272’1 S sup (/ > HTbn 2] pl (/ hV)
bpt1 L HLk (br,)w(-) 0

oo r 00 5
oo Pl ()
t>0 \Jt Ll_’Lh(bn Jw() \JO

Ijy, <B” / hv.
0

For r < p, by Hélder’s inequality, we find that
%
q
Ly =L b, )

Ip: < (ZQZLS

T

Hence,

= T

([

‘ﬁbnf%bn]

because
227 | T
- Ly _>L k1 (b ()
() ([ ) %
~ p / p> Tic-16n1) 2 (0m_2) g
n bz bn-1 LY =LY a0y
bn—l %
< / p(x) ( / ) |72 du
Zn: bn—2 @ Ly *Lf (€2(@),)w(-)
= p(x) (/ p> Hchl I q dxr = B*.
/0 z e Ly=Ly 26w
Therefore,
P o0
Iy, < B / hv.
0
Consider .
q

h-Ye ([ st vwt) oyt a)

63

< /OOO p(x) (/Ox ki(z, y)w(y) </Oy k‘Q(y,s)u(s)ds>q (/yoo h)gdy> 5 dr < AthHi/ (3.7)

(3.8)
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—22 " (Z/ (b, y)w ><7;h<y>>2dy)q

i<n bi—

q

~Z2 n (Z ey (b, bi_y )w(y )(7Z>h<y))fq’dy>
+Zz “(Z/

i<n bi—

r

q

bi—1, y)w(y) (Eh(y))% d@/) =:Ii1+ 1.

Applying (2.12), we get
he < X ([ s ) () ) <
bn—3

< (AT + A+ AL+ B[R], -

To estimate [, 1, we use (2.18) and Minkowski’s inequality to find that

hi=37 "<Zk1 (b bi s /

-2

w(y) (Tyh(y))? dy>

i<n =3

n Lo .
<) 2 (Z (Z zﬁ(bj,bj_l)a) / () <7;h<y>>5dy)

(g (g [ womwra) )
= 22 " (Z (b ( / " ) (Toh(w) dy)a);q

L > (b " () (T dy»;
~ ; /bb+ p(x)kl(bn,bnl)Z( "

<> /,,b pla)ky(x, C*(x))
- / " @k (.2 e ( / ") (%h@)gdy)) o Al

(3 (x)

Q3

/0 w(y) (Eh(y)gdyD; dx
[ e (7;h<y>2dy)> P

0

64

(3.10)

(3.11)

It follows from (3.6)-(3.11) that the upper estimate Cs < Ay + Ay + A3 + A4 + B is proved.

The lower bound. Diminish the domains of integration in (3.5):
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(1) [0,2] — [¢™3(x), x| and obtain Cs > A + A,
(since ko(y, s) ~ ko(y, (3(2)) + k2(C3(2), s) for 0 < s < (3(x) < y).
(2) [s,00]) — [y, 00) and obtain Cs > As.
) (3) [0,2] — [0,¢2(x)] and obtain Cs > Ay (since ki (x,y) = ki(x,(2(x)) for y < (2(z) <

Cs > B is proved analogously to Theorem 2.1.
O
For the limit values of parameters, we have

Remark 3. (1) Cs ~ A; + Ay + As + Ay + B for ¢ = oo, where Ay, Ay, A3 and A, are the
best constants in the inequalities

(/000 pla)l esssup k(@ )holy, CH@)wl)] </0<—3<x> (/) % U(s)dS) r d:) |
< AY /O T,

</OOO p(x)[ygiis(lﬂl«‘%)w)kl(x’ vl </OC_3(I) ka(C3(2), s)u(s) </:O h) ’ ds) T dx)
<ap [ ww.

(/OOO p(z) [eyss(gggkl(x,y)w(y) (/Oy ka(y, s)u(s)ds ] da:> < A? /OOO v,
oo

< Az/ By, (3.12)
0

S8

for h € M*, and the constant B has the form

(

P

supeo (f, p)" || Te

<
LL L ’ =7
R (o))

B =
Jo p(x) [(ffo o) | T e

\

W =

Ll L
T (€2 (), yw ()

] de | , r<p.
(2) For p =00 and for r = co, we have
Cs = ||5( Mg p = o0;

1
Cs ~supR(t)||T||” g , T = 00,
>0

1 p
Ly =Ly, 6,9
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where
R(t) := esssupp(z).

z>t

Suppose A\, pu,v,n € MT, the kernel k(z,y) satisfies Oinarov’s condition (1.3), and the
sequence b, and the function ((x) are defined by (2.1) and (2.2) with X\ instead of p. Given
0<c<d<o0,0<t,g<oo,heM put

Th(x) = X4 (@) ( | #asiwte) < | h) 3 d)
Treah(x) = Xjeu () (/g:(c) k(z,s)v(s) (/Sd h)éds)q.

Similar to Remark 2, we prove the following lemma that enables us to reduce the inequalities
with the constants A,.

Lemma 3.1. Suppose 0 < p,q,r < oo. Then the best constant C* in

[ (/jmw ([ koo (/swh)qu)gdy)fdx

gc*/ hn, h € M*
0

D=

satisfies

C* ~ G+ G+ G+ G,

where G, G5, G5 are the best constants in

([ wwmweeia) ([ (1) a) @
[ oo (L, )L el
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for h € Mt and the constant G* has the form

1
supso (f7A)7 p>1,

)* |7

)
Ll s LT
7
1-p

i N
} dx , O0<p< 1.
L}—Ly,

G* = B
<fo°o Az) {(f;o N T

Inequality (3.12) is reduced similarly.

4 The main results for T u S

The characterization of (1) for the operators 7" u S is proved in [33]. For completeness below we
state the results. We will assume that 0 < [" p < oo for every 2 > 0 and [[° p = o0, [ w = .
Define the sequence {a,} C (0;00) from the equations

/ p=2" neZ.
0

Let o : [0; 00) — [0; 00) — [0;00) be defined by the formulas (here inf @ = o)

o(z) = 1nf{y>0 /p>2/ } 1nf{y>0 /p> / },xz(),

ForO0<ec<d<oo0,0<t<oo,heM put

Th(e) = X0 (0) ( [ tate oty () d)
Tiah(z) = Yea (@) ( /U xl(c) ko(, 5)u(s) ( /sd h) ’ ds)p’

1
(o [Teh)'w)
I Tell oy, = sup  ~=2———i
0£hem+ (fo [h]pv)p
Theorem 4.1. Suppose that 0 < ¢ < 00,0 < p < 00,0 < r < o00. Then the best constant Crp
m

( /0 OO[Tf(:v)r"p(oc)doc)i < Cr ( /0 7 f(m)]pv(x)dx); fem

Cr=~ A+ Ay + As + Ay + B,

where A1, Ay, A3, Ay are the best constants in

( /0 ) p(x) < / ) Fr (y, ) ks (y, x)qw(y>dy>

r

satisfies

P
s

</0 </S°°h)iu(s)d8>rdx> < Af;/ooohv,
/OOO p() ]Okl(yvfc)w(y)dy q (/OI ko(x,s) (/:O h)ll) u(s)ds)rda: < Ab /OOO A%

T

Q3

3
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D
r

/OOO " </OO bl ly) (/oy Rl S)“(S)ds> q (/yoo h) % dy> “ar| <A /OOO hv,
[/:o Y </0y el uls) </oo h> ;> | dy] w) < /OOO hy.,

2(z

Q3

Aﬂmmw%mm

for h € MMt and the constant B has the form

( 1 1
SUP;sg <fot /)> ||7—th||1)1 g ; p <,
Ly =Ly Cowe
B = s :
Jo p(2) [(fox ATl 4 ] dr |, r<p,
Vo ki G @) w ()

\
where L =11

s r P
Remark 4. (1) Cr = Ay + Ay + A3+ Ay + B for ¢ = oo where Ay, Ay, A3, Ay are the best

constants in

s

(/0“’ pla)lesssup by, @)k (y, 2Jwy)l (/0 (/OO h) % u(s)ds)r dm) <A /OOO %
/OOO P(m)[esszsilp ki (y, x)w(y)]” /Ox ko (z, 3) 7h 7 u(s)ds | dx ; < AP /OOO V.
(/OOO p(z) [eSSzS;lp k1 (y, 2)w(y) (/Oy ka(y, S)u(s)ds) (/yoo h) ;] rdx>’; <A /0°° W
(/000 p(x)ki (0% (x), )" [iisa?&})) w(y) </0y ks (y, s)u(s) (/:O h) v ds)] r dx>f v /Ooo »

for h € M* and the constant B has the form
P,

1 1
t r P
SUPy~.q <fo p) Hﬁtl‘zb*Liﬁ(.tw» ’

B = ’ 7
(fo p(x) [(fo p) HT[O-1<w>’“2<$”HLlﬁLﬁ<~,o1<w>>w<->] dx) e

(2) For p =00 or r =00, we have
1
Cr = 1Tz p= oo

Cr =~ sup R(t)HﬁH5
t>0 1

Ly, —L
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where R(t) := esssupp(z).
0<z<t
ForO<ec<d<oo, 0<t<oo, heM" put

Tih(2) = Xjuoo (@) ( [ s ([ ) % a(s)ds>p,
Tieqh(z) = Xjca)() ( /I U(d)/f ( V> u( )

T q
1Tl g, == sup U I w,
o ([<{plo)’

Theorem 4.2. Suppose that 0 < ¢ < 00,0 < p < 00,0 < r < oo. Then the best constant Cg
" . L . .
([Tsror) <o [iwr) sem
0 0

CS%A1+A2+A3+A4+IB,

where A1, Ay, Az, Ay are the best constants in

/OOO p(x) (/:B(x) kl(y,x)kg(o3(x),a;)qw(y)dy)q (L:m) (/0 W)p a(s)(k)’”dx
<atf[n

([ () s
< A2 / T,

/OOO plz) (/:O ki (y, z)w(y) (/yoo kz(s,y)ﬂ(s)ds>q (/Oy hV) G dy) ‘ dr| <Az /000 h

| oo,y [ / :@ w(y) ( / st ([ 1

for h € Mt and the constant B has the form

(

Q=

satisfies

s

Q3
S

e ( / ™ x>w<y>dy)

=
N——
L)
U
<
=
Qs
S
8
IA
>
S
o\
8
=

1 1

N

supo (fy0) ITI7 4 per
Ky (- t)w(-)

fooo p(z) [(fox P) HT[O'_I(I),UQ(I)]HLIHL% ] de | , r<np.

k1 (o~ (@)w()




On the boundedness of quasilinear integral operators of iterated type with Oinarov’s kernels 70

Remark 5. (1) Cs = A; + Ay + As + Ay + B for ¢ = oo, where Ay, Ay, Ag, Ay are the best
constants in

( [l essup bty 2’ @) i)y ( L) % a<s>ds> T dx)

S

3

( [ et es sup b 0. ( / :m) iats. ) ([ av) % a<s>ds> r da:)

(/OOO p() [eSSf;lpkl(y’x)w(y) (/yoo ko (5, y)il ) ( hv) x)i’ » /OOO .
</°OO S liszsﬁifw(w (/y‘” o 9)8 (/ ) ds>] das) < A7 /OOO h

for h € Mt and the constant B has the form

SUPy~q (fo ) |Tt||L1aLk o p <7

B:= s 1
(fooo p(l’) |:(f01‘ p) ||T[J—1(x)70'2 x)]Hng)L 2 o1 (el )‘| dm) , T<p.

o |

(2) For p =00 and r = oo, we have

Cs=15(; )HU p = o0;

1
Cs ~sup R(t)||TH||”  « , T = 00,
t>0 Lb—)L,fl("t)w(')
where R(t) := esssupp(z).
0<z<t
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