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CHARACTERISTIC DETERMINANT
OF A BOUNDARY VALUE PROBLEM,

WHICH DOES NOT HAVE THE BASIS PROPERTY

M.A. Sadybekov, N.S. Imanbaev

Communicated by Massimo Lanza de Cristoforis

Dedicated to the 70th birthday of Professor Ryskul Oinarov

Key words: ordinary di�erential operator, boundary value problem, eigenvalues, eigenfunc-
tions, basis property, characteristic determinant.

AMS Mathematics Subject Classi�cation: 34B05, 34B09, 34B10, 34L05, 34L10.

Abstract. In this paper we consider a spectral problem for a two-fold di�erentiation operator
with an integral perturbation of boundary conditions of one type which are regular, but not
strongly regular. The unperturbed problem has an asymptotically simple spectrum, and its
system of eigenfunctions does not form a basis in L2. We construct the characteristic determi-
nant of the spectral problem with an integral perturbation of boundary conditions. We show
that the set of kernels of the integral perturbation, under which absence of basis properties of
the system of root functions persists, is dense in L2.

1 Introduction and statement of the problem

A well-known fact is that the system of eigenfunctions of an operator given by formally adjoint
di�erential expressions, with arbitrary self-adjoint boundary conditions providing a discrete
spectrum, forms an orthonormal basis in L2. The question of persisting the basis properties
under some (weak in de�nite sense) perturbation of an initial operator has been investigated in
many works. For example, the analogous question for the case of a self-adjoint initial operator
has been investigated in [1, 2, 3], and for a non-selfadjoint operator in [4, 5, 6].

In the present paper we consider the spectral problem:

l (u) ≡ −u′′ (x) =λu (x) , 0 <x< 1, (1.1)

U1 (u) ≡ u′(0)− u′(1)− αu(1) = 0, (1.2)

U2 (u) ≡ u (0) = 0, (1.3)

which is close to those considered in [1, 4, 7]. Here α > 0 is an arbitrary positive number.
Let L1 be an operator in L2 (0, 1) given by expression (1.1) and by "perturbed" boundary

conditions:

U1 (u) =

∫ 1

0

p (x)u (x) dx, U2 (u) = 0, where p (x) ∈ L2 (0, 1) . (1.4)
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By L0 we denote the unperturbed operator (the case p (x) ≡ 0).
In our previous papers [6, 7, 8, 9, 10, 11, 12] we considered di�erent variants of the integral

perturbation of boundary conditions. In these papers, we constructed the characteristic deter-
minant of the spectral problem for the operator L1 under the assumption that the unperturbed
operator L0 has a system of eigen- and associated functions (EAF) which form a Riesz basis
in L2 (0, 1). On the basis of the obtained formula we established the stability or the instability
of the Riesz basis properties of EAF of the problem under the integral perturbation of the
boundary condition. In [8] the problems of stability of the basis properties of root vectors of
the spectral problem, where α= 0, and with the integral perturbation of the second boundary
condition, have been investigated.

As follows from [4], the system of root vectors of spectral problem (1.1), (1.4) forms a Riesz
basis with brackets in L2 (0, 1) for any choice of p ∈ L2 (0, 1). However even for p(x)≡ 0 (i.e., in
case of the unperturbed problem) the system of the root vectors of the problem does not form
a basis in L2 (0, 1) (see [13]). Therefore we cannot apply directly the methods of our previous
papers. We use a special auxiliary system for constructing the characteristic determinant.

2 Constructing a basis from the eigenfunctions of the operator L0

Boundary conditions in (1.1) - (1.3) are regular but not strongly regular. The system of root
functions of the operator L0 is a complete system but does not form even an ordinary basis in
L2(0, 1) [13]. However, as shown in [14], on the basis of these eigenfunctions one can construct
a basis by applying the method of separation of variables for solving initial-boundary value
problems with boundary condition (1.2).

In this section we introduce results from [14] and make additional calculations which are nec-
essary for our further work. Spectral problem (1.1) - (1.3) is easily reduced to the characteristic
determinant of the problem

∆0 (λ) =
√
λ
(

1− cos
√
λ
)
− αsin

√
λ = 0. (2.1)

Therefore the problem has two sequences of eigenvalues

λ
(1)
k = (2πk)2, k = 1, 2, . . . , λ

(2)
k = (2βk)

2, k = 0, 1, 2, . . . .

Here βk are roots of the equation

tgβ = α/2β, β > 0 . (2.2)

They are positive and satisfy the inequalities

πk < βk < πk + π/2, k = 0, 1, 2, . . . .

Two-sided estimates
α

2πk

(
1− 1

2πk

)
< δk <

α

2πk

(
1 +

1

2πk

)
(2.3)

hold for the di�erence δk = βk − πk for large enough k .
The eigenfunctions of (1.1) - (1.3) have the form

y
(1)
k (x) = sin (2πkx) , k = 1, 2, . . . , y

(2)
k (x) = sin (2βkx) , k = 0, 1, 2, . . . .
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This system is almost normalized but does not form even an ordinary basis in L2(0, 1). How-
ever, as shown in [14], the auxiliary system

y0 (x) =y
(2)
0 (x) (2β0)−1, y2k (x) =y

(1)
k (x) ,

y2k−1 (x) =
(
y

(2)
k (x)−y

(1)

k (x)
)

(2δk)
−1, k=1, 2, . . .

constructed from this system, already forms a Riesz basis in L2(0, 1). The system

v0 (x) = 2β0v
(2)
0 (x) ,

v2k (x) = v
(2)
k (x) + v

(1)
k (x) , v2k−1 (x) = 2δkv

(2)
k (x) , k = 1, 2, . . .

is biorthogonal to the auxiliary system. This system is constructed from the eigenfunctions of
the problem

v
(1)
k (x) = C

(1)
k

(
cos (2πkx) − α

2πk
sin (2πkx)

)
, k = 1, 2, . . . ,

v
(2)
k (x) = C

(2)
k

(
cos (2βkx) +

α

2βk
sin (2βkx)

)
, k = 0, 1, 2, . . .

adjoint to (1.1) - (1.3). The constants C
(j)
k are chosen from the orthogonality relation(

y
(j)
k , v

(j)
k

)
= 1, j = 1, 2. It is evident that the system {vk (x)} forms a Riesz basis in

L2(0, 1).
By direct calculation it is easy to check that

C
(1)
k = −4πk

α
, C

(2)
k =

4πk

α
+O

(
1

k

)
. (2.4)

It is easy to see that ‖y(1)
k ‖‖v

(1)
k ‖ = 1 + 2πk

α
. Therefore limk→∞ ‖y(1)

k ‖‖v
(1)
k ‖ =∞. That is, the

necessary condition of the basis property does not hold. Hence, the systems
{
y

(1)
k , y

(2)
k

}
and{

v
(1)
k , v

(2)
k

}
do not form an unconditional basis in L2(0, 1).

3 Characteristic determinant of spectral problem (1.1), (1.4)

Representing the general solution to equation (1.1) by the formula

u (x, λ) = C1cos
√
λx +C2sin

√
λx ,

and watching it to the boundary conditions (1.4), we get that C1 = 0 and

C2

[√
λ
(

1− cos
√
λ
)
− αsin

√
λ −

∫ 1

0

p (x)sin
√
λx dx

]
= 0.

Therefore the characteristic determinant of (1.1), (1.4) has a form

∆1 (λ) =
√
λ
(

1− cos
√
λ
)
− λsin

√
λ −

∫ 1

0

p (x)sin
√
λx dx. (3.1)
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It is easy to see that the characteristic determinant of unperturbed problem (1.1) - (1.3) is
obtained here for p (x) = 0. As in (2.1), we denote it by

∆0 (λ) =
√
λ
(

1− cos
√
λ
)
− αsin

√
λ .

By virtue of Section 2, we represent the function p in the form of the Fourier series with
respect to the auxiliary system {vk (x)}:

p (x) = a0v0 (x) +
∞∑
k=1

[akv2k (x) + bkv2k−1 (x)]. (3.2)

Using (3.2), we �nd a more convenient representation of the determinant ∆1 (λ) . To do so,
we �rst compute the integral which appears in (3.1).

By a simple calculation we show that the following inequalities take place.∫ 1

0

v0 (x)sin
√
λx dx = 2β0C

(2)
0

∫ 1

0

(
cos (2β0x) +

α

2β0

sin (2β0x)

)
sin
√
λx dx

=
2β0C

(2)
0

λ− (2β0)2

{√
λ

(
1− cos

√
λ cos (2β0) − α

2β0

sin (2β0) cos
√
λ

)}
(3.3)

+
2β0C

(2)
0

λ− (2β0)2

{
sin
√
λ [αcos (2β0) − (2β0) sin (2β0) ]

}
.

From (2.1) we obtain that 2β0 (1− cos (2β0) ) = αsin (2β0) . Therefore in the �rst summand
from (3.3) inside the round brackets we have:(

1− cos
√
λ cos (2β0) − α

2β0

sin (2β0) cos
√
λ

)
= 1− cos

√
λ .

Using (2.2), we �nd that

sin (2β0) =
2tg (β0)

1 + tg2 (β0)
=

4αβ0

(2β0)2 + α2
, cos (2β0) =

1− tg2 (β0)

1 + tg2 (β0)
=

(2β0)2 − α2

(2β0)2 + α2
.

Therefore in the second summand from (3.3) inside the square brackets we will have:

[αcos (2β0)− (2β0) sin (2β0) ] =

[
α

(2β0)2 − α2

(2β0)2 + α2
− (2β0)

4αβ0

(2β0)2 + α2

]
= −α.

Finally we obtain: ∫ 1

0

v0 (x)sin
√
λx dx (3.4)

=
2β0C

(2)
0

λ− (2β0)2

{√
λ
(

1− cos
√
λ
)
− αsin

√
λ
}

=
2β0C

(2)
0

λ− (2β0)2 ∆0 (λ) .

Analogously, we calculate the integral∫ 1

0

v2k−1 (x)sin
√
λx dx = 2δkC

(2)
k

1

λ− (2βk)
2 ∆0 (λ) . (3.5)
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Further we have∫ 1

0

v2k (x)sin
√
λx dx =

∫ 1

0

(
v

(2)
k (x) + v

(1)
k (x)

)
sin
√
λx dx

= C
(2)
k

1

λ− (2βk)
2 ∆0 (λ) + C

(1)
k

1

λ− (2πk)2 ∆0 (λ) .

And so, we �nally obtain ∫ 1

0

p (x)sin
√
λx dx = ∆0 (λ)A (λ) ,

A (λ) =
2a0β0C

(2)
0

λ− (2β0)2 +
∞∑
k=1

[
ak

(
C

(2)
k

λ− (2βk)
2 +

C
(1)
k

λ− (2πk)2

)
+

2bkδkC
(2)
k

λ− (2βk)
2

]
. (3.6)

The convergence of the obtained numerical series for λ 6= (2βk)
2 and λ 6= (2πk)2 is provided by

the asymptotic behaviors in (2.3) and (2.4). From these formulas it follows that the parentheses
inside the sign of sum cannot be removed, otherwise the corresponding series may diverge.

In representation (3.6) the function A (λ) has poles at λ = (2βk)
2 and λ = (2πk)2. But at

the same points the function ∆0 (λ) has zeros. So the function ∆0 (λ)A (λ) is an entire analytic
function of the variable λ.

Now we substitute all the calculations into (3.1). Let us formulate the obtained result in
the form of a theorem.

Theorem 3.1. The characteristic determinant of problem (1.1), (1.4) with the perturbed bound-
ary conditions can be represented in form

∆1 (λ) = ∆0 (λ) (1− A (λ)) , (3.7)

where ∆0 (λ) is the characteristic determinant of unperturbed problem (1.1)- (1.3), A (λ) is
given by (3.6), in which ak and bk are the Fourier coe�cients of the biorthogonal expansion
(3.2) of the function p with respect to the auxiliary system {vk}.

We note that in all previous works the basis properties of the system of root functions
of the unperturbed problem have been necessarily required for constructing the characteristic
determinant. The principal distinction of the present paper is that characteristic determinant
(3.7) is constructed without such a requirement.

4 The case of a simple form of characteristic determinant (3.7)

The case of a simple form of characteristic determinant (3.7) takes place when p is represented
in form (3.2) with a �nite second sum. That is, when there is a number N such that ak = 0
and bk = 0 for all k > N . In this case, formula (3.7) takes the form

∆1 (λ) = ∆0 (λ)

(
1− a0

2β0C
(2)
0

λ− (2β0)2

−
N∑
k=1

[
ak

(
C

(2)
k

1

λ− (2βk)
2 + C

(1)
k

1

λ− (2πk)2

)
+ bk

2βkC
(2)
k

λ− (2βk)
2

])
. (4.1)

On the basis of this particular case of formula (3.7), one can readily prove the following theorem.
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Theorem 4.1. For any prescribed numbers, a complex number λ̂ and a natural one m̂, there is
always a function p such that λ̂ is an eigenvalue of problem (1.1), (1.4) of the multiplicity m̂.

From the analysis of formula (4.1) it is also easy to see that ∆1(λ
(1)
k ) = ∆1(λ

(2)
k ) = 0 for

all k > N . Hence all the eigenvalues λ
(1)
k , λ

(2)
k , k > N of unperturbed problem (1.1)-(1.3) are

eigenvalues of perturbed problem (1.1), (1.4). Also it is not di�cult to see that the multiplicity

of the eigenvalues λ
(1)
k , λ

(2)
k , k > N is also preserved.

Moreover from the biorthogonality condition of the system of eigenfunctions{
y

(1)
k (x) , y

(2)
k (x)

}
and

{
v

(1)
k (x) , v

(2)
k (x)

}
of the adjoint problems it follows that in this case

∫ 1

0

p(x)y
(j)
k (x) dx = 0, j = 1, 2, k > N.

So the eigenfunctions
{
y

(1)
k (x) , y

(2)
k (x)

}
of problem (1.1)-(1.3) for k > N satisfy boundary

conditions (1.4) and hence, are eigenfunctions of problem (1.1), (1.4). Thus in this case the
system of eigenfunctions of problem (1.1), (1.4) and the system of eigenfunctions of problem
(1.1)-(1.3) (not forming a basis) coincide except for a �nite number of the �rst terms. Conse-
quently, also the system of eigenfunctions of problem (1.1), (1.4) is not a basis in L2(0, 1).

By the Riesz basis property in L2(0, 1) of the system {vk}, the set of all functions p, repre-
sented by �nite sums in (3.2) is dense in L2(0, 1). Hence the following statement follows.

Theorem 4.2. The set of all functions p ∈ L2(0, 1), for which the system of eigenfunctions of
problem (1.1), (1.4) is a not basis in L2(0, 1), is dense in L2(0, 1).
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