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- content of the paper (the originality of the material, survey of previously published studies
on the topic of the paper, erroneous statements (if any), controversial issues (if any), and so
on);
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Abstract. In this paper, by using properties of the fundamental solution of the canonical
right-invariant Laplacian, versions of Hardy and Rellich type inequalities are proved on the
complex a�ne group.

1 Introduction

In the modern analysis, the (L2-)Hardy inequality is given by∥∥∥∥f(x)

|x|

∥∥∥∥
L2(Rn)

≤ 2

n− 2
‖∇f‖L2(Rn) , n ≥ 3, (1.1)

for all f ∈ C∞0 (Rn) where 2
n−2

is sharp.
Hardy type inequalities have also been widely studied on (homogeneous) strati�ed Lie

groups. Let Q be the homogeneous dimension of the strati�ed Lie group G, ∇H be the hori-
zontal gradient, and d(x) be the so-called L-gauge derived from the sub-Laplacian fundamental
solution d(x)2−Q of Folland [6]. One has∥∥∥∥f(x)

d(x)

∥∥∥∥
L2(G)

≤ 2

Q− 2
‖∇Hf‖L2(G) , Q ≥ 3, (1.2)

for all f ∈ C∞0 (G) where 2
Q−2

is sharp. On the Heisenberg group inequality (1.2) was proved

by Garofalo and Lanconelli [11] (see also [8] and [1] for the case p 6= 2). General weighted cases
of (1.2) on strati�ed Lie groups are known, see Goldstein and Kombe [10] (see also [2]), and
its further re�nements, including boundary terms for bounded domains, were obtained in [15].
We refer to [16] for versions on more general Lie groups, namely, homogeneous groups.

Meanwhile, Rellich type inequalities also have a long history starting with Rellich's original
work [14] and in the classical case it can be stated as∥∥∥∥ f

|x|2

∥∥∥∥
L2(Rn)

≤ 4

n(n− 4)
‖∆f‖L2(Rn), n ≥ 5. (1.3)
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Di�erent versions of this inequality have been also intensively investigated on strati�ed Lie
groups. See, for example, [3], [4], [5], [7], [10], [13], and [17].

In the recent paper [18], Ruzhansky and the second author proved improved versions of
Hardy's and Rellich's inequalities as well as of uncertainty principles for sums of squares of
vector �elds on bounded sets of smooth manifolds under certain assumptions on the vector
�elds, in particular, the obtained results were valid for sums of squares of vector �elds on
Euclidean spaces and for sub-Laplacians on strati�ed Lie groups. However, all this analysis
was related to unimodular Lie groups. The aim of this paper is to show that some of those
techniques are also applicable for non-unimodular Lie groups, namely, the complex a�ne group.

Let G = CoC∗ be the complex a�ne group. Here and in the sequel C∗ is the multiplicative
group of nonzero complex numbers. The group composition law of the complex a�ne group G
is given by

(x, y) ◦ (x′, y′) = (x+ yx′, yy′)

for all x, x′ ∈ C and y, y′ ∈ C∗ and the notations x := t+ is and y := τ + iς will be also useful
in our analysis. The complex a�ne group is a Lie group and let us denote its Lie algebra by g.

We now �x a basis {X1, X2, X3, X4} of g such that

X1 =
∂

∂t
, X3 = t

∂

∂t
+ s

∂

∂s
+ τ

∂

∂τ
+ ς

∂

∂ς
,

X2 =
∂

∂s
, X4 = −s ∂

∂t
+ t

∂

∂s
− ς ∂

∂τ
+ τ

∂

∂ς
.

These right invariant vector �elds correspond to the canonical basis elements of g. Therefore,
the (sub-)Laplacian

∆X = −
4∑
j=1

X2
j ,

is called the right invariant canonical Laplacian of the complex a�ne group G. The fundamental
solution of the Laplacian ∆X was computed explicitly by Gaudry and Sj�ogren [9] in the following
form

ε =
1

4π2

|y|2

|x|2 + |1− y|2
.

This explicit formula plays a key role in our proofs (see, e.g. (2.4)). We will also use the
notation of the right invariant (canonical) gradient in the form

∇X = (X1, X2, X3, X4).

The right-invariant and the left-invariant Haar measures on G are de�ned by

dµr = dx
dy

|y|2
, dµl = dx

dy

|y|4

with the modular function m(x, y) = |y|2, respectively. In addition, one has the following
integration rules with respect to the modular function∫

G
f(ηζ)dµl(η) = m−1(ζ)

∫
G
f(η)dµl(η),∫

G
f(η−1)m−1(η)dµl(η) =

∫
G
f(η)dµl(η).

The plan of this short paper is as follows. In Section 2 we derive versions of Hardy inequality
and uncertainty principle on the complex a�ne group G. In Section 3 Rellich type inequality
on G is studied.
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2 Hardy type inequalities and uncertainty principles

We now present a Hardy type inequality on G. The proof of Theorem 2.1 relies on properties
of the fundamental solution of the right invariant canonical Laplacian ∆X of the complex a�ne
group G.

Theorem 2.1. Let α ∈ R, α > 2−β, β > 2. Then the following version of the Hardy inequality
is valid: ∫

G
ε

α
2−β |∇Xu|2 dµl ≥

(
β + α− 2

2

)2 ∫
G
ε
α−2
2−β |∇Xε

1
2−β |2|u|2 dµl, (2.1)

for any u ∈ C∞0 (G), where ∇X = (X1, X2, X3, X4).

Proof. Let (∇̃Xf)g :=
∑4

k=1XkfXkg for any di�erentiable functions f and g. Setting u = dγq
for some (real-valued) functions d > 0, q, and a constant γ 6= 0 to be chosen later, we have

(∇̃Xu)u = (∇̃Xd
γq)dγq =

4∑
k=1

Xk(d
γq)Xk(d

γq)

= γ2d2γ−2

4∑
k=1

(Xkd)2q2 + 2γd2γ−1q
4∑

k=1

XkdXkq + d2γ

4∑
k=1

(Xkq)
2

= γ2d2γ−2((∇̃Xd)d)q2 + 2γd2γ−1q(∇̃Xd)q + d2γ(∇̃Xq)q.

Integrating by parts we observe that

2γ

∫
G
dα+2γ−1q(∇̃Xd)qdµl =

γ

α + 2γ

∫
G

(∇̃Xd
α+2γ)q2dµl

=
γ

α + 2γ

∫
G

(∇̃Xq
2)dα+2γdµl = − γ

α + 2γ

∫
G
q2∆Xd

α+2γdµl,

where we note that later on we will choose γ so that dα+2γ = ε. Consequently, we get∫
G
dα(∇̃Xu)udµl =

γ2

∫
G
dα+2γ−2((∇̃Xd)d) q2dµl +

γ

α + 2γ

∫
G

(∇̃Xd
α+2γ)q2dµl

+

∫
G
dα+2γ(∇̃Xq)qdµl = γ2

∫
G
dα+2γ−2((∇̃Xd)d) q2dµl

− γ

α + 2γ

∫
G
q2∆Xd

α+2γdµl +

∫
G
dα+2γ(∇̃Xq)qdµl

≥ γ2

∫
G
dα+2γ−2((∇̃Xd)d) q2dµl −

γ

α + 2γ

∫
G
q2∆Xd

α+2γdµl, (2.2)
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since d > 0 and (∇̃Xq)q = |∇Xq|2 ≥ 0. On the other hand, it can be readily checked that for a
vector �eld X we have

γ

α + 2γ
X2(dα+2γ) = γX(dα+2γ−1Xd) =

γ

2− β
X(dα+2γ+β−2X(d2−β))

=
γ

2− β
(α + 2γ + β − 2)dα+2γ+β−3(Xd)X(d2−β)

+
γ

2− β
dα+2γ+β−2X2(d2−β)

= γ(α + 2γ + β − 2)dα+2γ−2(Xd)2

+
γ

2− β
dα+2γ+β−2X2(d2−β).

Consequently, we get the equality

− γ

α + 2γ
∆Xd

α+2γ = −γ(α + 2γ + β − 2)dα+2γ−2(∇̃Xd)d − γ

2− β
dα+2γ+β−2∆Xd

2−β. (2.3)

Since q2 = d−2γu2, by substituting (2.3) into (2.2) we obtain∫
G
dα(∇̃Xu)udµl ≥ (−γ2 − γ(α + β − 2))

∫
G
dα−2((∇̃Xd)d)u2dµl

− γ

2− β

∫
G

(∆Xd
2−β)dα+β−2u2dx.

Taking d = ε
1

2−β , β > 2, we get∫
G

(∆Xε)ε
α+β−2

2−β u2dx =

(
1

ε(e)

)α+β−2
β−2

u2(e) = 0, α > 2− β, β > 2, (2.4)

since ε is the fundamental solution to ∆X . Here e = (0, 0, 1, 0) is the identity element of G.
Thus, with d = ε

1
2−β , β > 2, we obtain∫

G
ε

α
2−β (∇̃Xu)u dµl ≥ (−γ2 − γ(α + β − 2))

∫
G
ε
α−2
2−β (∇̃Xε

1
2−β )ε

1
2−β u2 dµl. (2.5)

Now taking γ = 2−β−α
2

, we obtain (2.1).

Theorem 2.1 implies the following uncertainty principles:

Corollary 2.1 (Uncertainty principle on G). Let β > 2. Then for any u ∈ C∞0 (G) we have∫
G
ε

2
2−β |∇Xε

1
2−β |2|u|2dν

∫
G
|∇Xu|2dν ≥

(
β − 2

2

)2(∫
G
|∇Xε

1
2−β |2|u|2dν

)2

, (2.6)

and also ∫
G

ε
2

2−β

|∇Xε
1

2−β |2
|u|2dν

∫
G
|∇Xu|2dν ≥

(
β − 2

2

)2(∫
G
|u|2dν

)2

. (2.7)
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Proof. By taking α = 0 in inequality (2.1) we get∫
G
ε

2
2−β |∇Xε

1
2−β |2|u|2dν

∫
G
|∇Xu|2dν

≥
(
β − 2

2

)2 ∫
G
ε

2
2−β |∇Xε

1
2−β |2|u|2dν

∫
G

|∇Xε
1

2−β |2

ε
2

2−β
|u|2 dν

≥
(
β − 2

2

)2(∫
G
|∇Xε

1
2−β |2|u|2dν

)2

,

where we have used the H�older inequality in the last line. This shows (2.6). The proof of (2.7)
is similar.

3 Rellich type inequalities

In this section, we present a version of the Rellich inequality.

Theorem 3.1. Let α ∈ R, β > α > 4−β and β > 2. Then the following version of the Rellich
inequality is valid:∫

G

ε
α

2−β

|∇Xε
1

2−β |2
|∆Xu|2dµl ≥

(β + α− 4)2(β − α)2

16

∫
G
ε
α−4
2−β |∇Xε

1
2−β |2|u|2 dµl, (3.1)

for any u ∈ C∞0 (G), where ∇X is the gradient and ∆X is the Laplacian of G as de�ned in
Introduction.

Proof. A direct calculation shows that

∆Xε
α−2
2−β =

4∑
k=1

X2
kε

α−2
2−β = (α− 2)

4∑
k=1

Xk

(
ε
α−3
2−βXkε

1
2−β

)
= (α− 2)(α− 3)ε

α−4
2−β

4∑
k=1

∣∣∣Xkε
1

2−β

∣∣∣2 + (α− 2)ε
α−3
2−β

4∑
k=1

Xk

(
Xkε

1
2−β

)
= (α− 2)(α− 3)ε

α−4
2−β

4∑
k=1

∣∣∣Xkε
1

2−β

∣∣∣2 +
α− 2

2− β
ε
α−3
2−β

4∑
k=1

Xk

(
ε
β−1
2−βXkε

)
= (α− 2)(α− 3)ε

α−4
2−β

4∑
k=1

∣∣∣Xkε
1

2−β

∣∣∣2 +
(α− 2)(β − 1)

2− β
ε
α−3
2−β ε−1

4∑
k=1

(Xkε
1

2−β )(Xkε)

+
α− 2

2− β
ε
β+α−4

2−β ∆Xε = (α− 2)(α− 3)ε
α−4
2−β

4∑
k=1

∣∣∣Xkε
1

2−β

∣∣∣2
+ (α− 2)(β − 1)ε

α−4
2−β

4∑
k=1

(Xkε
1

2−β )(Xkε
1

2−β ) +
α− 2

2− β
ε
β+α−4

2−β ∆Xε

= (β + α− 4)(α− 2)ε
α−4
2−β |∇Xε

1
2−β |2 +

α− 2

2− β
ε
β+α−4

2−β ∆Xε,
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that is,

∆Xε
α−2
2−β = (β + α− 4)(α− 2)ε

α−4
2−β |∇Xε

1
2−β |2 +

α− 2

2− β
ε
β+α−4

2−β ∆Xε. (3.2)

As before we can assume that u is real-valued. Multiplying both sides of (3.2) by u2 and
integrating over G, and taking into account that ε is the fundamental solution of ∆X and
β + α− 4 > 0, we get∫

G
u2∆Xε

α−2
2−β dµl = (β + α− 4)(α− 2)

∫
G
ε
α−4
2−β |∇Xε

1
2−β |2u2 dµl. (3.3)

On the other hand, integrating by parts, we have∫
G
u2∆Xε

α−2
2−β dµl =

∫
G
ε
α−2
2−β ∆Xu

2 dµl =

∫
G
ε
α−2
2−β (2u∆Xu+ 2|∇Xu|2) dµl, (3.4)

Combining (3.3) and (3.4) we obtain

− 2

∫
G
ε
α−2
2−β u∆Xudµl + (β + α− 4)(α− 2)

∫
G
ε
α−4
2−β |∇Xε

1
2−β |2 u2dµl

= 2

∫
G
ε
α−2
2−β |∇Xu|2dµl. (3.5)

By using (2.1) we establish

− 2

∫
G
ε
α−2
2−β u∆Xudµl + (β + α− 4)(α− 2)

∫
G
ε
α−4
2−β |∇Xε

1
2−β |2 |u|2dµl

≥ 2

(
β + α− 4

2

)2 ∫
G
ε
α−4
2−β |∇Xε

1
2−β |2|u|2 dµl. (3.6)

It follows that

−
∫
G
ε
α−2
2−β u∆Xudµl ≥

(
β + α− 4

2

)(
β − α

2

)∫
G
ε
α−4
2−β |∇Xε

1
2−β |2|u|2 dµl. (3.7)

On the other hand, for any ν > 0 H�older's and Young's inequalities give

−
∫
G
ε
α−2
2−β u∆Xudµl ≤

(∫
G
ε
α−4
2−β |∇Xε

1
2−β |2|u|2dµl

) 1
2

(∫
G

ε
α

2−β

|∇Xε
1

2−β |2
|∆Xu|2dµl

) 1
2

≤ ν

∫
G
ε
α−4
2−β |∇Xε

1
2−β |2|u|2dµl +

1

4ν

∫
G

ε
α

2−β

|∇Xε
1

2−β |2
|∆Xu|2dµl. (3.8)

Inequalities (3.8) and (3.7) imply that∫
G

ε
α

2−β

|∇Xε
1

2−β |2
|∆Xu|2dµl ≥

(
−4ε2 + (β + α− 4)(β − α)ε

) ∫
G
ε
α−4
2−β |∇Xε

1
2−β |2|u|2 dµl.

Taking ν = (β+α−4)(β−α)
8

, we arrive at∫
G

ε
α

2−β

|∇Xε
1

2−β |2
|∆Xu|2dµl ≥

(β + α− 4)2(β − α)2

16

∫
G
ε
α−4
2−β |∇Xε

1
2−β |2|u|2 dµl.
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