Eurasian Mathematical Journal

2017, Volume 8, Number 2

Founded in 2010 by
the L.N. Gumilyov Eurasian National University
in cooperation with
the M.V. Lomonosov Moscow State University
the Peoples' Friendship University of Russia
the University of Padua

Supported by the ISAAC (International Society for Analysis, its Applications and Computation) and by the Kazakhstan Mathematical Society

Published by the L.N. Gumilyov Eurasian National University Astana, Kazakhstan

EURASIAN MATHEMATICAL JOURNAL

Editorial Board

Editors-in-Chief

V.I. Burenkov, M. Otelbaev, V.A. Sadovnichy

Editors

Sh.A. Alimov (Uzbekistan), H. Begehr (Germany), T. Bekjan (China), O.V. Besov (Russia), N.A. Bokayev (Kazakhstan), A.A. Borubaev (Kyrgyzstan), G. Bourdaud (France), A. Caetano (Portugal), M. Carro (Spain), A.D.R. Choudary (Pakistan), V.N. Chubarikov (Russia), A.S. Dzumadildaev (Kazakhstan), V.M. Filippov (Russia), H. Ghazaryan (Armenia), M.L. Goldman (Russia), V. Goldshtein (Israel), V. Guliyev (Azerbaijan), D.D. Haroske (Germany), A. Hasanoglu (Turkey), M. Huxley (Great Britain), M. Imanaliev (Kyrgyzstan), P. Jain (India), T.Sh. Kalmenov (Kazakhstan), B.E. Kangyzhin (Kazakhstan), K.K. Kenzhibaev (Kazakhstan), S.N. Kharin (Kazakhstan), E. Kissin (Great Britain), V. Kokilashvili (Georgia), V.I. Korzyuk (Belarus), A. Kufner (Czech Republic), L.K. Kussainova (Kazakhstan), P.D. Lamberti (Italy), M. Lanza de Cristoforis (Italy), V.G. Maz'ya (Sweden), E.D. Nursultanov (Kazakhstan), R. Oinarov (Kazakhstan), K.N. Ospanov (Kazakhstan), I.N. Parasidis (Greece), J. Pečarić (Croatia), S.A. Plaksa (Ukraine), L.-E. Persson (Sweden), E.L. Presman (Russia), M.A. Ragusa (Italy), M.D. Ramazanov (Russia), M. Reissig (Germany), M. Ruzhansky (Great Britain), S. Sagitov (Sweden), T.O. Shaposhnikova (Sweden), A.A. Shkalikov (Russia), V.A. Skvortsov (Poland), G. Sinnamon (Canada), E.S. Smailov (Kazakhstan), V.D. Stepanov (Russia), Ya.T. Sultanaev (Russia), I.A. Taimanov (Russia), T.V. Tararykova (Great Britain), J.A. Tussupov (Kazakhstan), U.U. Umirbaev (Kazakhstan), Z.D. Usmanov (Tajikistan), N. Vasilevski (Mexico), Dachun Yang (China), B.T. Zhumagulov (Kazakhstan)

Managing Editor

A.M. Temirkhanova

Aims and Scope

The Eurasian Mathematical Journal (EMJ) publishes carefully selected original research papers in all areas of mathematics written by mathematicians, principally from Europe and Asia. However papers by mathematicians from other continents are also welcome.

From time to time the EMJ publishes survey papers.

The EMJ publishes 4 issues in a year.

The language of the paper must be English only.

The contents of EMJ are indexed in Scopus, Web of Science (ESCI), Mathematical Reviews, MathSciNet, Zentralblatt Math (ZMATH), Referativnyi Zhurnal – Matematika, Math-Net.Ru.

The EMJ is included in the list of journals recommended by the Committee for Control of Education and Science (Ministry of Education and Science of the Republic of Kazakhstan) and in the list of journals recommended by the Higher Attestation Commission (Ministry of Education and Science of the Russian Federation).

Information for the Authors

<u>Submission.</u> Manuscripts should be written in LaTeX and should be submitted electronically in DVI, PostScript or PDF format to the EMJ Editorial Office via e-mail (eurasianmj@yandex.kz).

When the paper is accepted, the authors will be asked to send the tex-file of the paper to the Editorial Office.

The author who submitted an article for publication will be considered as a corresponding author. Authors may nominate a member of the Editorial Board whom they consider appropriate for the article. However, assignment to that particular editor is not guaranteed.

Copyright. When the paper is accepted, the copyright is automatically transferred to the EMJ. Manuscripts are accepted for review on the understanding that the same work has not been already published (except in the form of an abstract), that it is not under consideration for publication elsewhere, and that it has been approved by all authors.

<u>Title page</u>. The title page should start with the title of the paper and authors' names (no degrees). It should contain the <u>Keywords</u> (no more than 10), the <u>Subject Classification</u> (AMS Mathematics Subject Classification (2010) with primary (and secondary) subject classification codes), and the Abstract (no more than 150 words with minimal use of mathematical symbols).

<u>Figures.</u> Figures should be prepared in a digital form which is suitable for direct reproduction.

<u>References</u>. Bibliographical references should be listed alphabetically at the end of the article. The authors should consult the Mathematical Reviews for the standard abbreviations of journals' names.

<u>Authors' data.</u> The authors' affiliations, addresses and e-mail addresses should be placed after the References.

<u>Proofs.</u> The authors will receive proofs only once. The late return of proofs may result in the paper being published in a later issue.

Offprints. The authors will receive offprints in electronic form.

Publication Ethics and Publication Malpractice

For information on Ethics in publishing and Ethical guidelines for journal publication see http://www.elsevier.com/publishingethics and http://www.elsevier.com/journal-authors/ethics.

Submission of an article to the EMJ implies that the work described has not been published previously (except in the form of an abstract or as part of a published lecture or academic thesis or as an electronic preprint, see http://www.elsevier.com/postingpolicy), that it is not under consideration for publication elsewhere, that its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out, and that, if accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder. In particular, translations into English of papers already published in another language are not accepted.

No other forms of scientific misconduct are allowed, such as plagiarism, falsification, fraudulent data, incorrect interpretation of other works, incorrect citations, etc. The EMJ follows the Code of Conduct of the Committee on Publication Ethics (COPE), and follows the COPE Flowcharts for Resolving Cases of Suspected Misconduct (http://publicationethics.org/files/u2/New_Code.pdf). To verify originality, your article may be checked by the originality detection service CrossCheck http://www.elsevier.com/editors/plagdetect.

The authors are obliged to participate in peer review process and be ready to provide corrections, clarifications, retractions and apologies when needed. All authors of a paper should have significantly contributed to the research.

The reviewers should provide objective judgments and should point out relevant published works which are not yet cited. Reviewed articles should be treated confidentially. The reviewers will be chosen in such a way that there is no conflict of interests with respect to the research, the authors and/or the research funders.

The editors have complete responsibility and authority to reject or accept a paper, and they will only accept a paper when reasonably certain. They will preserve anonymity of reviewers and promote publication of corrections, clarifications, retractions and apologies when needed. The acceptance of a paper automatically implies the copyright transfer to the EMJ.

The Editorial Board of the EMJ will monitor and safeguard publishing ethics.

The procedure of reviewing a manuscript, established by the Editorial Board of the Eurasian Mathematical Journal

1. Reviewing procedure

- 1.1. All research papers received by the Eurasian Mathematical Journal (EMJ) are subject to mandatory reviewing.
- 1.2. The Managing Editor of the journal determines whether a paper fits to the scope of the EMJ and satisfies the rules of writing papers for the EMJ, and directs it for a preliminary review to one of the Editors-in-chief who checks the scientific content of the manuscript and assigns a specialist for reviewing the manuscript.
- 1.3. Reviewers of manuscripts are selected from highly qualified scientists and specialists of the L.N. Gumilyov Eurasian National University (doctors of sciences, professors), other universities of the Republic of Kazakhstan and foreign countries. An author of a paper cannot be its reviewer.
- 1.4. Duration of reviewing in each case is determined by the Managing Editor aiming at creating conditions for the most rapid publication of the paper.
- 1.5. Reviewing is confidential. Information about a reviewer is anonymous to the authors and is available only for the Editorial Board and the Control Committee in the Field of Education and Science of the Ministry of Education and Science of the Republic of Kazakhstan (CCFES). The author has the right to read the text of the review.
 - 1.6. If required, the review is sent to the author by e-mail.
 - 1.7. A positive review is not a sufficient basis for publication of the paper.
- 1.8. If a reviewer overall approves the paper, but has observations, the review is confidentially sent to the author. A revised version of the paper in which the comments of the reviewer are taken into account is sent to the same reviewer for additional reviewing.
- 1.9. In the case of a negative review the text of the review is confidentially sent to the author.
- 1.10. If the author sends a well reasoned response to the comments of the reviewer, the paper should be considered by a commission, consisting of three members of the Editorial Board.
- 1.11. The final decision on publication of the paper is made by the Editorial Board and is recorded in the minutes of the meeting of the Editorial Board.
- 1.12. After the paper is accepted for publication by the Editorial Board the Managing Editor informs the author about this and about the date of publication.
- 1.13. Originals reviews are stored in the Editorial Office for three years from the date of publication and are provided on request of the CCFES.
 - 1.14. No fee for reviewing papers will be charged.

2. Requirements for the content of a review

- 2.1. In the title of a review there should be indicated the author(s) and the title of a paper.
- 2.2. A review should include a qualified analysis of the material of a paper, objective assessment and reasoned recommendations.
 - 2.3. A review should cover the following topics:
 - compliance of the paper with the scope of the EMJ;
 - compliance of the title of the paper to its content;
- compliance of the paper to the rules of writing papers for the EMJ (abstract, key words and phrases, bibliography etc.);
- a general description and assessment of the content of the paper (subject, focus, actuality of the topic, importance and actuality of the obtained results, possible applications);

- content of the paper (the originality of the material, survey of previously published studies on the topic of the paper, erroneous statements (if any), controversial issues (if any), and so on);
- exposition of the paper (clarity, conciseness, completeness of proofs, completeness of bibliographic references, typographical quality of the text);
- possibility of reducing the volume of the paper, without harming the content and understanding of the presented scientific results;
- description of positive aspects of the paper, as well as of drawbacks, recommendations for corrections and complements to the text.
- 2.4. The final part of the review should contain an overall opinion of a reviewer on the paper and a clear recommendation on whether the paper can be published in the Eurasian Mathematical Journal, should be sent back to the author for revision or cannot be published.

Web-page

The web-page of EMJ is www.emj.enu.kz. One can enter the web-page by typing Eurasian Mathematical Journal in any search engine (Google, Yandex, etc.). The archive of the web-page contains all papers published in EMJ (free access).

Subscription

For Institutions

- US\$ 200 (or equivalent) for one volume (4 issues)
- US\$ 60 (or equivalent) for one issue

For Individuals

- US\$ 160 (or equivalent) for one volume (4 issues)
- US\$ 50 (or equivalent) for one issue.

The price includes handling and postage.

The Subscription Form for subscribers can be obtained by e-mail:

eurasian mj@yandex.kz

The Eurasian Mathematical Journal (EMJ)
The Editorial Office

The L.N. Gumilyov Eurasian National University

Building no. 3 Room 306a

Tel.: +7-7172-709500 extension 33312

13 Kazhymukan St 010008 Astana Kazakhstan This issue contains the first part of the collection of papers sent to the Eurasian Mathematical Journal dedicated to the 70th birthday of Professor R. Oinarov.

The first part of the collection was published in Volume 8, Number 1.

EURASIAN MATHEMATICAL JOURNAL

ISSN 2077-9879

Volume 8, Number 2 (2017), 22 - 30

ON A WEIGHTED SOBOLEV SPACE ON REAL LINE

D.V. Prokhorov

Communicated by M.L. Goldman

Dedicated to the 70th birthday of Professor Ryskul Oinarov

Key words: Sobolev space, density of smooth functions

AMS Mathematics Subject Classification: 46E35

Abstract. A criterion of density of smooth functions in a weighted Sobolev space on real line is obtained. In one partial case an alternative description of the space associated with the weighted Sobolev space are given.

1 Introduction

Let $I:=(a,b)\subset\mathbb{R}$. For $1\leq p<\infty$ we denote $L^p(I)$ the Lebesgue space with the norm $\|f\|_{L^p(I)}:=\left(\int_I |f|^p\right)^{\frac{1}{p}}$. Let $\mathcal{V}_p(I):=\{v\in L^p_{\mathrm{loc}}(I):v\geq 0,\|v\|_{L^1(I)}\neq 0\}$ be the set of weight functions (weights). Denote $W^1_{1,\mathrm{loc}}(I)$ the space of all functions $u\in L^1_{\mathrm{loc}}(I)$, whose distributional derivatives Du belong to $L^1_{\mathrm{loc}}(I)$. In the papers [3,4,5] are studied some properties of the weighted Sobolev space

$$W^1_p(I) := \{u \in W^1_{1,\mathrm{loc}}(I) : \|u\|_{W^1_p(I)} < \infty\},$$

where

$$||u||_{W_p^1(I)} := ||vu||_{L^p(I)} + ||\rho Du||_{L^p(I)}, \quad v, \rho \in \mathcal{V}_p(I), \quad \frac{1}{\rho} \in L^{p'}_{loc}(I), \tag{1.1}$$

and its subspaces

$$\overset{\circ\circ}{W}_{p}^{1}(I) := \{ f \in AC(I) : \text{supp } f \text{ compact in } I, \|vf\|_{L^{p}(I)} + \|\rho f'\|_{L^{p}(I)} < \infty \}$$

and $\overset{\circ}{W^1_p}(I) = \overset{\circ}{\overset{\circ}{W^1_p}(I)} \overset{W^1_p(I)}{W^1_p(I)}$ — the closure of the space $\overset{\circ}{W^1_p}(I)$ in $W^1_p(I)$. In particular, for $1 the description of elements of spaces <math>\overset{\circ}{W^1_p}(I), W^1_p(I)$, criterion of equality $\overset{\circ}{W^1_p}(I) = W^1_p(I)$ and two-sided estimates on supremums

$$\sup_{f \in X} \frac{\left| \int_{I} fg \right|}{\|f\|_{W_{n}^{1}(I)}} \text{ and } \sup_{f \in X} \frac{\int_{I} |fg|}{\|f\|_{W_{n}^{1}(I)}},$$

are proved, where $g \in L^1_{\text{loc}}(I)$, $X \in \{W^1_p(I), \overset{\circ}{W}^1_p(I), \overset{\circ}{W}^1_p(I)\}$. Usually in theory of Sobolev spaces by $\overset{\circ}{W}^1_p(I)$ denote the closure of space $C_0^{\infty}(I)$ in $W_p^1(I)$. In Section 2 we prove, that for the

weights, which satisfy the conditions (1.1), there are the equalities $\overline{W^1_p(I)} = \overline{C^\infty_0(I)}^{W^1_p(I)}$ and

$$\sup_{f \in \overset{\circ}{W_{p}^{1}(I)}} \frac{\left| \int_{I} fg \right|}{\|f\|_{W_{p}^{1}(I)}} = \sup_{f \in C_{0}^{\infty}(I)} \frac{\left| \int_{I} fg \right|}{\|f\|_{W_{p}^{1}(I)}}$$
(1.2)

for any $g \in L^1_{loc}(I)$. In Section 3 we prove a criterion of finiteness of the supremum

$$\sup_{f \in \mathring{W}_{p}^{1}(I)} \frac{\left| \int_{I} fg \right|}{\|f\|_{W_{p}^{1}(I)}}, \quad g \in L_{\text{loc}}^{1}(I), \tag{1.3}$$

in case, when $\mathring{W}^1_p(I) \neq W^1_p(I)$ and each $u \in \mathring{W}^1_p(I)$ has a representative $f \in AC_{\rm loc}(I)$ with f(a+0) = f(b-0) = 0. The criterion gives the answer on the question: under what conditions on the function $g \in L^1_{\rm loc}(I)$ the map $f \mapsto \int_I fg$ is defined a bounded linear functional on the weighted Sobolev space $\mathring{W}^1_p(I)$; and complements the results of papers [3, 4, 5, 1].

2 Density of smooth functions

Theorem 2.1. Let $I=(a,b)\subset\mathbb{R},\ 1\leq p<\infty,\ \rho,v\in\mathcal{V}_p(I),\ \frac{1}{\rho}\in L^{p'}_{loc}(I),\ f\in \overset{\circ\circ}{W^1_p}(I)$ and supp $f\subset (a^*,b^*)\subset\subset (a,b)$. Then for arbitrary $\varepsilon>0$ there exists $h\in C_0^\infty(I)$ such that supp $h\subset (a^*,b^*),\ \|f-h\|_{C(I)}<\varepsilon$ and $\|f-h\|_{W^1_p(I)}<\varepsilon$.

Proof. Since $v, \rho \in L^p_{loc}(I)$ then $C^1_0(I) \subset W^1_p(I)$. Fix any $f \in \overset{\circ}{W}^1_p(I)$. Let supp $f \subset (a_0, b_0) \subset (a_3, b_3) \subset (a^*, b^*)$. Fix an arbitrary $\varepsilon > 0$. Let

$$0 < \varepsilon_0 < \frac{\varepsilon}{2} \min \left\{ \left(\int_{a_3}^{b_3} v^p \right)^{-\frac{1}{p}} \left(\int_{a_3}^{b_3} \frac{1}{\rho^{p'}} \right)^{-\frac{1}{p'}}, \left(\int_{a_3}^{b_3} \frac{1}{\rho^{p'}} \right)^{-\frac{1}{p'}}, 1 \right\}.$$

We take $b_2 \in (b_0, b_3)$ such that $\left(\int_{b_2}^{b_3} \rho^p\right)^{\frac{1}{p}} < \frac{\varepsilon_0}{4}$. Let $0 < \varepsilon_1 < \min\{\frac{\varepsilon_0}{12}, \frac{1}{3}(b_3 - b_2)\}$. Since $\rho \in L^p([a_0, b_0])$ then there exists (see [6, Theorem 3.14]) $h_1 \in C([a_0, b_0])$ such that

$$\left(\int_{a_0}^{b_0} |f' - h_1|^p \rho^p \right)^{\frac{1}{p}} < \varepsilon_1 \min \left\{ \left(\int_{a_0}^{b_0} \frac{1}{\rho^{p'}} \right)^{-\frac{1}{p'}}, 1 \right\}.$$

Now we take $a_1 \in (a_3, a_0), b_1 \in (b_0, b_2)$ such that

$$|h_1(a_0)| \max \left\{ \left[\int_{a_1}^{a_0} \rho^p \right]^{\frac{1}{p}}, (a_0 - a_1) \right\} < \varepsilon_1, \quad |h_1(b_0)| \max \left\{ \left[\int_{b_0}^{b_1} \rho^p \right]^{\frac{1}{p}}, (b_1 - b_0) \right\} < \varepsilon_1.$$

We extend the function h_1 on $(a, b_1]$ such that $h_1 = 0$ on $(a, a_1]$, h_1 on $[a_1, a_0]$ is the function whose graph is the segment connecting the points $(a_1, 0)$ and $(a_0, h_1(a_0))$, h_1 on $[b_0, b_1]$ is the function whose graph is the segment connecting the points $(b_0, h_1(b_0))$ and $(b_1, 0)$.

We have

$$\int_{a}^{b_1} h_1 = \int_{a_1}^{a_0} h_1 + \int_{a_0}^{b_0} h_1 + \int_{b_0}^{b_1} h_1.$$

By construction,

$$\left| \int_{a_1}^{a_0} h_1 \right| \le |h_1(a_0)|(a_0 - a_1) < \varepsilon_1, \quad \left| \int_{b_0}^{b_1} h_1 \right| \le |h_1(b_0)|(b_1 - b_0) < \varepsilon_1,$$

$$\left| \int_{a_0}^{b_0} h_1 \right| = \left| \int_{a_0}^{b_0} (h_1 - f') \right| \le \left(\int_{a_0}^{b_0} |h_1 - f'|^p \rho^p \right)^{\frac{1}{p}} \left(\int_{a_0}^{b_0} \frac{1}{\rho^{p'}} \right)^{\frac{1}{p'}} < \varepsilon_1.$$

Thus $\left| \int_a^{b_1} h_1 \right| < 3\varepsilon_1$. We define $h_1 = 0$ on $(b_1, b_2]$. If $\int_a^{b_1} h_1 = 0$, then we define $h_1 = 0$ on (b_2, b) . Now let $\alpha := \text{sign}\left(\int_a^{b_1} h_1\right) \neq 0$. We define $h_1 = 0$ on $[b_3, b)$. Since

$$0 < \left| \int_{a}^{b_1} h_1 \right| < 3\varepsilon_1 < (b_3 - b_2),$$

then there exist $d \in (0,1)$ and $c \in (0,\frac{1}{2}(b_3-b_2))$ such that $d(b_3-b_2-c) = |\int_a^{b_1} h_1|$. We extend h_1 on $[b_2, b_3]$ such that its graph is the polygonal line with vertices $(b_2, 0)$, $(b_2 + c, -\alpha d)$, $(b_3 - c, -\alpha d), (b_3, 0).$ In both cases $h_1 \in C_0(I)$ and $\int_I h_1 = 0.$

We put $h_0(x) := \int_a^x h_1$. Then $h_0 \in C_0^1(I)$ and $h_0'(x) = h_1(x), x \in I$. Hence

$$\|(f'-h'_0)\rho\|_{L^p(I)} = \left[\int_{a_1}^{a_0} |h_1|^p \rho^p + \int_{a_0}^{b_0} |f'-h_1|^p \rho^p + \int_{b_0}^{b_1} |h_1|^p \rho^p + \int_{b_2}^{b_3} |h_1|^p \rho^p\right]^{\frac{1}{p}} < \frac{\varepsilon_0}{2}.$$

Besides that,

$$\sup_{x \in I} |f(x) - h_0(x)| = \sup_{x \in I} \left| \int_a^x f' - \int_a^x h_1 \right| \le \int_{a_3}^{b_3} |f' - h_1|$$

$$\le \left(\int_{a_3}^{b_3} |f' - h_1|^p \rho^p \right)^{\frac{1}{p}} \left(\int_{a_3}^{b_3} \frac{1}{\rho^{p'}} \right)^{\frac{1}{p'}} < \frac{\varepsilon_0}{2} \left(\int_{a_3}^{b_3} \frac{1}{\rho^{p'}} \right)^{\frac{1}{p'}} < \frac{\varepsilon}{4},$$

$$\|(f - h_0)v\|_{L^p(I)} \le \left(\int_{a_3}^{b_3} v^p\right)^{\frac{1}{p}} \sup_{x \in I} |f(x) - h_0(x)| < \frac{\varepsilon_0}{2} \left(\int_{a_3}^{b_3} v^p\right)^{\frac{1}{p}} \left(\int_{a_3}^{b_3} \frac{1}{\rho^{p'}}\right)^{\frac{1}{p'}} < \frac{\varepsilon}{4}.$$

Consequently, $||f - h_0||_{C(I)} < \frac{\varepsilon}{4}$ and $||f - h_0||_{W^1_p(I)} < \frac{\varepsilon}{2}$. By g_{τ} we denote a mollification of g with radius τ . Since supp $h_0 \subset [a_1, b_3]$, then there exists $\tau^* > 0$ such that supp $\{(h_0)_{\tau}\} \subset (a^*, b^*)$ holds for any $\tau \in (0, \tau^*)$. Besides that, $(h_0)_{\tau} \in C^{\infty}(I)$ and $(h'_0)_{\tau}(x) = ((h_0)_{\tau})'(x), x \in I$. Since the functions h_0 and h'_0 are continuous and have compact supports, then (see [2, Theorem C.19 (i)])

$$||h_0 - (h_0)_\tau||_{C(I)} \to 0, \quad ||h_0' - ((h_0)_\tau)'||_{C(I)} \to 0$$

as $\tau \to 0 + 0$. We take $\tau' \in (0, \tau^*)$ such that

$$||h_0 - h||_{C(I)} < \frac{\varepsilon}{4} \min \left\{ \left(\int_{a^*}^{b^*} v^p \right)^{-\frac{1}{p}}, 1 \right\}, \quad ||h_0' - h'||_{C(I)} < \frac{\varepsilon}{4} \left(\int_{a^*}^{b^*} \rho^p \right)^{-\frac{1}{p}}$$

for
$$h := (h_0)_{\tau'}$$
. Therefore $||f - h||_{C(I)} < \varepsilon$ and $||f - h||_{W_p^1(I)} < \varepsilon$.

Corollary 2.1. Let $I = (a, b) \subset \mathbb{R}$, $1 \leq p < \infty$, $\rho, v \in \mathcal{V}_p(I)$, $\frac{1}{\rho} \in L^{p'}_{loc}(I)$, $g \in L^1_{loc}(I)$. Then $W^1_p(I) = \overline{C_0^{\infty}(I)}^{W_p^1(I)}$ and (1.2) holds.

Proof. We have $C_0^{\infty}(I) \subset \overset{\circ\circ}{W_p^1}(I)$ and, by Theorem 2.1, $\overset{\circ\circ}{W_p^1}(I) \subset \overline{C_0^{\infty}(I)}^{W_p^1}(I)$. Hence $\overset{\circ\circ}{W_p^1}(I) = \overline{C_0^{\infty}(I)}^{W_p^1}(I)$.

It is clear that right side of (1.2) is not greater than the left side of (1.2). Fix an arbitrary $f \in \overset{\circ}{W_p^1}(I)$. By Theorem 2.1 there exist $(a^*, b^*) \subset I$ and a sequence $\{h_n\} \subset C_0^{\infty}(I)$ such that supp $h_n \subset (a^*, b^*)$, $||f - h_n||_{C(I)} \to 0$ and $||f - h_n||_{W_p^1(I)} \to 0$ as $n \to \infty$. Since $g \in L^1([a^*, b^*])$ then

$$\frac{\left| \int_{I} fg \right|}{\|f\|_{W_{n}^{1}(I)}} = \lim_{n \to \infty} \frac{\left| \int_{I} h_{n}g \right|}{\|h_{n}\|_{W_{n}^{1}(I)}} \le \sup_{f \in C_{0}^{\infty}(I)} \frac{\left| \int_{I} fg \right|}{\|f\|_{W_{n}^{1}(I)}}.$$

Corollary 2.2. Let $I = (a,b) \subset \mathbb{R}$, $1 , <math>\rho, v \in \mathcal{V}_p(I)$, $\frac{1}{\rho} \in L^{p'}_{loc}(I)$. Then $C_0^{\infty}(I)$ is dense in $W^1_p(I)$ if and only if $\|v\|_{L^p((a,c))}\|\frac{1}{\rho}\|_{L^{p'}((a,c))} = \|v\|_{L^p((c,b))}\|\frac{1}{\rho}\|_{L^{p'}((c,b))} = \infty$, where the point $c \in I$ is taken such that $\|v\|_{L^1((a,c))} > 0$ and $\|v\|_{L^1((c,b))} > 0$.

Proof. Statement follows from [3, Lemma 1.6] and Corollary 2.1. \Box

3 Finiteness of the supremum

Let I = (a, b), 1 and weight functions be satisfy the following set of conditions

$$\rho, v \in \mathcal{V}_p(I), \ \frac{1}{\rho} \in L^{p'}_{loc}(I), \ \|\frac{1}{\rho}\|_{L^{p'}((a,c))}\|v\|_{L^p((a,c))} < \infty, \ \|\frac{1}{\rho}\|_{L^{p'}((c,b))}\|v\|_{L^p((c,b))} < \infty,$$
 (3.1)

where the point $c \in I$ is taken such that $||v||_{L^1((a,c))} > 0$ and $||v||_{L^1((c,b))} > 0$. By [3, Lemma 1.6], when the condition (3.1) holds $f \in \mathring{W}^1_p(I)$ if and only if $f \in W^1_p(I)$ and $\bar{f}(a+0) = \bar{f}(b-0) = 0$, where \bar{f} is the representative of f, which existence is proved in [5, Corollary 2.2]. By using [3, Theorem 3.1] and [5, Theorem 2.6], a criterion of finiteness of the supremum (1.3) is formulated in terms of special functions constructed with the Oinarov and Otelbaev scheme [3]. In this paper we prove a criterion that does not use Oinarov-Otelbaev functions.

We first prove a result for the vector space $\stackrel{\circ}{AC_p}(\rho, I) := \{ f \in AC_{loc}(I) : f(a+0) = f(b-0) = 0, ||f'\rho||_{L^p(I)} < \infty \}$, equipped with the norm

$$||f|| := ||f'\rho||_{L^p(I)} + |f(c)|, \quad f \in \overset{\circ}{AC_p}(\rho, I),$$

where $c \in I$ is a fixed point. This space was considered in the paper [1] (see, also, the references to the article).

Theorem 3.1. Let $I := (a,b) \subset \mathbb{R}$, $1 , <math>g \in L^1_{loc}(I)$, $\frac{1}{\rho} \in L^{p'}(I)$, $c \in I$. Then

$$A_0 := \sup_{f \in \overset{\circ}{AC_p(\rho,I)}} \frac{\left| \int_I fg \right|}{\|f'\rho\|_{L^p(I)}} < \infty \quad \Leftrightarrow \quad B_1 < \infty,$$

where

$$B_1 := \left(\int_I \left| \int_c^x |g| \right|^{p'} |\rho(x)|^{-p'} dx \right)^{\frac{1}{p'}}.$$

In this case

$$\int_{I} fg = \int_{I} G \cdot f', \quad f \in \overset{\circ}{AC}_{p}(\rho, I),$$

where $G(x) := -\int_{c}^{x} g, \ x \in I, \ and$

$$A_0 \le B_2 := \inf_{\gamma \in \mathbb{R}} \left(\int_I \left| \gamma + \int_c^x g \right|^{p'} |\rho(x)|^{-p'} dx \right)^{\frac{1}{p'}};$$

if, besides that, $\rho \in L^p_{loc}(I)$, then $A_0 = B_2$.

Proof. Necessity. Let $A_0 < \infty$. Then for any $f \in \stackrel{\circ}{AC_p}(\rho, I)$ there exist the integral $\int_I fg$, and definition of Lebesgue integral implies $\int_I |fg| < \infty$.

Fix a point $a_1 \in (a,c)$ an arbitrary Lebesgue measurable function h such that $\rho h \in L^p((c,b))$. Since $\int_c^b |\rho|^{-p'} < \infty$ then $\int_c^b |h| < \infty$. Let h_0 be such that $\rho h_0 \in L^p((a_1,c))$ and $\|\rho h_0\|_{L^p((a_1,c))} > 0$. Since $\frac{1}{\rho} \in L^{p'}_{loc}(I)$ we have $\int_{a_1}^c |h_0| < \infty$. We put $h_1 := h_0 \frac{\int_c^b h}{\int_{a_1}^c h_0}$. Then $\int_{a_1}^c h_1 = \int_c^b h$. We define $f(x) := \int_a^x (h_1 \chi_{(a_1,c)} - h \chi_{(c,b)})$. Then $f \in AC(I)$, $\rho f' \in L^p(I)$ and

$$f(x) = \int_{a_1}^{c} h_1 - \int_{c}^{x} h = \int_{x}^{b} h$$

holds for $x \in (c, b)$. In particular, $f \in \overset{\circ}{AC}_p(\rho, I)$. Therefore

$$\int_{c}^{b} \left| \int_{x}^{b} h \right| |g(x)| dx < \infty$$

for any Lebesgue measurable function h with $\|\rho h\|_{L^p((c,b))} < \infty$.

By [5, Lemma 2.4] (where $X := \{f : \|\rho f\|_{L^p(I)} < \infty\}, Y := L^1(I), (Th)(x) = g(x) \int_x^b h$) we have the inequality

$$\int_{c}^{b} \left| \int_{x}^{b} h \right| |g(x)| dx \le C \left(\int_{c}^{b} |h\rho|^{p} \right)^{\frac{1}{p}}. \tag{3.2}$$

Using the result [7, Theorem 2.4], we find that

$$B_{11} := \left(\int_{c}^{b} \left(\int_{x}^{b} |\rho|^{-p'} \right) \left(\int_{c}^{x} |g| \right)^{p'-1} |g(x)| \, dx \right)^{\frac{1}{p'}} < \infty.$$

Integrating by parts, we get the estimate

$$B_{11}^{p'} \ge \int_c^\beta \left(\int_x^b |\rho|^{-p'} \right) \left(\int_c^x |g| \right)^{p'-1} |g(x)| \, dx \ge \frac{1}{p'} \int_c^\beta \left(\int_c^x |g| \right)^{p'} |\rho(x)|^{-p'} dx$$

for any point $\beta \in (c, b)$. Analogously we prove the finiteness of

$$B_{12} := \left(\int_a^c \left(\int_a^x |\rho|^{-p'} \right) \left(\int_x^c |g| \right)^{p'-1} |g(x)| \, dx \right)^{\frac{1}{p'}}$$

and the estimate

$$B_{12}^{p'} \ge \frac{1}{p'} \int_{\alpha}^{c} \left(\int_{x}^{c} |g| \right)^{p'} |\rho(x)|^{-p'} dx, \quad \alpha \in (a, c).$$

Using the monotone convergence theorem, we obtain the estimate $p'(B_{11}^{p'} + B_{12}^{p'}) \ge B_1^{p'}$. Sufficiency. Let $B_1 < \infty$. We have

$$0 = \lim_{\beta \to b - 0} \left(\int_{\beta}^{b} \left(\int_{c}^{x} |g| \right)^{p'} |\rho(x)|^{-p'} dx \right)^{\frac{1}{p'}} \ge \lim_{\beta \to b - 0} \left(\int_{\beta}^{b} |\rho|^{-p'} \right)^{\frac{1}{p'}} \int_{c}^{\beta} |g|$$

and, analogously,

$$\lim_{\alpha \to a+0} \left(\int_a^\alpha |\rho|^{-p'} \right)^{\frac{1}{p'}} \int_\alpha^c |g| = 0.$$

Define $\bar{G}(x) := -\int_c^x |g|, x \in (a, b),$

$$\bar{L}(f) := \int_{I} \bar{G} \cdot f', \quad f \in \overset{\circ}{AC}_{p}(\rho, I).$$

Then $\bar{L} \in (\overset{\circ}{AC_p}(\rho, I))^*$. Integrating by parts, we get

$$\begin{split} \bar{L}(f) &= \int_a^c \bar{G}f' + \int_c^b \bar{G}f' = \lim_{\alpha \to a+0} \int_\alpha^c \bar{G}f' + \lim_{\beta \to b-0} \int_c^\beta \bar{G}f' \\ &= \lim_{\alpha \to a+0} \left(\bar{G}(\alpha)f(\alpha) + \int_\alpha^c f|g| \right) + \lim_{\beta \to b-0} \left(\bar{G}(\beta)f(\beta) + \int_c^\beta f|g| \right). \end{split}$$

Now fix an arbitrary $f \in \overset{\circ}{AC_p}(\rho, I)$. Since $f \in AC_{loc}(I)$ then

$$f(x) = f(\alpha) + \int_{\alpha}^{x} f'.$$

From f(a + 0) = 0 and from the estimate

$$\int_a^x |f'| \le \left(\int_a^x |\rho f'|^p\right)^{\frac{1}{p}} \left(\int_a^x |\rho|^{-p'}\right)^{\frac{1}{p'}} < \infty,$$

we have $f(x) = \int_a^x f'$. Therefore

$$|\bar{G}(\alpha)f(\alpha)| = \left| \int_{\alpha}^{c} |g| \cdot \int_{a}^{\alpha} f' \right| \le \int_{\alpha}^{c} |g| \cdot \left(\int_{a}^{\alpha} |\rho|^{-p'} \right)^{\frac{1}{p'}} \left(\int_{a}^{\alpha} |f'\rho|^{p} \right)^{\frac{1}{p}}$$

and

$$\limsup_{\alpha \to a+0} |\bar{G}(\alpha)f(\alpha)| \le \lim_{\alpha \to a+0} \int_{\alpha}^{c} |g| \cdot \left(\int_{a}^{\alpha} |\rho|^{-p'} \right)^{\frac{1}{p'}} \left(\int_{a}^{\alpha} |f'\rho|^{p} \right)^{\frac{1}{p}} = 0.$$

Analogously, $\lim_{\beta \to b-0} |\bar{G}(\beta)f(\beta)| = 0$. Thus,

$$\bar{L}(f) = \lim_{\alpha \to a+0} \int_{\alpha}^{c} f|g| + \lim_{\beta \to b-0} \int_{c}^{\beta} f|g|.$$

Since $|f| \in \overset{\circ}{AC_p}(\rho, I)$ then there exists the integral

$$\int_{I} |fg| = \lim_{\alpha \to a+0} \int_{\alpha}^{c} |fg| + \lim_{\beta \to b-0} \int_{c}^{\beta} |fg| = \bar{L}(|f|).$$

Now we put $G(x) := -\int_{c}^{x} g, x \in (a, b)$, and

$$L(f) := \int_{I} G \cdot f', \quad f \in \overset{\circ}{AC}_{p}(\rho, I).$$

Then $L \in (\stackrel{\circ}{AC}_p(\rho, I))^*$. Using similar arguments, we obtain the equality

$$L(f) = \lim_{\alpha \to a+0} \int_{\alpha}^{c} fg + \lim_{\beta \to b-0} \int_{c}^{\beta} fg.$$

And the existence of the integral $\int_I |fg|$ implies

$$L(f) = \int_{I} fg.$$

This proves the finiteness of A_0 .

Remark that

$$\int_{I} f' = \lim_{\beta \to b-0} \int_{a}^{\beta} f' = \lim_{\beta \to b-0} f(\beta) = 0$$

for any $f \in \overset{\circ}{AC_p}(\rho, I)$. Then for arbitrary $\gamma \in \mathbb{R}$ we have

$$A_{0} = \sup_{f \in \mathring{AC}_{p}(\rho,I)} \frac{\left| \int_{I} (\gamma + G) f' \right|}{\| f' \rho \|_{L^{p}(I)}} \le \left(\int_{I} \left| \gamma + \int_{c}^{x} g \right|^{p'} |\rho(x)|^{-p'} dx \right)^{\frac{1}{p'}},$$

that is $A_0 \leq B_2$.

Now let $\rho \in L^p_{loc}(I)$. Then $C^1_0(I) \subset \overset{\circ}{AC_p}(\rho, I)$. Denote

$$A_1 := \sup_{\phi \in C_0^1(I)} \frac{\left| \int_I G\phi' \right|}{\|\phi'\rho\|_{L^p(I)}}.$$

Let $A_1 < \infty$. The set $Y := \{\phi' : \phi \in C_0^1(I)\}$ is a subspace of the weighted Lebesgue space $L^p_\rho(I) := \{f : \|f\|_{L^p_\rho(I)} := \|f\rho\|_{L^p(I)} < \infty\}$. Since $A_1 < \infty$ then $\Lambda : f \mapsto \int_I Gf$ is a linear functional on Y and $|\Lambda(f)| \le A_1 \|f\|_{L^p_\rho(I)}$ for any $f \in Y$. Denote by $\tilde{\Lambda}$ the extension by Hahn-Banach theorem of the functional Λ on all $L^p_\rho(I)$. Then there exists the function $F \in L^{p'}_{\frac{1}{\rho}}(I)$ such that $\tilde{\Lambda}(f) = \int_I Ff$, $f \in L^p_\rho(I)$, and

$$A_1 = \sup_{f \in L_p^p(I)} \frac{\left| \int_I Ff \right|}{\|f\|_{L_p^p(I)}} = \left(\int_I |F|^{p'} |\rho|^{-p'} \right)^{\frac{1}{p'}}.$$

Since $\tilde{\Lambda}$ coincides with Λ on Y, then there exists the constant $\gamma \in \mathbb{R}$ such that $F = G + \gamma$ a.e. on I. Consequently,

$$A_0 \ge A_1 = \left(\int_I |G + \gamma|^{p'} |\rho|^{-p'} \right)^{\frac{1}{p'}} \ge B_2.$$

Now we formulate a criterion of finiteness of the supremum (1.3).

Corollary 3.1. Let $I := (a, b) \subset \mathbb{R}$, $1 , <math>g \in L^1_{loc}(I)$, the point $c \in I$ be taken such that $||v||_{L^1((a,c))} > 0$ and $||v||_{L^1((c,b))} > 0$, weight functions ρ, v be satisfy the set of conditions (3.1). Then

$$A_2 := \sup_{f \in \mathring{W}_p^1(I)} \frac{\left| \int_I fg \right|}{\|f\|_{W_p^1(I)}} < \infty \quad \Leftrightarrow \quad B_1 < \infty.$$

In this case

$$\int_I fg = \int_I G \cdot Df, \quad f \in \overset{\circ}{W}{}^1_p(I),$$

where
$$G(x) := -\int_c^x g$$
, $x \in I$. In particular, $\left(1 + \|v\|_{L_p(I)}\|\frac{1}{\rho}\|_{L_{p'}(I)}\right)^{-1} B_2 \le A_2 \le B_2$.

Proof. The set of conditions (3.1) is equivalent to the following set of conditions

$$\rho, v \in \mathcal{V}_p(I), \ \frac{1}{\rho} \in L^{p'}(I), \ v \in L^p(I).$$
(3.3)

Required only to show that (3.1) implies (3.3). Since $\rho \in L^p_{\text{loc}}(I)$ then $\|\frac{1}{\rho}\|_{L^{p'}((a,c))} > 0$ and $\|\frac{1}{\rho}\|_{L^{p'}((c,b))} > 0$. Since $\|\frac{1}{\rho}\|_{L^{p'}((a,c))}\|v\|_{L^p((a,c))} < \infty$ and $\|\frac{1}{\rho}\|_{L^{p'}((c,b))}\|v\|_{L^p((c,b))} < \infty$ then $\|v\|_{L^p(I)} < \infty$. Given a choice of the point $c \in I$, we get $\frac{1}{\rho} \in L^{p'}(I)$.

Therefore

$$\frac{1}{1+\|v\|_{L^p(I)}\|\frac{1}{\rho}\|_{L^{p'}(I)}}\sup_{f\in \mathring{AC}_p(\rho,I)}\frac{\left|\int_I fg\right|}{\|f'\rho\|_{L^p(I)}}\leq \sup_{f\in \mathring{W}^1_p(I)}\frac{\left|\int_I fg\right|}{\|f\|_{W^1_p(I)}}\leq \sup_{f\in \mathring{AC}_p(\rho,I)}\frac{\left|\int_I fg\right|}{\|f'\rho\|_{L^p(I)}}.$$

Applying Theorem 3.1, we obtain the required result.

Acknowledgments

The research work was financially supported by the Russian Science Foundation under grant 14-11-00443 and performed in the Steklov Mathematical Institute of the Russian Academy of Sciences.

References

- [1] A. Abylaeva, A. Baiarystanov, R. Oinarov, A weighted differential Hardy inequality on $\overset{\circ}{AC}(I)$, Sib. Math. J. 55 (2014), no. 3, 387–401.
- [2] G. Leoni, A first course in Sobolev spaces, Providence, RI: American Mathematical Society (AMS), 2009.
- [3] R. Oinarov, On weighted norm inequalities with three weights, J. Lond. Math. Soc., II. Ser. 48 (1993), no.1, 103–116.
- [4] D. Prokhorov, V. Stepanov, E. Ushakova, On weighted Sobolev spaces on the real line, Dokl. Math. 93 (2016), no. 1, 78–81.
- [5] D.V. Prokhorov, V.D. Stepanov, E.P. Ushakova, On associate spaces of weighted Sobolev space on the real line, Math. Nachr. 290 (2017), 890–912.
- [6] W. Rudin, Real and complex analysis, McGraw-HiII Book Company, New York, 1987.
- [7] G. Sinnamon, V.D. Stepanov, The weighted Hardy inequality: New proofs and the case p = 1, J. London Math. Soc., II. Ser. 54 (1996), no. 1, 89–101.

Dmitrii Vladimirovich Prokhorov Computing Center of Far Eastern Branch of Russian Academy of Sciences 65 Kim Yu Chena St, 680000 Khabarovsk, Russia

and

Steklov Mathematical Institute Russian Academy of Sciences 8 Gubkina St 119991 Moscow, Russia E-mail: prohorov@as.khb.ru

Received: 06.12.2016