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Abstract. A criterion of density of smooth functions in a weighted Sobolev space on real line
is obtained. In one partial case an alternative description of the space associated with the
weighted Sobolev space are given.

1 Introduction

Let I := (a, b) ⊂ R. For 1 ≤ p < ∞ we denote Lp(I) the Lebesgue space with the norm

‖f‖Lp(I) :=
(∫

I
|f |p
) 1
p . Let Vp(I) := {v ∈ Lploc(I) : v ≥ 0, ‖v‖L1(I) 6= 0} be the set of weight

functions (weights). DenoteW 1
1,loc(I) the space of all functions u ∈ L1

loc(I), whose distributional
derivatives Du belong to L1

loc(I). In the papers [3, 4, 5] are studied some properties of the
weighted Sobolev space

W 1
p (I) := {u ∈ W 1

1,loc(I) : ‖u‖W 1
p (I) <∞},

where

‖u‖W 1
p (I) := ‖vu‖Lp(I) + ‖ρDu‖Lp(I), v, ρ ∈ Vp(I),

1

ρ
∈ Lp

′

loc(I), (1.1)

and its subspaces

◦◦
W 1
p (I) := {f ∈ AC(I) : supp f compact in I, ‖vf‖Lp(I) + ‖ρf ′‖Lp(I) <∞}

and
◦
W 1
p (I) =

◦◦
W 1
p (I)

W 1
p (I)

� the closure of the space
◦◦
W 1
p (I) in W 1

p (I). In particular, for 1 <

p <∞ the description of elements of spaces
◦
W 1
p (I),W 1

p (I), criterion of equality
◦
W 1
p (I) = W 1

p (I)
and two-sided estimates on supremums

sup
f∈X

∣∣∫
I
fg
∣∣

‖f‖W 1
p (I)

and sup
f∈X

∫
I
|fg|

‖f‖W 1
p (I)

,

are proved, where g ∈ L1
loc(I), X ∈ {W 1

p (I),
◦
W 1
p (I),

◦◦
W 1
p (I)}. Usually in theory of Sobolev spaces

by
◦
W 1
p (I) denote the closure of space C∞0 (I) in W 1

p (I). In Section 2 we prove, that for the
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weights, which satisfy the conditions (1.1), there are the equalities
◦◦
W 1
p (I)

W 1
p (I)

= C∞0 (I)
W 1
p (I)

and

sup

f∈
◦◦
W 1
p (I)

∣∣∫
I
fg
∣∣

‖f‖W 1
p (I)

= sup
f∈C∞0 (I)

∣∣∫
I
fg
∣∣

‖f‖W 1
p (I)

(1.2)

for any g ∈ L1
loc(I). In Section 3 we prove a criterion of �niteness of the supremum

sup

f∈
◦
W 1
p (I)

∣∣∫
I
fg
∣∣

‖f‖W 1
p (I)

, g ∈ L1
loc(I), (1.3)

in case, when
◦
W 1
p (I) 6= W 1

p (I) and each u ∈
◦
W 1
p (I) has a representative f ∈ ACloc(I) with

f(a+ 0) = f(b−0) = 0. The criterion gives the answer on the question: under what conditions
on the function g ∈ L1

loc(I) the map f 7→
∫
I
fg is de�ned a bounded linear functional on the

weighted Sobolev space
◦
W 1
p (I); and complements the results of papers [3, 4, 5, 1].

2 Density of smooth functions

Theorem 2.1. Let I = (a, b) ⊂ R, 1 ≤ p < ∞, ρ, v ∈ Vp(I), 1
ρ
∈ Lp

′

loc(I), f ∈
◦◦
W 1
p (I)

and supp f ⊂ (a∗, b∗) ⊂⊂ (a, b). Then for arbitrary ε > 0 there exists h ∈ C∞0 (I) such that
supph ⊂ (a∗, b∗), ‖f − h‖C(I) < ε and ‖f − h‖W 1

p (I) < ε.

Proof. Since v, ρ ∈ Lploc(I) then C1
0(I) ⊂ W 1

p (I). Fix any f ∈
◦◦
W 1
p (I). Let supp f ⊂ (a0, b0) ⊂⊂

(a3, b3) ⊂⊂ (a∗, b∗). Fix an arbitrary ε > 0. Let

0 < ε0 <
ε

2
min

{(∫ b3

a3

vp
)− 1

p
(∫ b3

a3

1

ρp′

)− 1
p′

,

(∫ b3

a3

1

ρp′

)− 1
p′

, 1

}
.

We take b2 ∈ (b0, b3) such that
(∫ b3

b2
ρp
) 1
p
< ε0

4
. Let 0 < ε1 < min{ ε0

12
, 1

3
(b3 − b2)}. Since

ρ ∈ Lp([a0, b0]) then there exists (see [6, Theorem 3.14]) h1 ∈ C([a0, b0]) such that(∫ b0

a0

|f ′ − h1|pρp
) 1

p

< ε1 min

{(∫ b0

a0

1

ρp′

)− 1
p′

, 1

}
.

Now we take a1 ∈ (a3, a0), b1 ∈ (b0, b2) such that

|h1(a0)|max

{[∫ a0

a1

ρp
] 1
p

, (a0 − a1)

}
< ε1, |h1(b0)|max

{[∫ b1

b0

ρp
] 1
p

, (b1 − b0)

}
< ε1.

We extend the function h1 on (a, b1] such that h1 = 0 on (a, a1], h1 on [a1, a0] is the function
whose graph is the segment connecting the points (a1, 0) and (a0, h1(a0)), h1 on [b0, b1] is the
function whose graph is the segment connecting the points (b0, h1(b0)) and (b1, 0).

We have ∫ b1

a

h1 =

∫ a0

a1

h1 +

∫ b0

a0

h1 +

∫ b1

b0

h1.
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By construction,∣∣∣∣∫ a0

a1

h1

∣∣∣∣ ≤ |h1(a0)|(a0 − a1) < ε1,

∣∣∣∣∫ b1

b0

h1

∣∣∣∣ ≤ |h1(b0)|(b1 − b0) < ε1,

∣∣∣∣∫ b0

a0

h1

∣∣∣∣ =

∣∣∣∣∫ b0

a0

(h1 − f ′)
∣∣∣∣ ≤ (∫ b0

a0

|h1 − f ′|pρp
) 1

p
(∫ b0

a0

1

ρp′

) 1
p′

< ε1.

Thus
∣∣∣∫ b1a h1

∣∣∣ < 3ε1. We de�ne h1 = 0 on (b1, b2]. If
∫ b1
a
h1 = 0, then we de�ne h1 = 0 on (b2, b).

Now let α := sign
(∫ b1

a
h1

)
6= 0. We de�ne h1 = 0 on [b3, b). Since

0 <

∣∣∣∣∫ b1

a

h1

∣∣∣∣ < 3ε1 < (b3 − b2),

then there exist d ∈ (0, 1) and c ∈ (0, 1
2
(b3 − b2)) such that d(b3 − b2 − c) = |

∫ b1
a
h1|. We

extend h1 on [b2, b3] such that its graph is the polygonal line with vertices (b2, 0), (b2 + c,−αd),
(b3 − c,−αd), (b3, 0). In both cases h1 ∈ C0(I) and

∫
I
h1 = 0.

We put h0(x) :=
∫ x
a
h1. Then h0 ∈ C1

0(I) and h′0(x) = h1(x), x ∈ I. Hence

‖(f ′ − h′0)ρ‖Lp(I) =

[∫ a0

a1

|h1|pρp +

∫ b0

a0

|f ′ − h1|pρp +

∫ b1

b0

|h1|pρp +

∫ b3

b2

|h1|pρp
] 1
p

<
ε0

2
.

Besides that,

sup
x∈I
|f(x)− h0(x)| = sup

x∈I

∣∣∣∣∫ x

a

f ′ −
∫ x

a

h1

∣∣∣∣ ≤ ∫ b3

a3

|f ′ − h1|

≤
(∫ b3

a3

|f ′ − h1|pρp
) 1

p
(∫ b3

a3

1

ρp′

) 1
p′

<
ε0

2

(∫ b3

a3

1

ρp′

) 1
p′

<
ε

4
,

‖(f − h0)v‖Lp(I) ≤
(∫ b3

a3

vp
) 1

p

sup
x∈I
|f(x)− h0(x)| < ε0

2

(∫ b3

a3

vp
) 1

p
(∫ b3

a3

1

ρp′

) 1
p′

<
ε

4
.

Consequently, ‖f − h0‖C(I) <
ε
4
and ‖f − h0‖W 1

p (I) <
ε
2
.

By gτ we denote a molli�cation of g with radius τ . Since supph0 ⊂ [a1, b3], then there exists
τ ∗ > 0 such that supp{(h0)τ} ⊂ (a∗, b∗) holds for any τ ∈ (0, τ ∗). Besides that, (h0)τ ∈ C∞(I)
and (h′0)τ (x) = ((h0)τ )

′(x), x ∈ I. Since the functions h0 and h′0 are continuous and have
compact supports, then (see [2, Theorem C.19 (i)])

‖h0 − (h0)τ‖C(I) → 0, ‖h′0 − ((h0)τ )
′‖C(I) → 0

as τ → 0 + 0. We take τ ′ ∈ (0, τ ∗) such that

‖h0 − h‖C(I) <
ε

4
min

{(∫ b∗

a∗
vp
)− 1

p

, 1

}
, ‖h′0 − h′‖C(I) <

ε

4

(∫ b∗

a∗
ρp
)− 1

p

for h := (h0)τ ′ . Therefore ‖f − h‖C(I) < ε and ‖f − h‖W 1
p (I) < ε.
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Corollary 2.1. Let I = (a, b) ⊂ R, 1 ≤ p < ∞, ρ, v ∈ Vp(I), 1
ρ
∈ Lp

′

loc(I), g ∈ L1
loc(I). Then

◦◦
W 1
p (I)

W 1
p (I)

= C∞0 (I)
W 1
p (I)

and (1.2) holds.

Proof. We have C∞0 (I) ⊂
◦◦
W 1
p (I) and, by Theorem 2.1,

◦◦
W 1
p (I) ⊂ C∞0 (I)

W 1
p (I)

. Hence

◦◦
W 1
p (I)

W 1
p (I)

= C∞0 (I)
W 1
p (I)

.
It is clear that right side of (1.2) is not greater than the left side of (1.2). Fix an arbitrary

f ∈
◦◦
W 1
p (I). By Theorem 2.1 there exist (a∗, b∗) ⊂⊂ I and a sequence {hn} ⊂ C∞0 (I) such that

supphn ⊂ (a∗, b∗), ‖f − hn‖C(I) → 0 and ‖f − hn‖W 1
p (I) → 0 as n → ∞. Since g ∈ L1([a∗, b∗])

then ∣∣∫
I
fg
∣∣

‖f‖W 1
p (I)

= lim
n→∞

∣∣∫
I
hng
∣∣

‖hn‖W 1
p (I)

≤ sup
f∈C∞0 (I)

∣∣∫
I
fg
∣∣

‖f‖W 1
p (I)

.

Corollary 2.2. Let I = (a, b) ⊂ R, 1 < p < ∞, ρ, v ∈ Vp(I), 1
ρ
∈ Lp

′

loc(I). Then C∞0 (I) is

dense in W 1
p (I) if and only if ‖v‖Lp((a,c))‖1

ρ
‖Lp′ ((a,c)) = ‖v‖Lp((c,b))‖1

ρ
‖Lp′ ((c,b)) = ∞, where the

point c ∈ I is taken such that ‖v‖L1((a,c)) > 0 and ‖v‖L1((c,b)) > 0.

Proof. Statement follows from [3, Lemma 1.6] and Corollary 2.1.

3 Finiteness of the supremum

Let I = (a, b), 1 < p <∞ and weight functions be satisfy the following set of conditions

ρ, v ∈ Vp(I), 1
ρ
∈ Lp

′

loc(I), ‖1
ρ
‖Lp′ ((a,c))‖v‖Lp((a,c)) <∞, ‖1

ρ
‖Lp′ ((c,b))‖v‖Lp((c,b)) <∞, (3.1)

where the point c ∈ I is taken such that ‖v‖L1((a,c)) > 0 and ‖v‖L1((c,b)) > 0. By [3, Lemma 1.6],

when the condition (3.1) holds f ∈
◦
W 1
p (I) if and only if f ∈ W 1

p (I) and f̄(a+0) = f̄(b−0) = 0,
where f̄ is the representative of f , which existence is proved in [5, Corollary 2.2]. By using [3,
Theorem 3.1] and [5, Theorem 2.6], a criterion of �niteness of the supremum (1.3) is formulated
in terms of special functions constructed with the Oinarov and Otelbaev scheme [3]. In this
paper we prove a criterion that does not use Oinarov-Otelbaev functions.

We �rst prove a result for the vector space
◦

ACp(ρ, I) := {f ∈ ACloc(I) : f(a+0) = f(b−0) =
0, ‖f ′ρ‖Lp(I) <∞}, equipped with the norm

‖f‖ := ‖f ′ρ‖Lp(I) + |f(c)|, f ∈
◦

ACp(ρ, I),

where c ∈ I is a �xed point. This space was considered in the paper [1] (see, also, the references
to the article).

Theorem 3.1. Let I := (a, b) ⊂ R, 1 < p <∞, g ∈ L1
loc(I), 1

ρ
∈ Lp′(I), c ∈ I. Then

A0 := sup

f∈
◦
ACp(ρ,I)

∣∣∫
I
fg
∣∣

‖f ′ρ‖Lp(I)

<∞ ⇔ B1 <∞,
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where

B1 :=

(∫
I

∣∣∣∣∫ x

c

|g|
∣∣∣∣p′ |ρ(x)|−p′dx

) 1
p′

.

In this case ∫
I

fg =

∫
I

G · f ′, f ∈
◦

ACp(ρ, I),

where G(x) := −
∫ x
c
g, x ∈ I, and

A0 ≤ B2 := inf
γ∈R

(∫
I

∣∣∣∣γ +

∫ x

c

g

∣∣∣∣p′ |ρ(x)|−p′dx

) 1
p′

;

if, besides that, ρ ∈ Lploc(I), then A0 = B2.

Proof. Necessity. Let A0 < ∞. Then for any f ∈
◦

ACp(ρ, I) there exist the integral
∫
I
fg, and

de�nition of Lebesgue integral implies
∫
I
|fg| <∞.

Fix a point a1 ∈ (a, c) an arbitrary Lebesgue measurable function h such that ρh ∈ Lp((c, b)).
Since

∫ b
c
|ρ|−p′ <∞ then

∫ b
c
|h| <∞. Let h0 be such that ρh0 ∈ Lp((a1, c)) and ‖ρh0‖Lp((a1,c)) >

0. Since 1
ρ
∈ Lp

′

loc(I) we have
∫ c
a1
|h0| < ∞. We put h1 := h0

∫ b
c h∫ c
a1
h0
. Then

∫ c
a1
h1 =

∫ b
c
h. We

de�ne f(x) :=
∫ x
a

(h1χ(a1,c) − hχ(c,b)). Then f ∈ AC(I), ρf ′ ∈ Lp(I) and

f(x) =

∫ c

a1

h1 −
∫ x

c

h =

∫ b

x

h

holds for x ∈ (c, b). In particular, f ∈
◦

ACp(ρ, I). Therefore∫ b

c

∣∣∣∣∫ b

x

h

∣∣∣∣ |g(x)| dx <∞

for any Lebesgue measurable function h with ‖ρh‖Lp((c,b)) <∞.

By [5, Lemma 2.4] (where X := {f : ‖ρf‖Lp(I) <∞}, Y := L1(I), (Th)(x) = g(x)
∫ b
x
h) we

have the inequality ∫ b

c

∣∣∣∣∫ b

x

h

∣∣∣∣ |g(x)| dx ≤ C

(∫ b

c

|hρ|p
) 1

p

. (3.2)

Using the result [7, Theorem 2.4], we �nd that

B11 :=

(∫ b

c

(∫ b

x

|ρ|−p′
)(∫ x

c

|g|
)p′−1

|g(x)| dx

) 1
p′

<∞.

Integrating by parts, we get the estimate

Bp′

11 ≥
∫ β

c

(∫ b

x

|ρ|−p′
)(∫ x

c

|g|
)p′−1

|g(x)| dx ≥ 1

p′

∫ β

c

(∫ x

c

|g|
)p′
|ρ(x)|−p′dx

for any point β ∈ (c, b). Analogously we prove the �niteness of

B12 :=

(∫ c

a

(∫ x

a

|ρ|−p′
)(∫ c

x

|g|
)p′−1

|g(x)| dx

) 1
p′



On a weighted Sobolev space on real line 27

and the estimate

Bp′

12 ≥
1

p′

∫ c

α

(∫ c

x

|g|
)p′
|ρ(x)|−p′dx, α ∈ (a, c).

Using the monotone convergence theorem, we obtain the estimate p′(Bp′

11 +Bp′

12) ≥ Bp′

1 .
Su�ciency. Let B1 <∞. We have

0 = lim
β→b−0

(∫ b

β

(∫ x

c

|g|
)p′
|ρ(x)|−p′dx

) 1
p′

≥ lim
β→b−0

(∫ b

β

|ρ|−p′
) 1

p′
∫ β

c

|g|

and, analogously,

lim
α→a+0

(∫ α

a

|ρ|−p′
) 1

p′
∫ c

α

|g| = 0.

De�ne Ḡ(x) := −
∫ x
c
|g|, x ∈ (a, b),

L̄(f) :=

∫
I

Ḡ · f ′, f ∈
◦

ACp(ρ, I).

Then L̄ ∈ (
◦

ACp(ρ, I))∗. Integrating by parts, we get

L̄(f) =

∫ c

a

Ḡf ′ +

∫ b

c

Ḡf ′ = lim
α→a+0

∫ c

α

Ḡf ′ + lim
β→b−0

∫ β

c

Ḡf ′

= lim
α→a+0

(
Ḡ(α)f(α) +

∫ c

α

f |g|
)

+ lim
β→b−0

(
Ḡ(β)f(β) +

∫ β

c

f |g|
)
.

Now �x an arbitrary f ∈
◦

ACp(ρ, I). Since f ∈ ACloc(I) then

f(x) = f(α) +

∫ x

α

f ′.

From f(a+ 0) = 0 and from the estimate∫ x

a

|f ′| ≤
(∫ x

a

|ρf ′|p
) 1

p
(∫ x

a

|ρ|−p′
) 1

p′

<∞,

we have f(x) =
∫ x
a
f ′. Therefore

|Ḡ(α)f(α)| =
∣∣∣∣∫ c

α

|g| ·
∫ α

a

f ′
∣∣∣∣ ≤ ∫ c

α

|g| ·
(∫ α

a

|ρ|−p′
) 1

p′
(∫ α

a

|f ′ρ|p
) 1

p

and

lim sup
α→a+0

|Ḡ(α)f(α)| ≤ lim
α→a+0

∫ c

α

|g| ·
(∫ α

a

|ρ|−p′
) 1

p′
(∫ α

a

|f ′ρ|p
) 1

p

= 0.

Analogously, limβ→b−0 |Ḡ(β)f(β)| = 0. Thus,

L̄(f) = lim
α→a+0

∫ c

α

f |g|+ lim
β→b−0

∫ β

c

f |g|.
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Since |f | ∈
◦

ACp(ρ, I) then there exists the integral∫
I

|fg| = lim
α→a+0

∫ c

α

|fg|+ lim
β→b−0

∫ β

c

|fg| = L̄(|f |).

Now we put G(x) := −
∫ x
c
g, x ∈ (a, b), and

L(f) :=

∫
I

G · f ′, f ∈
◦

ACp(ρ, I).

Then L ∈ (
◦

ACp(ρ, I))∗. Using similar arguments, we obtain the equality

L(f) = lim
α→a+0

∫ c

α

fg + lim
β→b−0

∫ β

c

fg.

And the existence of the integral
∫
I
|fg| implies

L(f) =

∫
I

fg.

This proves the �niteness of A0.
Remark that ∫

I

f ′ = lim
β→b−0

∫ β

a

f ′ = lim
β→b−0

f(β) = 0

for any f ∈
◦

ACp(ρ, I). Then for arbitrary γ ∈ R we have

A0 = sup

f∈
◦
ACp(ρ,I)

∣∣∫
I
(γ +G)f ′

∣∣
‖f ′ρ‖Lp(I)

≤

(∫
I

∣∣∣∣γ +

∫ x

c

g

∣∣∣∣p′ |ρ(x)|−p′dx

) 1
p′

,

that is A0 ≤ B2.

Now let ρ ∈ Lploc(I). Then C1
0(I) ⊂

◦
ACp(ρ, I). Denote

A1 := sup
φ∈C1

0 (I)

∣∣∫
I
Gφ′

∣∣
‖φ′ρ‖Lp(I)

.

Let A1 < ∞. The set Y := {φ′ : φ ∈ C1
0(I)} is a subspace of the weighted Lebesgue space

Lpρ(I) := {f : ‖f‖Lpρ(I) := ‖fρ‖Lp(I) < ∞}. Since A1 < ∞ then Λ : f 7→
∫
I
Gf is a linear

functional on Y and |Λ(f)| ≤ A1‖f‖Lpρ(I) for any f ∈ Y . Denote by Λ̃ the extension by Hahn-

Banach theorem of the functional Λ on all Lpρ(I). Then there exists the function F ∈ Lp
′

1
ρ

(I)

such that Λ̃(f) =
∫
I
Ff , f ∈ Lpρ(I), and

A1 = sup
f∈Lpρ(I)

∣∣∫
I
Ff
∣∣

‖f‖Lpρ(I)

=

(∫
I

|F |p′|ρ|−p′
) 1

p′

.

Since Λ̃ coincides with Λ on Y , then there exists the constant γ ∈ R such that F = G+ γ a.e.
on I. Consequently,

A0 ≥ A1 =

(∫
I

|G+ γ|p′|ρ|−p′
) 1

p′

≥ B2.
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Now we formulate a criterion of �niteness of the supremum (1.3).

Corollary 3.1. Let I := (a, b) ⊂ R, 1 < p <∞, g ∈ L1
loc(I), the point c ∈ I be taken such that

‖v‖L1((a,c)) > 0 and ‖v‖L1((c,b)) > 0, weight functions ρ, v be satisfy the set of conditions (3.1).
Then

A2 := sup

f∈
◦
W 1
p (I)

∣∣∫
I
fg
∣∣

‖f‖W 1
p (I)

<∞ ⇔ B1 <∞.

In this case ∫
I

fg =

∫
I

G ·Df, f ∈
◦
W 1
p (I),

where G(x) := −
∫ x
c
g, x ∈ I. In particular,

(
1 + ‖v‖Lp(I)‖1

ρ
‖Lp′ (I)

)−1

B2 ≤ A2 ≤ B2.

Proof. The set of conditions (3.1) is equivalent to the following set of conditions

ρ, v ∈ Vp(I), 1
ρ
∈ Lp′(I), v ∈ Lp(I). (3.3)

Required only to show that (3.1) implies (3.3). Since ρ ∈ Lploc(I) then ‖1
ρ
‖Lp′ ((a,c)) > 0

and ‖1
ρ
‖Lp′ ((c,b)) > 0. Since ‖1

ρ
‖Lp′ ((a,c))‖v‖Lp((a,c)) < ∞ and ‖1

ρ
‖Lp′ ((c,b))‖v‖Lp((c,b)) < ∞ then

‖v‖Lp(I) <∞. Given a choice of the point c ∈ I, we get 1
ρ
∈ Lp′(I).

Therefore

1

1 + ‖v‖Lp(I)‖1
ρ
‖Lp′ (I)

sup

f∈
◦
ACp(ρ,I)

∣∣∫
I
fg
∣∣

‖f ′ρ‖Lp(I)

≤ sup

f∈
◦
W 1
p (I)

∣∣∫
I
fg
∣∣

‖f‖W 1
p (I)

≤ sup

f∈
◦
ACp(ρ,I)

∣∣∫
I
fg
∣∣

‖f ′ρ‖Lp(I)

.

Applying Theorem 3.1, we obtain the required result.
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