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RYSKUL OINAROV
(to the 70th birthday)

On February 26, 2017 was the 70th birthday of Ryskul Oinarov, mem-
ber of the Editorial Board of the Eurasian Mathematical Journal, pro-
fessor of the Department Fundamental Mathematics of the L.N. Gumi-
lyov Eurasian National University, doctor of physical and mathematical
sciences (1994), professor (1997), honoured worker of education of the
Republic of Kazakhstan (2007), corresponding member of the National
Academy of Sciences of the Republic of Kazakhstan (2012). In 2005 he
was awarded the breastplate “For the merits in the development of science
in the Republic of Kazakhstan”, in 2007 and 2014 the state grant “The
best university teacher”, in 2016 the Order “Kurmet” (= “Honour”).

R. Oinarov was born in the village Kul’Aryk, Kazalinsk district, Kyzy-
lorda region. In 1969 he graduated from the S.M. Kirov Kazakh State University (Almaty).
Starting with 1972 he worked at the Institute of Mathematics and Mechanics of the Academy of
Sciences of the Kazakh SSR (senior engineer, junior researcher, senior researcher, head of a lab-
oratory). In 1981 he defended of the candidate of sciences thesis “Continuity and Lipschitzness
of nonlinear integral operators of Uryson’s type” at the Tashkent State University of the Uzbek
SSR and in 1994 the doctor of sciences thesis “Weighted estimates of integral and differential
operators” at the Institute of Mathematics and Mechanics of the Academy of Sciences of the
Kazakh SSR.

Starting from 2000 he has been working as a professor at the L.N. Gumilyov Eurasian
National University

Scientific works of R. Oinarov are devoted to investigation of linear and non-linear integral
and discrete operators in weighted spaces; to studying problems of the well-posedness of dif-
ferential equations; to weighted inequalities; to embedding theorems for the weighted function
spaces of Sobolev type and their applications to the qualitative theory of linear and quasilin-
ear differential equations. A certain class of integral operators is named after him - integral
operators with Oinarov’s kernels or Oinarov condition. On the whole, the results obtained by
R. Oinarov have laid the groundwork for new perspective directions in the theory of function
spaces and its applications to the theory of differential equations.

R. Oinarov has published more than 100 scientific papers. The list of his most important
publications may be seen on the web-page

https : //scholar.google.com/citations?user = Nz XY MS4AAAAJThl = ruoi = ao

Under his supervision 26 theses have been defended: 1 doctor of sciences thesis, 15 candidate
of sciences theses and 10 PhD theses. The Editorial Board of the Eurasian Mathematical
Journal congratulates Ryskul Oinarov on the occasion of his 70th birthday and wishes him
good health and new achievements in mathematics and mathematical education.
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TIME DEPENDENT BOUNDARY NORMS FOR KERNELS
AND REGULARIZING PROPERTIES OF THE
DOUBLE LAYER HEAT POTENTIAL

M. Lanza de Cristoforis, P. Luzzini

Communicated by T.V. Tararykova
Dedicated to the 70" birthday of Professor Ryskul Oinarov

Key words: integral operators on Lipschitz parabolic cylinders, double layer heat potential.
2000 AMS Mathematics Subject Classification: 31B10.

Abstract. We introduce a class of norms for time dependent kernels on the boundary of
Lipschitz parabolic cylinders and we prove theorems of joint continuity of integral operators
upon variation of both the kernel and the density function. As an application, we prove that
the integral operator associated to the double layer heat potential has a regularizing property
on the boundary.

1 Introduction

This paper is mainly devoted to continuity and regularizing properties of boundary integral
operators defined on the boundary of parabolic cylinders upon variation of both the kernel and
the density (or moment) function and to their applications to integral operators, the double
layer heat potential in particular. Throughout the paper, we assume that

neN\{0,1},

where N denotes the set of all natural numbers including 0. Let o €]0,1], T' €] — o0, +0o0].
Let © be a bounded open subset of R™ of class C*. The analysis of the properties of the
integral operator associated to the double layer heat potential is a classical topic. Indeed, the
double layer heat potential has been systematically exploited in the analysis of boundary value
problems for the heat equation.

A first systematic treatment of the properties of heat layer potentials can be found in the
works of Gevrey [5], [6], where the author has studied the properties of heat potentials in the
case n = 1.

Then Van Tun [20], [21], [22] has developed in a series of papers the work of Gevrey and
has obtained some results on the Schauder regularity of heat potentials. In particular, Van Tun
has proved that the integral operator associated to the double layer heat potential defined on
the boundary of a parabolic cylinder improves by 1/2 the Hélder exponent of the density.

In the case m € N and € is of class C"™?, it has long been known that if the density u
is of class CMm+@)/Zm+a(] — oo T[ x J0Q), then the restriction of the double layer potential to
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the set | — 0o, T[ x Q can be extended to a function of CmF®)/Zm+a(] — oo T[ x clQ) (cf. e.g.
Ladyzhenskaja, Solonnikov and Ural’ceva [15].)

In the case m € N and  is of class C™ 2% Kamynin [9], [10], [11], [12] has proved that the
integral operator associated to the double layer heat potential is bounded from the Schauder
space Cm+a)/Zzmta([0 T] x 9Q) to CmH1+e)/2m+1+a’ ([0 T] x 9Q) for o/ €]0,af, T < +oo.

Then Costabel [3] has considered the case of anisotropic Sobolev spaces and has proved
some mapping property of heat potentials in Sobolev spaces on Lipschitz domains. We also
mention the works of Lewis and Murray [16] and Hofmann and Lewis [8] for time dependent
Lipschitz domains.

Our interest is two-fold. On one hand we want to prove that the integral operator associated
to the double layer heat potential improves the regularity of the density in Schauder spaces and
thus extend the above mentioned work of Kamynin, and on the other hand we are interested in
the dependence of an integral operator upon variation of the density and of the kernel. We plan
to apply both types of results in the analysis of singularly perturbed boundary value problems.

In this paper we plan to consider the cases in which €2 is a bounded open Lipschitz subset
of R" and a bounded open subset of R" of class C**. Then in a forthcoming paper, we plan
to exploit the results of the present paper and to prove a formula for the tangential derivatives
of the double layer heat potential and correspoinding regularizing properties of the integral
operator associated to the double layer heat potential in spaces of fuction with high order
derivatives in Holder spaces in a bounded open subset of R™ of class C™“ with m > 1.

Thus we plan to prove in a parabolic setting, the corresponding results of [2]| for integral op-
erators defined on the boundary of €2 and for layer potentials corresponding to the fundamental
solution of an arbitrary second order elliptic operator with constant coefficients. For references
to previous contributions on the double layer potential for second order elliptic operators, we
refer to [2].

In Sections 2 and 3, we introduse some notation and preliminaries. In Section 4 we collect
some inequalities for the kernel of the double layer heat potential in the case €2 is of class
C%*. Then in Section 6 we introduce a class of function spaces and norms for kernels of
integral operators defined on the boundary of parabolic cylinders, and we verify that the kernel
associated to the fundamental solution of the heat equation and its first order derivatives and
the kernel of the double layer heat potential belong to such classes.

In Section 7, we estimate the norm of an integral operator with kernel K applied to a
density p in terms of the norm of K in the above classes and of the L>°-norm of p. In Section 8,
we apply the results of Section 7 to the double layer heat potential and deduce corresponding
inequalities.

In Section 9, we estimate the norm of an integral operator with kernel K applied to a density
w1 in terms of the norm of K in the above classes and of the Hélder norm of p. In Section 10,
we apply the results of Section 9 to the double layer heat potential and deduce corresponding
inequalities.

The authors believe that the introduction of the above mentioned norms could be applied
to simplify some of the classical proofs of the mapping properties of layer heat potentials.

2 Notation

We denote the norm on a normed space X by ||| x. Let X and Y be normed spaces. We endow
the space X x ) with the norm defined by ||(z,y)|lxxy = ||z|lx + ||y|ly for all (z,y) € X x Y,
while we use the Euclidean norm for R™. For standard definitions of Calculus in normed spaces,
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we refer to Deimling [1]. Let s € N\ {0}. Let D C R®. Then clD denotes the closure of D, and
0D denotes the boundary of D, and diam(ID) denotes the diameter of D. The symbol |-| denotes
the Euclidean modulus in R® or in C. For all R €]0, +00[, z € R®, z; denotes the j-th coordinate
of x for all j € {1,...,s}, and Bs(z, R) denotes the ball {y € R*: |z —y| < R}. B(D,X) and
C°(D, X) denote the space of bounded and continuous functions from D to X, respectively. We
endow B(D, X) with the sup-norm and we set CY(D, X) = C°(D, X) N B(D, X). Let  be an
open subset of R*. The space of m times continuously differentiable complex-valued functions
on  is denoted by C™(Q2,C), or more simply by C™(Q2). Let f € C™(2). Then Df denotes
the Jacobian matrix of f. Let n = (n1,...,ns) € N*, |n| = m + -+ + ns. Then D"f denotes

%. The subspace of C™(Q2) of those functions f whose derivatives D" f of order |n| < m

can be extended with continuity to ¢l is denoted C™(clf2).

The subspace of C™(cl2) whose derivatives up to order m are bounded is denoted C7*(cl ).
Then Cy"(c1Q2) endowed with the norm || f|lcy o) = 321, <n SWPaq [D"f| is a Banach space. If
2 is bounded, then C7*(cl1§2) = C™(cl?). Now let w be a function of |0, +-00[ to itself such that

w is increasing and lim w(r) =0. (2.1)
r—0t

If f is a function from a subset D of R® to a normed space X, we set

1/ () = FW)llx
w(|z —yl)

]f:ID)|w(.)Esup{ :x,yeD,x#y}.

If | f: D]y < oo, we say that f is w(-)-Holder continuous. Sometimes, we simply write |fl. (.
instead of |f : D|,.). The subspace of C°(D, X') whose functions are w(-)-Holder continuous
is denoted C%“0)(D, X). The space C*(D, x) = C*“O(D, ) N B(D, X) endowed with the
norm HfHCg’“’(')(]D),X) = supp || fllx + |f : D]y is a Banach space. If X = C, we simply write
CO(D), CO«O(D), CP#Y (D) instead of CO(D, C), COO)(D, C), C“(D,C), respectively.

Particularly important is the case in which w(+) is the function r* for some fixed « €]0, 1].
In this case, we simply write C%*(D), C{"*(D), |- : D, instead of CO"* (D), C"" (D), |- : D,
respectively.

Remark 1. Let s € N\ {0}. Let w be as in (2.1). Let D be a subset of R®. Let X’ be a normed
space. Let f € CP(D, X), a €]0, +oc[. Then,

wp @)~ FWl

2yeD, lr—yza  W(T—yl)

2
< .
(@) sup | fllx

Thus the difficulty of estimating the Holder quotient % of a bounded function f

lies entirely in case 0 < |x — y| < a. Then we have the following.

Lemma 2.1. Let s € N\ {0}. Let D be a subset of R®. Let 11, 1ba, 3 be as in (2.1). Let
conditions sup,_ o supre}071[¢j(r)w§1(r) < 00 hold. Then the pointwise product is bilinear and

continuous from Cl?’%(')(]])) X C’g’wQ(')(D) to Cl?’w‘"’(')(ﬂ)).

For the definition of open subsets of R™ of class C' or C'* for some «a €]0,1], we refer to
Gilbarg and Trudinger [7]. Let Q be a bounded open subset of R” of class C*'. We denote by
v = (1)i=1...n the external unit normal to 0.
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Next we introduce the Holder spaces on cylindrical domains. If T €] — oo, +o0] and if D is
a subset of R™, then we set

Dr=]—-00,T[xD, OrD = (0D)r =] — 00, T x OD.

Clearly | — 00, T =] — 00, T]if T € R and | — 00, T| =| — 00, +o0[ if T' = 400. We also note
that
(Cl D)T = CI]D)T .

Remark 2. As is well known, the map = from the vector space CP7 of functions from D7 to
C to the vector space (CP)I=>71 of functions from | — oo, T[ to CP, which takes a function f
to the function Zf from | — oo, T'[ to C” which takes ¢ to f(¢,-) is an isomorphism. As a rule,
we omit to write the canonical identification map =.

Then we have the following.

Definition 1. Let o/, o’ €]0,1], T €] — 00, +00]. Let D be a subset of R™. Then C%%" (Dy)
denotes the space of bounded functions u from Dy to C such that

[ult, ) — ulta; ) llcom)

[ull go.ori0.07 ey = sup |uf + sup
Dt

t1,t2€]—00,T[,t1#ta [ty — to|
+ sup |u<t7 ) : ]D)|a” < +00.
te]—oo,T|
It is well known that (CO:%"(Dyp),| - ||CO,O/;0,0¢”(]D)T)) is a Banach space. By Re-

mark 2, u € C%¥%"(Dy) if and only if the canonically identified map Zu belongs to
(] =00, T[,CO(D)) N B(] — oo, T, CY*" (D)). Then we have the following.

Definition 2. Let a €]0,1[, T €] — o0, +0oc]. Let D be a subset of R”. Then C*/%%(D7) denotes
the space of bounded functions u from Dy to C such that

[ullgarzamyy = sup  |u(t, o)l
(t,x)EDT
u(t, z) — u(T,
+ sup i 1/)2 (r.9) - < +oo
(L), (rm)ebr, (a)(ry) ([E = T[V2 + |z —yl)
It is well known that (C*/%%(Dy),|| - |ca/zem,y) is a Banach space. Then we have the

following (for a proof cf. e.g., Krylov [14, p. 120].)

Proposition 2.1. Let a €]0,1[, T €] — oo, +00]. Let D is a subset of R™. Then C*/%%(Dy)
coincides with C%*/%%°(Dy) both algebraically and topologically.

3 Preliminary inequalities

We start with the following elementary lemma, which collects either known inequalities or
variants of known inequalities, which we need in the sequel.

Lemma 3.1. The following statements hold.
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(i) X
5]9&’ —yl < J2" —y| <22’ —y| Vy € R"\ B, (2, 2]2" — 2"|),
for all ', 2" € R™, 2/ # x”.

(11) Let h €] — 00,0]. Then
ehle'—vl? _ ghl"—y*| < 2|h|p27y(x',x”)eh”iy(x/’w”)|x' 2",
for all ', 2", y € R", where
pry(a’,2”) = minf{la’ =y, [2" —y[},  poy(2’,2") = max{]a’ -y, ]2" - y|}.
(iii)
S =3 < e a) S puy(ata”) <2 —y| Wy €RM\ B, 20’ — )

for all o' 2" € R", ' # 2”.

Proof. Statement (i) follows by the triangular inequality. Statement (ii) follows by applying
the mean value inequalty to the function " of s € [0,400[. Statement (iii) is an immediate
consequence of statement (i). O

Then we have the following well-known statement.

Lemma 3.2. Let a €]0,1]. Let Q be a bounded open connected subset of R™ of class C**. Then
there exists cq o > 0 such that

v(y)' (@ — )| < caalz —yl™™ Y,y €09.

Next we introduce a list of classical inequalities which can be verified by exploiting the local
parametrizations of 0f2.

Lemma 3.3. Let Q) be a bounded open Lipschitz subset of R™. Then the following statements
hold.

(i) Let v €] —oo,n — 1[. Then

, doy,
Cq .~ = Sup — < +00.
Q,’Y vy

ve09 Joo | — Yl

(i1) Let v €] —oo,n — 1[. Then

do.
G sup |2’ — 2|~ 1)”/ —— < 400.
! 2" ed, x'F#x" By (z/,3|z’ —2"'|)NOQ |:C - yh

(iii) Let v €ln — 1, +0o[. Then

"o dO’ y

_ o —(n—1)+v g
Cony = sup |z" — 2" / p - < 400,
! 2" ed, x'Fx"! OO\By, (z/,2|z" —z"|) |37 - y’
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(iv)

doy

cy = sup |1n|m'—:ﬂ”||_1/ o < too.
'z edN, 0<|z'—a"|<1/e OO\By, (z/,2|z" —2"|) |ZZ' - y|

Next we have the following technical elementary lemma, which collects either known in-
equalities or variants of known inequalities, which we need in the sequel.

Lemma 3.4.
(i) e7* < 8% %v~° for all v,d €]0, +o0l.

(11) Let s €]1,4+00[. Let Fy be the function from |0, 400l to itself defined by
+oo
Fy(§) E/ eVt du  VE €)0, +oof.
13

If v €]0,s — 1], then

Dy, = sup Fi(§) < +oo.
£€]0,+00]

(iii) Let s €]1,400|. Let Fy be the function from |0, +o00| to itself defined by
3

F,(§) E/ eV du  VE €]0, +oof.
0

If v € [0, 400], then

D,y = sup EF(€) < +o0.
£€]0,+o00]

(iv) Let s €]1,+o0[. Then M, = f;oo e Yy~ du < 4-o0.

(v) Let by €]0,4+00], by €]by, +o0[, m € N\ {0}. Then

m

C(by,by,m) = sup e b an < 400.
n€]0,+o0(

=0
Proof. For statement (i), we refer for example to Kress [13, (9.17)]. Next we prove (ii).
Since s > 1, the function e™*/“u~* is integrable in ]0, +oo[. Then assumption v > 0 im-
plies that limg o &7 F(¢) = 0, and assumption v < s — 1 and de 'Hépital rule imply that
lime 400 E7F5(€) € R. Hence, statement (ii) holds true. By de I’'Hopital rule, we have
limg o 5*7]55(5) =0, limg 4 0 5*“/]55(5) € R and thus statement (iii) follows. Statement (iv) is
well known.

In order to prove statement (v) it suffices to note that the argument of the supremum is
continuous in 7 and has limiting values 1 and 0 at 0 and +o00, respectively. O]

Also, we denote by I' the Euler I'-function (cf. e.g., Folland [4, p. 58].) Finally, we point
out the following immediate consequence of the triangular inequality

1
S =Tl <t =7l <2t —7] Wr e R\ 2 —#'|, ¢ + 2 — ][, (3.1)

for all ', t" e R, ¢ £ 1.
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4 Preliminary inequalities for the fundamental solution of the heat
operator

The function @,, from R™\ {(0,0)} to R defined by

D, (t,x) = W(e_% %f (t,x) €]0, +o0[xR", )
0 if (t,2) € (] — 00,0] x R")\ {(0,0)},

is well known to be the fundamental solution for the heat operator 9; — A in R**!. Then we
have the following elementary inequalities for ®,,.

Lemma 4.1. Let T €] — 00, 4+00|. Let G be a nonempty subset of R". Then the following
statements hold.
(i)
||

Coc = sup |®, (¢, 2)|t"2e 7 < 400.
(t,2)€]0,+oo[ xR, |z|<diam (G)

(i)

[t — 7|2 ey
16(t—7) -

- _ , 1"
CO’G:SUP{‘én(t—T,fL' _y>_®n(t_7—7$ _y)‘|x/_y| ’x/_x//’
2" e Gl # 2"y e G\ B,(a,2]2" — 2"]),

t,7€]—00,TJ, T<t}<+oo.

(iii) Let a €]8, +oo[. Then

9/ / " ’t/ — T‘(n/2)+1 \z7y|2
C(O,a,G = sup |¢)n(t - T7,T = y) - (I)n(t -7, — y)|‘t/——t”|6a(t o

v,y € Gyx £yt t" €] —oo, Tt <t"
<t =2t —t”|} < +00.
Proof. Statement (i) is an immediate consequence of the definition of ®,. We now consider

statement (ii). Let t, 7 € | — o0, T[, 7 < t, a', 2" € G, 2’ # 2", y € G\ B, (7', 22" — 2”"|). Then
Lemma 3.1 implies that

|D,(t — 7,2 —y) — Pp(t — 7, 2" —y)|

! 7|Z,t_y‘2 —‘Zut—yIQ

T @myr2(t— 2 | T — e 4TT)
L N/ ) , "
< 2(47r)”/2(t—T)<n/2>+1ﬂ2,y(:c,a: Yo i |o! — 2

1 / =y , p
- (t=) —
S 2(4m)n/2(t — T)(n/2)+12|x yle” ¢ 2" — 2",
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and accordingly, (ii) follows. Next we consider (iii). Let ¢'.¢" € |—oo,T[, t' < t', 7 <
t =2t —t'|, x, y € G, x # y. By the Mean Value Theorem there exists £ €]t’,t"[ such that

|®,(t' — 1,2 —y) — P, (t" — 1,2 — )

! ! SN
T Un) 2 | — )€ S e
R R S Q. P
— P G Ry () S A
(4m)"/2 [ (§ = 7) (/2 (§—7)? 4§ —7)?

Then by inequality (3.1), and by the inequalities [t' — 7| < | — 7| < |t — 7|, and by Lemma
3.4 (v), we have

[t —t"| —n/2 _lo—y? 1 Ll |z — y]?
e 47 4 — ¢ HeeT) —————
Gy (€= neoe e T (s
/ " o2 w—y|2 —_ 2
(471')”/2 (t/ _ 7.)(7“L/2)+1 (t/ _ T)n/Q 4(t/ _ 7.)2
it —t"] n/2 oy 1 ool |z — y|?
< 678(t’77) + —67 8(t'—7) —y
(471')”/2 (t/ _ 7-)(n/2)+1 (t/ _ T)n/2 4<t/ _ 7_)2
¥ — #|(n/2) oy

C(8,a,1)e @7

= (47T)n/2(t/ _ 7.)(n/2)+1
and thus statement (iii) holds true. O
Next we consider the spatial gradient of the fundamental solution. Clearly,
|2
55 if (,2) €]0, oo xR"

D,®,(t,z) = { ARy R € i
0 if (t,x) € (] —00,0] x R")\ {(0,0)}.

Then we have the following.

Lemma 4.2. Let T €] — 00, 400|. Let G be a nonempty subset of R™. Then the following
statements hold.

(i)

/4L 2

Coro = sup 1D, (¢, 7)| e < +00.
(t,2)€]0,400[ xR™, |z|<diam (G) |
(11) Let a €]16,+oc[. Then
CF‘YO,l,a,G
o’ —y|2

| |t — 7|2 He at=ry

= Sup{ |qu)n(t -7, I’l _ y) — qu)n<t - T, LE‘// B y) |x, — x”|

22" e Ga' #a2" ye G\B, (2,2 —2"|),

t,7€]—00,T], T<t}<+00.
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84
(iii) Let a €]8,+oo]. Then

~, _
0,1,a,G —

_ _ _ _ _ a(t!'—7 .
sup zPn T, =Y z¥n L =Y |x—y| ‘t’—t”’
ryeGa#yt t"e]l—oo Tt <t

T<t’—2]t’—t”|} < +00.

Proof. Statement (i) is an immediate consequence of the formula for D,®,. We now consider
statement (ii). Let t, 7 € | —o0, T, 7 < t, 2/, 2" € G, 2’ # 2", y € G\ B,(2',2|2' — 2"|). By

the triangular inequality, we have
|D,®,(t — 7,2 —y) — D P, (t — 7, 2" — )|

1
2(4m)n2(t — 7)(n/D+

(4.1)

i 17
e —y|? —

I at—-7) — " _ _‘Z t—g—‘Q
(2" —y)e =7 — (2" —y)e =)

< 1 —7‘1(;__'“')2 ’ "
= 2(47T)n/2(t _ T)(n/?)-i—l € " — 27|

b

_ o’ —y|? _ ' —y)?
e 4it-7) — e A4A(t-T7)

+]z" —y|

Now Lemma 3.1 implies that

_lal—y? _la"—y?

e 4(t-7) — e Alt-7)

(4.2)
2,?(;5/, )) A —<y| |:c')— V| et
t—T7 t—r

Hence, Lemmas 3.1 (i), 3.4 (v) imply that the right hand side of (4.1) is less or equal to

~

lo’ —y|?
e 16(t—7)

’l’l . 33”’ + 2|l’, B y’2 ‘33'/ _ x//‘
2(4m)n/2(t — 7)(n/2)+1 t—r

_\z(’t—y\f
e o I~/
< 0(167 a, 1) (47T)n/2(t o 7—)(71/2)4-1 |ZE z | )

and thus statement (ii) holds true. Next we consider statement (iii). Let z, y € G, © # y, t/,
t"e]—o0, T, t' <t', 7 <t —2|t' —t"|. By the Mean Value Theorem, there exists & €|t’, "]
such that

1D, @, (t' — 7,2 —y) — D@, (t" — 7,2 — y)]

_ e~y — g5l L
2(47T)n/2 (t' — 7.)(n/2)+1€ o (t" — T)(n/2)+le
A/ o - _ zeuy|2 o—y|2 . 2
eyl | Y21 e 1 e oy
2(47T)n/2 (5 _ 7_)(n/2)+2

(§ —7)/2H 4§ —7)
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Then by inequality (3.1), and by the inequalities ¢’ — 7 < £ — 7 < t” — 7, and by Lemma 3.4
(v), we have

—(n/2) =1 _le=u® 1 a—u® | — y|?

e MW7) 4 — ¢ 4E-7) (4.3)
(€ — 7)/2+2 (€ — 7)/2+1 A€ —7)2
_ lz—yl?
c 7" e n + 14+ 1 |z — y|?
St — 1) /2+2 \ 2 4 ¢ —71
|z —yl?
St — 7)) (/22 (5 + ) + t—T
_ Ia(v—y\Q)
e a(t! —r n
< C(Suavl)m (5 + 1) ,
and thus statement (iii) holds true. O

Next we consider time derivative of the fundamental solution. Clearly,

e (-geit) .
0P, (t,x) = BRI if (t,z) €]0, +oo[xR",
0 if (t>$) € (]—O0,0] XR”)\{(()’O)}

Then we have the following.

Lemma 4.3. Let T €] — 00, 4+00|. Let G be a nonempty subset of R". Then the following
statements hold.

(i) Let a €]4,+oo[. Then
lz|?

Choac = sup |0, P, (t, x)|t(”/2)+1@7 < 400.
(t,z)€]0,+o00[xXR", |z|<diam (G)

(ii) Let a €]16,+oo[. Then

Cl,o,a,G =

o’ —y|2

t — 7_|(n/2)+26m

/ " |
sup{\(?t@n(t — 1,2 —y)— 0P, (t — 7, 2" —y)| PN p—
2" e Gl #£ 2"y e G\ B,(d, 2] —2"]),

t,7€]—00,TJ, T<t}<+oo.

(iit) Let a €]8,+00[. Then

1
1,0,a,G

|tl _ 7_|(n/2)+2 P—

o]

r,yeGur#yt t"e]—oo Tt <t’,

sup

~— I

0:, (' — 7, — y) — Q@ (1" — 7,2 — y)|

r<£—mﬂ—w}<+m.
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Proof. Statement (i) is an immediate consequence of the formula for 9,®, and of Lemma 3.4
(v). We now consider statement (ii). Let ¢, 7 € | —oc0,T[, 7 < t, 2/, 2" € G, 2/ # 2,
y € G\ B,(2,2|2" — 2"|). By the triangular inequality, we have

/ " _
|0, (t — 12" —y) — 0D, (t — 7, 2" —y)| = (4m) 2 (t — 7)@/2)+

_Iz(’;y\)z n I 1 ]x' — y|2 _\Zz';y\f n I 1 \x” — y[2
6 —T —_—— —_—— — e —T —_—— [ —————
2 4 t—r7 2 4 t—r1

2
|

X

e’y
e 4(t—7) 1

r2
< (47r)n/2(t _ T)(n/2)+1 4(t _ 7_) ||ﬂl3 fl/\ |Jc Y

n ‘xu_ ‘2
2 (1 + Tf—’)

+ (47)/2(t — 7)(n/2)+1

|

o’ —y|2 | —y)?
6_ A4(t—7) — 6_ 4(t—T)

By the Mean Value Theorem and by Lemma 3.1 (iii), we have

|2 = yl* = " = y*| < 2pay (2’ 2")|2" — 2| < 42" =yl o’ — 2",

and by Lemma 3.1 (ii), (iii), we have

|’ —y|? |z —y|2

e_ ad(t—-7) — e 4A(t-7)

Y/

/ 1 x'
< P2y (@, 27) )e_%h’
2(t — 1)

2
16(t T) — :L’” .

|2’ —y! -

(-

— 2" <

Hence, Lemmas 3.1 and 3.4 (v) imply that

10;®,,(t — 7,2 —y) — 0D, (t — 7,2" — 3

_ \Z(’fyl)2 )
& t—T , B , B ,
S Gnpri = e g — gy eyl =2
n (1 + \x’—yl2> p
’ =) Jol—y| et g

+ (A7) /2(f — 7)@/2+1 (f — 1) eI 2’ —

T L
X (47‘(’)"/2(2f—7'>(”/2)+2 e 4(t ™) —|—(n/2) (167(1, 1)6 at=r) b

and thus statement (ii) holds true. Next we consider statement (iii). Let z, y € G, © # y, t/,
t"e|—oo,T[, t' <t', 7 <t —2/t' —t"|. By the Mean Value Theorem, there exists & €|t’,t"|
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such that
|at(1)n(t, —T,T — y) - 8tq)n<t// —T,T — y)|

|lz—yl? 2 lz—yl? 2
“a@—n (_n 4 1llz=yl “a@—m (_n 4 Llz—yl
1 € < 2 T 1w—n € 2 T 10—

o (47T)n/2 (t’ _ 7.)(n/2)+1 (t// _ 7.)(n/2)+1

"
1 (E—irl) 67% n 1|z —y?
2 <_ + __) ’t/ o t”|

< —
(4m)n/2 | (& = 7)m/2+2 2 4(E-7)
1 FES  Ar—yl [ o0 1jr—y?
+ - y _ + - y ‘t/ _ t//|
(47T)n/2 (5 _ 7.)(n/2)+1 4 (5 _ 7.)2 2 4 (5 _ 7.)

1 674(";73""2) 1‘33 y‘Q / /i
+ n/2 n/2)+1 |t — |
()7 €= ryerm
<

& —71 < t"— 7, and by Lemma 3.4

Then by inequality (3.1), and by the inequalities t' —
(v), we have

10:®,(t' — 7,0 —y) — 0P, (t" — 7,0 — 1)
Jz—yl®
PG s ey
= (4m)n/2 (t' — 7)(/D)+2 t—T

_o—yl? yl?
L slz—ylfe W (1+| —y|2> Lz —yPe 4“””}

4(t/ _ T)(n/2)+3 t — T 4('[;/ — 7‘)("/2)

2 2\ 2 s—yl2
ng—m_+0x—M)]6WW$

-t 335G+

= (Am)n2 (¢ — 1) /)42 v — 7 v — 7
v 33(5+1) it
X (47T)n/2 (t/ _ 7—)(n/2)+2 0(8, a, 2)6 a@=1)
and thus statement (iii) holds true. O

5 Preliminary inequalities on the kernel of the double layer heat po-
tential

We now turn to introduce some inequalities for the kernel of the double layer heat potential.
We do so by means of the following.

Lemma 5.1. Let T €] — oo, +00|, o €]0,1]. Let Q be a bounded open subset of R™ of class
CYe. Then the following statements hold.

(i)
= 7O

woype

0
bQ,a = sup{ ‘81/—@)@71(75 -7, — ?J)

x,yE@Q,x;ﬁy,t,Te]—oo,T[,T<t} < +00.
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Here
— P, (-T2 —y)=-D,P,t—T,2 —y)v(y),
9w (y) ( Y) ( y)v(y)

where D, ®,, denotes the Jacobian matriz of ®,, with respect to the (spatial) second vari-
able.

(11) Let a €]16,+oc[. Then

T 0 ! 0 "
ba7Q,o¢ = SUP{ ‘ay—(y)@n(t -7, — y) - ay—(y)q)n(t —T,T — y)‘

|2’ —y|?
|t — 7—|(n/2)+16 a(t—T)

AN/, / "
P P cx,xt € 00, £ o,

y € 00\ B, (', 22" — 2"|) ,t,7 €] — 00, T], T<t} < +00.

(iii) Let a €]8,+o0[. Then

0

(I)n(t,—’f,l'—y)—al/—(y)

0
_— O, " —1,0 —
) (" =72 y)‘
|t/ _ 7_|(n/2)+2 lo—y|2

a(t!—1) :

|$ _ y|1+a |t’ _ t”|
r,y € 00 x £y, t' t" €] — o0, T[,t' <t’,

T<t’—2]t’—t”|} < +00.

Proof. Let x,y € 00, x #y, t, 7 € | — o0, T[, 7 < t. By Lemma 3.2, we have

lo—y[?

5] _ | (e =y)vy)e @0
i) 2T Y| = Sy — e

CQ,a|£E N y|1+ae— =)
= 2(47T)n/2(t _ T)(n/?)-i—l ?

and thus statement (i) holds true. We now consider statement (ii). Let ¢, 7 € | — 00, T, 7 < t,
2" €I, o # 2 y e o\ B,(2, 2]z — 2”|). Then the triangular inequality implies that

0 , ) )
o0 (y) S, (t—1,2" —y) ay—(y)q)n(t T, T y)' (5.1)
1 ! _M ” _‘xu_y‘z
= 2 e @ )l T = @ —y)u(y)en T
|2’ —y/?

ei 4(t—T)
< st sy [ 0ol = = )

(=" —y)'v(y)l
2(dm)n 2 (t — 1)+

o’ —y|2 |’ —y|2
6_ 4(t—7) — 6_ 4(t—T1)

+
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Since |2’ — 2"| < |2/ — y|, Lemma 3.2, implies that

(2 = 2")v(y)] < (2" = ") (v(y) = v(@))] + |(2" = 2") v (")
< o' = | plale’ — Y[ + el — o[
< 2 =2l a" = y[*([vla + caa) ,
and

(2" =)' v(y)] < caalz” — Y| < a2 =y
Then Lemmas 3.1 (i) and 3.4 (v) and inequality (4.2) imply that the right hand side of (5.1) is
less or equal to

|2’ —y|?
67 4(t—T1)

2(4ﬂ->n/2(t _ T)(n/2)+1

2" — 2" |2 = y|*(v]a + ca.a)

.2
C0.a2 T’ — e BT ! — g jof — 2|

* 2(4m)n/2(t — 1) (/241 (t—7)
_la'—y?
< max (Vo + Con) Caa2 ™) |2/ — "] |2/ — y|%e 160
x 2(471‘)”/2 ) 2(471’)"/2 (t _ T)(n/2)+l

/]2
X{1+Lt y\}
t—1T1
_Ja'—y|?

(|V]a + ca.a) caa2'™ |o" — 2| |2’ — y|%e )
S max{ 2y oyt | U8 G
and thus statement (ii) holds true. Next we consider statement (iii). Let z, y € 9Q, « # y, t/,
t"e]—oo,T[,t' <t', 7 <t —2/t' —t"|. By the Mean Value Theorem, there exists & €|t’, "]
such that

/

0 9
Ot — 7w —y) = o B T w—y ’
o) )= oy ! )
—leul? _la—y?
— ’(33 — y)ty(y)‘ e A= e A’ -7)
2dm)n (¢ — )m/DH T (¢ = 7))+

[z —y)'v(y)l |t —t"]

2(4m)n/2
—(n/2) =1 _le—w? 1 e |z — y]?
X = 7.)(n/2)+2€ 1D+ = 7.)(n/2)+1€ e )4(5 — )2
Then by inequality (3.1), and by Lemma 3.2 and inequality (4.3), we have
0 0
ot —1x—y) — ——0,(t" —T, 2 —y '
bww )" iy )
g CQ,all’ . y|l+a |t/ _ t//|
2(4m)n/?
_ _ o2 o—v|2 _ 2
—(n/Q) 1 @_L(S—y‘lr) + —1 e_“l(ﬁ—ylf) —lili' yl
€~y €=y gy

T — y\1+"‘|t’ — le—y|2

caal(n/2) + 1] e
(t' — 7)n/2)+2 ’

2(4m)n/2

C(8,a,1)
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and thus statement (iii) holds true. O

6 Time dependent boundary norms for kernels
For each subset A of R x R", we find convenient to set
Ajy={(t,x,ry) e AxA: t=1,2=y}.

For each T €] — 00, +o0] and G C R", we now introduce a class of functions on (Gr)?\ Ag,
which may carry a singularity as the variable tends to a point of the diagonal, just as in the
case of the kernels of integral operators corresponding to layer heat potentials.

Definition 3. Let a €]0, 400, T €] — 00, +00]. Let G be a nonempty bounded subset of R™.
Let

7= (927 Y M N8 ) € RS (6.1)
We denote by K, .(Gr) the set of continuous functions K from (Gr)? \ Ag, to C such that
K(t,z,7,y) =0 if (t,z,7,9) € (Gr)*\ Ag,, T >1,
and such that

||K||}Cv,a(GT)

_ sup{\mt,:c, -

|z —y]
x,yEG,x%y,t,TE]—oo,T[,7'<t}

;a2
‘t _ 7—"716 a(t—7)

' — yPHa’ — &Pt

+ sup{ |K (t,2',7,y) — K(t, 2", 7,y)|

2" e Ga #a2" ye G\ B, (2,22 —2"|),t, 7 €] — 00, T, T<t}

|t/ —_ 7‘|71/ \:c—y|2

1 1" a(t,_T) :
|z =yl [t —

psup{ |2, 700) = K ()
rye Gyt t"e]l—oo, Tt <t <t —2|¢ —t”|} < 400.

One can easily verify that (K, .(G7), || - |k, ..(cr)) is a Banach space.
Remark 3. Let a €]16, +oo[, T €] — 00, +00].

(i) Let G be a nonempty subset of R”. Then Lemma 4.1 implies that the kernel
©(t — 7,2 —y) belongs to Ky.(Gr), with v = (71,72,71, 72,771, 7%,7') and

n
) 72:07 71:§+17 7;:17 7{217

+1, ’Vé/:O’ f)/l//:l'
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(ii) Let G be a nonempty subset of R”. Then Lemma 4.3 implies that the kernel 0,®,,(t —
7,2 —y) belongs to Ky.a(Gr), with v = (71,72,71,7%, 771573, 7/') and

n n
n=5+1, 7=0, 7£:_+27 7;217 ’Yl,:]-a

2 2
//_n 2 //_0 //_1
71—§+ o T2 =Y, =1L

(iii) Let G be a nonempty subset of R". Let r € {1,...,n}. Then Lemma 4.2 implies that the
kernel 9, ®,(t — 7,2 — y) belongs to K, .(Gr), with v = (71,72,%1, %, 7, 71> 7%, 7') and

/ /

n n
Nn=5+1, =1, m=-+1, 1=0, =1,

2 2
L "o "o__
’71—5"‘27 Yo =1, 9 =1.

(iv) Let a €]0,1]. Let Q be a bounded open subset of R"™ of class C'®. Then Lemma

5.1 implies that the kernel %@n(t — 7,2 — y) belongs to K,,(0rQ2), with v =

(Y15 Y2, V1 Yo Vi VY Ve y)) and

n n
nm=5+1, m=l+a, yn=5+1, p=a, y=1,

2 2
vi’:g”a %=1+a, 9/=1.

7 Integral operators on the space of essentially bounded functions
For each 6 €]0, 1], we define the function wy(-) from ]0, +00] to itself by setting

wplr) = r|lnr| r €]0,79],
0= 9 lnre| 1 €ry, +00l,

where
rg = e 10 Ve €]0,1].

Obviously, wy() satisfies (2.1). We also note that if D is a subset of R", then the following
continuous imbedding holds ,
V(D) € 6 (D)

for all 0" €]0,6[. We now consider the properties of an integral operator with a kernel in the
class IC, ,(0r(2) and acting on the space of essentially bounded functions on 7.

Proposition 7.1. Let a €]0, 400, T' €] — 00, +00]. Let ) be a bounded open Lipschitz subset
of R™. Let v = (71,72, Y1 Vo Vs Y15 V4, ) ) € RS, Then the following statements hold.

(i) Let v > 1, 2v1 — 2 — 2 €] —oo,n — 1[. If (K,p) € K,q(0r2) x L®(0rQ2), and if
(t,x) € 0rQ), then the function K(t,x,-, -)u(-,-) is integrable in Or§) and the function
u[orQY, K, p] from 0rQ to C defined by

t
dor Klto)= [ [ Ktorpurpdeds  Veoeo, (1D
—o0 JON

is bounded. Moreover, the bilinear map from K, .(0r§2) x L>®(0r2) to B(0r<2), which
takes (K, ) to ul0rS), K, p] is bilinear and continuous.
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Let
poin{(n=1)=Cn=r2=2)y+0-1)=-1 -2} if 290 — 4L —2>n -1,
w(r) = max{r(”*l)*@”lﬂ?*m,wylf (r)} if 29— —2=n-1,
B 90— —2<n—1.

for all r €]0,400[. Then the bilinear map from IC,,(0r2) x L>*(0rf)) to
B(] oo, T[, 00« (89)) which takes (K, p) to u[0r$), K,pu] is continuous (cf. Re-
mark 2.)

Proof. Let (t,x) € 0rQ). Then we have

t
'/ K(t,z,7,y)u(t,y) do,dr
80

|z —y|? _la—u? u?
/ / ’KHKW orQ) HMHLoo(aTQ) \t | e aolt=7) dO'ydT

+o00 ’l’ o y"yg—&—Qa—l—&-'n B
Kz [ [ e duas,

doy
Q |:B — y|271*'Y2*2 ’

400
1K e omen 2l e (opeya ™+ / W eV dy /8
0

and the integrals in the right hand side converges for 2y, — v —2 <n — 1 and 7; > 1. Then
Lemma 3.3 (i) implies the validity of statement (i).

Next we consider statement (ii). Let ¢t € | — oo, T, 2/, 2" € 0§). By statement (i) and
Remark 1, there is no loss of generality in assuming that 0 < |2’ —2"| < r.,. Then the inclusion
B, (', 2|2 — 2"|) C B, (2", 3|2" — 2”|) and the triangular inequality imply that

|U[8TQ, K, :U’] (tv (L’/) - U[@TQ, K, M](t’ ZE”)’ (72)
t
<lil=orn{ [ (K (t, ', 7,9)] doydr
—00 J By (2 2]z’ —2|)NON
¢
+/ / |K<t,$”,7’, y)| dO'ydT
—o0 J By (2,32’ —z'|)NOQ
¢
+/ / |K(t, 2", 7,y) — K(t,2",7,9)| dO'ydT}
—oo JOQ\By (2,22’ —z''|)
< lillora K | [ [ Lt I P
S ||H] Lo (or0 Ko.a(0rQ ————e¢ <=1 do,dt
(o) 7o) . ’2|:1:’fx”\)r18(2 (t—7)m !
Y2 2! ‘2
/ / =" — y] — 7 e a<f ey do,dr
(@ 3la—aron (E—T)7

2
l’"|w/ / = —y\be n= daydT}
OB, (7 2l —a)) (£ — T)N

Then by setting a(t — 7) = ula’ — y|?, a(t — 7) = u|z” — y|?, a(t — 7) = u|z’ — y|? in the first,
and second and third integrals in the right hand side of (7.2), respectively, we deduce that the
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right hand side of (7.2) equals

+00 |2/ — y|’y2+2a71+~/1 i
lle=or Kl o [ [ o dodu
0 n(2! 2]z’ —2"|)NON

u |x’ — leVl

+oo |l’” o y|72+2a—1+71 )
+/ / o > e wdoydu
0 @ 3 —aroa W =y

+oo / 542 ,—14]
/ "ney! |-T - y|72 a RN
+|z" — " | - —e v do,du
Y1 |p! 2"/1 Yy
0 OB, (2 2|z —a"|) U 2" — 9|

Iy —1) / do
< ez K n-2 y
HMHL (aTQ)H HK%a(aTQ){ alt-mn n(x! 2|z —z"|)NON |I/ - y|271_72_2

[(y—1) / doy
1— " 2v1—v2—2
al™ g, @ 3l —aroe |27 — y[P

F(’V{ — 1) I dO'y
+ 1—~! |l’ X | / 27! —~h—2
a-n OBy, (27 2|z —2""|) |2/ — y[Pn

[(y—1)

al_’Yl

F(71 — 1) LT dO'y
+ 1—, " — 2™ ! 2v—v—2 [ °
a- OO\B, (', 2|z —z"'|) |$ - y| Lo

We now distinguish three cases. In case 2y; — v, —2 > n — 1, Lemma 3.3 (iii) implies that

+

< Nl e 1K NI, 0r2) {2 cty oz — |2

day "

/ "yl /
|z — 2" l/ Coromt—nt_ol|T
’ 2yl —y—2 X T2y =52
OO\By, (z/,2|z" —x"|) |$ - y| N v

In case 2] — 95 —2 =n — 1, Lemma 3.3 (iv) implies that

_ x'/‘vﬁ(n*l)*(?ﬁﬂéﬁ) _

’x/ - x//|7l’ dO'y
[ =y
OBy, (2 2|z —2'"|) Y

In case 2] — 95 — 2 < n — 1, Lemma 3.3 (i) implies that

/ dO' /
2" — 2| / - 5 S Coay ol — 2L
OO\ (o 2]/ —a]) [T — Y1772

— <[ — 2Pl nfa’ —2")]

Then the above inequalities imply the validity of statement (ii). ]

Proposition 7.2. Let a €]0, +oo[, T €] — 00, +00]. Let 2 be a bounded open Lipschitz subset
OfRn Let Y= (7177277177577277{77477’) € RS' Let 4! > 1; 2’71 — Y2 — 2 e] — oo, n = 1[ Let

he](), <”_1)_(271_72_2){m]0,1].

2

Let v/ > 1, v/ €]0,1], max <0, =D)L i {7 — 1,7},
el s N 2 T M

2 " //_2 _ _1
h'E]max{0,< Nn==2)=(n )},min{%—l,%”}} .

2

Then the bilinear map from I, ,(0r§2) x L>(0rS2) to C’g’min{h’%/—h/} (] — 00,77, C’%@Q)), which
takes (K, p) to ul0rS), K, p] is continuous (cf. Remark 2.)
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Proof. By Proposition 7.1 (i), it suffices to estimate the Holder quotient of u[0rQ, K, u] in the
time variable. Let z € 09, t/, t" € | —o00,T[, ' < t". By Remark 1 and Proposition 7.1
(i), there is no loss of generality in assuming that 0 < [t/ —t”| < 1/e. Then the inclusion
[t =21t —t"|,t' + 2|t — ¢"|[C]t" — 3|t' — t"|,t" + 3|t' — t”|[ and the triangular inequality imply
that

|U[8TQ,K, :u](t/VT) - u[aTQ7K7 :u}(tllwr)l (73)
42|t —t"|
< / / \K(t',z,7,y) — K", z,7,9)| (1, y)| do,dr
2t —t| JoQ

t/ 2|t/ t//l
H[ [ R~ K ) In(r)| doyde
[z —y[? e
< il syl S oo ooy { / [ S o
. et t—21t/—t| J oQ |t/ — 7| !
_ Y2 |z—y|?
+/ / —]x | e =7 do,dr
t—3|t'—t'| J 99 |t —Tn

t'—2[t' —t"| |l‘ |72 Je—yl2
/ / = =" e e dO'ydT}
0

Then by setting a(t' — 7) = ul|z — y|?, a(t” — 7) = u|lr — y|?, a(t’ — 7) = u|x — y|* in the first,
and second and third integrals in the right hand side of (7.3), respectively, we deduce that the
right hand side of (7.3) equals

/

P |z —y[2t2am—t
il cor ||K||lcw(aTQ){ [T e

/ //

/ / (i e V" dudo,
50 u'71|x_ |2'Yl

!
y| a / m~t —1/u

o - o7 |t —t""e / dudoy ¢ .
o0 J2al=) uV1|x—y| m

Next we note that our assumptions of A and A’ imply that 27, — vy, — 2+ 2h < n — 1 and that
2y) =4 —2—2h" <n—1. Then by Lemmas 3.3 and 3.4 (ii), (iii), the right hand side of (7.3)

is less or equal to
!
o1 |t —t"| do,
”MHLO"@TQ ||KH’C’ya orQ) { / D’Yl»ha v (2a|l‘ — y|2 |IE — y|271_72_2

s [ Do 30"~ 40,
71, |ZL’

v —yl|? -y

—_n
Dy 't/ el R L
"/1» _y’2 |x_y|271 —Y5 —2

< HuummHKHWQ){D%,ha“1<2a>he§2,mw%

- yi—1 hot ~ 1 W
Dy, na (3a) CQ,2y1 —ya—2+2h T D%’,h’a 17 (2a) CQ 2+ —~l —2—21/
1 2

: "_pt
« |t/ - t//’mm{h,yl h'} 7
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and thus the statement holds true. O

Next we prove the following.

Lemma 7.1. Let a €]0,+o0[, T €] — 00, +00|. Let Q be a bounded open Lipschitz subset
of R". Let G be a subset of R". Let v = (1,771 Vo V1> V7%, 7)) € RE. Let v1 > 1,
27 — 2 — 2 €] —oo,n — 1[. Let K € C°((Gr x 0r2) \ Ag,q) be such that

K(t,l‘,7'7y) =0 if (t7x777y> S (GT XaTQ)\AaTQ7T>t7

and such that

|lf—7'|w1 le—yl?
A Esup{|K(t,x,T, y)|w ealt—T) -

(t,z,1,y) € (G x 0r2) \ AaTQ} < +00.

If p € L*°(0rQ), and if (t,z) € G, then the function K(t,x,-, - )u(-,-) is integrable in Or) and
the function u*|Gr, 0rQ, K, p] from Gr to C defined by

t
WG, 0rQ, K, p)(t, ) = / K(t,z,7,y)u(t,y) do,dr,
oo JIN

for all (t,x) € Gr, is continuous. If sup,cq faQ Ixfy\g”% < 400, then the following inequality

holds

(W [Gp, 0rQ), K, ) (t, 2)| (7.4)

_ do
<t =00t [l

for all (t,x) € Gr.
Proof. Let (t,x) € Gp. Then we have

t
//WMWmmmmww
—0o0 JON

|£L’ — |72 |z —y/?
< 2y |1l o or0) T ¢ - do,dr

q [t — 7"

+OO T — ')’2"‘2@"/1_1 _
mmwm%g// =~y e dudo,

umn |x — y|2’71

do
1 —y —1/ y
- %'Yl:’YQHIMHLOO 3TQ)a'y1 /O u e du /dQ ‘ZE _ y‘Q’Yl—’)’Q—Q ’

Then our assumptions imply the convergence of the integrals in the right hand side and the va-
lidity of inequality (7.4). The continuity of u*[Gr, 3rQ, K, u] follows by the Vitali Convergence
Theorem. O
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8 Applications to layer heat potentials with essentially bounded den-
sities

Theorem 8.1. Let o €]0,1], 8 €]0,a[, T €] — 00, +00|. Let Q be a bounded open subset of R"

of class C1.

(i) If uw € L>°(0rSY), then the double layer heat potential
¢
w[orQ, ul(t, x) = / / L(I)n(t — 1,0 —y)u(r,y)doydr V(t,x) € 002,  (8.1)
—o0 J O 81/(3/)

belongs to B(] — oo, T|[, COmaxr*«i1(M}(9Q)). Moreover, the operator from L®(0rQ) to
B(] — oo, T[, OOmaxtr®wi(}Y(9Q)) which takes p to w[0rSY, ) is linear and continuous
(¢f. Remark 2.)

(i) The operator from L*(0r2) to C’,?’B/Q(] — 00, T[,C%(0R)) which takes p to w[0rQ, p] is

linear and continuous (cf. Remark 2.)

(i4i) The operator from L>®(0rQ)) to CP/EP(0rQ) which takes p to w[0rQ, ] is linear and
CONLINUOUS.

Proof. (i) Let a €]16, +00[. Then we already know that %@n(t—ﬂ x—y) belongs to IC, ,(0r )
with v as in Remark 3 (iv). Clearly,

M= (Mn/2)+1>1, 21— —2=Mn—-1)—a€n—2,n—-1],
and

r b e >(n—-1) ifa<l,

71_(n/2)+1>17 271 72 2—72 a{:<n_1> 1fa:1

N+ =-1)=-2%—-%—-2)=1+(n-1)-(n-—a)=a>0, 7 =1.

If o < 1, then Proposition 7.1 (ii) implies that w[0r€?, -] is linear and continuous from L>°(0r(2)
to

B <m’ CO,min{(nfl)7[(n71)7a],a}<GQ>>
= B (1=, TL.CO(00) = B = o0, TL, Lm0 90)).

If « = 1, then Proposition 7.1 (ii) implies that w[0r(?, -] is linear and continuous from L>°(9r(2)
to B (] — 00,77, C’O’ma"{”a’wl(r)}(ﬁQ)). Hence, statement (i) follows. Next we prove statement

(ii) and we plan to apply Proposition 7.2. We note that «; > 1 and that

RS

. {m]o, 1] =0, a/2[.

Then we can choose h = /2. Next we note that v/ > 1, 7, = 1 and that

2 =% —-2)=n+l1-a,

2//_ //_2_ _1 2_

(27— ) —(n ): 0‘:1_%<1’
2 2 2

min{y/ — 1,7} = min{(n/2) + 1,1} = 1.
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Next we choose b’ =1—h =1—(//2). Clearly b’ €]1 —(a/2),1[. Then Proposition 7.2 implies
that w[0r€2, -] is linear and continuous from L>(9r(2) to

oominthai =’} (] oo, 11, CO(aQ)) = COB/? (] “ oo, 11, 00(69)) ,

and thus statement (ii) holds true. Then Proposition 2.1, statements (i), (ii) and the continuity
of the imbedding of COma{r*«1(}(9Q) into C*#(9Q), imply the validity of statement (iii). [

Next we turn to analyze a class of integral operators which we need to study the properties
of an integral operator related to the kernel D, ®,,(t — 7,z —y), and we introduce the following.

Lemma 8.1. Let a €]0,+oo[, T €] — 00, +00|. Let Q2 be a bounded open Lipschitz subset of
R". Let 0 €]0,1]. Let Z € C°([(c1Q)r x 0rQ \ Ag,q) be such that

Z(t,l‘,T, y) =0 if (t,SL’,T, y) € [(CIQ)T X aTQ] \ A(?TQ?T > ta

and such that

|t — T|%+1 lo—y|?

ea(t—7) -
|z =yl

(t,z,7,y) € [(cIQ)r x 07 \ AaTQ} < 400.

= sup{|Z<t, A

Let f € C%(cIQ). Let H*[Z, f] be the function from [(cIQ)r x 0rQ] \ Ag,q to C defined by
Hﬁ[Z7 f](t7 T, T, y) = (f([L“) - f(y))Z(t’ x,T, y) V(t, T, T, y) € [(ClQ)T X aTQ] \ AaTQ .

If w € L®(0rQ) and if (t,x) € (cIQ)r, then the function HY[Z, f|(t,x,-, - )u(-,-) is Lebesque
integrable in OrQ) and the function Q*[Z, f, u] from (clQ)r to C defined by

@z taltn) = [ [ HZ Ay dodr Vit € @),

—oo JON

15 continuous and bounded.
Proof. We plan to apply Lemma 7.1. By definition of (, and by the Hoélder continuity of f, we

have o .
| flolz — Co

, |flolz =y
|H¥[Z, f1(t, 2,7, y)| < [t — 7]/241

for all (t,z,7,y) € (clQ)r x OrQ2 \ Agrq. Next we note that
(n/2)+1>1, 2(n/2)+1)—(140)—2=n—-1-0<n-1,

and that the Vitali Convergence Theorem implies the continuity of the function [, lm_yﬁ%

in the variable z € cl€2 and accordingly that sup,c.q fm |x_y|d(+)_g < 400. Then Lemma 7.1
implies the validity of the statement. O

Lemma 8.2. Let a €]0,+oo[, T €] — 00, +00|. Let Q2 be a bounded open Lipschitz subset of
R". Let 0 €]0,1]. Let

Y = ((n/2)+1,1,(n/2)+1,0,1,(n/2) +2,1,1) , (8.2)
Yoo = ((n/2)+1,1+6,(n/2)+1,1,0,(n/2)+2,14+6,1),

(cf. Remark 3 (iii).) Then the following statements hold.
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(i) The map H from K., o(9rQ2) x C(09Q) to K., , 4a(0rQ2), which takes (Z, g) to the function
HI[Z,g] from (0r2)?*\ Aspq to C defined by

H[Z7 g](t7$a7—a y) = (g<x) _g(y))Z(tw%'aTa y) v(t7$,7', y) € (ang)2 \AaTQ, (83)
18 bilinear and continuous.

(1) Let 6, €]0,0]. The map Q from K, .(0rQ) x C%(0Q) x L>(0rQ) to
B (] — 00,7, CO’”“’(')(@Q)>QC’£’01/Z (] — 00, T, C’O(BQ)>, which takes (Z, g, 1) to the func-
tion Q|Z, g, 1] from Or§ to C defined by

QlZ, g, pl(t,x) = / ., H[Z, g|(t,z, 7, y)pu(T,y) doydr  V(t,x) € Orf2, (8.4)

is trilinear and continuous (cf. Remark 2.)
Proof. Let x,y € 00, x # y, t, 7 €] — 00, T[, 7 < t. Then we have

\x — y‘ _le—y]?
[(g(z) = 9(y))Z(t, 2, 7,y)| < |glolx — ?J|9||Z||l<7n,a(6m)me = (85)

Lett, 7€]|—00,T[, 7 <t, o, 2" €0 o #a" yedQ\B, (22| —2"|). Then Lemma 3.1
(i) and the definition of || Z]|x., .(o,0) imply that

[(g(z") — gw)Z(t, 2", 7,y) — (g(z") — g(y) Z(t, 2", 7, y)|
< g(a') =g Z(t, 2", 1 y) = Z(t, 2", 7,9)| + lg(@') — g(a")| | Z(t, 2", 7, 9)]

2

|x/ o y|9|x/ . :E"| o'yl
< Il |t — 7|/2)+1 2|, o070
|x/ . :E"|9|:E" . y| 2 —y)?
[t — 7|(n/2)+1 e = gloll Zlli,,, wore)
|._'23'/ - y|9 0 2|l’/ — y| |2’ —yl?
< |g|0||Z”IC%,a(8TQ){m|JJ, — 2"+ 2" — 2| m e dat-m)

Since |2' — 2”| < |2' — y|, we have |2/ — 2”|'7% < |2/ — y|'~Y. Hence,

2! = yl’la’ — 2| + |’ — |2’ — y
< |x'—y| |[E,—l’”|0+|$I—ZL‘H|02|JZ,—y| :3|ZL‘/—y| |I/—ZL‘H0,
and accordingly

(9(2") —g(¥) Z(t, 2", 7,y) — (9(=") — g(y) Z(t, 2", 7, )| (8.6)
|z" —y| I =ul?
< |9|9||Z||/c%,a(am)3m|w' — |l

Now let x, y € OQ, x £y, t', t" € | —oc0, T[, t' < t', 7 < t' —2|t' —t"|. Then the Holder
continuity of g and the definiton of || - ||k .(a,0) imply that

[(g(x) —gw)Z({t' 2, 7,y) — (9(x) — g(¥) Z({t", x, 7, y)| (8.7)
< |"L‘ - y|6|g|9|Z<t,7 x,T, y) - Z(t”’ x,T, y>|

2y i
< lgloll Zllk,,, o@r) |z — y|em|t/ —t'|e @
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Then inequalities (8.5)—(8.7) imply the validity of statement (i). Next we consider statement
(ii). By Proposition 7.1 (ii) with v = 7,9, the map u[(?TQ, ,-] is bilinear and continuous from

Kr.04a(0r2) x L>*(0r82) to B (] 00, T, COmaxtr’ wo( (89)) Indeed,

m=Mm/2)+1>1,
21— —2=2((n/2)+1)—(14+0)—2=(n—-1)—0 € [n—-2,n—1],
=(n/2)+1>1,
7 =0 €l0,1],
291 — 75 —2=2((n/2)+1)—1—-2=n—1,
(n=1)—-Cn-"-2)=n-1)-2(0/2)+1)-(1+0)-2] =0,
NtM=1)-2n-%n-2)=0+n-1)-(n-1)=60>0,
and COmax{r’wo()}(90)) = CO%e()(9Q).
Next we wish to apply Proposition 7.2 with v = ~,, 9. Clearly, v1 = (n/2)+1 > 1. Moreover,
we have seen above that 2y, — v —2=(n—1) —0 € [n —2,n — 1|. Then we can choose
NUED BRI,

Next we observe that v = (n/2) +2 > 1, 4/ = 1 and that

@ =) _ A0 2m D

v —=1=(n/2)+2)—1=(n/2)+1>1,

min{y{ — 1,7/} = min{(n/2) + 1,1} =1>1—(0/2).
Since 1 — (0/2) <1 —(61/2) =1—h < 1, we can choose

el —(6/2),1],

close enough to 1 — (8/2) so that b’ < 1 —(0,/2) =1 — h, i.e., such that h < 1 —h'. Then
min{h,v, — h'} = min{h,1 — A’} = h and Proposition 7.2 implies that the map u[0r€2,-, -] is
bilinear and continuous from K, , 44(9782) x L*>(0rQ2) to C’O b1/2 <} — 00,717, C’O(@Q)>. Hence,
statement (i) implies the validity of statement (ii). O

h=0,/2 €)0,0/2[= o, 1].

Remark 4. Under the assumptions of the previous proposition, Proposition 2.1 implies
that B (] T (Jﬂvwe@(am) N oo/ (] ~ oo, 11, OO(aQ)) is continuously imbedded into
CH/20(9:Q)).

Then Remark 3 (iii), Lemma 8.2 and Remark 4 immediately imply the validity of the
following.

Theorem 8.2. Let T €] — 0o, +00|. Let Q be a bounded open Lipschitz subset of R"™. Let
0 €]0,1], 0, €]0,0[. Letr € {1,...,n}. Then the map Q[0, P, (t—7,2—1y),-, -] from C%?(9Q) x
L>(0rQ) to 091/2’91(8TQ) which takes (g, 1) to the function

Q10 —y), g, p(t, ) (55)
/ /89 Y)) 0z, ©u(t — 7,2 — y)u(7,y) doydr  V(t,x) € 02,

is bilinear and continuous (cf. Remark 2.)
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Next we turn to analyze a class of integral operators which we need to study the properties
of an integral operator related to the kernel 0,®,(t — 7, x — y), and we introduce the following
two statements.

Lemma 8.3. Let a €]0,+o00[, T €] — 00, +oc]. Let Q be a bounded open Lipschitz subset of
R™. Let 0 €]0,1]. Let Z € C°([(cIQ)r x 07Q) \ As,q) be such that

Z(t,l‘,T, y) =0 if (t,x,T, y) S [(CIQ)T X aTQ] \A8T97T 2,

and such that

lz—y|?

(= sup{|Z(t,$,7'7 ||t — |2 et

(t,z,7,y) € [(cIQ)r x O \ AaTQ} < +o00.

Let f € C(cQ) and ¢ € C*(J— oo, T[,C(00)). Let HY[Z, f,¢] be the function from
(1) x 0rQ \ Ag,q to C defined by

Hﬂ[za f7 (10](257 T, T, y) = (f($) - f(y))Z(t’ T, T, y)(@(ﬂ y) - Sp(ta y))
V(t,z,7,y) € [(cIQ)r x 0rQ] \ Asq -

If (t,x) € (cI)r, then the function HYZ, f,¢](t,x,-,-) is Lebesgue integrable in dpQY and the
function Q*[Z, f, | from (cIQ)r to C defined by

Q*1Z. f.¢l(t,x) = / , HY[Z, f,0|(t,x,7,y) do,dr V(t,x) € (clQ)r,

15 continuous and bounded.
Proof. We plan to apply Lemma 7.1. By definition of ¢ and of H[Z, f, ¢], we have

| Flolloll corr2 ==t co oo 1 — Ul°
o OOV (oo TT,00 (99)) :
H {Z, ](tuvavy) < |t_7_|(n+1)/2

_lz—yP?
Ce a(t—T1) ,

for all (t,z,7,y) € (cIQ)r x IrQ2\ Ay,.q. Next we note that

n+1)/2>1, 2((n+1)/2)—0—2=n—1-0<n—1,

and that Vitali Convergence Theorem implies the continuity of the function f 20 Iar—yld(+H in

the variable z € cI2 and accordingly that sup,cqq [5q m—yﬁ% < +o00. Then Lemma 7.1
with 4 = 1 implies the validity of the statement. [

Proposition 8.1. Let a €]0, +oo[, T' €] — 00, +00]. Let 2 be a bounded open Lipschitz subset
of R*. Let 0 €]0,1]. Let b € [1/2,1], by €]0,b[. If n = 2, then we further assume that b < 1.
Let

o= ((n/2) +1,0,(n/2) +2,1,1,(n/2) +2,0,1) , (8.9)
7 o ((n/2) +1—10,0,(n/2)+1—0,0,0,(n/2)+1—(b—1b),0,b) ,

(cf. Remark 3 (ii).) Then the following statements hold.
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(i) The map H from K3 o(0r€2) x Co0(98) x CO¥OL(9:0) to K. , 5,(0r€2), which takes
(Z,g,) to the function from (0rQ)* \ Ay, to C defined by 7

H[Z,g,¢|(t,z,7,y) = (9(x) — g(y) Z(t, z,7,y)(2(T,y) — @(t,y))

for all (t,x,7,y) € (0rQ)? \ Ag,q s trilinear and continuous.

(11) Let 2b+ 60 < 2. Let

. N if be|1/2,1],
rp(r) = { wy(r) ifb=1/2,
for all v €]0,400[. The map Q from K5 (0rQ) x C%%(0Q) x C¥"*N(9rQ) to
B(] — 00, T, C%.e0)(00Q)) which takes (Z,g,¢) to the function from 0rQ to C defined
by

012.9.4)(tx) = / [ 12.9.¢l(r.y) doyar.

for all (t,z) € OrQ) is trilinear and continuous.

(iii) The interval ] max{0,[1—60—2(b—b1)]/2}, min{(n/2) — (b—by),b1}] is not empty and the

map Q from K3 o(0r€2) x Co%(982) x C¥¥0L(9Q) to C’E’min{h’bl_bQ}(] — 00, T[,C°(0R)) is
trilinear and continuous for all

h€]0, (2b 4+ 6 — 1)/2], by €] max{0, [1 — 0 — 2(b — by)]/2}, min{(n/2) — (b — by), b1 }].

Proof. We first consider statement (i). Let z,y € 0Q, x # y, t, 7 € | — 00, T[, 7 < t. Then we
have

[(g(x) —gW)Z(t, z,7,9)| lo(T,y) — @(t, )| (8.10)
|33 — y|9 |z —y|?

T alt—1) __4|b
< |g|9|t_7—|(n/2)+16 g )||Z||’C,Y§L’a(8TQ)||90”C'0vb§0’1(8TQ)|T t|
’33 — y’e _la—y?
= |g|9||Z||]CV£Va(3TQ)||S0||Co’b?0’1(8TQ) ‘t — T‘(H/Q)Jrl,be alt=m) .

Lett, 7€]|—00,T[, 7 <t o, 2" €00, o # 2", yed\B,(a,2|2" — 2"|). Then Lemma 3.1

(i), and the definition of ||Z|x , (9,0), and the Holder continuity of g, ¢, and the triangular
Tn @
inequality imply that

[(g(z") = gw)Z(t, 2", 7,9)(0(T,y) — ot y))

—(g(@") —g(y) Z(t, 2", 7, y)(e(T,y) — ¢(t, y)))
< {|g<:c'> o2 ) — Z(t 2" 7))

(8.11)

(') — gl 1 Z(t,a" y)l}\w(ﬂ y) - o(t.)|

|xl_y|9+l / iy e ul?
<lglollZlix ;@ llelloororiara mu‘ i

‘x/ - SL’H‘Q 2’ —y|? b
TR }Vt—ﬂ :
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Since |2/ — 2”| < |2’ — y|, we have |2/ — 2"|'7% < |2/ — y|'~?. Moreover, Lemma 3.1 (i) implies
that [z” —y| > 3|2/ — y|. Then Lemma 3.4 (v) implies that the right hand side of (8.11) is less
or equal to

/1‘0 o —y)2

2l
ylle’ = o s (8.12)

|z
|g|e||Z||/<:W9ﬂ<8Tﬂ)||<P||co7b;071(aTQ){ = 7|2

|£L‘I . :L“”|9 74‘;/;1}‘2 b
T d

t—T
//’6 o —y|2

C(4a,5a,1)e 5et=7

’I/— //’6 |J} _y|2 o/ —y|2
g |g|9HZH’C7§l’a(8TQ)HQOHCO’b;O’l(aTQ) ‘t — Tl(n/2)+1_b + 15>e 4at—7)

o 2" — x
<lglollZllc ;. @rollelloosorora) [ — /D

Let x, y € 00, x #y, t/,t" € | —o0,T[, t' <t', 7 <t —2|t' —t"|. Then inequality (3.1) and
the triangular inequality imply that

[(g(x) = gW) Z({t', 2,7, 9) (T, y) — (t',y)) (8.13)
—(9(x) = gW)Z(t", z,7,9)(e(7,y) — ¢(t", y))|
< |(g(z) —gW)Z(t 2, 7, y)| |(e(1,y) — ot y) — (p(1,y) — o(t", )|
+o(r,y) — o, y)| [(9(x) = gw)Z({t', 2, 7,y) — (9(x) — g(W)Z X", 2, 7,y)]
o —yl|t = t"° e
B e e iy
7=l —y|P|t — "] _le—u?®
| (tJ|_7)<g/|2)|+z . ““"”}

_|_

|x _ y|9|t’ . t//|b—b1

b
< glol| Z ]|k " (aTQ)H80||co,b:0,1(aTQ)|t/ —t"| 1{ (t — 1)@+

oz — Y| — P e
(t' — 7)(n/2)+2-b

0
b |z —y
<AgblZl ; ornllelloosanopolt — ¢ I

|.1' — y|0 _lg(ﬂng)
+ (' — r)@/2+2-b-(1-b) €
|:1j — y|9 _ \?7yl2)
(t' — 7)(/2+1=(=b1) € :

t” | b1

< 4glollZlix, @rollelconororalt -

Then inequalities (8.10)—(8.13) imply the validity of statement (i).

We now prove statement (ii). We distinguish case b €]1/2,1] and case b = 1/2 and we first
consider case b €]1/2,1]. By Proposition 7.1 (ii) with v = 73%91,, the map u[0r(2, -, 1] is linear
and continuous from ICAY?1 ) b’5a(8TQ) to

B(ma CO,min{(nfl)f(nf2b70),9}(aQ))
= B(] — oo, T[, COm 07194 (902)) = B(] - 00, T[, C*(09)) .
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Indeed, by our assumptions we have 1 < 2b+ 6 < 2 and

=n/2)+1-b>1, (8.14)
291 — 2 —2=2[(n/2)+1—-b—0—2
=n—20—0=(n—-1)—20+60—-1)ecn—2,n—1],
Mn=Mm/2)+1-b>1,
v =0 €]0,1],
YAm—=1)—2y =7 —2)=0+n—-1)—(n—2b)=0—-1+2b>0.

Moreover, assumption b > 1/2 implies that
291 — 75 —2=2((n/2) +1—-b)—2=n—-2b<n-—1,

and that
m=—1)—(271—72—-2)=20+0—-1>0=+.

Hence, statement (i) implies the validity of statement (ii) for b €]1/2, 1]. Next we consider the
case b =1/2. Since

21— —2=n-1, n—1)—Cn—7—-2)=10,

statement (i) and Proposition 7.1 (ii) imply the validity of statement (ii).

We now turn to prove statement (iii). We first note that the assumptions b € [1/2,1] and
6 > 0 imply that [1 — 6 — 2(b — b1)]/2 < b; and that accordingly the interval
| max{0, [1-0—2(b—0b;)]/2}, min{(n/2)—(b—b;), by }| is not empty. Indeed, [1—0—2(b—b;)]/2 <
(n/2) — (b — by). Next we plan to exploit Proposition 7.2 with v = viﬁ’b. By assumption and
by the equalities in (8.14), we have

h €]0,(2b+6 —1)/2[=]0,[(n — 1) — (271 — 2 — 2)]/2[N]0, 1] .
Next we observe that v/ = (n/2) +1— (b—b1) > 1, 7/ = by €0, 1] and that

2y =7 —2)—(n—1) _n+2—2(b—b1)—9—2—(n—1)
2 2
_ (1‘0)_22“’_’”) 1= (n2) 41— (h—by) — 1
= (n/2) = (b—=b1) >0,
2N —1—-2)—n-1) (0-0)-20b-"b)
2 2
Indeed, (1 —0) —2(b—0b) <n—2(b—1b;) and (1 —60) —2(b— by) < 2b;. By assumption,

:bl>0.

by €] max{0,[(1 —0) — 2(b—b1)]/2}, min{(n/2) — (b —b1),b1}].

Then the map u[0r€, -, 1] from K _; y 5,(0rQ2) to Cominthbi=b2} T T C0(092)) is linear and

continuous. Hence, statement (i) implies the validity of statement (iii). O
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9 Integral operators on the space of Holder continuous functions

Next we consider the action of u[0r€2, K, -] in case the functional variable p is Hélder continuous.

Proposition 9.1. Let a €]0, +oo[, T' €] — 00, +00]. Let 2 be a bounded open Lipschitz subset
of R". Let v € R® be as in (6.1). Let v, 7/ €]0,1]. Let 1 > 1,2y — v —2 € [n—2,n—1].
Then the following statements hold.

(1) Let mz €]0,1[. Let 71 — (n2/2) > 1, (n=1) = (211 =7 —2—m2) + 7, > 0. Let

(pmin{(n—1)—(2m1—2-2),7;}
if 29 =% —2-mp<n-1,
max{r(nfl)f(}}’l 77272)’ w’yl, (74)}
if 29 — v, —2—m=n—-1,
pmin{(n—1)—(27v1—72—2),(n—1)—(27] =75 —2-n2)+7;}

if 29 =% —2-mp>n-1,

\

for all r €]0,+00[. Then there exists ¢; > 0 such that the function u[0rQ), K, p] defined
by (7.1) satisfies the following inequality

[u[0rQ), K, u)(t, ') — u[0rQ, K, p](t, z")| (9.1)

< all K, o @1l grarzm 0w (2 — 27])
+||M||LOO(8TQ)|U[8TQ’ K, 1](t7 $/) - u[aTQ7 K, 1]<t7 :L‘H)l )

for all ', 2" € 0Q, t €] — 00, T[, and for all (K, i) € K, o(0rQ) x C™/%n2(9,0).
(ii) Let my €]0,2[, no €]0,m]. Let

7= (m2/2) > 1,

291 =2 =2+ (m —m) <n-—1,

v = (m2/2) > 1,

W< =1+ 27 =),

m <2y,

27 = =2 =29+ (m —m2) < (n—1).

Then there ezists co > 0 such that the function u[Or$), K, u| defined by (7.1) satisfies the
following inequality

|u[8TQ7K7 /L](t/,l') - U[&TQ,K, M](t”7$)‘ (92)
< CQHKHIC%a(ﬁTQ) ||M||Cg’"2/2(m,00(69))|t/ - t”|771/2

+|u[aTQ’ K, M(t,7 ')](t/’ ZL‘) - u[aTQ7 K, M(tlv ')](tﬂv (ﬂ)| )

for all x € 00, ', t" € |—o00, T, ' < t', and for all (K,p) € K,.(0rQ) x
Cy™ (= 00, T, C°(092)).

Proof. We first consider inequality (9.1). Let 2/, 2" € 082, t € | — 00, T'[. By Remark 1 and by
Proposition 7.1 (i), it suffices to consider case 0 < [2" — 2”| <. By the triangular inequality
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and by the inclusion B, (2/, 2|2" — 2”|) C B, (2", 3|2" — 2"|), we have

u[0r, K, (1, ) — ulorS, K, (1, 2”) (93)
< [ul0rQ, K, p)(t, 2') — p(t, 2" )ulorQ, K, 1](t, 2')]
—[udrQ), K, p](t,2") — p(t, 2")u[0rQ2, K, 1](¢, 2")]]
+p(t, 2| |u[or, K, 1](t, 2") — u[orQ), K, 1](t, ")

/ / K (t,2,7,9)| [, ) — ult, )| doydr
n(@’ 2|z’ —2|)NON

4 / / K (62", 7. 9)| | y) — b, 2')] doydr
—00 J By (23| —z''|)NOQL

t

+/ / \K(t,2',1,y) — K(t,2",7,9)| |p(r,y) — u(t, ") do,dr
OO\By, (z/,2|x' —z'|

+||M||LOO(8TQ)|U[8TQ’ K, 1](t7 JZ/) - u[aTQ7 K, 1](t’ IH)| .

We now estimate the sum of the first two terms in the right hand side of (9.3). By Lemma 3.3
(ii), we have

t
| K (b, 7,0)] i) — 2| dorr (9.4
- n (2 ,2]z’ —2'|)NOR

t
.| K (b2, 7,)] i) — 29 dor
—o0 J By (x,3|z' —z'|)NOQL

! o —y|?
<2kl omlilian] [ ” R oy

mynoq [t — T

' —y|? e
/ / [=” | —e pe do,dr
By (2 32—z non |t — T|™

<2/|K |k, 0 @7 14l oo (0702)

+oo I |22, =14
T e v
n(z! 2]z’ —z"|)NON |u|’)/1|x - y| m

/+<>0/ |l‘ yl'yz+2 —14+m efl/u do—ydu}
By, (2" ,3|x' —z''|)NOQ ‘u|71 ‘LE" - y|271

F(’Yl - 1)C//
a’yl—l Q271 —72—2

< AK]lk, o 0r0 |1l L @r0) A

We now consider the third term in the right hand side of (9.3).
t
|/ K (1, 7,9) = K (b2 7o) |p(7,y) = plt,2")| doydr
OO\By, (z/,2]z" —z" |

|37 — y|72 L la—y|?
<Kk, aiore / / |z’ — 2"|Me” at=n
e OO\By (22|12 —a"|) =

X (lp(r,y) = plr, 2| + (7, ') — p(t, 2)]] doydr

< Ky @) 11l anzrome (970
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e |l’ |'Y2Jr2+772 T / myl —1
5 2" — 2" e " doy,du
OO\B, (2/,2]z'—=""|) 'uﬂl ’fE - | m

400 ’ |72+2 _1+'Yl (772/2) ,
e 5 |2’ — 2" e™ V" do,du
OBy (7 2l —ar|) WM/ |l — g2

//|’yl’

< 2”K|’K'y,a(8TQ)||/"L||Cn2/2?712 BTQ)|J‘J -

I'(v,—-1) T Z_ d
% maX{ (71/ - ) ’ (,-)/1 »,]2 ) } / 20/-11 — . (95)
an- a2 OBy (! 20 —ar]) |2 — Y[ T2

At this point we distinguish three cases. If 2y] —~5 —2—1n, < n—1, then Lemma 3.3 (i) implies
that

doy do, .
< / ! 2 < CQ 27/ ,Y/ 2 77 9
/ 2! —~L—2— / 2y —~L 9 , ——2—n9
OQ\By, (¢ 2|z —z"|) |2 =y o |2 — y[PnTrem2mm 1772

and thus inequalities (9.3)-(9.5) imply that there exists ¢; > 0 such that inequality (9.1) holds
with w(r) as in statement (i). If 2] — 95 — 2 — 1y = n — 1, then Lemma 3.3 (iv) implies that

doy ,
< (X 1 / _ "
/(39\Bn(x’,2|w’—:c”|) ‘.’L'/ _ y’2'yi—'y§—2_772 X CQ| 1n ‘LL’ X H )

and thus inequalities (9.3)—(9.5) imply that there exists ¢; > 0 such that inequality (9.1) holds
with w(r) as in statement (i). If 29f — 5 —2 — 1y > n — 1, then Lemma 3.3 (ili) implies that

dU " ’ ’
/y / < CQQ o~ |.Z'/ - 'I”|(n 1) (271 2 2 772)7
! yl2vi—re—2—m2 2712 72
OB, (z 2" —a]) | T — Y71 72

and thus inequalities (9.3)-(9.5) imply that there exists ¢; > 0 such that inequality (9.1) holds
with w(r) as in statement (i).

Next we consider statement (ii). Let x € 0Q, ¢/, t" € | — 00, T[, t' < t”. By Remark 1 and
by Proposition 7.1 (i), it suffices to consider case 0 < |[t' — t”| < 1. By inequalities (3.1), and
by the inclusion |t/ — 2|t — t"|, ¢’ + 2|t' — ¢"|[C]t" — 3|t — t"|,t" + 3|t' — t"|[, we have

50 K (¢, ) (0, K ") 05)
< 009, Kt )~ o, K, p(#, (7, )
[l () — o0, K ) )]
R0, I, I, 2) —uldn0, K ()
< [ ) — e, ) doe
t o0

/—Q‘t/—tu‘

t//+3|t/ t//l
s R ) — ) doyr
t o0

ll_3|tl_t//|

t/ 2|t/ t//l
T / / (7 = K 7)) 17, 0) — lt ) i

—0o0

Hulor®), K, p(t', )|, 2) — ul0rd, K, p(t', (¢, 7)1
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We now estimate the first two summands in the right hand side of (9.6). By Lemmas 3.3 (i)
and 3.4 (i), and by the elementary inequality |¢' — 7|7/2 < |t/ — t"|"2/2 + |t — 7|7/2 we have

t/+2‘t/7t"|
[ [ R ) ) — )| doydr
t o0

/—Q‘t,—t”‘

t”+3‘t/7t"|
s [ AR ) ) - ) oy
t o0

//—g‘t/—tlll

9.7)

S Kl a@ea il gomrm = OOT[CO(aQ))

_ |2
{/ / |z — Y| = I . a(t/ T)lt 7—|(772/2) do,dr
t—2[t'—t| J 9Q it/ — |

2

+|t — ”|n2/2/ / —\;1: —y[” @_% do,dr
gy —r Joq [t — T

' _ 2 2
+/ / —\xﬂ yl e_%ﬂ” — 7|™/? dO'ydT}
p_aj—r Joq [t — T
< HK”’C'y,a(aTQ)HM”COW?M(m C0(5))
2alt! ¢ ] +24~ 1471 —(12/2)
{/ / = |7j2 712 - e " dudo,
B un /Dy — gy

3alt! —t""| |’y2+

r—yl|2
t”‘n2/2/ / 2=yl ‘T 71+’Y1671/udud0,y
2
09 unt|x — y[*

//I
Balt' =t ]

|’Yz+2 —14+71—(12/2)

|z —y|? .’L‘ 1/
/aﬂ/ un—(m/2) | — y|2n—m duday}

14y —(m2/2) 14
7 (772/),a 71}

\ ||K||IC’Y,¢1(6TQ) ||/"L||Cl?7n2/2(m?co(89)) IIlaX{a
doy,

R 3a|t' _ t//I m/2
X< 2 D, _
{ /m Y1—(m2/2),m /2 ( |z — y|? |z — y|2n—r2=2-m

~ 3alt! — ¢ (m—m2)/2 d
- t//|n2/2/ Dy ton)2 ( al g |> ;‘y_ _2}
09 |z -yl |z — y[>ne
—14+v1—(12/2) a—l-&-%}

< ||K||’Cw,a(6TQ) ||M||C£’"2/2(m,00(89)) max{a

2 2
X {2D71(772/2)7771/2(3a)m/ 0227271—72—24—(771—772)

+(3a)(m_n2)/2D'Yl:(771*772)/20/9,271—72—2—1-(771—772) } ’If . //’771/2 _

We now estimate the third term in the right hand side of (9.6). By Lemmas 3.3 (i) and 3.4 (ii)

we have

=2t —t"|
/ /89 |(K<t/7 Z,T, y) - K(tuv z,T, y))(:u(Ta y) - /’L(tlv y))l dO'ydT

< HKH’C'\/,a(aTQ)||/’L‘|C;”’72/2(m700(39))

2
yl

t/_2‘t/_t//| :L. _ 'Yé, ‘
/ / ¢ | T|713/J|(772/2)‘t e doydr
o -

—0o0
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< ||K||/Cw,a(aTQ) ||M||C£’”2/2(m700(3g))|t, - t”|’Yz

,.YH_,’_Q _1+'Y”_ ,'72 2
y| 2 1—(n2/2) 71/u o du
59 2a|t’ t”| u% (12/2)| g — g2 =2 Y

|t/ _ t/’|7{'a—1+’71/—(772/2)

S K lies a@r lall o/ 77,00 90y Pt~ 2210

/ 2alt’ —t"|\ " do,
>< 11 11
50 |gj—y|2 |m_y|2’h_72_2_772

< ||K||]C%a(8TQ)||ILL|| 0,7]2/2(m Co(aﬂ))DV{'—(ﬁz/Q),Tﬁl _ t//|'71 =T

x(2a)"" q - (772/2)cQ PP (9.8)

for all r €]0,~7 — (7]2/2) — 1[, provided that 27/ — ) —2 —ny — 2r < (n —1). We now wish to
select 7 so that v, —r =n,/2, i.e., 7 =7 — 1 /2. To do so, we must verify that

0< = (m/2), % —(m/2) < —(mn/2) -1, (9.9)

and that 2v] —~) —2 —ny —2r < (n —1). Now we can rewrite inequalities (9.9) as

m<2y, <y -1+4+2"(m—mn),

and we observe that such inequalities hold by assumption. Moreover, if we set r = 7, — 11/2,
then our assumptions imply that

29 =Y — 2= —2r =29 =) =2 —mp =2y +m < (n—1),

Hence, we conclude that we can choose r as above, and that accordingly inequalities (9.6)—(9.8)
imply the validity of statement (ii). O

Lemma 9.1. Let a €]0,+o0[, T €] — 00, +00|. Let Q be a bounded open Lipschitz subset of
R"™. Let a €]0,1[, B €]0,a. Let v, be defined as in (8.2). Then the following statements hold.

(i) There exists q; €]0,+00] such that

QIZ. g, p)(t,2') — Q[Z, g, pu)(t, ") (9.10)
< allZllk,,, w@rollgllcoe oo il corze opa) 2 — 2"
+pllz=or0)|QLZ, 9, 1], 2") — Q[Z, g, 1](t, 2")],
for all 2/, 2" € 9Q, t € | —o0,T|, and for all (Z,g,p) € K, o(0rd) x C**(0Q) x
CPI%8(0rQ)) (cf. (8.4).)

(11) There exists g2 €]0,+00] such that

QIZ, g, p)(t',x) — Q[Z, g, u](t", )] (9.11)

< @l Zlhc,, o lgllcneommllill o2 copm 1 — 1%

HIQIZ, g, 1t N(E' 2) — QIZ, g, u(t', (X", )]
forallz € 9Q, t', t" €] — oo, T[, t' < t", and for all (Z,g, 1) € K., o(0rR) x C¥*(0NQ) x
Oy (= o0, T[, C°(092)).
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(ii1) There exists q3 €]0, +oo] such that

QIZ, g, p)(t', 2) — Q[Z, g, u](", x)| (9.12)

< @l 2l wor gl comomllll go.cvmr2 sy oogoay It — 172

—HQ[Zaga ,u(tlv )](t/,l') - Q[Z:Q:Mt/a ')](t”7 l’)’ )

for allx € OQ, ', t" €] — 00, T[, t' <", and for all (Z, g, 1) € K, o(0r82) x C**(9Q) x
Cy ([ =00, T, C°(00).

(iv) There ezists q4 €]0,400[ such that

QIZ, 9. Wt 2) — Q[Z, g, p](t", @) (9.13)

< @12l aor0 19l om0yl il o2 sy ey 1 — £+

+|Q[Z’ 9, M(t,7 ')](tlv I) - Q[Zv g, :u(t/7 ')](t”7 ZE)‘,

for all x € 0Q, ,¢',t" € | — 00, T, ' < t", and for all (Z, g, 1) € K, o(072) x C%*(9Q) x
CyV2 (1= 00, T, C°(092)).

Proof. We first consider statement (i). Let -, 4, be defined as in (8.2) with # = a. By Propo-
sition 9.1 (i) with v = 7,9, 0 = a, 172 = (3, there exists ¢; > 0 such that inequality (9.1) holds
with w(r) = r® for all (K, u) € K, . 1a(07Q) x CP/%8(97Q). Indeed, 7] = o, 7/ = 1,

1= (Mn/2)+1>1,

21— —2=2(n/2)+1)—(1+a)—2=(n—-1)—a€n—-2,n-1],

N —(m/2) = (n/2) +1-(8/2) > 1,

(n=1) = (2% =% —2-m)+
=n-1)-12(n/2)+1)—-1=-2]+a+F=a+ >0,

2= —2-m=2n/2)+1)-1-2-B=n-1)-B<(n-1).

Then inequality (9.10) follows by Lemma 8.2 (i) with § = « and by the equality u[H[Z, g], u] =
Q[Z, g, 11]. Next we consider statement (ii). By Proposition 9.1 (ii) with v = 7,9, 0 = a, m1 = @,
n2 = B3, there exists ¢, > 0 such that inequality (9.2) holds for all (K, u) € K, ., 1a(0782) x
CPIZ8(9rQ). Indeed, v, = a, ) = 1,

7= (m2/2) = (n/2) +1—(8/2) > 1,

21— =2+(m-m)=n-1)—a+(a=B)=n-1)-F<(n-1),

V= (12/2) = (n/2) +2—(8/2) > 1,

YW= +1=2"(n —m)
=1—((n/2)+2)+1 -2 a—B)=—(n/2) -2 (- B) <0,

m—2y =a—-2<0

29 =5 — 2 =29+ (m — m2)
=2(n/2)+2)—(1+a)—2—-2+(a—p)=(n—-1)—F<(n—-1).

Then inequality (9.11) follows by Lemma 8.2 (i) with # = « and by the equality u[H[Z, g], u] =
Q[Z, g, p]. Next we consider statement (iii). Let v, , be as in (8.2) with § = a. By Proposition
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9.1 (ii) with v = Yp.a, m = (1 + @), 72 = (1 + ), there exists ¢; > 0 such that

\u[0rQ, K, ] (t', x) — u[orQ, K, p](t", x)| (9.14)
< c3HKH;cma,4u(8TQ)HM|’C£,<1+6>/2(m700(m))|t’ — ¢|(1He)/2

+|u[aT97 K, :u(t/’ ')](t,7 ZL’) - u[aTQv K, :u(t/> ')](t”7 [E)| )

for all € 0Q, t', t" € |—o00,T[, ' < t", and for all (K,u) € K, 4a(0rQ2) X
COMAR (50 TT, C°(09)). Indeed,

m—(m/2) = (n/2)+1-2"'1+6) > 1,

271 — Y2 — 24 (m — o)
=2(n/2)+1)—1—-a—-24(14a)—(1+p)=n—-1—a+ (a—p)
<(n-1),

W= (m/2)=(n/2)+2-2""1+p8) > 1,

W= +1=2" m —n)
=1—((n/2)+2)+1-2"a-B)=—(n/2) —27'(a— B) <0,

m—2y=0+a)—-2<0,

29 =7y =2 =29/ + (1 +a) = (1 + B))
=2(n/2)+2)—1—-a—-2-2+(1+a)—(1+73))
=n—-1)—a+(a—0F)<(n-1).

Then inequality (9.12) follows by Lemma 8.2 (i) with § = « and by inequality (9.14) and by
the equality u[H|[Z, g, u] = Q[Z, g, .

Finally we consider statement (iv). Next we plan to apply Proposition 9.1 (ii) with n; =
1+ 8,m =1, 7 ="Ya. As above we can verify that all the assumption of Proposition 9.1 (ii)
are satisfied and that accordingly there exists g4 > 0 such that

w07, K, pl(t @) = ulorQ, K, (¢, 2) (9.15)
< q4| |K| |’C’Yn,a74a(aTQ)||/l’| ’0571/2(m,00(89))|t, — t//|(1+’8)/2

HulorQ, K, u(t', (', 2) — uldrQ, K, u(t', )¢, 2)],

for all x € 00t t" € |—oo,T[,t' < ', and for all (K,pu) € K, ,4.(0r82) x
0571/2(] — 00, T[,C%0R)). Then the inequality (9.13) follows by Lemma 8.2 (i) and by in-
equality (9.15) and by the equality u[H|[Z, g], u] = Q[Z, g, p]- ]

10 Applications to layer heat potentials with Holder continuous den-

sities
Let
S () = +In|z] vz e RM\ {0}, ifn=2,
w(z) = b2 vz e R\ {0}, ifn>2,

where s,, denotes the (n — 1) dimensional measure of dB,,. S, is well known to be the funda-
mental solution of the Laplace operator. Then we have the following known elementary lemma
for densities which do not depend on time.
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Lemma 10.1. Let o €]0,1], T €] — 00, 400|. Let 2 be a bounded open subset of R™ of class
Cl. If p € L>®(99), then

0
w[aTQv 90] (tv JZ) = 90 ay—(y)SN<m - y)90<y> dO'y J (10'1)

for all (z,t) € OrSY (cf. (8.1).)

Proof. By setting (t — 7) = u|z — y|? in the integral (8.1) which defines the double layer heat
potential, we obtain

S 0

w[aTQ7 90] (t7 :L’) - _2(471')"/2 90 8y(y)

Sn(x = y)Y(y) doy ,

for all (x,t) € 072, where

_L
€ 4u

+00
P(y) = /0 W@(?J) du  Vye o,

_1 n
see also Kress [13, p. 157|.) Since o — 2 du =4I (n/2) and s,, = M, the formula
0 /2T T(n/2)
of the statement holds true. O

Then we have the following statement.

Theorem 10.1. Let o €]0,1[, 8 €]0,«, T €] — 00, +00]. Let Q be a bounded open subset of
R" of class C%°.

(i) If p € 05’5/2(] — 00, T[,C°(0R)), then w[OrQ), 1] € C’g’aﬁ(} — 00, T[,C°(0R)). Moreover,
the operator from CY**( = oo, T[, C°(82)) to CP**(] = 0o, T[, C°(9N)) which takes ju to
w[0rQY, u) is linear and continuous (cf. Remark 2.)

(ii) If p € CPZEB(0rQ), then w[0pQ,u] € CY%%(0rQ). Moreover, the operator from
CPIZB(9rQ) to CY%(0pQ)) which takes p to w[0rQY, ] is linear and continuous.

(iii) If p € CYUPPAT 2650 T],C009)), then w[opQ,u] € COUTI2([= oo T, CO(09)).
Moreover, the operator from CS’(Hﬁ)/Q(} — 00, T[,C°(0%)) to
COMI2 (T2 T, C(00))  which takes p to wldr ] is linear and continuous
(¢f. Remark 2.)

(iv) If p € CPV*(J= 00, T[,C0(09)), then w(drQ, p) € CYV2( = oo, T, C(82)). More-
over the operator from 02’1/2(] — 00, T|[,C%090)) to C’(?’(HB)/2(] — 00, T[,C°(0R2)) which
takes pn to w[OrSY, p is linear and continuous (cf. Remark 2.)

Proof. We first consider statement (i). By Theorem 8.1 (i), we already know that w[0r(2, |

is linear and continuous from L>®(d7Q) to B(] — oo, T[,C%*(9R2)), and accordingly from
Cy"*(] =00, T, C*(09) to B(] — 00,T[,C"(99)).
Next we plan to apply Proposition 9.1 (ii) with 7, = «, 92 = 8, a €]16, +oc0[. By Remark 3
P

iv), we already know that the kernel =&, (t — 7,2 —y) € K, .(972), with v as in Remark
ov(y) Y
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3 (iv). Then we observe that

71— (m2/2) = (n/2) +1—(8/2) > 1,

21— —2=2(n/2)+1)—-(14+a)—2=n—-1)—a € n-2,(n— 1),

2n—m—2+(m—-—m)=n-1)—a+(a-pF)=Mn-1)—-F<(n—-1),

V= (m2/2) = ((n/2) +2) — (8/2) > 1,

W—W+1=2"n—m) =1-((n/2) +2) +1-2"(a = B) <0,

m—27=a—-2<0,

29 =7 =2 =29+ (m — )
=2(n/2)+2)—(1+a)—2-2+(a—f)=(n—-1)—-F<(n—-1).

Then Proposition 9.1 (ii) implies the existence of ¢y > 0 such that
|1U[8TQ,[L](t/,Zlf) _w[aTQvﬂ](t”7I)| (102)

< G Pt —1,2—y) HUHCIE”B/Z(W,CO(BQ))|t/ - t”‘a/Q

9
ov(y) KKy a(0792)
+w[0rQ, u(t', ), ) — w[or, p(t', )", x)|,

forall z € 0Q, ', t" € | — 00, T, t' < t”, and for all € 05’5/2(] — 00, T|[,C%(09)). By Lemma
10.1, we have

wlor (v ) == [ S o= ') do,

for all z € 0Q, t, ' € | — 00, T and for all u € C’OB/Q(] — 00, T[,C°R)). Then the second
summand in the right hand side of (10.2) equals 0 and inequality (10.2) implies that statement
(i) holds true. Statement (ii) is an immediate consequence of statement (i) and of Theorem 8.1
(i) and of Proposition 2.1.

We now consider statement (iii). Since C’ (1+6) /2(] — 00, T[,C°(0R)) is continuously imbed-
ded into L>=(] — oo, T, C°(99)), Theorem 8.1 (i) implies that w[0r(2, -] is linear and continuous
from C (o0 T, C°(00)) to B(] — oo, T[, C*(99)). Next we plan to apply Proposi-
tion 9.1 (ii) with my = 1+, no = 14, a €]16, 400, v as in Remark 3 (iv). As above, we can
verify that all the assumptions of Proposition 9.1 (ii) are satisfied and that accordingly there
exists ¢o > 0 such that

|w[8TQ,,u](t',x) - w[aTQ7M](t”7x)| (103)

(I)n<t—7',.7§'—y> //‘ (1+a)/

< G

0
T [eell go.008072 7= it —1
ov(y) Koy () Cy (]—00,T[,C0(89))

+|w[8TQ> M(tlv ')](tlv .73) - w[aTgv :u(t/7 ')](t”7 aj)‘ )

for all z € 09, ', 1 € | — 00, T, t' < ", and for all u € CU2([ =0, T[,C°(09)). Then
again by (10.1), we conclude that the second summand in the right hand side of (10.3) vanishes
and that accordingly statement (iii) holds true.

We now consider statement (iv). Since 05’1/2(] — 00, T[,C°(0R)) is continuously imbedded
into L>(] — 00, T[,C°(0N0)), Theorem 8.1 (i) implies that w[0rS?,-] is linear and continuous
from C* (= o0, T, C°(09)) to B(] — 00, T[, C%*(9S2)). Next we plan to apply Proposition
9.1 (ii) with 1 = 14 8,12 = 1,a €]16, +00[,y as in Remark 3 (iv). As above, we can verify
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that all the assumptions of Proposition 9.1 (ii) are satisfied and that accordingly there exists
¢ > 0 such that

‘w[aTQhu](t/vx) _w[aTQnu](tﬂax” (10'4)

) 9 14+8)/2

< G 8V—(y)q)n<t - T, — y) o) |’M|’03’1/2(m,00(89))‘t/ _ t//|( )/

Hw[0rQ, p(t', )t x) = wlOrQ, u(t', )I(E", )],

for all z € 9Q, ', t" € | — 0o, T[,t' < t”, and for all y € C) 1/2(] 00, T[,C°(99)). Then again
by (10.1), we conclude that the second summand in the rlght hand side of (10.4) vanishes and
that accordingly statement (iv) holds true. O
Next we analyze an integral operator with kernel 9, ®,(t — 7,2 —y) for r € {1,...,n} and

we prove the following.

Theorem 10.2. Let T' €] — 0o, +00|. Let o €]0,1[, 5 €]0, . Let r € {1,...,n}. Let Q be a
bounded open subset of R™ of class C%*. Then the following statements hold

(i) The map Q[0,, ®,(t — 7,0 — y),-,-] from CO¥(0N) x CPZB(9rQ) to C%(0p8) which
takes (g, ) to Q[0y, Pt — 7,2 — ), g, u| is bilinear and continuous (cf. (8.8).)

(ii) The map Q[0 ®,(t — 7,0 — y),-,-| from C**(9Q) x C,?’(HB)/Q(] — 00, T[,C°(09)) to
CYUHO2T o0 T, CO(09)) which takes (g, 1) to Q[0 u(t — 7,2 — y), g, 4] is bilinear
and continuous.

(iii) The map Q[0 Pn(t — T,z — y),-, -] from C%(9Q) x 05’1/2(] — 00, T|[,C%0R0)) to
Cl?’(lw)/?(] — 00, T[,C°(0R)) which takes (g,p) to Q[0 ®n(t — 7,0 —y), g, 1] is bilinear
and continuous.

Proof. Let Z(t,z,7,y) = 0, Pn(t — 7,2 — y). Let a €]|16,+00[. We now prove state-
ment (i). By Theorem 8.2 the map Q[Z,-,-] is bilinear and continuous from C%*(99) x

COV(T= 00, T, CO(09)) to C°(07Q). By Remark 3 (iii), we have Z € K., (97) with ~,
as in (8.2). Then Lemma 9.1 (i) implies that there exists ¢; > 0 such that

QZ, g, u)(t, 2") — Q[Z, g, ] (¢, 2")| (10.5)
< allZllk,, @rollgllcoa@llillcsrzs@rayle” — |
+||M||L°°(8TQ)|Q[Zaga ]_](t,[E,) - Q[ngv ”(tvlﬂ)lv

for all 2/, 2" € 90, t € | — 0o, T, and for all (g, ) € CO*(9Q) x CA/%P(9rQ). By performing
the change of variables (t — 7) = u|z — y|?, we have

QlZ,g,1](t, ) = / /aﬂ(g(ﬂf) - g(y))£¢n(t — 7,0 —y)doydo, (10.6)

r
L

+o0 e = a
B _/0 2 (4m) 2y (/241 dusy, /8 Q(g(ﬂc) —9(y)) o Sn(x —y) doy

[ @) - gy Sule —y)do,  ¥w1) € 0102
P19 r

r
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(see also the proof of Lemma 10.1.) Then known properties of harmonic layer potentials imply
that there exists ¢; > 0 such that

Q1Z, g, 1](t,2") — Q[Z, g,1](¢, 2")| < q¢i|" — 2"|%, (10.7)

for all 2/, 2" € 0t € | — 00, T (cf. e.g. Schauder [18, Hilfsatz VII, p. 112], [2, §8].) Next we
apply Lemma 9.1 (ii). Then there exists ¢o > 0 such that

QIZ.9.4)(t' 2) — QIZ.g. p(t", ) (10.8)
< @l1 2l aorn 19l lon ol il o2 o oo | — 1%

+|Q[Za g, :u(t/7 ')](t,7 l’) - Q[Z7 9, :U’(tla ')](tﬁﬂ I)|7

for all z € 0Ot t" € ]—oo, T, < t’, and for all (g,u) € C"(99Q) x
C’g’ﬂ/z(] — 00, T[,C%(0R2)). By exploiting the same change of variables of (10.6), we can show
that

QIZ, g, u(t', )](t', @) — QZ, g, (T, )](t", 2)| = 0, (10.9)

for all z € 00, t',t" € | — 00, T[,t' < t”. Then by Proposition 2.1 and by inequalities (10.5),
(10.7), (10.8) and equality (10.9), we conclude that statement (i) holds true. Statement (ii) is
a consequence of Lemma 9.1 (iii) and of equality (10.9).

Finally statement (iii) is a consequence of Lemma 9.1 (iv) again together with equality

(10.9). O
Next we analyze an integral operator with kernel 0,®,,(t — 7,z — y).

Theorem 10.3. Let T €] — 0o, +00|. Let Q be a bounded open Lipschitz subset of R™. Let
a €)0,1], B €]0,af. Then the following statements hold.

(i) The map Q[O,®,(t—7,2—y), -, -] from C¥*(9Q) x COHU+A/Z0L(H.Q) to C/%(9rQ) which
takes (g, ) to the function

QLo —y), 9. 4)(t, )
/ /m Y0P, (t — 7,2 — y)(u(T, y) — u(t,y))doydr,

for all (t,x) € Or€) is bilinear and continuous.

(ii) The map Q[0,®,(t—7,x—y), -, ] is bilinear and continuous from C%*(9Q) x COV/Z01(9,0Q)
to 06/2’B<8TQ)

(iii) The map Q[0,®,(t—T,2—7), -, -] is bilinear and continuous from COH(IQ) x COLOL(9,0Q)
to CPU 2 ([ =00, T, C0(09)).

Proof. Let a €]16, +-0o[. Then Remark 3 (ii) implies that 0, ®,(t—7, z—y) belongs to K_; (0r(2)
with 7% as in (8.9). We now prove statement (i). If 8, €]0, 3], then C%(+5 /201(8 Q) is

continuously imbedded into C*(+/1)/20.1(5,.Q)). Thus there is no loss of generality in assuming
that a + 8 < 1. Then we can apply Proposition 8.1 with b = (1 + 3)/2, 6 = «a and b; €
[(a/2), (o + B)/2[C](r/2), (1 + B)/2]. Indeed, 2b+ 6 = 1 + 3 + o €]1,2]. Proposition 8.1 (ii)
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implies that Q[9,®,,(t—7, z—y), -, -] is bilinear and continuous from C%*(9Q) x C%1+8)/%0.1(9,.Q)

to B (] — 00,17, CO@(@Q)). Then we note that

h=a/2€l0,(2b+0—1)/2[=]0, (a + 8)/2],

and that 1 > b—b; > (1 —)/2, (n/2) —[27'(1+B) —b] = (n/2) =271 (1 + B) + (a/2) >
(a/2) — (B/2), and that accordingly

Jmax{0, [1 — 0 — 2(b — by)]/2}, min{(n/2) — [b — b], b1}
=10, min{(n/2) = 27" (1 + B) = bi], bi}[2]0,27 (o = B)[.

Since b; > «/2, then we can choose by €]0,27 (o — f3)[ such that by — by > «/2, and thus
min{h, b — b} = /2, and Proposition 8.1 (iii) implies that Q[0,®,(t — 7,z — ¥),,-] is bi-
linear and continuous from C%(9Q) x COUA/201(9.0) to (= oo, T[,CO(A)). Then
Proposition 2.1 implies that statement (i) holds true.

Next we consider statement (ii). We apply Proposition 8.1 (ii) with b = 1/2,0 = . Then
the map Q[0,®,(t — 7, —y), -, -] is bilinear and continuous from C%*(9Q) x C%/201(9:Q) to
B(] — 00, T[,C%%=)(98)). By the continuity of the embedding of C%“=()(9) into C%# (),
the same map is continuous from C%*(9Q) x C%V/Z01(9:Q) to B(] — oo, T[, C*#(052)). Then
we plan to apply Proposition 8.1 (iii) with b =1/2,0 = «a, b, €]5/2,a/2[. We take

h=p5/2€]0,(2b+6—1)/2[=10,a/2[,
and we choose

by € Jmax {0,[1 — 0 —2(b—b1)]/2} ,min{(n/2) — (b —b1),b1}]
= Jmax{0,b; — a/2} ;min{(n — 1)/2 + by, b1 }]
:]Oubl[a

where we have exploited the membership of by in |3/2, a/2[. We note that since by > §/2 we
can choose by €]0, by[ such that by — by > §/2. Hence, Q[0,®,,(t — 7,2 — 5), -, | is bilinear and
continuous from C%*(9Q) x COY201(9:0) to CO7*( = 0o, T],C°(89)). Combining Proposi-
tion 2.1 and the two result above we can conclude that Q[@tq)n(t — 7,2 —1Y),-, ] is bilinear and
continuous from C%*(9Q) x COY201(9,Q) to C/28 (7). Hence, statement (ii) holds true.

Next we turn to prove statement (iii). We plan to apply Proposition 8.1 (iii) with b €
127114 a),1[, 0 =1, by €27 (1 4+ «),b[. We note that

h=2""1+a)€0,(2b+ 6 —1)/2[=]0,b[,
and that b —b; <1—2"'(1+ «a) =27'(1 — a), and that accordingly

Jmax{0,[1 — 6 — 2(b— b1)]/2}, min{(n/2) — [b — b1], b1 }|
=]0, min{(n/2) — [b — b1],b:}[2]0, min{1 — 27 (1 — ), b}
=]0,271(1 + ).
Since b; > 271(1+«), we can choose by €]0,27!(1+ «)[ such that by —by > 27'(1+«) and thus

min{h,b; — by} = 27'(1 + «). Hence, Proposition 8.1 (iii) implies that statement (iii) holds
true. []
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