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https : //scholar.google.com/citations?user = Nz XY MS4AAAAJThl = ruoi = ao
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of sciences theses and 10 PhD theses. The Editorial Board of the Eurasian Mathematical
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ON MULTIPERIODIC INTEGRALS OF A LINEAR SYSTEM
WITH THE DIFFERENTIATION OPERATOR IN THE DIRECTION
OF THE MAIN DIAGONAL IN THE SPACE OF INDEPENDENT VARIABLES

A.A. Kulzhumiyeva, Zh. Sartabanov
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Abstract. In the general theory of first order partial differential equations one of the effective
ways of integration is a common method of finding solutions by the complete integral [4-5].
In this note we propose a method of research of problems of multiperiodic solutions of linear
systems of equations with the same differentiation operator in the direction of a vector field,
which is based on the results of the study multiperiodicity of their complete integral. Such
an approach is not found in earlier studies based on the methods of fundamental works [8-9]
on multiperiodic solutions of such systems. The elements of the proposed method are used
in [1-3, 6-7]. In this note in order to establish the multiperiodicity of a complete integral
Green’s function is introduced in the absence of non-trivial integral multiperiodic solutions of
homogeneous system.

1 Introduction

92
at;
variable is called the differentiation operator in the direction (1,e) of the main diagonal t = et
of the space (7,t) € R x R™, where e = (1,...,1) — m-vector, t = (t1,...,t,). Consequently,
we have

The operator D, representing the sum of differential operators 7 =0, m on the independent

0 0
D, = = 2N 1.1
o7 " <€ 0t> (11)
where (-, -) — denotes the scalar product and % = (a%’ o %) is a vector operator.
We call the equation
dt
— = 1.2
dr c (1.2)

characteristic for the operator D, and its general solution
t=0+er (1.3)

with an arbitrary constant vector o = (074, ...,0,,) is called the characteristics of the operator
D..
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Then equation (1.2) by (1.3) has the integral
t—er =o, (1.4)

which we call the base for operator D., because for an arbitrary differentiable function h the
function h(o) is a general integral h(t — eT) of equation (1.3) and it is the general solution of
equation

D.h = 0. (1.5)

We consider the problem for a linear system of equations
D.x = P(1,t)x + f(7,1) (1.6)

with differentiation operator (1.1), where = (1, ...,x,) — the complete sought-for integral.
The solution z = z(7,t,0,¢) of system (1.6) with the arbitrary constant vectors o =
(01, ...,0m) and ¢ = (cq, ..., ¢,) is called its complete integral.
We set the problem of studying on the existence of a complete integral, satisfying the below
condition
x(t+60,t+ quw,o,c) = x(r,t,0,¢), q€ ™, (1.7)

where (7,t) € R x R™, 0 = wyp, wy, ..., w,, are positive rationally incommensurable constants,
w = (wi,...,wn) a vector-period, ¢ = (q1,....,qm) € Z X ... x Z = Z™, Z the set of integers,
qw = (q1w1, .., gmwm) a multiple vector-period, P(7,t) an n X n-matrix and f(7,t) an n-vector-

function of class Ci?t’l)(R x R™) for continuous in 7 € R, continuously differentiable in £ € R™

and multiperiodic in (7,t) with the period (0, w). Consequently,
P(t+6,t+qw) = P(r,t) e CY(Rx R™), qe 2™ (1.8)

T,

fr+0,t+q) = f(r,t) e CYV(Rx R™), qe 2™ (1.9)
Therefore, our basic problem is to study the integral z(7,¢,0,¢) of system (1.6) satisfying
condition (1.7).
This problem, in other words, may be called multiperiodic problem (1.6)-(1.7).
2 Multiperiodic integrals of the linear homogeneous system
We consider the homogeneous system
D.x = P(1,t)x (2.1)

corresponding to system (1.6).
Under condition (1.8) the complete integral of system (2.1) has the form

x(r,t,0,¢) = X(1,t,0)c, (2.2)
where X (7,t,0) is the matriciant of system (2.1):
D.X(r,t,0) = P(1,t)X(1,t,0), X(0,t,0)=FE (2.3)
with the n x n identity matrix E, has the properties

X(1,t,0 4+ qw) = X(1,t + qw,0) = X(7,t,0), q€Z™, (2.4)
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X(t+60,t,0) = X(1,t,0)X(0,0,0), (2.5)

where o is determined by (1.4).
The matriciant X (7,t,0) is constructed by considering of system (2.1) along solutions (1.3)
of characteristic equation (1.2).
Here are some properties of complete integral (2.2) of system (2.1) satisfying condition (1.8).
2.1. There is a functional relationship between the constant vectors o and ¢ of the type

c=c(o). (2.6)

This property (2.6) is known from the general theory of partial differential equations [4-5].
2.2. In order that the complete integral of system (2.1) be w-periodic in o it is necessary
and sufficient that the following condition is satisfied

clo+qw)=c(o), o€ R™, qeZ™. (2.7)

The proof follows from relations (2.2), (2.4) and (2.6).

2.3. Complete integral (2.2) of system (2.1) under condition (1.8) is w-periodic in t € R™.

The proof of this property we have from relation about structure (2.2) of complete integral
and property of the matriciant (2.4).

2.4. In order that the complete integral (2.2) of system (2.1) under condition (1.8) be
@-periodic in 7 it is necessary and sufficient that vector-function (2.6) satisfies the system

[E—X(0,0,0)lc=0, oe€R™. (2.8)

The proof of property 2.4 follows from the equivalence of condition (2.8) and the determi-
nation of #-periodicity of the integral in 7:

x(r,t,0,¢) —x(t+0,t,0,¢) =0, (1,t,0) € Rx R™ x R™

taking into account property of matriciant (2.5).
2.5. In order that the complete integral z(7,¢, o, ¢) of system (2.1) under condition (1.8) be
(0, w)-periodic in (7,t) it is necessary and sufficient that condition (2.8) is satisfied.

Proof. By property 2.3 the complete integral is w-periodic in ¢ € R™. Condition (2.8) of
property 2.4 is equivalent to f-periodicity of the integral x(7,t, 0, ¢) of system (2.1). ]

2.6. In order that the complete integral of system (2.1) under condition (1.8) be (0, w,w)-
periodic in (7,t,0) it is necessary and sufficient that vector-function ¢ = ¢(o) is an w-periodic
solution of system (2.8).

Proof. Property 2.6 follows from the definition of equivalence of (0, w,w)-periodicity of the
integral

x(r,t,0,c(0)) =x(r+0,t,0,c(0)) = (1, t + qw, 0,c(0)) = z(1,t,0 4+ qw, c(0))

and conditions of all the properties 2.1-2.4. m
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2.7. In order that under condition (1.8) system (2.1) does not have a non-trivial (0, w,w)-
periodic in (7,%,0) integral (2.2) it is necessary and sufficient that the following condition is
satisfied

det[E — X(0,0,0)] #0, o€ R™. (2.9)

The proof of property 2.7 follows since condition (2.9) is equivalent to the fact that system
(2.8) has only the zero solution.

We will notice that condition (1.8) guarantees w-periodicity of the integral in ¢ € R™.
Consequently, condition (2.9) is a condition of absence of §-periodicity in 7 € R of the integral
of system (2.1).

2.8. In order that under condition (1.8) integral (2.2) of system (2.1) be (0, w,w)-periodic
in (7,t,0) it is necessary and sufficient that condition (2.8) is satisfied for w-periodic vector-
functions.

The proof of property 2.8 follows from the fact that under condition (2.9) system (2.8) has
only the zero w-periodic in o € R™ solution.

2.9. Under condition (1.8) complete integral (2.2) of system (2.1) defines the general solution

(7, t,t —er,u(t —er)) = X(1,t,t —eT)u(t —er) (2.10)

with an arbitrary differentiable function wu.
To prove 2.9 it suffices to apply the method of variation of Lagrange constants, assuming
that the constants o and ¢ in (2.2) depend in (7,1).

3 Green’s function of a multiperiodic problem

Consider the interval [7,7 + 0] of § length with variable boundaries, depending in 7 € R and
intervals
I =lna), I =(ar+0] (3.1)

«

with some constant a € R.
Using the function ¢(7,t,0), determined at (7,¢t,0) € R x R™ x R™, we construct the
function

o(s,0+es,0), sel,,

Vo(s,0+es,0) = { (3.2)

o(s,0+es—er,0), selt.

Note that as the point a we can take any fixed point, in particular, & = 0. In the case of
the fixed value 7 instead of « it would be possible to take any intermediate point.

Further, we will assume that conditions (1.8) and (2.9) are satisfied.

Thus, in accordance with formulas (3.1) and (3.2) by using the inverse matrix X ~!(7,¢, o)
of the matriciant X (7,¢,0) we construct the matrix function X !(s, o+ es, o) and consider the
matrix of the form

Go(s,7,t,0) = X(1,t,0)[E — X(0,0,0)] ' X(0,0,0) X (5,0 + es,0). (3.3)

Matrix (3.3) has the following properties.
3.1. If s # «a the matrix G, (s, 7,t, 0) satisfies system (2.1):

D.G.(s,7,t,0) = P(1,t)Gy(s,T,t,0), s# . (3.4)

The proof of identity (3.4) is carried out on the basis of (1.5), (2.3) and (3.3).
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3.2. The difference of values matrix G,(s,7,t,0) at s = 7+ 0 and s = 7 is equal to the
identity matrix E:
Go(T+0,7,t,0) — Go(1,7,t,0) = E. (3.5)

The proof of identity (3.5) is associated with the difference of the form
X;1(87 o +es, 0>|S:T+0 - X;1<57 o +es, O-)’S=T

=X "s,0+es—€0,0)|s—rro — X (5,0 +es5,0)|s—r
= X_l(T +0,t,0)— X_l(T,t,a) = X_l(Q,a, O')X_I(T,t,O') — X_I(T,t,O')
= [X_1<97 g, 0) - E]X_1<7-7 t 0‘) = X_1<97 g, 0)[E - X(07 g, U)]X_1<7-7 l 0)7 (36)

which comes from formula (3.2) and properties (2.5) of the matriciant X(7,¢,0). Further,
putting difference (3.6) in relation (3.3) we will get property (3.5).

3.3. The matrix G,(s,7,t,0) has the property of w-periodicity in ¢, o and diagonal 6-
periodicity in s, 7; in other words, the values of G,(s,7,t,0) at the points (s,7,t,0) and
(s+6,74+60,t+ pw,o + quw) for any p,q € Z™ are the same:

Go(s40, 740, t+pw, o+qw) = Go (s, 7,t,0), (s,7,t,0) € RXRXR"XR™, p,qe Z™. (3.7)

Proof. In view of identity (2.4) of the matrices X(7,t,0), X(0,0,0), X "!(s,0 + es,0) and
X 1(s,0 + es — e, 0) entering (3.3) are w-periodic in ¢t and o. Consequently, the matrix
Go(s,7,t,0) is w-periodic in t and o.

Further, at the same time moving variables 7 and s in 6, using property (2.5) of the ma-
triciant X (7,¢,0) and taking into account of the commutativity of the matrices X (0, 0,0) and
[E — X(0,0,0)]"! we have

Guo(s+6,74+0,t,0)

= X(7,t,0)X(0,0,0)[E — X(0,0, U)]_lX(Q, o, U)X_l(Q, 0,0)Xa(s,0+es,0)
=G(s,1,t,0).
Il

Corollary 3.1. The matriz Go(7,7,t,0) = GO(7,t,0) is multiperiodic in (7,t,0) with the
period (0, w,w).

The proof of Corollary 3.1 follows from (3.7) with s = 7.
3.5. The matrix G,(s, T,t,0) satisfies to the estimate

|Ga(s,T,t,0)] < ATl (3.8)

where |G, | is the Euclidean norm of the matrix G,, 6 = || P||, A = ||GY]|, || - || — maximization
of quantity | - | in arguments.

Proof. As the matrix G,(s,7,t,0), in accordance with property (3.4) is a matrix solution of
equation (2.1), it can be represented as

Go(s,1,t,0) =Y (s,7,1,0)Gu(8,8,0 + es,0), (3.9)

where Y (s,7,t,0) = X(7,t,0)X (5,0 + es,0) is a matrix solution of equation (2.1) with the
initial condition Y (s, s,t,0) = E, for which we have the estimate

Y (s,7,t,0)| < ellPlllr—s| (3.10)
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and the matrix G(s, s,0 + es, o) admits to the estimate
|Gals, 8,0 +es, o) <||GY. (3.11)

Inequality (3.8) follows from equality (3.9), estimates (3.10) and (3.11). O

The matrix G, (s, s,t,0) with constitutive properties 3.1-3.3 can be called Green’s matrix
of the multiperiodic problem for linear system (1.6) with condition (1.7).
The obtained results can be stated in the form of the following theorem.

Theorem 3.1. Under conditions (1.8) and (2.9) for the multiperiodic problem for linear system
(1.6) with condition (1.7) there is a matriz Green’s function (3.3) satisfying estimate (3.8).

4 Multiperiodic integral of linear inhomogeneous system

Considering system (1.6) along characteristics (1.3) of the operator D, we have arrived at the
complete integral of the form

z(t,t,0,¢) = X(1,t,0)c+ &(7,1,0)

with constant vectors o = (01, ...,04,) and ¢ = (cq, ..., ¢,), where Z(7,t,0) is some integral of
system (1.6).
Now, in order to solve the basic problem we will prove the below theorem.

Theorem 4.1. Assume that conditions (1.8), (1.9) and (2.9) are satisfied. Then the multi-
periodic problem for linear system (1.6) with condition (1.7) has a unique integral *(7,t,0),
depending w-periodically in o, which can be represented in the form

T+6
x*(r,t,0) = / Gols,7,t,0) fol(s,0 4+ es)ds (4.1)
and satisfies to the estimate
» A
) < S = DI (42)

where fo(s,0 + es) is the function obtained from the function f(7,t) by formula (3.2).

Proof. Due to conditions (1.8), (2.9) and by Theorem 3.1, the problem has Green’s function
(3.3). To show that function (4.1) satisfies system (1.6), its we represent it as the sum of two
integrals

« T+60
(1, t,0) = /Ga(s, T,t,0)f(s,0 + es)ds + / Gaol(s,T,t,0)f(s,0+ es+ ef)ds

with the general constant boundary a.
Further, having applied the operator D., in view of property (3.4) of Green’s function and
smoothness (1.9) of the function f(7,t), we have

D.x*(7,t,0) = P(r,)z*(7,t,0) + [Go(T + 0,7,t,0) — Go(T, 7, t,0)] f (T, 1).
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Next on the basis of property (3.4), we see that (4.1) is a solution to system (1.6).

We will show now that the solution of (4.1) satisfies (1.7). Indeed, from the condition of
w-periodicity (1.9) of the function f(7,t) follows the w-periodicity of f,(s,0 + es) in o € R™.
According to relation (3.7), Green’s function has the property w-periodicity in ¢ and o, and
therefore the function x*(7,t, o) also has this property. To prove the §-periodicity of the solution
in 7, 7 we shift in the # and change the variable s to s + 6. Then, by (4.1)

7460
(1 +0,t,0) = /Ga(s+9,7+9,t,0)fa(s+9,0+es)ds,

T

which due to property (3.7) and the f-periodicity of f(7,t) in 7 is equal to z*(7,t,0).
Thus, the (0, w,w)-periodicity z*(7,t,0) in (7,t,0) is proved.
In view of estimate (3.8) and the inequality |f(s,o + es)| < ||f]| by (4.1) we have the

estimate
T+0

" (r,t,0)] < A / &I £ds,

T

which follows by estimate (4.2).

Now we prove uniqueness and the (6, w,w)-periodicity of integral (4.1). Indeed, if we as-
sume that there is another (6, w,w)-periodic in (7,t,0) integral z.(7,t, o), then their difference
x*(1,t,0) — z.(7,t,0) is a non-trivial integral of homogeneous system (2.1). The existence of
such an integral, in of view 2.7 contradicts with condition (2.9). Consequently, the integral
(4.1) is unique.

]

Concluding the study of the problem, we note that the complete integral z(7,t,0,¢) of
inhomogeneous system (1.6) under the hypotheses of Theorem 4.1 can be written as

x(r,t,0,c) = X(7,t,0)c+ x*(7,t,0), (4.3)

where x*(7, ¢, 0) is a solution of problem (1.6)-(1.7). The general solution in the form of Cauchy

with the initial condition z|,_o = u(t) for arbitrary differentiable vector-function u € C(R™),
can be obtained by using the method of the variation arbitrary constants, from complete integral
(4.3) as

(7, t,t —er,u(t —er)) = X(1,t,t — eT)u(t — er) + ™ (7, t,t — eT). (4.4)

Next formula (4.1), in accordance with relation (4.4), is a particular oscillatory solution

T+60
(T, t,t —er) = / Gol(s, T, t,t —eT) fo(s,t —eT + es)ds. (4.5)

T

It is obvious, that solution (4.5) is w-periodic in ¢, but in view incommensurability of the
periods 6 = wy, Wi, ...,w,, it can not be f-periodic in 7.

For t = et system of equations (1.6) reduces to the system of ordinary differential equations
of the form

@ = P(r,eT)z + f(1,eT), (4.6)
dr
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which in accordance with formula (4.5) has the solution:

7460
x*(7,er,0) = /Ga(s,r,eT,O)fa(s,es)ds. (4.7)

T

According to Bohr’s theorem, solution (4.7) is a quasi-periodic solution of system (4.6) with

frequency basis vy = %”, vy =25 ... v, = 2= This leads to the following statement.

wy’ Wm

Corollary 4.1. Under the hypotheses of Theorem 4.1 quasi-periodic system (1.6) in T has a
unique quasi-periodic solution (4.7).

In the conclusion we note that Theorem 4.1 in the terms of Green’s function, originally
proposed by a convenient method to the study of multiperiodic solutions of linear systems with
operator D, on their multiperiodic complete integrals.
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