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other language, including electronically without the written consent of the copyright-holder. In
particular, translations into English of papers already published in another language are not
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The procedure of reviewing a manuscript, established
by the Editorial Board of the Eurasian Mathematical Journal

1. Reviewing procedure
1.1. All research papers received by the Eurasian Mathematical Journal (EMJ) are subject

to mandatory reviewing.
1.2. The Managing Editor of the journal determines whether a paper �ts to the scope of

the EMJ and satis�es the rules of writing papers for the EMJ, and directs it for a preliminary
review to one of the Editors-in-chief who checks the scienti�c content of the manuscript and
assigns a specialist for reviewing the manuscript.

1.3. Reviewers of manuscripts are selected from highly quali�ed scientists and specialists
of the L.N. Gumilyov Eurasian National University (doctors of sciences, professors), other
universities of the Republic of Kazakhstan and foreign countries. An author of a paper cannot
be its reviewer.

1.4. Duration of reviewing in each case is determined by the Managing Editor aiming at
creating conditions for the most rapid publication of the paper.

1.5. Reviewing is con�dential. Information about a reviewer is anonymous to the authors
and is available only for the Editorial Board and the Control Committee in the Field of Ed-
ucation and Science of the Ministry of Education and Science of the Republic of Kazakhstan
(CCFES). The author has the right to read the text of the review.

1.6. If required, the review is sent to the author by e-mail.
1.7. A positive review is not a su�cient basis for publication of the paper.
1.8. If a reviewer overall approves the paper, but has observations, the review is con�den-

tially sent to the author. A revised version of the paper in which the comments of the reviewer
are taken into account is sent to the same reviewer for additional reviewing.

1.9. In the case of a negative review the text of the review is con�dentially sent to the
author.

1.10. If the author sends a well reasoned response to the comments of the reviewer, the paper
should be considered by a commission, consisting of three members of the Editorial Board.

1.11. The �nal decision on publication of the paper is made by the Editorial Board and is
recorded in the minutes of the meeting of the Editorial Board.

1.12. After the paper is accepted for publication by the Editorial Board the Managing
Editor informs the author about this and about the date of publication.

1.13. Originals reviews are stored in the Editorial O�ce for three years from the date of
publication and are provided on request of the CCFES.

1.14. No fee for reviewing papers will be charged.

2. Requirements for the content of a review
2.1. In the title of a review there should be indicated the author(s) and the title of a paper.
2.2. A review should include a quali�ed analysis of the material of a paper, objective

assessment and reasoned recommendations.
2.3. A review should cover the following topics:
- compliance of the paper with the scope of the EMJ;
- compliance of the title of the paper to its content;
- compliance of the paper to the rules of writing papers for the EMJ (abstract, key words

and phrases, bibliography etc.);
- a general description and assessment of the content of the paper (subject, focus, actuality

of the topic, importance and actuality of the obtained results, possible applications);
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- content of the paper (the originality of the material, survey of previously published studies
on the topic of the paper, erroneous statements (if any), controversial issues (if any), and so
on);

- exposition of the paper (clarity, conciseness, completeness of proofs, completeness of bib-
liographic references, typographical quality of the text);

- possibility of reducing the volume of the paper, without harming the content and under-
standing of the presented scienti�c results;

- description of positive aspects of the paper, as well as of drawbacks, recommendations for
corrections and complements to the text.

2.4. The �nal part of the review should contain an overall opinion of a reviewer on the
paper and a clear recommendation on whether the paper can be published in the Eurasian
Mathematical Journal, should be sent back to the author for revision or cannot be published.
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RYSKUL OINAROV

(to the 70th birthday)

On February 26, 2017 was the 70th birthday of Ryskul Oinarov, mem-
ber of the Editorial Board of the Eurasian Mathematical Journal, pro-
fessor of the Department Fundamental Mathematics of the L.N. Gumi-
lyov Eurasian National University, doctor of physical and mathematical
sciences (1994), professor (1997), honoured worker of education of the
Republic of Kazakhstan (2007), corresponding member of the National
Academy of Sciences of the Republic of Kazakhstan (2012). In 2005 he
was awarded the breastplate �For the merits in the development of science
in the Republic of Kazakhstan�, in 2007 and 2014 the state grant �The
best university teacher�, in 2016 the Order �Kurmet� (= �Honour�).

R. Oinarov was born in the village Kul'Aryk, Kazalinsk district, Kyzy-
lorda region. In 1969 he graduated from the S.M. Kirov Kazakh State University (Almaty).
Starting with 1972 he worked at the Institute of Mathematics and Mechanics of the Academy of
Sciences of the Kazakh SSR (senior engineer, junior researcher, senior researcher, head of a lab-
oratory). In 1981 he defended of the candidate of sciences thesis �Continuity and Lipschitzness
of nonlinear integral operators of Uryson's type� at the Tashkent State University of the Uzbek
SSR and in 1994 the doctor of sciences thesis �Weighted estimates of integral and di�erential
operators� at the Institute of Mathematics and Mechanics of the Academy of Sciences of the
Kazakh SSR.

Starting from 2000 he has been working as a professor at the L.N. Gumilyov Eurasian
National University

Scienti�c works of R. Oinarov are devoted to investigation of linear and non-linear integral
and discrete operators in weighted spaces; to studying problems of the well-posedness of dif-
ferential equations; to weighted inequalities; to embedding theorems for the weighted function
spaces of Sobolev type and their applications to the qualitative theory of linear and quasilin-
ear di�erential equations. A certain class of integral operators is named after him - integral
operators with Oinarov's kernels or Oinarov condition. On the whole, the results obtained by
R. Oinarov have laid the groundwork for new perspective directions in the theory of function
spaces and its applications to the theory of di�erential equations.

R. Oinarov has published more than 100 scienti�c papers. The list of his most important
publications may be seen on the web-page

https : //scholar.google.com/citations?user = NzXYMS4AAAAJhl = ruoi = ao

Under his supervision 26 theses have been defended: 1 doctor of sciences thesis, 15 candidate
of sciences theses and 10 PhD theses. The Editorial Board of the Eurasian Mathematical
Journal congratulates Ryskul Oinarov on the occasion of his 70th birthday and wishes him
good health and new achievements in mathematics and mathematical education.
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SOME NEW INEQUALITIES FOR THE FOURIER TRANSFORM

FOR FUNCTIONS IN GENERALIZED LORENTZ SPACES
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Dedicated to the 70th birthday of Professor Ryskul Oinarov

Key words: Fourier transform, Hausdor�-Young's inequality, generalized Lorentz spaces,
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Abstract. The classical Hausdor�-Young and Hardy-Littlewood-Stein inequalities, relating
functions on R and their Fourier transforms, are extended and complemented in various ways.
In particular, a variant of the Hardy-Littlewood-Stein inequality covering the case p > 2 is
proved and two-sided estimates are derived.

1 Introduction

Let

f̂(t) =
1√
2π

∫ ∞
−∞

f(x)e−itxdx, t ∈ R,

be the Fourier transform of a function f ∈ L1(R).
The following well-known inequalities relate some integral properties of functions and their

Fourier transforms.
Let 1 < p < 2, p′ = p

p−1
, and 0 < q 6∞. Then we have the following inequalities

‖f̂‖Lp′ (R) 6 c1‖f‖Lp(R), (1.1)

‖f̂‖Lp′,q(R) 6 c2‖f‖Lp,q(R), (1.2)

where Lp,q(R) is the classical Lorentz space. These inequalities are called the Hausdor�-Young
inequality and the Hardy-Littlewood-Stein inequality, respectively (see e.g. [5], [13] and [14]).

There are similar inequalities for Fourier transform f̂ = {f̂n} on the interval [0, 1], where f̂n
are the Fourier coe�cients of functions with respect to a bounded orthonormal systems (see
[5], [15] and some new developments related to this paper in [6] and [10]).

In [11] and [12] the authors introduced new function spaces, which they called net spaces.
Using their properties, Hausdor�-Young type inequalities and its reverse inequalities in Lorentz
spaces were obtained.

Let 1 < p < 2 and 0 < q 6∞. Then for the Fourier transform the following inequalities

c1(p, q)‖H‖Lp,q(R,dx) 6 ‖f̂‖Lp′,q(R,dx) 6 c2(p, q)‖f‖Lp,q(R,dx) (1.3)
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hold, where Hf(x) is the following Hardy-type operator

Hf(x) =
1

|x|

∫ |x|
−|x|

f(t)dt.

Note that the left-hand side of inequality (1.3) holds for 1 < p <∞. In particular, the following
holds.

Let 1 < p < 2 and 0 < q 6∞. If |f(x)| 6 c|Hf(x)|, then

‖f̂‖Lp′,q(R,dx) ∼ ‖f‖Lp,q(R,dx).

Let 2 < p <∞ and 0 < q 6∞. If |f̂(x)| 6 c|Hf̂(x)|, then

‖f̂‖Lp′,q(R,dx) ∼ ‖f‖Lp,q(R,dx).

The aim of this paper is to derive both upper and lower estimates of the norm of the Fourier
transform in generalized Lorentz spaces. This means that also the reversed inequalities to (1.1)
and (1.2) are obtained for the Fourier transform on R.

The main results are formulated in Section 3. The proofs can be found in Section 4 and in
Section 2 we have presented some necessary preliminaries.

Conventions The letter c(c1, c2, etc.) means a constant which does not dependent on the
involved functions and it can be di�erent in di�erent occurences. Moreover, for A,B > 0 the
notation A ∼ B means that there exists positive constants a1 and a2 such that a1A 6 B 6 a2A.

2 Preliminaries

Let f be a measurable function on R and µ is the Lebesgue measure. The distribution function
m(σ, f) and the nonincreasing rearrangement f ∗ of a function f are de�ned as follows:

m(σ, f) := µ {x ∈ R : |f(x)| > σ} ,

f ∗(t) := inf {σ : m(σ, f) 6 t} .
Let ω be a nonnegative function on [0,∞). The generalized Lorentz space Λq(ω) consists of

all functions f on R such that ‖f‖Λq(ω) <∞, where

‖f‖Λq(ω,R) :=


(∫∞

0
(f ∗(t)ω(t))q dt

t

) 1
q for 0 < q <∞,

sup
t>0

f ∗(t)ω(t) for q =∞,

where f ∗ is the nonincreasing rearrangement of the function f and ω denotes a positive and
measurable function on (0,∞). These spaces Λq(ω) coincide with the classical Lorentz spaces

Lpq in the case ω(t) = t
1
p , 1 < p <∞ (see [9] and also e.g. [2]).

Let M be the class of all Lebesgue measurable functions on (0,+∞) and
M+ := {g ∈ M : g > 0}. M↓ denotes the cone of all nonincreasing functions from M+.
Suppose that u, υ, ω ∈M+. Let

G1
pq = G1

pq(ω, u, υ; M↓) := sup
g∈M↓

(∞∫
0

(
t∫

0

g(s)u(s)ds

)q
ω(t)dt

) 1
q

(∞∫
0

|g(t)|pυ(t)dt

) 1
p

,
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and

G2
pq = G2

pq(ω, u, υ; M↓) := sup
g∈M↓

(∞∫
0

(∞∫
t

g(s)u(s)ds

)q
ω(t)dt

) 1
q

(∞∫
0

|g(t)|pυ(t)dt

) 1
p

.

The constants G1
pq and G

2
pq are obviously closely related (as operator norms) to the modern

theory of Hardy type inequalities (see e.g. the books [7] and [8] and references therein).
In [1], [3], [8] and [7] the characterizations of these functionals in terms of weight functions

were proved.

3 Main results

For our �rst main result we need to de�ne the function f as follows

f(t) := sup
y>t

1

2y

∣∣∣∣∫ y

−y
f(s)ds

∣∣∣∣ , t, y > 0.

Theorem 3.1. Let 0 < p <∞, 0 < q <∞. Let ν, µ be weight functions such that

G1
pq

(
νq(1

t
)

t
, 1,

µp(t)

t
; M↓

)
<∞,

G2
pq

((
tν(1

t
)
)q

t
,
1

t
,
µp(t)

t
; M↓

)
<∞.

Then, for all f ∈ Λp(µ,R), the following inequality

‖f̂‖Λq(ν,R) 6 c1‖f‖Λp(µ,R) (3.1)

holds.

Inequality (3.1) (and similar ones futher on) is understood in the sense that if the right-
hand side of the inequality is �nite, then the left-hand side is also �nite and the corresponding
inequality holds.

Remark 1. For the case ν(t) = t
1

p
′ , µ(t) = t

1
p , 1 < p < ∞, 0 < q < ∞, the inequality (3.1)

implies the following inequality

‖f̂‖Lp′q 6 c2‖f‖Lpq , (3.2)

e.g. an estimate from below is obtained for the norm ‖f‖Lpq by the Fourier transform of the
function f.We especially emphasize that Hardy-Littlewood-Stein inequality (1.2) does not cover
the case 2 6 p <∞. Inequality (3.2) was obtained in [11].

Our next main result is a generalization of inequality (1.2).

Theorem 3.2. Let 0 < p <∞, 0 < q <∞. Let ν, µ be the weight functions such that

G1
pq

(
νq
(

1
t

)
t

, 1,
µp(t)

t
; M↓

)
<∞,
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G2
pq


(
t
1
2ν
(

1
t

))q
t

,
1

t
1
2

,
µp(t)

t
; M↓

 <∞.

Then, for all f ∈ Λp(µ,R), the following inequality

‖f̂‖Λq(ν,R) 6 c3‖f‖Λp(µ,R)

holds.

Corollary 3.1. Let 0 < p <∞. Let ν, µ be the weight functions such that

G1
p

(
νp
(

1
t

)
t

, 1,
µp(t)

t
; M↓

)
<∞,

G2
p


(
t
1
2ν
(

1
t

))p
t

,
1

t
1
2

,
µp(t)

t
; M↓

 <∞.

Then, for all f ∈ Λp(µ,R), the following two-sided estimates

c4‖f‖Λp(µ,R) 6 ‖f̂‖Λp(ν,R) 6 c5‖f‖Λp(µ,R)

holds.

Remark 2. In particular, if ν(t) = t
1

p
′ , µ(t) = t

1
p , 0 < q <∞, 1 < p < 2, then we have

c6‖f‖Lpq 6 ‖f̂‖L
p
′
q
6 c7‖f‖Lpq . (3.3)

We note that the left-hand side inequality in (3.3) follows by the results in [11] and [12],
where the net spaces are used.

De�nition 1. We say that a function f on R is generalized monotone if there exists some
constant M > 0 such that

|f(x)| 6M
1

2x

∣∣∣∣∫ x

−x
f(t)dt

∣∣∣∣ , x > 0.

This condition is a more general condition than monotonicity, quasi-monotonicity and GM
conditions of generalized monotonicity in [4].

Corollary 3.2. Let f or f̂ be a generalized monotone function, 0 < p <∞. Let ν, µ be weight
functions such that

G1
p

(
νp
(

1
t

)
t

, 1,
µp(t)

t
; M↓

)
<∞,

and

G2
p


(
t
1
2ν
(

1
t

))p
t

,
1

t
1
2

,
µp(t)

t
; M↓

 <∞.

Then, for all f ∈ Λp(µ,R), the following equivalence

‖f̂‖Λp(ν,R) ∼ ‖f‖Λp(µ,R)

holds.
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4 Proofs of the main results

Proof of Theorem 3.1: Let f ∈ Λp(µ,R). Let y > 0 and note that

I := sup
y>t

1

2y

∣∣∣∣∫ y

−y
f̂(s)ds

∣∣∣∣ = sup
y>t

1

2y
√

2π

∣∣∣∣∫ y

−y

∫ +∞

−∞
f(x)e−isxdxds

∣∣∣∣
6 sup

y>t

1

2y
√

2π

∫ +∞

−∞
|f(x)|

∣∣∣∣∫ y

−y
e−isxds

∣∣∣∣ dx
= sup

y>t

1

y
√

2π

∫ ∞
−∞
|f(x)|

∣∣∣∣sin yxx
∣∣∣∣ dx 6 sup

y>t

1

y
√

2π

∫ +∞

0

f ∗(x) min

(
y,

2

x

)
dx.

Consider Et ⊂
{
x ∈ R : |f(x)| > f ∗

(
1
t

)}
such that |Et| = t.Moreover, we de�ne the functions

f0 and f1 as follows:

f0(x) =

{
f(x)− f ∗(1

t
), if x ∈ E(t),

0, if x /∈ E(t),
(4.1)

and

f1(x) =

{
f ∗(1

t
), if x ∈ E(t),

f(x), if x /∈ E(t).
(4.2)

Let f = f0 + f1 and by using the inequality (for x > 0) f ∗(x) 6 f ∗0
(
x
2

)
+ f ∗1

(
x
2

)
, we obtain

the following estimate from above:

I 6 sup
y>t

1

y
√

2π

∫ ∞
0

(
f ∗0

(x
2

)
+ f ∗1

(x
2

))
min

(
y,

2

x

)
dx

= sup
y>t

2

y
√

2π

∫ ∞
0

(f ∗0 (x) + f ∗1 (x)) min

(
y,

1

x

)
dx.

Now, by considering (4.1) and (4.2), we �nd that

sup
y>t

2

y
√

2π

[∫ 1
t

0

(
f ∗(x)− f ∗

(
1

t

))
min

(
y,

1

x

)
dx

+

∫ 1
t

0

f ∗
(

1

t

)
min

(
y,

1

x

)
dx+

∫ ∞
1
t

f ∗(x) min

(
y,

1

x

)
dx

]

= sup
y>t

2

y
√

2π

∫ 1
t

0

f ∗(x) min

(
y,

1

x

)
dx+ sup

y>t

2√
2πy

∫ ∞
1
t

f ∗(x) min

(
y,

1

x

)
dx

6 sup
y>t

2√
2π

∫ 1
t

0

f ∗(x)dx+ sup
y>t

4

y
√

2π

∫ ∞
1
t

f ∗(x)

x
dx
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=
2√
2π

(∫ 1
t

0

f ∗(x)dx+
1

t

∫ ∞
1
t

f ∗(x)

x
dx

)
.

Hence, we have the following estimate:

sup
y>t

1

2y

∣∣∣∣∫ y

−y
f̂(s)ds

∣∣∣∣ 6 2√
2π

(∫ 1
t

0

f ∗(x)dx+
1

t

∫ ∞
1
t

f ∗(x)

x
dx

)
.

Thus, we get that

‖f̂‖Λq(ν,R) =

(∫ +∞

0

(
f̂(t)ν(t)

)q dt
t

) 1
q

6
2√
2π

(∫ +∞

0

((∫ 1
t

0

f ∗(x)dx+
1

t

∫ ∞
1
t

f ∗(x)

x
dx

)
ν(t)

)q
dt

t

) 1
q

6
2

1+( 1
q
−1)

+

√
2π

(∫ +∞

0

(
ν(t)

∫ 1
t

0

f ∗(x)dx

)q
dt

t

) 1
q

+

(∫ +∞

0

(
ν(t)

t

∫ +∞

1
t

f ∗(x)
dx

x

)q
dt

t

) 1
q



=
2

1+( 1
q
−1)

+

√
2π

[(∫ +∞

0

(
ν

(
1

t

)∫ t

0

f ∗(x)dx

)q
dt

t

) 1
q

+

(∫ +∞

0

(
tν

(
1

t

)∫ +∞

t

f ∗(x)
dx

x

)q
dt

t

) 1
q

]
.

By using the fact that

G1
pq

(
νq(1

t
)

t
, 1,

µp(t)

t
; M↓

)
<∞, G2

pq

((
tν(1

t
)
)q

t
,
1

t
,
µp(t)

t
; M↓

)
<∞

we obtain that

‖f̂‖Λq(ν,R) 6
2

1+( 1
q
−1)

+

√
2π

(
G1
pq

(
νq(1

t
)

t
, 1,

µp(t)

t
; M↓

)
+

+G2
pq

((
tν(1

t
)
)q

t
,
1

t
,
µp(t)

t
; M↓

))
‖f‖Λp(µ,R) 6 c1‖f‖Λp(µ,R).

�
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Proof of Theorem 3.2: Let f ∈ Λp(µ,R). Let f = f0 + f1 and for t ∈ [0,∞), by using the
obvious inequalities

‖f̂‖L2,∞ 6 c1‖f‖L2,1 ,

‖f̂‖L∞ 6 c2‖f‖L1

and f̂ ∗(t) 6 f̂ ∗0
(
t
2

)
+ f̂ ∗1

(
t
2

)
, we can estimate f̂ ∗(t) from above as follows:

f̂ ∗(t) 6 f̂ ∗0

(
t

2

)
+

(
2

t

) 1
2
(
t

2

) 1
2

f̂ ∗1

(
t

2

)

6 c3

∫ +∞

0

f ∗0 (x)dx+
c3

t
1
2

∫ +∞

0

x−
1
2f ∗1 (x)dx.

Consider Et ⊂
{
x ∈ R : |f(x)| > f ∗

(
1
t

)}
such that |Et| = t. We de�ne the functions f0 and

f1 by

f0(x) =

{
f(x)− f ∗(1

t
), if x ∈ E(t),

0, if x /∈ E(t),
(4.3)

f1(x) =

{
f ∗(1

t
), if x ∈ E(t),

f(x), if x /∈ E(t).
(4.4)

Now, by using (4.3) and (4.4) we obtain that∫ +∞

0

f ∗0 (x)dx =

∫ 1
t

0

(
f(x)− f ∗

(
1

t

))
dx 6

∫ 1
t

0

f ∗(x)dx−
f ∗(1

t
)

t
. (4.5)

Similary, for the second integral we have that

1

t
1
2

∫ +∞

0

x−
1
2f ∗1 (x)dx =

1

t
1
2

(∫ 1
t

0

x−
1
2f ∗

(
1

t

)
dx+

∫ +∞

1
t

x−
1
2f ∗(x)dx

)

6
2f ∗(1

t
)

t
+

1

t
1
2

∫ +∞

1
t

x−
1
2f ∗(x)dx. (4.6)

By combinig (4.5) and (4.6) we �nd that∫ 1
t

0

f ∗(x)dx−
f ∗(1

t
)

t
+

2f ∗(1
t
)

t
+

1

t
1
2

∫ +∞

1
t

x−
1
2f ∗(x)dx

=

∫ 1
t

0

f ∗(x)dx+
f ∗(1

t
)

t
+

1

t
1
2

∫ +∞

1
t

x−
1
2f ∗(x)dx

6 2

∫ 1
t

0

f ∗(x)dx+
1

t
1
2

∫ +∞

1
t

x−
1
2f ∗(x)dx. (4.7)
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According to (4.7), we get that

‖f̂‖Λq(ν,R) 6 c4

(∫ +∞

0

(
ν(t)

∫ 1
t

0

f ∗(x)dx+ ν(t)
1

t
1
2

∫ +∞

1
t

x−
1
2f ∗(x)dx

)q
dt

t

) 1
q

.

Hence, by using Minkowski's inequality and by making a change of variables in the outer
integrals, we get that

‖f̂‖Λq(ν,R) 6 c4

(∫ +∞

0

(
ν

(
1

t

)∫ t

0

f ∗(x)dx

)q
dt

t

) 1
q

+c4

(∫ +∞

0

(
t
1
2ν

(
1

t

)∫ +∞

t

f ∗(x)
dx

x
1
2

)q
dt

t

) 1
q

.

By using the fact that

G1
pq

(
νq
(

1
t

)
t

, 1,
µp(t)

t
; M↓

)
<∞

and

G2
pq


(
t
1
2ν
(

1
t

))q
t

,
1

t
1
2

,
µp(t)

t
; M↓

 <∞,

we have that

‖f̂‖Λq(ν,R) 6 c5

(
G1
pq

((
ν
(

1
t

))q
t

, 1,
µp(t)

t
; M↓

)

+G2
pq


(
t
1
2ν
(

1
t

))q
t

,
1

t
1
2

,
µp(t)

t
; M↓

 ‖f‖Λp(µ,R)

6 c6‖f‖Λp(µ,R).

�
Proof of Corollaries: The proofs of Corollaries 3.1 and 3.2 follow directly from our Theo-

rems 3.1 and 3.2 and the results in the papers [11] and [12]. �
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