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RYSKUL OINAROV
(to the 70th birthday)

On February 26, 2017 was the 70th birthday of Ryskul Oinarov, mem-
ber of the Editorial Board of the Eurasian Mathematical Journal, pro-
fessor of the Department Fundamental Mathematics of the L.N. Gumi-
lyov Eurasian National University, doctor of physical and mathematical
sciences (1994), professor (1997), honoured worker of education of the
Republic of Kazakhstan (2007), corresponding member of the National
Academy of Sciences of the Republic of Kazakhstan (2012). In 2005 he
was awarded the breastplate “For the merits in the development of science
in the Republic of Kazakhstan”, in 2007 and 2014 the state grant “The
best university teacher”, in 2016 the Order “Kurmet” (= “Honour”).

R. Oinarov was born in the village Kul’Aryk, Kazalinsk district, Kyzy-
lorda region. In 1969 he graduated from the S.M. Kirov Kazakh State University (Almaty).
Starting with 1972 he worked at the Institute of Mathematics and Mechanics of the Academy of
Sciences of the Kazakh SSR (senior engineer, junior researcher, senior researcher, head of a lab-
oratory). In 1981 he defended of the candidate of sciences thesis “Continuity and Lipschitzness
of nonlinear integral operators of Uryson’s type” at the Tashkent State University of the Uzbek
SSR and in 1994 the doctor of sciences thesis “Weighted estimates of integral and differential
operators” at the Institute of Mathematics and Mechanics of the Academy of Sciences of the
Kazakh SSR.

Starting from 2000 he has been working as a professor at the L.N. Gumilyov Eurasian
National University

Scientific works of R. Oinarov are devoted to investigation of linear and non-linear integral
and discrete operators in weighted spaces; to studying problems of the well-posedness of dif-
ferential equations; to weighted inequalities; to embedding theorems for the weighted function
spaces of Sobolev type and their applications to the qualitative theory of linear and quasilin-
ear differential equations. A certain class of integral operators is named after him - integral
operators with Oinarov’s kernels or Oinarov condition. On the whole, the results obtained by
R. Oinarov have laid the groundwork for new perspective directions in the theory of function
spaces and its applications to the theory of differential equations.

R. Oinarov has published more than 100 scientific papers. The list of his most important
publications may be seen on the web-page

https : //scholar.google.com/citations?user = Nz XY MS4AAAAJThl = ruoi = ao

Under his supervision 26 theses have been defended: 1 doctor of sciences thesis, 15 candidate
of sciences theses and 10 PhD theses. The Editorial Board of the Eurasian Mathematical
Journal congratulates Ryskul Oinarov on the occasion of his 70th birthday and wishes him
good health and new achievements in mathematics and mathematical education.
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EMBEDDING RELATIONS BETWEEN WEIGHTED COMPLEMENTARY
LOCAL MORREY-TYPE SPACES AND WEIGHTED
LOCAL MORREY-TYPE SPACES

A. Gogatishvili, R.Ch. Mustafayev, T. Unver

Communicated by V.D. Stepanov
Dedicated to the 70" birthday of Professor Ryskul Oinarov

Key words: local Morrey-type spaces, embeddings, iterated Hardy inequalities
AMS Mathematics Subject Classification: 46E30, 26D10.

Abstract. In this paper embedding relations between weighted complementary local Morrey-
type spaces ‘LM, (R",v) and weighted local Morrey-type spaces LM, (R™ v) are charac-
terized. In particular, two-sided estimates of the optimal constant ¢ in the inequality

a2

( /0 h ( /B J, J@r) da:) " () dt) ”
< c(/ooo <[B(O’t) F@) o () dx) ") dt) " s

are obtained, where py, pa, q1, g2 € (0,00), pa < g2 and uy, ug and vy, v9 are weights on (0, 00)
and R", respectively. The proof is based on the combination of the duality techniques with
estimates of optimal constants of the embedding relations between weighted local Morrey-type
and complementary local Morrey-type spaces and weighted Lebesgue spaces, which allows to
reduce the problem to using of the known Hardy-type inequalities.

1 Introduction

The classical Morrey spaces M, x = M, ,\(R™), were introduced by C. Morrey in [26] in order
to study regularity questions which appear in the Calculus of Variations, and defined as follows:
for0<A<nand1<p<oao,

A-n
M,y = {feLLOC(R”)foHMM = sup rp||f||Lp<B<x,r>><oo},

z€R™, r>0

where B(x,r) is the open ball centered at x of radius r.

Note that M, o(R") = Loo(R™) and M, ,(R™) = L,(R™).

These spaces describe local regularity more precisely than Lebesgue spaces and appeared to
be quite useful in the study of the local behavior of solutions to partial differential equations,
a priori estimates and other topics in the theory of partial differential equations (cf. [16]).
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The classical Morrey spaces were widely investigated during the last decades, including the
study of classical operators of Harmonic and Real Analysis - maximal, singular and potential
operators - in generalizations of these spaces (the so-called Morrey-type spaces). The local
Morrey-type spaces and the complementary local Morrey-type spaces introduced by Guliyev in
his doctoral thesis [23].

The research on local Morrey-type spaces mainly includes the study of the boundedness of
classical operators in these spaces (see, for instance, |2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 24]),
and the investigation of the functional-analytic properties of them and relation of these spaces
with other known function spaces (see, for instance, [12, 1, 27, 17, 18]). We refer the reader to
the surveys [2] and [3] for a comprehensive discussion of the history of LMy, and LM,

Let A be any measurable subset of R”, n > 1. By 9t(A) we denote the set of all measurable
functions on A. The symbol 9" (A) stands for the collection of all f € 9(A) which are
non-negative on A. The family of all weight functions (also called just weights) on A, that is,
measurable, positive and finite a.e. on A, is given by W(A).

For p € (0, 00|, we define the functional || - ||, 4 on M(A) by

1£ A:z{ ([ f@Pdz)” i p<oo
P, esssupy | f(x)] if  p=o0

If w € W(A), then the weighted Lebesgue space L,(w, A) is given by

Ly(w, A) = Ly w(A) == {f € MA) : |[fllpwa = [[fwlpa < oo}

When A = R", we often write simply L, ,, and L,(w) instead of L, ,(A) and L,(w, A), respec-
tively.

Throughout the paper, we always denote by ¢ and C' positive constants, which are indepen-
dent of main parameters but it may vary from line to line. However a constant with subscript
such as ¢; does not change in different occurrences. By a < b, (b 2 a) we mean that a < \b,
where A > 0 depends on inessential parameters. If a < b and b < a, we write a =~ b and say
that a and b are equivalent. We will denote by 1 the function 1(z) =1, x € R.

Given two quasi-normed vector spaces X and Y, we write X =Y if X and Y are equal in
the algebraic and the topological sense (their quasi-norms are equivalent). The symbol X — Y
(Y <= X) means that X C Y and the natural embedding I of X in Y is continuous, that is,
there exist a constant ¢ > 0 such that ||z||y < ¢||z||x for all z € X. The best constant of the
embedding X — Y is || I||x_vy-

The weighted local Morrey-type spaces LMy, (R™, v) and weighted complementary local
Morrey-type spaces LMy (R, v) are defined as follows: Let 0 < p,6 < oco. Assume that
w € M (0,00) and v € W(R").

LMpQ,w(Rn7U) = {f € L;JO,S)(]RH) : ||f”LMp9,w(R"’U) < OO}’

where
£ 2ty 0,0) 2= ([ lp 0. g0 0,00y
and
CLMpH,w(Rn7U) = {f € mt>OLP,U(CB(07t)) : ’|f”cLMp97w(R",v) < OO},
where

Hf||°LMp9,w(Rn,u) = HHpr,ny(o,r) 0,0,(0,00)"
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Remark 1. In [5] and [7] it was proved that the spaces LMy, (R") := LMy, (R" 1) and
‘LM, (R") := “LM,,,(R", 1) are non-trivial, i.e. consists not only of functions equivalent to
0 on R”, if and only if

l|lwllo,(t,00) < 00, for some t>0, (1.1)

and
|lwllo 0,6 < o0, for some t>0, (1.2)

respectively. The same conclusion is true for LM, (R", v) and LM,y ,(R™ v) for any v €
W(R™).

The proof of the following statement is straightforward.
Lemma 1.1. (i) If ||w]|g,¢,00) = 00 for some t; > 0, then
f€ LMy (R v)=f=0 ae on B(0,t).
(ii) If ||wllo,0,) = 00 for some ty > 0, then
fe LM, (R 0)=f=0 a.e on CB(O,tQ).
Let 0 < 8 < co. We denote by
Qp: = {w e M (0,00) : 0 < [|wllo,t00) < 00, t >0},
Qp: = {w e M (0,00) : 0 < ||wllo, 0, < o0, t>0}.

Let v € W(R"). It is easy to see that LM, (R",v) and “LM,y,(R™ v) are quasi-normed
vector spaces when w € Qy and w € €Yy, respectively.

The following statements are immediate consequences of Fubini’s Theorem and were ob-
served in [5] and [7], for v = 1, respectively.

Lemma 1.2. Let 0 < p < oo and v € W(R"). Then
(i) LMy (R™ v) = Ly(w), where w(z) := v(x)[|w]|p,(jal,0), © € R™
(i) LAy (R, 0) = Ly(w), where w(z) := o(z) [wllp o eps © € R

Recall that the embedding relations between weighted local Morrey-type spaces and
weighted Lebesgue spaces, that is, the embeddings

L, (v1) = LMp,0.,(R™, vg),
o (V1) = LM 0., (R™ v5),
(v1)
(v1)

A~ N S/
e S G S G —
Sy Ot = W
~— O~ N

L
L, (v1) <= LM, (R", vq),
L, (v1) « LMp297w(R”,vg)

are completely characterized in [27].

Our principal goal in this paper is to investigate the embedding relations between weighted
complementary local Morrey—type spaces and weighted local Morrey type spaces and vice versa,
that is, the embeddings

CLMplelvwl <Rn’ Ul) = LMP292,w2 (Rny U2)>
LMPl@lvwl <Rn7 Ul) — cLMpzeg,wQ (Rn7 U2)‘
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The approach used in this paper consists of a the duality argument combined with estimates of
optimal constants of embeddings (1.3) - (1.6), which allows us to reduce the problem to using
the following Hardy-type inequalities

p7u7(07')||q7w7(07oo) S c ||fH9,’U,(0,00)7 f e mt—‘r(O’ OO)’ (1'9)

115" f

with
(H*f)(t) ::/t f(r)ydr, t>0,

where wu, v, w are weights on (0,00) and 0 < p, ¢ < 00, 1 < 0 < oo. There exists different
criteria for the validity of these inequalities (for more detailed information see, for instance,
[19] and [20]). We will use characterizations from [21] and [22].

Note that in view of Lemma 1.2, embeddings (1.7) - (1.8) contain embeddings (1.3) - (1.6)
as a special case. Moreover, by the change of variables x = y/|y|*> and ¢ = 1/7, it is easy to see
that (1.8) is equivalent to the embedding

c‘L*]\4pl@17@1 (an @1) — LMngQ,(:JQ (Rn7 62)7

where 3;(y) = vi(y/|y/*)|y|~*"/? and @;(7) = 77%%w;(1/7), i = 1,2. This abservation allows
us to concentrate our attention on characterization of (1.7). On the negative side of things
we have to admit that the duality approach works only in the case when, in (1.7) - (1.8), one
has po < 6. Unfortunately, in the case when py > 65 the problem of characterization of these
embeddings remains open.

In particular, we obtain two-sided estimates of the optimal constant ¢ in the inequality

a2

a1

< /OOO ( /B<o,t> Jlayten df’f) " ua(t) dt> ;
) C< /0 OO (/°B<o,t> flefulz) dx) "t dt) "

where p1, p2, ¢1, g2 € (0,00), pa < g2 and uy, us and vy, vy are weights on (0,00) and R™,
respectively.

The paper is organized as follows. We start with formulations of our main results in Sec-
tion 2. The proofs of the main results are presented in Section 3.

2 Statement of the main results

We adopt the following usual conventions.
Convention 1. (i) Throughout the paper we put 0/0 =0, 0 - (+£o0) =0 and 1/(+o0) = 0.

(ii) We put
& if 0<p<l,

P
p/ L &) Zf P = 17
z% if 1<p<oo,
1 if p=oc.
(iii) To state our results we use the notation p — q for 0 < p, ¢ < oo defined by
1 1 1 .
— = - -~ if q<p,

p—=>q q p
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and p — q =00 if ¢ > p.
(iv) If I = (a,b) C R and g is a monotone function on I, then by g(a) and g(b) we mean
the limits limy_,,1 g(t) and limy_,,_ g(t), respectively.

Our main results are the following theorems. Throughout the paper we will denote

% Vit
Viz) = ||v1_11)2||plﬁp2,3(0,x), and V(t,x) == (*)

== (t>0,2>0).
V(t)+V(x)

Theorem 2.1. Let 0 < 0y = py < p; = 0 < oo. Assume that vy, v, € W(R™), w1 € Qp, and
Wo € 992. Then

|| I H cLMplglqwl(R",”L}l)—)LMp2g27w2(R ’U2 ~ H leupl 0, ‘ | ||w2||p27(|"700)||p1—)p2,v1_11}2,R".

Theorem 2.2. Let 0 < py, po, 01, 03 < 00 and 0y # ps < p; = 01. Assume that vy, ve € W(R"),
w1 € g, and wy € Qp,.
(1) If P1 S 92, then

Tl ez

~ —1
p101,wy (R",UQ) ~ Sup Hlelev(O,H)||p1~>p2 ”1 ’U2, Ot Hw2H92, tOO)

(R™,01)— LM
g t€(0,00)

202,w2
(11) If 92 < P1, then

|| I || ‘LM, p101, Wl(R Ul)—>LMp2927u2(R”,’U2)
1

0o 1
_ p1—02 p1—0 P10
~ (/0 H le”pl, (0,]- |)‘ p1—p2,v; 'v2,B(0,t) d( a HwQH@;(t;O))) ’

Theorem 2.3. Let 0 < py, pa, 61, 03 < 00 and Oy = py < p; # 01. Assume that vy, vy € W(R"),
wi € 0991 and wy € 992.
(i) If 01 < po, then

~ -1 .
|| 1 || LMy, 6wy (R™01)=>LMpy0, w, (R™,v2) ™ t S(t)lp ) ||OJ1 ||91,(07t) H ||w2||p2’(|"’°°) ||p1_>p27v171v2,B(0,t)’

(ii) If po < b4, then

I1]] LMy, 9, w0y (R 01)= LMy, 0, 0o (R v2)
1

o0 s
N 01—p2 -0 17re
o (A [ s G v )

-1
+ ||w1||91,(0,oo) H ||w2||p27("|700) Hp1—>p2,vflvg,R"'

In view of Lemma 1.2, Theorems 2.1 - 2.3 are straightforward corrolaries of [27, Theorem 3.1]

and |27, Theorem 4.2].
To state further results we need the following definitions.

Definition 1. Let U be a continuous, strictly increasing function on [0, co) such that U(0) =0
and lim;_,, U(t) = co. Then we say that U is admissible.
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Let U be an admissible function. We say that a function ¢ is U-quasiconcave if ¢ is
equivalent to an increasing function on (0,00) and /U is equivalent to a decreasing function
on (0,00). We say that a U-quasiconcave function ¢ is non-degenerate if

1
lim @(t)zlim—zlim@: imwzo.
t—0+ t—oo p(t)  tooo U(t) =0+ (1)

The family of non-degenerate U-quasiconcave functions is denoted by Q.

Definition 2. Let U be an admissible function, and let w be a non-negative measurable function
on (0,00). We say that the function ¢, defined by

0=V [ GED T e 0.,

is a fundamental function of w with respect to U. One will also say that w(7) dr is a represen-
tation measure of ¢ with respect to U.

Remark 2. Let ¢ be the fundamental function of w with respect to U. Assume that

/Om%<oo,t>o, /Olw((]T()T;iT:/lww(T)dr:oo.

Then ¢ € Qy.

Remark 3. Suppose that ¢(x) < oo for all z € (0,00), where ¢ is defined by

¢(x) = esssup U(t) ess sup M, t € (0,00).
te(0,z) TE(t,00) (T)
! ! a0 0
t w(t
lim sup w(t) = limsup —— = limsup —= = limsup —= =0,
t~>0+p ®) t%Jroop w(t) tﬁ0+p w(t) t~>+oop Ul(t)
then ¢ € Qu.

Theorem 2.4. Let 0 < py, pa, 01, O < 00, pa < p1, 61 < pa < Oy, Assume that vy, vy € W(R"),
w1 € Cle and wy € Qp,. Suppose that V is admissible and

o1(z) = sup V() V(x,t) leH(;ll,(o,t) €@

~ 1 .
t€(0,00) VP12

(i) If pr < 05, then

1] LMy, 0y 1y (R™ 01)—= LMy, o (R 02) x:(‘(l)go) p1(z) tes(l(i};)o) V(t, @) [|wallos,t,o0)-

(ii) If 05 < p1, then

1] °LMp, 9, w; (R 01)— LM, (R™,v2)

202,w2

00 _1
~ s i) [Vt el )
~ 1 o ) 2119, (t,00) :

x€(0,00)
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Theorem 2.5. Let 0 < py, po, b1, 05 < 00, po < p1 and py < min{fy,60,}. Assume that
vy, v € W(R™), wy € Wy, and wy € Qy,. Suppose that V is admissible and

o o
ese)i= ([T i - i) €@
0
(i) If max{p1,0,} < 63, then

(Rewp) X SUD pa(x) sup V(¢ )l|walle,t.00)

I
H H °LM, p101, wl(R ’Ul)A)LM 276(0700) tG(0,00)

202,w2

+ [lwnllg, 0,00 S V(®)llwzllos, 1.00);

(ii) If p1 < 0y < 0y, then

[RSIEAY; (R™,v1)—LM, (R™ v2)

p101,w1 p202,w2

00 015050 61—02
~ e 01 —p2
~< [t (sup v<t,m>||wz||92,<t,m>)
0 te(0,00)
1
01 —05
xd( ||wl||‘eﬁpf))l :
ol 502 T (Ol

(111) [f 61 < 92 < p1, then

IRRIETAY: (R™,v1)— LMy, 6, o (R 02)

[e%¢] #
p1—b2
~  sup 902(96)(/ V(t,x)”ﬁezd( IIW2||§SG§O>)>
2€(0,00) 0 )

o0 19
_ ~ 0 p1—02
; leuejw( / v<t>pﬁ02d( ol ;))) ;

(iv) If O < min{py, 61}, then

P161,w1

|| I || CLMplel,wl (anvl)%LMpgﬂg,wQ (R™,v2)

o0 01 —609-01 =Py ~ o0 P p1—02
=~ (/0 (,DQ(ZE) 02 —p3 V(:E)Gl—)m (/O V(t, :E)P1—>92d( — ||Cd2||§;z7020)))

1
e
xd( ||w1||@9ﬁ%2>)
[e'e) #
_ ~ 0 P17%2
+Hw1|!95<0,oo)( / www%d(—||cu2||z;,z,;>)) .
0

Theorem 2.6. Let 0 < 0, < p < 0y < co. Assume that vi,v, € W(R™) N C(R"), w; € Qp,
and wy € (p,.

H I H °LM, po1,w1 (R™01) = LMpg, g (R v2) ~ tes(l(;lgo H ”wl”el,(o |- \)Hoo o7 Lo, B(0,t) ”w2H92, (t,00) -
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Theorem 2.7. Let 0 < 61, 05 < 00 and 0 < p < min{6,,0y}. Assume that vi,v, € W(R™)
such that vy 'vy € C(R™). Suppose that w; € Qy,, wy € Qy, and

0 < [lwy ™ llo-p,(w.00) < 00

holds for all x > 0.
(1) [f 91 < 92, then

I1]] LMpg, w) (R™01)=LMpp, 0y (R™,02)

~ s (Porr [T a i)
x€(0,00) x

1
+f v<t>9ﬁpd( leuglz;g’)) el e

+ lwillg, 0,00 Sup V(#)[lwzllos, 2,003

(11) If 0y < Qh then

|| I H “LMpg, 0y (R™,01) = LMpg, o (R™,v2)

01 —09o

e e] &) 0 0o —p ~ 0102
—
< ([T a( = renatz) )" (s, P lalono
0 x o<r<x
ﬁ
9 102
Xd( enlly 1*’3))
81—)92
e’} T __ 0 Oo—p 0 0
+(/ ([ 7wrra( = ralfion)) ™ Vol i,
ﬁ
6 102
xd( ||wl||91};53))

+ llwrllg, 0,00 up V(#)lw2lls.(t.00)

3 Proofs of main results

Before proceeding to the proof of our main results we recall the following integration in polar
coordinates formula.
We denote the unit sphere {z € R" : || = 1} in R™ by S*~1. If z € R"\{0}, the polar
coordinates of = are
r=lz| € (0,00), x’—meSnl

There is a unique Borel measure o = 0,_; on S™ ! such that if f is Borel measurable on R"
and f >0 or f € L'(R"), then

f(x)dz = /00 forayr"tdo (2" )dr
R™ 0 Jgn

(see, for instance, [15, p. 78]).
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It should be noted that “LM,, g, o, (R, v1) % LM,,0, w, (R, v2) when 0 < py, pa, 61, 05 < o0
and p; < po, where vy, v € W(R"), wy € Wy, and wy € Qp,. To see this, assume that
‘LM, 0, (R", v1) = LM,,0,.,(R™ v5) holds. Then there exist ¢ > 0 such that

1 200 oy R 02) < € I Il eLnt, g, oy BP0n)
holds for all f € 9MT(R™). Let 7 € (0,00) and f € M(R™): supp f C B(0,7). It is easy to see
that
”fHLMPQ%vwz(Rn’”?) = H”pr%U?vB(Ot HHQ ,w2,(0,00)
2 H”prz»vz, B(0,t HeZ wa,(7,00)
2 [[wallos,(r.00) [[f1lp2 .02 BGO.7) (3.1)

and

||f|| LMy 9, 0w, (R?"v1) = H||f||p1,v1,°B(0,t)thwh(om)

= H Hf“plvvth(O’t) H@l,wl,(o,’r)
< llwrllonom) 1 llpr o Bo.m)- (3:2)
Combining (3.1) with (3.2), we can assert that

||W2||92,(T,oo) HprZ,UQ,B(Oﬂ') <c Hw1H91,(0,T) Hf”m,vhB(O,T)'

Since w; € Wy, and wy € Qp,, we conclude that L, (B(0,7),v1) < L,,(B(0,7),v2), which is a
contradiction.
The following lemma is true.

Lemma 3.1. Let 0 < py, po, 01, 65 < 00, py < p1 and py < 03. Assume that vi,vo € W(R"),
w1 € Wy, and wy € Qp,. Then

11]] LMy, 0, w; (R 01)= LMy, 0 (R v2)
1

[n8lis Gy
CLM; 0,y (B 1) Ly (v2(VE*g() 72 )

= sup
geMT(0,00)

wy 72,(0,00)
Proof. By duality, interchanging suprema, we have that

H I H LMy, 0y wy (R™01) = LMy 05 wp (R 02)
"fw‘LA4b2921u2 R™ ’UQ)

FeEM+(Rn) ||f|| °LMp, 6, w, (R™,v1)

1 ( /0 ) ( /B<o,r> Jaymea” dz) 9(7) dr) ;

sup sup +
femt (Rn) ||f|| LMp, 6,0, (R™,01) gEMT(0,00) || ||172
9 7 5 72 .(0,00)
2—p2’ A
00 72
[ ([ seraerd) s
1 0 B(0,7)

= sup - sup .

gEM™(0,00) ||g||p2 fem+(Rn) HfH °LMp, 0, wy (R™01)

ﬁwgpz ,(0,00)
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Applying Fubini’s Theorem, we get that

|| I || °LM, p101,w1 (Rn,vl)—}LMPQQ%MQ (R”,’UQ)

1 ( Wf(V%ﬂ)”<A?gﬁﬁh)M)é

= sup sup
gEM*(0,00) H Hm fem+(rn) ||f||°LMplgl,wl(Rn,v1)
g 92 P2 Wo ) 2 (0 OO)
1
= su I - 3.3
g€W+I()J o) P12 || H CLMP191,w1 (R™v1)—>Lp, (”2( JH*g(|- |)p1 ) ( )
902 ey
2-p2’ e
[l

Proof of Theorem 2.4. By Lemma 3.1, we have that

|| I || °LMp, 0, 0y (R™,01)—=LMp, 0, 0wy (R ,v2)
1
= s — T A,
gEMH(0,00) g sz p101,w; (R™01)—=Lpy (v2 () H*g(|]) 2
02—p2 PQ’ wy 72,(0,00)

Since 01 < po, applying |27, Theorem 4.2, (a)], we obtain that

H I H LM, p101,w1 (]R",l)l)A)L]\Jngzw2 (R™,v2)
1

sup ||W1||917 0,t) 1H*g(] - |)||plz)712 (v 'wa)P2,B(0,t)

te(0,00)
~ sup
gEMT(0,00) "2,(0,00)
By using polar coordinates, we have that
190 Dz s reapnson = WGy mm £ 0,
p1—p2’ A

where
P1P2

o(r) := /Snl(v1 vy)(ra’)ri=r2 " tdo(2), T > 0.

Thus, we obtain that

IT]] LMp, 6, w; (R™01)=LMpy0, w0 (R?,02)

1
sup ||w H* o "
tG(OIO)O) Jeallofoo | g”p%pﬂ%’(o’“

Q

sup
gEMT(0,00)

p2 7(0700)

Taking into account that

/ dr—// (v7 Mg ( m:)fﬂlpé do(z")r" tdr
Sn—1

—/’<mzmﬁ%qu=Vwﬁ%, (3.4)
B(0,t)
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(i) if p; < 65, then applying [21, Theorem 3.2, (i)], we arrive at

X0 eLat, g, oy (B 1) 5 LM, g g (BT 00) P2 L e1(z) S V(E, x)||wallos, (8,00

(i) if 02 < p1, then applying [21, Theorem 3.2, (ii)|, we arrive at

H I ” °LMp, 9,0, (R, 01)=LMpy0, 0y (R™,v2)

1
o] p1—0o
/A sup gpl(l’)(/ V(t,x)l’l—>92d<_||W2||§1?;9020))> 1 2,
x6(07oo) 0 25\,

Remark 4. In view of Remark 3, if

lim sup V(¢ )le”fh (04) — hmsupV( )willoy,0.)
t—0+ t—+o0

= limsup ||w1 /6,0, = lim sup leﬂgi(o’t) =0,
—0+ t—+o00

then ¢ € Q)

V P1 “PQ

Proof of Theorem 2.5. By Lemma 3.1, applying |27, Theorem 4.2, (¢)|, we have that

|| I || °LM p1071,w1 (R ’U1)—>L pols, L,_,2(R Uz)
1
19 DIrs e | ™

#2,(0,00)

091172
(v “v2)P2 B(Ot)d( leum,loff))

wy 72,(0,00)

sup
geM(0,00)

([ et pins
0 P1—P

+ sup
geMT(0,00) ‘

~ ||W1||9_11,(o,oo)

1
01-r2 Y py

By using polar coordinates, we have that

IR wy (R™,01)= LMy 0, (R? 02)

101,
HH*gH ot ~1711)—172 E
~ -1 p1—p2’ L (000)
~ leuel,(o,oo) Sup
geM(0,00) wy 2 (0,00)
( 00 01 012 919;1102 ) %
01— 7
(/0 ||H*g|| 1p1p2 2~)17117*1102 (Ot)d( ||W1||01,1(] 52))
+ sup PLr2 —
geEMT(0,00) w;pg,(O,oo)
\ /

= O+ Cs.

44
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Assume first that p; < 5. By using the characterization of the boundedness of the operator
H* in weighted Lebesgue spaces (see, for instance, |28, 25|), we arrive at

Cr = [lwilly, 000y 5P V(1) l[wsllon, 100

te(0,00)

(i) Let 6, < 6,. By applying [21, Theorem 3.1, (i)], we obtain that

Cy~ sup gpz(x) sup V(t,m) ||W2||62,(t,oo)-
z€(0,00) te(0,00)

Consequently, the proof is completed in this case.
(ii) Let 0 < 61. By using [21, Theorem 3.1, (ii)], we have that

> 0120201 0py ~ o ho
O, ~ (/ oo(a) eV (x) 1*’”( sup V(tax)Hw?H@z,(tPO))
0

te(0,00)

1
o
x d( uwlue"ﬁ?)) |

and the statement follows in this case.
Let us now assume that 6 < p;. Then, using the characterization of the boundedness of
the operator H* in weighted Lebesgue spaces, we have that

1
_ 0~ 9 P1=02
0 ~ ||w1||9;(0,oo)( / v<t>m%d( uwznzgi;))) -

(iii) Let 6; < 605, then [21, Theorem 3.1, (iii)| yields that

19

p1—02

o sup nl ( [ vmw@zd( sz|\§;79;)) ,
z€(0,00) ¢

and these completes the proof in this case.
(iv) If 6, < 6y, then on using |21, Theorem 3.1, (iv)|, we arrive at

01 —09o

0 01—05-01 Do ~ o0 =0

Gy~ ( / mx)WvWHp?( / v<t,x>m%d(— oo, 2 >)) 2
0 0
01— ps 91—1)92
xd leuel (0,z) )

and in this case the proof is completed. O

Remark 5. Assume that po(z) < 0o, > 0. In view of Remark 2, if

1 t O B 910711)2 0, ® L 01p2 t o, B Blejpz o,
0 1

then ¢y € Q)

VP *>P2
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Proof of Theorem 2.6. By Lemma 3.1, applying |27, Theorem 4.2, (b)], we get that

|| I || °LMpg, u; (R™,01)—LMpgy 0y (R™,v2)

sup
te(0,00)

IU - Dllss,wrresyr,B0)

= sup
gEMT(0,00) ”gH 92

UJ2 7(0700)

Recall that, whenever F) G are non-negative measurable functions on (0, 00) and F is non-
increasing, then

esssup F(t)G(t) = esssup F(t) esssup G(7). (3.5)
te(0,00) te(0,00) 7€(0,t)
Observe that
(1 Dllco oy e B0y = Sup | sup (o1 W)v2() " H*g(ly1) = 1 H" 9l 5,00 (3.6)
TE Yy

holds for all ¢ > 0, where 0(7) := (supyy—, vy (y)va(y))”, 7> 0.
By using (3.5), we get that

sup leuel, 0,t) HH*QHOOU (0,t)

[Tl eras (R™ w1)— LM, (R wa) = sup s
PR e T gEM (0,00) 25wy 7 (0,00)
. 1
B |H g||oo,||w1H;lp’(o")f)(-),(o,oo)
= sup
gEM+(0,00) il 52w (0,00)

By using the characterization of the boundedness of H* in weighted Lebesgue spaces, we
obtain that

|| I || cLMpgl’wl (Rnﬂ)l)_)LM 0o ,wo (R ’02

x 1
~ s [l oo ( su0 leum,%)v(sw)

te(0,00)

te(0,00) 0,t) ly|=

= sup ||W2||92,(t 00)
te(0,00)

— sup Jlenllon oo ( s sup o 01 v11<y>v2<y>>
( sup ! 0x|)v11<x>v2<x>)

= sup ||W2||92,(t 00)
t€(0,00)

||W1||91 (0,]- |)H ) :
oo,v; " v2,B(0,t)

]

Proof of Theorem 2.7. By Lemma 3.1, applying |27, Theorem 4.2, (d)|, and using (3.6), we get
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that

1] °LMpo, 0y (R™01)—LMpoy 0o (R™,02)

_ ||H*g|| 9,(0,00)
~ leneh(opo)
?,(0,00)
0o 01 O1p bep %
H* 61—-p d O1-p !
|| g”oof) (0, le”el 0,t)
+4  sup :
geM*(0,00) | ,(0,00)
= O3+ Cy.

Again, by using the characterization of the boundedness of H* in weighted Lebesgue spaces,
we obtain that

Cs = IleHa’f,(o,oo)t sup V(#)llw2lls.(t.00)

0,00)

(i) Let 6, < 65, then by [22, Theorem 4.1|, we have that

Cy~ sup (‘7(33)91%;;/ d( \le\lgeﬁﬁ)
z€(0,00) T

_1
r __ 01 —p 01 —p 61 —p
+ [ V(O = @l o w2162 .00
0

and the statement follows in this case.
(ii) Let 65 < 6y, then [22, Theorem 4.4] yields that

01—09o

- ~ 91—)02
0 0o —p ~
Cin ( L (= rennatin)) ™ (s Pt
0 . o<r<x
ﬁ
0 1702
< =l
01 —09o
0o T P O2—p ~ 01—0.
+(/ (/ V(t)@l“’d( il ﬁ?)) V(@) |02 202
1
_9 0102
<~ alifoz))

and the proof is completed in this case. O]
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