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RYSKUL OINAROV
(to the 70th birthday)

On February 26, 2017 was the 70th birthday of Ryskul Oinarov, mem-
ber of the Editorial Board of the Eurasian Mathematical Journal, pro-
fessor of the Department Fundamental Mathematics of the L.N. Gumi-
lyov Eurasian National University, doctor of physical and mathematical
sciences (1994), professor (1997), honoured worker of education of the
Republic of Kazakhstan (2007), corresponding member of the National
Academy of Sciences of the Republic of Kazakhstan (2012). In 2005 he
was awarded the breastplate “For the merits in the development of science
in the Republic of Kazakhstan”, in 2007 and 2014 the state grant “The
best university teacher”, in 2016 the Order “Kurmet” (= “Honour”).

R. Oinarov was born in the village Kul’Aryk, Kazalinsk district, Kyzy-
lorda region. In 1969 he graduated from the S.M. Kirov Kazakh State University (Almaty).
Starting with 1972 he worked at the Institute of Mathematics and Mechanics of the Academy of
Sciences of the Kazakh SSR (senior engineer, junior researcher, senior researcher, head of a lab-
oratory). In 1981 he defended of the candidate of sciences thesis “Continuity and Lipschitzness
of nonlinear integral operators of Uryson’s type” at the Tashkent State University of the Uzbek
SSR and in 1994 the doctor of sciences thesis “Weighted estimates of integral and differential
operators” at the Institute of Mathematics and Mechanics of the Academy of Sciences of the
Kazakh SSR.

Starting from 2000 he has been working as a professor at the L.N. Gumilyov Eurasian
National University

Scientific works of R. Oinarov are devoted to investigation of linear and non-linear integral
and discrete operators in weighted spaces; to studying problems of the well-posedness of dif-
ferential equations; to weighted inequalities; to embedding theorems for the weighted function
spaces of Sobolev type and their applications to the qualitative theory of linear and quasilin-
ear differential equations. A certain class of integral operators is named after him - integral
operators with Oinarov’s kernels or Oinarov condition. On the whole, the results obtained by
R. Oinarov have laid the groundwork for new perspective directions in the theory of function
spaces and its applications to the theory of differential equations.

R. Oinarov has published more than 100 scientific papers. The list of his most important
publications may be seen on the web-page

https : //scholar.google.com/citations?user = Nz XY MS4AAAAJThl = ruoi = ao

Under his supervision 26 theses have been defended: 1 doctor of sciences thesis, 15 candidate
of sciences theses and 10 PhD theses. The Editorial Board of the Eurasian Mathematical
Journal congratulates Ryskul Oinarov on the occasion of his 70th birthday and wishes him
good health and new achievements in mathematics and mathematical education.
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INVERSE PROBLEM FOR THE DIFFUSION OPERATOR
WITH SYMMETRIC FUNCTIONS
AND GENERAL BOUNDARY CONDITIONS

A.M. Akhtyamov, V.A. Sadovnichy, Ya.T. Sultanaev

Communicated by M. Otelbaev
Dedicated to the 70" birthday of Professor Ryskul Oinarov

Key words: inverse eigenvalue problem, diffusion operator, nonseparated boundary conditions.
AMS Mathematics Subject Classification: 34A55, 34B05, 58C40.

Abstract. For the inverse problem of reconstructing the nonself-adjoint diffusion operator
with symmetric functions and general boundary conditions a uniqueness theorem is proved. As
spectral data only one spectrum and six eigenvalues are used. Earlier this inverse problem was
not considered. The inverse problem of reconstructing the self-adjoint diffusion operator with
nonseparated boundary conditions was considered. To uniquely reconstruct this operator two
spectra, some sequence of signs, and some complex number were used as spectral data. We
show that in the symmetric case to uniquely reconstruct the self-adjoint diffusion operator one
can use even less spectral data as compared with the reconstruction of a self-adjoint problem
in earlier papers; more precisely, we need one spectrum and, in addition, five eigenvalues. The
special cases of these general inverse problems are considered too. In these special cases less
spectral data are used. Algorithms of reconstructing diffusion operator are given. Moreover, we
show that results obtained in the present paper generalize the results for the inverse problem
of reconstructing the diffusion operator with separated boundary conditions.

1 Introduction

By L we denote the following nonself-ajoint problem for a diffusion equation with nonseparated
boundary conditions

Problem L.
ly =y"+ (N = 2Ap(x) — q(x)) y =0, (1.1)
Ui(y) = ainy(0) + ainy'(0) + aizy(7) + auy'(7) = 0, 1=1,2, (1.2)
where p(z) € W3(0,7), p(z) = p(r — z); q(z) € La(0,) is a real-alued function such that
q(x) = ¢(m — x) and the a;; with ¢ =1, 2 and j =1, 2, 3, 4 are complex constants.
Note that if general Problem L is self-adjoint, then Problem L can be reduced to one of the
following Problems G; and Go:
Problem G;.
ly=y"+ (N = 2Ap(x) — q(x)) y = 0,
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Vi(y) = any(0) + y'(0) + ass y(m) = 0, (1.3)
Va(y) = axn y(0) + agz y(m) + ¢/ (7) = 0, (1.4)
where a1 and a3 are real numbers, a3 # 0 is a complex number, and as; = —a13.
Problem Gs.
ly=y"+ (N = 2Ap(x) —q(x)) y =0,
Pi(y) = y(0) + wy(m) =0 (1.5)
Py(y) =wy'(0) +y'(m) + ay(m) =0, (1.6)

where w # 0 is a complex number and « is a real number.

For the inverse problem of reconstructing L in which all coefficients a;; with ¢ = 1, 2 and
7 =1, 2, 3, 4 are arbitrary, no uniqueness theorems have been proved.

Problems G; and G, are the special cases of problem L which have been earlier studied (for
details, see [8]). In particular, in [8] to uniquely reconstruct problem G; two spectra, some
sequence of signs, and some complex number were used as spectral data. We show that, if
p(z) = p(m—x) and g(z) = q(7m — x), then to uniquely reconstruct problem G; one can use even
less spectral data as compared with the reconstruction of a self-adjoint problem in [8]; more
precisely, we need one spectrum and, in addition, five eigenvalues. Moreover, in this paper, we
prove a theorem on the unique reconstruction of problem L with a symmetric functions p(z)
and ¢(x) and general boundary conditions (1.2), which may be nonself-adjoint. As spectral
data only one spectrum and six eigenvalues are used.

The special case of inverse problem of reconstructing G; and Gy in which p(z) = 0 (inverse
Sturm-Liouville problem) was considered in numerous papers (for details, see [1-30]). The
analysis of the inverse nonself-adjoint problem Sturm-Liouville with nonseparated boundary
conditions was initiated in [21]. It was shown there that three spectra and two sets of weight
numbers and residues of certain functions are sufficient for the unique reconstruction of a
nonself-adjoint Sturm—Liouville problem with nonseparated boundary conditions. Moreover,
these spectral data were used essentially [22]. Later, there were attempts to choose the problem
to be reconstructed or auxiliary problems so as to use less spectral data for the reconstruction
[5, 19, 20, 25, 30]. In particular, in [19, 20| a nonself-adjoint problem was replaced by a self-
adjoint one, and it was shown that, for its unique reconstruction, as spectral data it suffices to
use three spectra, some sequence of signs, and some real number. In [5], an auxiliary problem
was chosen so as to reduce the number of spectral data required for the reconstruction of a
self-adjoint problem by one spectrum; i.e., only two spectra, some sequence of signs, and some
real number were used as spectral data. The uniqueness theorems for an inverse nonselfadjoint
Sturm-Liouville problem with symmetric potential and general boundary conditions are proved
in [25]. The spectral data used for unique reconstruction of Sturm-Liouville problems are a
spectrum and six eigenvalues. The results obtained in the present paper generalize the results
for an inverse nonself-adjoint Sturm-Liouville problem with a symmetric potential and general
boundary conditions proved in [25].

2 A unique determination of a nonself-adjoint diffusion operator L
by a spectrum and six eigenvalues

In [16] I.M. Nabiev and A.Sh. Shukyurov proved a uniqueness theorem for the following inverse
Sturm-Liouville problem:



Inverse problem for the diffusion operator with symmetric functions ... 12

Problem N.

ly=y"+ (N =2Ap(a) —q(x)y=0, y(0)=0, y(r)=0.

Uniqueness theorem [16|. Problem N is uniquely determined by its spectrum if p(x) =
p(r — ) and q(x) = q(r — ).

In this paper, we generalize this theorem to the case of general boundary conditions (1.2).

In what follows, we denote a problem of type L, but with different coefficients in the equation
and different parameters in the boundary forms, by L. Throughout the paper, we assume that if
some symbol denotes an object from Problem L then the same symbol with the tilde ~ denotes
the corresponding object from Problem L.

Let A be the matrix composed of coefficients a;;, of the boundary conditions (1.2), i.e.,

11 a2 Q13 Aaiq
Q21 A22 A23 A24

A= (2.1)

and let M;; be its minors composed of ¢th and jth columns:

M. — iy Ay

ij

, 1,7 =1,2,3,4.
Q2; Q25

Vectors are denoted by boldface letters. The symbol T denotes transposition. Column vectors
are represented by rows with this superscript. For the rank of the matrix A we use the notation
rank A.

Together with Problems L and N we consider the following Problem L.
Problem L;.

ly = ¢+ (N —=2Ap(x) —q(z)y =0,
Uni(y) = () b(\)y'(0) =0,
Usa(y) = y(m) =0,

where the function b()\) is a polynomial of the form
b(A) = Mis + (1 — Mig) A+ (Mg — Myz) X + Mo A* + Mg X

Theorem 2.1. If Ay is an eigenvalue of Problem L, \; (i = 1,2,3,4,5) are any pairwise
distinct eigenvalues of Problem Ly, yi(m, N;) # 0, i = 0,1,2,3,4,5; p(x) = p(r — x) and
q(z) = q(m — x), then Problems L, N, and L, are uniquely determined by the spectrum of
Problem N and \;, i = 0,1,2,3,4,5, i.e. the function q(z) is uniquely determined and the
matriz (a;j)axa is determined up to a linear transformation of the rows.

Proof. Applying the uniqueness theorem [16] for the inverse problem N, we see that the func-
tions p(x) and ¢(z) in (1.1) are uniquely determined by the spectrum of Problem N.

To prove the theorem, it remains to find the boundary conditions (1.2).

Since the functions p(x) and ¢(x) are reconstructed we see that the linearly independent
solutions y1(x, A) and ys(z, A) of equation (1.1) satisfying the conditions

y1(0, A) =1, 510, A) =0, (0, A) =0, w5(0,) =1 (2.2)

are known.
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The eigenvalues of Problem L are the roots of the entire function ([15, pp. 33-36], [17,

p- 29])
A(N) = Mg + Msy + Mo yy (7, X) + My yi (7, M)+
+M;3 y2(7T, )\) + My yé(m )\),

and the eigenvalues of Problem L; are the roots of the entire function
Al()\) = y2(777 )\) - CL()\) yl(ﬂ-7 >\)

Since yy(m, Ao) = yh(m, o) if and only if p(z) = p(r — x) and ¢(x) = g(7 — x)[16, Lemma 3],
it follows that

A()\) = M12 + M34 + (Mgg + M14) y1<7T, /\) + M42 yi(ﬂ', )\) + M13 yg(ﬂ', )\), (23)

The numbers \; (i = 1,2,3,4,5) are eigenvalues of Problem L, so A;(\;) = 0, i =
1,2,3,4,5. It now follows that

Mo+ (1 — Myg) X + (Mg — M) A} + Mg X} + Msy A = M
yl(ﬂ-v )‘l)
The determinant of system (2.4) with respect to the unknowns Mo, (1 — M3), (Mg — Mss),
Mya, M3, is the fifth-order Vandermonde determinant equal to [, o, (A, — Ax,). Therefore,
system (2.4) has a unique solution, which can be found by the Cramer formulas.

Since Ag is an eigenvalue of Problem L and y, (7w, Ag) # 0, it follows from (2.3) that

(2.4)

(Msy + Myy) = ( — (Mg + Msy) — My 91(7@ Xo) — My ya(r, Ao)) 3/1_1(7T, Ao)- (2.5)

Combining (2.4) and (2.5), we see that the unknowns Mis, M3, My M3y, Mys, Msy are
uniquely determined. It follows (see [2, p. 32|) that the matrix (a;;)2x4 is determined up to a
linear transformation of the rows. Hence Problems Gy, N, and L; are uniquely determined by
the spectrum of Problem N and \;, : =0,1,2,3,4,5. O

Remark 1. If L=N, then M3 = 1 and all other minors M,; of the matriz A are equal to zero.
So L=N=Ly. Therefore, uniqueness theorem [16] is a special case of Theorem 2.1 proved above,
and Theorem 2.1 is a generalization of the uniqueness theorem [16].

On the basis of the proof of Theorem 2.1, one can construct the following
algorithm for the unique identification of Problems L, L;, and N:

Step 1. By the method for reconstructing the diffusion operator with the boundary conditions
y(0) = y(m) = 0 (see [16]), we find the functions functions p(z) and g(z).

Step 2. By using functions p(z) and ¢(x), we find the linearly independent solutions y;(x, A)
and yo(z, ) of equation (1.1), satisfying conditions (2.2).

Step 3. By using numbers \;, : = 0,1,2,3,4,5 satisfying the conditions of Theorem 2.1, we
find the solution of systems (24) and (25) (Mlg, M137 M14 M327 M42, M34).

Step 4, By llSiIlg determinants Mlg, ]\4137 M14 ]\4327 M42, M34, we find the matrix (aij)2X4
is determined up to a linear transformation of the rows. The matrix (a;j)2x4 determined by
the matrix identification methods (see |2, pp. 33-34])). We thereby completely reconstruct
Problems L, I.;, and N.
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3 A unique determination of the self-adjoint diffusion operator G; by
a spectrum and five eigenvalues

[.M. Guseinov, I.M. Nabiev showed in [§] that Problem G; (with possibly nonsimmetric func-
tions p(z) and ¢(x)) can be uniquely reconstructed from two spectrum, a sequence of signs and
the number a;s.

In what follows, we show that if the functions p(x) and ¢(z) of Problem G; are symmetric,
then Problem G; can be reconstructed from one spectrum and five eigenvalues (a sequence of
signs, an infinite sequence of eigenvalues, and the number a3 are not needed in this case).

Together with Problems L and N we consider the following Problem L.
Problem L,.

ly = y'+ (N —2xpla) —qlx))y =0,
Uily) = ( ) — 51( )y'(0) =0,
Usi(y) = y(m) =

where the function b()) is a polynomial of the form

b1(A) = Mo+ (1 — Miz) A+ (Mg — Mso) A + Mag A°.

Theorem 3.1. If \q is an eigenvalue of Problem Gy, \; (i = 1,2,3,4) are any pairwise distinct
eigenvalues of Problem Ly, yi(m, N;) #0,1=0,1,2,3,4; p(z) = p(m — x) and q(x) = q(7 — ),
then Problems Gy, N, and Ly are uniquely determined by the spectrum of Problem N and \;,
1=0,1,2,3,4.

Proof. Applying uniqueness theorem [16] for the inverse problem N, we see that the functions
p(z) and ¢(z) in (1.1) are uniquely determined by the spectrum of Problem N.

To prove the theorem, it remains to find the coefficients aq1, a3, as1, and ass.

Let yi(x, A) and y2(x, A) be linearly independent solutions of equation (1.1) satisfying the
conditions

110, ) =1, (0, ) =0, 32(0,A)=0, (0, ) =1 (3.1)
The eigenvalues of Problem G; are the roots of the entire function (2.3) with My, = —1.
The numbers \; (i = 1,2, 3,4) are eigenvalues of Problem L, , so

M12 + (1 — M13> >\z + (M14 — M32) /\12 + M34 )\13 = (32)
The determinant of system (3.2) with respect to the unknowns My, (1 — M), (Myy — Msa),
Ms3y is the fourth-order Vandermonde determinant equal to ], ., (Ak, — Ar,). Therefore,

system (3.2) has a unique solution, which can be found by the Cramer formulas.
Since A is an eigenvalue of Problem G; and y;(m, Ag) # 0, it follows from (2.3) that

(Msg + Myy) = ( — (Mo + Msy) + y1(m, Ao) — Mizya(m, Xo)) yi (7, o). (3.3)

Combining (3.2) and (3.3), we see that the unknowns My = a3, Mi3 = ajj ass + |az?,
My = a1y, M3y = —ao3, M3y = aq3 are uniquely determined. It follows from this that the
coefficints a1, a13, as3, and as; = —ay; are uniquely determined. Hence Problems Gy, N, and
Lo are uniquely determined by the spectrum of Problem N and \;, : = 0,1,2,3,4,5. O
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Remark 2. If G1=N, then Gi=N=L,. Therefore, uniqueness theorem [16] is a special case of
Theorem 3.1 proved above, and Theorem 3.1 is a generalization of the uniqueness theorem [16].

On the basis of the proof of Theorem 2.1, one can construct the following

algorithm for the unique identification of Problems G, Ly, and N:

Step 1. By the method for reconstructing the diffusion operator with the boundary conditions
y(0) = y(m) = 0 (see|16]), we find the functions functions p(x) and ¢(z).

Step 2. By using the functions p(z) and ¢(z), we find the linearly independent solutions
y1(x, A) and yo(z, A) of equation (1.1), satisfying conditions (2.2).

Step 3. By using the numbers \;, i = 0, 1, 2, 3, 4 satisfying the conditions of Theorem 3.1, we
find the solution of systems (32) and (33) (Mlg, ]\4137 M14 ]\4327 M34).

Step 4. By using the minors My, = a3, M3 = a11 as3 + |ai3]?, My = aiy, Mz = —ass,
M3, = ai3 we find the coefficints aq1, a13, as3, and as; = —as;. We thereby completely
reconstruct Problems Gi, Lo, and N.

4 A unique determination of the self-adjoint diffusion operator G, by
a spectrum and two eigenvalues

[.M. Guseinov, I.M. Nabiev showed in [§] that Problem G, (with possibly nonsimmetric func-
tions p(z) and ¢(x)) can be uniquely reconstructed from two spectrum, a sequence of signs and
the number a;s.

In what follows, we show that if the functions p(z) and ¢(z) of Problem G, are symmetric,
then Problem G can be reconstructed from one spectrum and two eigenvalues (a sequence of
signs, an infinite sequence of eigenvalues, and the number a3 are not needed in this case).

Together with Problems L and N we consider the following Problem Ls.
Problem Ls.

ly = '+ (N —2Xp(x) —q(z))y =0,
Una(y) = y(0) —w
Uaa(y) = y(m)=0.

Theorem 4.1. If p(z) = p(m — z) and q(x) = q(m — x), Ao is an eigenvalue of Problem Gz, \
15 etgenvalues of Problem Lo, such that the following condition

Ya(m, Xo) # 0, yu(m, A1) #0; (4.1)

holds, then Problems Gy, N, and Ls are uniquely determined by the spectrum of Problem N and
Ai, 1 =0,1.

Proof. Applying the uniqueness theorem [16] for the inverse problem N, we see that the func-
tions p(z) and ¢(x) in (1.1) is uniquely determined by the spectrum of Problem N.

To prove the theorem, it remains to find the coefficients w and «a.

Let yy(z, A) and ya(x, A) be linearly independent solutions of equation (1.1) satisfying the
conditions (2.2).
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The eigenvalue Ay of Problem G, is the root of the following entire function
AsN) =w+w+w-wy (m\) + ayy(m,\) (4.2)

The number ) is eigenvalue of Problem L, , so

y2(7T7 )\1)
yl(ﬂ-a )\1) ( )
Since Ag is an eigenvalue of Problem Gy and yo(m, Ag) # 0, it follows from (4.2) that
a:_w—i-w—i-w-wyl(ﬂ,/\) (4.4)

yé(ﬂ-7 AO)

Combining (4.3) and (4.4), we see that the coefficients w and « are uniquely determined.
Hence Problems Gs, N, and L3 are uniquely determined by the spectrum of Problem N and \;,
i=0,1. [

On the basis of the proof of Theorem 4.1, one can construct

an algorithm for the unique identification of Problems Gs, L3, and N:

Step 1. By the method for reconstructing the diffusion operator with the boundary con-
ditions y(0) = y(m) = 0 (see[16]), we find the functions functions p(z) and ¢(x) from spectrum
of Problem N.

Step 2. By the functions p(z) and ¢(x), we find the linearly independent solutions y;(x, A)
and yo(z, ) of equation (1.1), satisfying conditions (2.2).

Step 3. By the numbers )\;, i = 0, 1 satisfying the conditions of Theorem 4.1 and formulae
(4.3) and (4.4) we find the coefficients w and « of the boundary conditions of Problem Go. We
thereby completely reconstruct Problems Go, L3, and N.

5 A unique determination of the self-adjoint diffusion operator G; by
a spectrum and three (or two) eigenvalues in special cases

Consider the following spectral problem.

Problem Y:

ly = '+ (N =2Xp(x)—q(z))y=0, vy,
Una(y) = a1y(0)+4(0) + azy(m) =0,
Usi(y) = —a13y(0) + agsy(m) + 3/ () =0, a1, 13, ags € R.

Problem Y coincides with Problem Gy, where a3 are any real numbers and as; = —aqs.
V.A. Yurko showed in [30] that Problem Y in the case p(xz) = 0 can be uniquely reconstructed
from two spectra and a sequence of signs, namely, from the spectrum of Problem Y (with
p(z) = 0), the spectrum {z,} of the problem for the Sturm-Liouville equation and the boundary
conditions y'(0) + a1; y(0) = y(m) = 0, and the sequence of signs w,, = sign (|0’ (7, z,,)| — |a13]),
where 0(z, \) is the solution of the Sturm-Liouville equation under the boundary conditions
8(0, )\) = ]., 0/(0, )\) = —Aaiz-
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In what follows, we show that if the functions p(z) and ¢(x) are symmetric and the boundary
conditions hold, then Problem Y can be reconstructed from one spectrum and three (or two)
eihenvalues (a sequence of signs and infinite set of eigenvalues of Problem Y are not needed in
this case).

In [16] is considered the following problem Nj.
Problem Nj:

ly=y"+ (N =2Ap(z) —q(x)y=0, ¥ (0)—hy(0)=0, y(7)+hy(r)=0, h € R.

Remark [16]. Problem Ny is uniquely determined by its spectrum if p(z) = p(x — m) and
q(z) = q(z — ).

This section contains generalizations of this assertion to the case of nonseparated boundary
conditions.

Theorem 5.1. Suppose A1, Ao and A3 are eigenvalues of Problem Y and satisfy the following

condition:
1 91(777 >\1) y2(7T, )\1)

1 y1(7T,>\2) ?ﬁ(ﬂ',)\z) 7é0 (51)
1 yl(ﬂ-v)‘3) y2(ﬂ-7)‘3)

Then Problem Y (the functions p(x), q(x), and coefficients ai1, a1z and ass) are uniquely
determined by the spectrum of Problem Ny and X\;, i =1,2,3.

Proof. Applying the method for reconstructing the diffusion operator (see [16]) to problem N;
with h = —ay;, we see that the functions p(x) and ¢(x) and the coefficient a;; = —h are
uniquely determined by the spectrum of Problem Nj.

To prove the theorem, it remains to find the coefficients as1, a13 and aos.

The characteristic determinant Ay () of Problem G as follows

AQ()\) = 2@13 — a23 yl(ﬂ', )\) — yi(’ﬂ', )\)‘i‘

5.2
+(a11 a3 + a%3) Ya(m, A) + a1 y5(m, A). 5-2)

Since the functions p(z) and g(z) are reconstructed we see that the linearly independent solu-
tions yi(z, A) and yo(x, A) of equation (1.1) under conditions (2.2) are known, and the eigen-
values of Problem G are the roots of characteristic determinant (5.2). It now follows that

—2a13 + ass (a1 yo(m, X)) — ya(m, N;)) + adyya(m, A) = 53
:—yi(ﬂ', )\i)+a11y§(7r, )\l), 1= 1,2,3. )

It follows from (5.1) that the determinant

I an ya(m A1) —yi(m, A1) ya(m, Ay)
I an ya(m, A2) —yi(m, A2)  ya(m, A2)
1 anya(mA3) —ya(m, As)  yalm, As)

of system of equations (5.3) with respect to the three unknowns 2 a3, a3, a?; is not equal
to zero. Therefore, system (5.3) has a unique solution, which can be found by the Cramer
formulas. The coefficient a;3 is uniquely determined from 2 a3 and a?;. So the coefficients a3,
a1 = —ajg and agz are uniquely determined by three eigenvalues \; (i = 1,2, 3) of Problem Y
such that condition(5.1) holds. O
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If condition (5.1) holds on the basis of the proof of Theorem 5.1, one can construct the
following

algorithm for the unique identification of Problem Y:

Step 1. By the method for reconstructing the diffusion operator with the boundary conditions
y'(0) + a1 y(0) = /() — a1y y(m) = 0 (see[16]), we find the functions functions p(z), ¢(z), and
coefficient a;;.

Step 2. By using the function g(x), we find the linearly independent solutions y;(z, A) and
y2(x, A) of equation (1.1), satisfying conditions (2.2).

Step 3. By using the eigenvalues \;, i = 1,2, 3 of Problem Y satisfying condition (5.1), we find
the solution of system (5.3) (the numbers ay3, as3, a3; ). We thereby completely reconstruct
Problem Y.

Theorem 5.2. Suppose the coefficients ai1, as and asz are real, Ay and Xy are eigenvalues of
Problem Y and satisfy the following condition:

Yo(m, A1) = y2(m, A2) = 0, y1(m, A2) — ya(m, A1) # 0. (5-4)
Then Problem Y (the functions p(z), q(x) and coefficients ai1, asy and asz) are uniquely deter-
mined by the spectrum of Problem Ny with h = —aq1 and eigenvalues N\;, i = 1, 2.

Proof. Applying the method for reconstructing the diffusion operator (see [16]) to problem N
with h = —ay1, we see that the functions p(z) and ¢(z) and the coefficient a;; = —h is uniquely
determined by the spectrum of Problem N;. To prove the theorem, it remains to find the
coefficients as; and ass.

Since the functions p(z) and ¢(z) are reconstructed we see that the linearly independent
solutions y;(z, A) and yo(z, \) of equation (1.1) under conditions (2.2) are known. So the
eigenvalues of Problem Y are the roots of the entire function

AQ()\) = -2 a21 — Q23 yl(ﬂ-v )‘) - y,l(ﬂ-7 >\)+

5.5
+(a11 a3 + a%ﬂ Yo (m, A) + a1 yh(m, A). (5:5)

It now follows that
2@21 + 923 yl(’ﬂ', )\z> = —yi(’ﬂ', )\Z> + a1 yé(’ﬂ', )\z); 1= ]., 2. (56)

The determinant of system (5.6) with respect to the unknowns 2as; and as3 is equal to
(y1(7r, A2) — yi(, )\1)) # 0. Therefore, system (5.6) has a unique solution, which can be found
by the Cramer formulas.

Hence Problems Y and N; are uniquely determined by the spectrum of Problem N; and two
eigenvalues of Problem Y. O]

If condition (5.4) holds on the basis of the proof of Theorem 5.2, one can construct the
following

algorithm for the unique identification of problems Y and Nj:

Step 1. By the method for reconstructing the diffusion operator with the boundary conditions
y'(0) — a1 y(0) = ¢/ (7) + a11 y(m) = 0 (see [16]), we find the functions functions p(x), ¢(z), and
coefficient aq;.
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Step 2. By using the function g(x), we find the linearly independent solutions y;(z, A) and
y2(x, A) of equation (1.1), satisfying conditions (2.2).

Step 3. By using the eigenvalues X;, i = 1,2 (or ¢ = 1,2,3) of Problem Y] satisfying (5.4),
we find the solution of system (5.6) (the coefficients as; and as3). We thereby completely
reconstruct Problem Y and Nj.

6 A unique determination of the self-adjoint diffusion operators G;
and G, by a spectrum and one eigenvalue in special cases

Theorem 6.1. Suppose the coefficients ai1, asyare real, and as3 = —aqy; the number Ny an
eigenvalue of Problem Y. Then Problem Y (the functions p(x), q(x) and coefficients ay; and
as1) are uniquely determined by the spectrum of Problem Ny with h

eigenvalue \g.

= —ay; = ag3 and one

Proof. Applying the method for reconstructing the diffusion operator (see [16]) to problem N;
with h = —aj; = ag3, we see that the functions p(x) and ¢(z) and the coefficients a;; = —h
and ao3 = h are uniquely determined by the spectrum of Problem N;. To prove the theorem,
it remains to find the coefficient as;.

Since the functions p(x) and ¢(x) are reconstructed we see that the linearly independent
solutions y;(z, A) and yo(z, \) of equation (1.1) under conditions (2.2) are known. So the
eigenvalue of Problem Y is the root of the entire function (5.2) and we obtain the following
equation:

an = 3 <@11 (wh(m, Xo) + w1 (m, Xo)) — wi(m, )\0)>- (6.1)

Therefore, the coefficient ag; is uniquely determined by formula (6.1).
Hence Problems Y and N; are uniquely determined by the spectrum of Problem N; and an
eigenvalue of Problem Y. O

Remark 3. If ay, = 0, then Y=N,. Therefore, results [16] on unique reconstruction of Problem
Ny is a special case of Theorem 5.2 proved above, and Theorem 5.2 is a generalization of the
result [16].

On the basis of the proof of Theorem 5.2, one can construct the following

algorithm for the unique identification of Problems Y and Nj:

Step 1. By the method for reconstructing the diffusion operator with the boundary conditions
y'(0) —a11 y(0) = ¢/ (7) + a1y y(m) = 0 (see [16]), we find the functions functions p(x), ¢(z), and
coeflicients a1, and asz = —aq;.

Step 2. By using the function ¢(x), we find the linearly independent solutions y;(x, A) and
yo(z, \) of equation (1.1), satisfying conditions (2.2).

Step 3. Substituting an eigenvalue of Problem Y for \; in (6.1), we get as;. We thereby
completely reconstruct Problems Y and Nj.

Theorem 6.2. Suppose that the coefficient w is real, the number \g is an eigenvalue of Problem
Gy such that yo(m, Ng) # 0. Then Problem Y (the functions p(x), q(x) and coefficients a;; and
as) are uniquely determined by the spectrum of Problem Ny with h = w and one eigenvalue \g.
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Proof. Applying the method for reconstructing the diffusion operator (see [16]) to problem N;
with h = w, we see that the functions p(z) and ¢(x) and the coefficient w = h are uniquely
determined by the spectrum of Problem N;. To prove the theorem, it remains to find the
coefficient .

Since the functions p(z) and ¢(z) are reconstructed we see that the linearly independent
solutions y;(x, A) and ya(z, A) of equation (1.1) under conditions (2.2) are known. So the
eigenvalue of Problem Gy is the root of the entire function (4.2) with w = @ and we obtain the

following equation:
2w+ w?yp (m, \)

o= . 6.2

. ) (62

Hence Problems Gg with real w and Ny are uniquely determined by the spectrum of Problem
N; and one eigenvalue of Problem Go. ]

On the basis of the proof of Theorem 6.2, one can construct the following

algorithm for the unique identification Problems G, and Nj:

Step 1. By the method for reconstructing the diffusion operator with the boundary conditions
y(0) = y(m) = 0 (see[16]), we find the functions functions p(z) and ¢(z) and the real number w
from spectrum of Problem Nj.

Step 2. By using the functions p(z) and ¢(z), we find the linearly independent solutions
y1(z, A) and yo(z, ) of equation (1.1), satisfying conditions (2.2).

Step 3. By using the number \q satisfying the condition y, (7, Ag) # 0 and formula (6.2) we
find the coefficient a of boundary conditions of problem G,. We thereby completely reconstruct
Problems G, and Nj.
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